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Introduction

Reddy and Zaccour in [START_REF] Reddy | Open-loop Nash equilibria in linear-quadratic difference games with constraints[END_REF][START_REF] Reddy | Feedback Nash equilibria in linear quadratic difference games with constraints[END_REF] analyzed a class of deterministic linear-quadratic finite-horizon multistage games where the control variables of each player are of two types, namely: (a) control variables that do not enter the state dynamics, but are part of joint state-control constraints; and (b) control variables that affect the state dynamics, but are not constrained. In [START_REF] Reddy | Open-loop Nash equilibria in linear-quadratic difference games with constraints[END_REF], the authors provide conditions for the existence and uniqueness of an open-loop Nash equilibrium, and an approach to compute such an equilibrium. In [START_REF] Reddy | Feedback Nash equilibria in linear quadratic difference games with constraints[END_REF], the same is achieved but for a feedback information structure and resulting feedback-Nash equilibrium. In this paper, we extend the approaches and results in [START_REF] Reddy | Open-loop Nash equilibria in linear-quadratic difference games with constraints[END_REF][START_REF] Reddy | Feedback Nash equilibria in linear quadratic difference games with constraints[END_REF] to the case where the games involve uncertain parameter values.

The uncertainty is represented by an exogenously given

This paper heavily draws on Reddy and Zaccour [START_REF] Reddy | Open-loop Nash equilibria in linear-quadratic difference games with constraints[END_REF][START_REF] Reddy | Feedback Nash equilibria in linear quadratic difference games with constraints[END_REF]. To simplify the reader's task in appreciating the differences between a deterministic and a stochastic setting, we kept on purpose the same notation, structure and example in these papers. We would like to thank the three reviewers and the associate editor for their helpful comments. Research supported by NSERC Canada, grant RGPIN-2016-04975.
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An illustrative example of the class of games we are considering here is an oligopoly game à la Cournot with capacity constraints. In such model, there are a finite number of firms selling a homogeneous product, and where the market price is a decreasing function in the total quantity available on the market and (here) on some uncertain parameter values. Each player faces a capacity constraint and can invest to increase it, or disinvest to reduce it. In the parlance of dynamic games, the quantity produced and the investment are the control variables and the production capacity is the state variable. The quantity is an example of control variables of type (a) above, while the investment in capacity is of type (b). Indeed, the quantity does not enter the state dynamics, but is constrained by the capacity, while the investment is part of these dynamics, but is unconstrained.

The general model considered in this paper belongs to the class of dynamic games played over event trees (DG-PET) introduced by Zaccour [START_REF] Zaccour | Théorie des jeux et marchés énergétiques: marché européen de gaz naturel et échanges d'électricité[END_REF] and Haurie et al. [START_REF] Haurie | Stochastic equilibrium programming for dynamic oligopolistic markets[END_REF], and further developed in Haurie and Zaccour [START_REF] Haurie | S-Adapted Equilibria in Games Played over Event Trees: An Overview[END_REF]. Assuming noncooperative mode of play, examples of real (or realistic) implementations of this class of games in electricity markets include, e.g., Pineau and Murto [START_REF] Pineau | An oligopolistic investment model of the Finnish electricity market[END_REF], Genc et al. [START_REF] Genc | Dynamic oligopolistic games under uncertainty: A stochastic programming approach[END_REF], Genc and Sen [START_REF] Genc | An Analysis of Capacity and Price Trajectories for the Ontario Electricity Market Using Dynamic Nash Equilibrium under Uncertainty[END_REF] and Pineau et al. [START_REF] Pineau | Impact of some parameters on investments in oligopolistic electricity markets[END_REF], with the main objective of determining the equilibrium investments in different generation technologies in competitive electricity industries. Long-term cooperative agreements and their sustainability in DGPET were recently considered in a series of papers; see, e.g., Reddy et al. [START_REF] Reddy | Timeconsistent Shapley value for games played over event trees[END_REF], Parilina and Zaccour [START_REF] Parilina | Approximated Cooperative Equilibria for Games Played over Event Trees[END_REF][START_REF] Parilina | Node-Consistent Core for Games Played over Event Trees[END_REF][START_REF] Parilina | Node-Consistent Shapley Value for Games Played over Event Trees with Random Terminal Time[END_REF]. For a comprehensive introduction to the class of DGPET, see Haurie et al. [START_REF] Haurie | Games And Dynamic Games[END_REF], and for a survey/tutorial on its applications in cooperative games, see [START_REF] Zaccour | Sustainability of Cooperation in Dynamic Games Played over Event Trees[END_REF].

The rest of the paper is organized as follows: In Section 2, we introduce the multistage stochastic game model. In Sections 3 and 4, we deal with S-adapted open-loop Nash equilibria, and S-adapted feedback Nash equilibria, respectively. In Section 5, we discuss the computation of an S-adapted Nash equilibrium. In Section 6, we provide a simple numerical illustration and we briefly conclude in Section 7.

Notations

We shall use the following notation. M denotes the transpose of a matrix M . Π N i=1 A i represents the Cartesian product of sets A 1 , A 2 , • • • , A N and ⊕ N i=1 M i represents the block diagonal matrix obtained by taking the matrices M 1 , M 2 , • • • , M N as diagonal elements in this sequence. M ⊗ N represents the Kronecker product of matrices M and N . The matrix with all entries as zeros is denoted by 0, and the identity matrix is represented by I. We call two vectors x, y ∈ R n complementary if x ≥ 0, y ≥ 0 and x y = 0, and 0 ≤ x ⊥ y ≥ 0 denotes this condition. Let D be a n × n matrix and e be a n × 1 vector. Let n be partitioned as n = n 1 + n 2 + • • • + n K . We represent [D] ij as the n i × n j submatrix associated with indices n i (row) and n j (column), and [e] i as the n i × 1 subvector associated with indices n i . col(e i ) N i=1 (row(e i ) N i=1 ) represents single vector or matrix obtained by stacking the vectors or matrices e 1 , e 2 , • • • , e N vertically (horizontally). The linear-complementarity problem [START_REF] Cottle | The Linear Complementarity Problem[END_REF] is defined as finding an x ∈ R n , given M ∈ R n×n and q ∈ R n , such satisfying the following conditions: M x + q ≥ 0, x ≥ 0, x (M x + q) = 0. We denote this problem as LCP(M, q) and we denote its solutions as SOL(LCP).

The multistage stochastic game model

In this section, we first introduce the ingredients of an event tree, and next the details pertaining to the class of multistage games we are dealing with.

Modeling uncertainty with a scenario tree

Let T = {0, 1, . . . , T } be the set of periods and denote by {ξ(t) : t ∈ T\{T }} the exogenous stochastic process represented by an event tree. 1 This tree has a root node n 0 in period 0 and a finite set of nodes n t in period t ∈ T. Each node n t ∈ n t represents a possible sample value of the history of the ξ(•) process up to time t. Denote by n - t ∈ n t-1 the unique predecessor of node n t ∈ n t , and by ν a successor of the node n t . We denote by n + t ⊂ n t+1 the set of all possible direct successors of node n t , and by n ++ t the set of all nodes of the event tree having n t as the root node. Having reached the node n t at time t, n ++ t represents the residual uncertainty in the form of a subtree emanating from node n t . Consequently, n ++ 0 describes the entire event tree. We illustrate a branch of the event tree in Figure 1. A path from the root node n 0 to a terminal node n T is called a scenario, with the probabilities of all scenarios summing up to 1. We denote by n 0 n t the set of all the nodes encountered along the unique sample path starting from n 0 to n t . Let π nt be the probability of passing through node n t , which corresponds to the sum of the probabilities of all scenarios that contain this node. In particular, π n0 = 1 and π n T is equal to the probability of the single scenario that terminates in the node n T ∈ n T . We denote by π ν nt := πν πn t the transition probability from node n t to a particular node ν ∈ n + t , and by π n + t nt the row vector of transition probabilities, that is,

π n + t nt = π ν 1 nt π ν 2 nt • • • π ν |n + t | nt ,
where ν 1 , ν }. Let z(•) denotes the vector process (states and decisions) evolving on the scenario tree indexed by the nodes n t , that is, at each node n t ∈ n ++ 0 , we have z(n t ) ∈ R n . 2 We denote by z π,n + t the conditional sum z π,n

+ t := ν∈n + t π ν nt z ν . n - t n 0 n + t n ++ t ν n t sample path 0 1 t -1 t t + 1 T n0 nt
Fig. 1. Evolution of uncertainty described by an event tree 1 Modeling uncertainty with scenario trees is a common practice in stochastic programming literature [START_REF] Kall | Stochastic programming[END_REF]. 2 We note that zn t takes values in a linear space.

2.Linear quadratic stochastic dynamic game with constraints

Denote by N = {1, 2, . . . , N } the set of players. Let x nt ∈ R n , where n is a given positive integer, be a state vector at node n t . At each node n t ∈ n t , player i ∈ N chooses two types of controls/actions, that is: (i) variables that enter the dynamics of the system, but not the constraints, which we denote by u i nt ∈ U i nt ⊂ R mi ; and (ii) variables that do not affect the dynamics, but constrain the decision making process, denoted by

v i nt ∈ V i nt ⊂ R si .
Here, U i nt and V i nt are the sets of admissible values for the two types of decision variables. The evolution of the state vector is described as follows:

x nt = A n - t x n - t + i∈N B i n - t u i n - t , (1) 
n t ∈ n t , t ∈ T\{0}, x n0 = x 0 ,
where A nt ∈ R n×n and B i nt ∈ R n×mi . According to the state equation ( 1), at each node n t ∈ n t , the decisions of all players {u i nt , i ∈ N} will determine, in association with the current state x nt , the state x ν for all the successor nodes ν ∈ n + t . Note that the decisions are made by the players before the realization of uncertainty, which is reflected by the one-period lag in the dynamics. 3 Further, we assume that each player i must also select values of v i nt ∈ V i nt at each node of the event tree, after the realization of uncertainty, which is similar to recourse variables in stochastic programming [START_REF] Kall | Stochastic programming[END_REF]. We suppose that the decision variables v i nt do not enter the dynamics directly but appear only in the form of inequality constraints, jointly with the state variable, at every node n t as follows:

M i nt x nt + N i nt v i nt + r i nt ≥ 0, v i nt ≥ 0, n t ∈ n t , t ∈ T, (2) 
where M i nt ∈ R ci×n , N i nt ∈ R ci×si and r i nt ∈ R ci for i ∈ N. As an illustrative example, the u variables can be investments in production capacities to be engaged before knowing the realization of the random process at the next period, and the v variables are the quantities put on the market at current node, and are subject to the capacity constraints.

Remark 1 It is easily seen that x ν1 = x ν2 , ∀ν 1 , ν 2 ∈ n + t such that ν 1 = ν 2 , i.e.
, each state variable takes the same value at all successor nodes n + t that emanate from node n t . Further, in the above formalism, though the decision variables {u i nt , i ∈ N} do not enter explicitly the constraints (2), they affect indirectly these constraints through the state variables.

We denote by U

nt := Π N i=1 U i nt and V nt := Π N i=1 V i nt
the joint decision sets of the players at a node n t ∈ n t . The joint decisions of the players at a node n t ∈ n t are denoted by u nt := col(u i nt ) N i=1 and v nt := col(v i nt ) N i=1 . We denote by ũ := {u i nτ , n τ ∈ n ++ 0 \n T } and by ṽ := {v i nτ , n τ ∈ n ++ 0 } a complete specification of actions defined for every node of the event tree. In our state equation formalism, player i ∈ N chooses, independently, the actions u i nt and v i nt . The state variables are shared by all players and they enter the definition of players' objective functions. At each node n t ∈ n t , t ∈ T\{T }, the cost incurred by player i is a function of the state variable x nt and the decision variables of all players, that is, u nt and v nt , given by g i (n t , x nt , u nt , v nt ). At a terminal node n T , the cost incurred by player i is given by the function g v i (n T , x n T , v n T ). The state equations, state constraints and the cost functions define the following linear-quadratic dynamic game on the event tree (LQDGET):

LQDGET : min

u i nτ , nτ ∈n ++ 0 \n T , v i nτ , nτ ∈n ++ 0 J i (x 0 , ũ, ṽ), (3) 
subject to (1) and ( 2),

where the total cost incurred by player i is given by

J i (x 0 , ũ, ṽ) := T -1 t=0 nt∈nt π nt g i (n t , x nt , (u i nt , u i- nt ), (v i nt , v i- nt )) + n T ∈n T π n T gv i (n T , x n T , (v i n T , v i- n T )),
where

g i (n t , x nt , (u i nt , u i- nt ), (v i nt , v i- nt )) = gu i (n t , x nt , (u i nt , u i- nt )) + gv i (n t , x nt , (v i nt , v i- nt )), gu i (n t , x nt , (u i nt , u i- nt )) = j∈N 1 2 u j nt R ij nt u j nt , gv i (n t , x nt , (v i nt , v i- nt )) = 1 2 x nt Q i nt x nt + p i nt x nt + 1 2 v i nt v i- nt   D i nt i,i D i nt i,i- D i nt i-,i D i nt i-,i-   v i nt v i- nt + x nt L i nt i L i nt i- v i nt v i- nt + d i nt i d i nt i- v i nt v i- nt , (4) 
where

Q i nt ∈ R n×n , p i nt ∈ R n , D i nt ∈ R s×s . d i nt ∈ R s and L i nt ∈ R n×s for i ∈ N and n t ∈ n ++ 0 .
Further, we assume that for every i ∈ N, R il nt ∈ R mi×m l , for all l ∈ N and n t ∈ n ++ 0 \n T . Notice that the optimization problem of player i depends on the actions of the other players denoted by i -, and on the state dynamics in [START_REF] Reddy | Open-loop Nash equilibria in linear-quadratic difference games with constraints[END_REF].

We have the following assumptions.

Assumption 2

(a) The action sets {U i nt ⊂ R mi , i ∈ N, n t ∈ n ++ 0 \n T } are such that the feasible action sets We highlight that the decision variables are indexed over the nodes of the event tree, which is equivalent to saying that the decisions are adapted to the history of the stochastic process ξ(•). Hence, the use of S -adapted information structure in the literature cited in the introduction, where S stands for sample.

V i nt (x nt ) := {v i nt ∈ R si |M i nt x nt + N i nt v i nt + r i nt ≥ 0, v i nt ≥ 0}
We introduce the following additional notation: For any player i ∈ N, the joint decisions are denoted by ψ i nt := (u i nt , v i nt ) for all the nodes n t ∈ n ++ 0 \n T and by ψ i n T := v i n T for the terminal nodes n T ∈ n T . The joint decisions of all players at a node n t and represented by

ψ nt := (ψ 1 nt , ψ 2 nt , • • • , ψ N nt
), and we denote by

Ψ nt := Π N i=1 (U i nt × V i nt )
and Ψ n T := Π N i=1 V i n T the joint action space for all nodes n t ∈ n ++ 0 \n T and n T ∈ n T , respectively. The set of admissible actions taken by the players along a sample path n 0 n t are then given by {ψ α , α ∈ n 0 n t }; see Figure 1. The strategy or the collection of actions of player i ∈ N for all nodes is denoted by ψi := {ψ i nt , n t ∈ n ++ 0 }. The strategy profile of all players is denoted by ψ := {ψ nt , n t ∈ n ++ 0 }.

Definition 3 (S -adapted strategy) An admissible S-adapted strategy for player i is defined by ψi = {ψ i nt , n t ∈ n ++ 0 }, that is, the plan of decisions adapted to the history of the random process ξ(•) represented by the event tree.

Definition 4 (S -adapted Nash equilibrium) An S-adapted Nash equilibrium is an admissible S-adapted strategy ψ * := ( ψ * i , ψ * i -) such that for every player i the following condition holds:

J i (x 0 , ψ * ) ≤ J i (x 0 , ( ψi , ψ * i -), ∀ ψi , (5) 
where ψ * i -is defined as the S-adapted Nash equilibrium strategy vector of players i -.

In multistage games the interaction environment is dynamic, which is embedded in state variables and their evolution. It is well known [START_REF] Başar | Dynamic Noncooperative Game Theory[END_REF][START_REF] Engwerda | LQ Dynamic Optimization and Differential Games[END_REF] that the predictions of the game (e.g., Nash equilibrium) vary with the information used by the players during the (dynamic) decision making process. Therefore, in a dynamic game an information structure must be specified when players design their strategies. In the following, we introduce two widely used information structures in dynamic games.

S-adapted information structure

We consider two types of information structures, namely, S -adapted open-loop information structure and S -adapted feedback information structure. In the former, each player designs a rule that selects values of the control variables that depend on the current node of the event tree n t and initial state x 0 . In our setting, this can be translated into u i nt = γ i on t (x 0 ) ∈ U i nt , for the unconstrained decisions, and v i nt ∈ V i nt (x nt ), for the constrained variables, where γ i on t (•) is a continuously differentiable mapping, and the set of all such mappings is denoted by Γ i o . Note that the feasible action space for the variables that enter the constraints depends on the state of the system, and hence the notation V i nt (x nt ).

In an S -adapted feedback (or Markovian) information structure, each player designs a rule for choosing actions at each node n t of the event tree that are based on the observation of the state variable x nt . The feedback rule is a mapping from the state space into the action set. In our setting, this can be translated into u i nt = γ i fn t (x nt ) ∈ U i nt , for the unconstrained decisions, and v i nt ∈ V i nt (x nt ), for the constrained variables, where γ i fn t (•) is a continuously differentiable mapping, and the set of all such mappings is denoted by Γ i f . Note that the feasible action space for the variables that enter the constraints depends on the state of the system, and hence the notation V i nt (x nt ).

S -adapted open-loop Nash equilibrium

In this section, we provide necessary and sufficient conditions for the existence of an S-adapted open-loop Nash equilibrium for LQDGET. From definition 4 and from section 2.3, the S-adapted open-loop Nash equilibrium strategy of a player i ∈ N is obtained as the solution of a constrained optimal control problem defined on the event tree, where the strategies of players i -are fixed at their equilibrium values (ũ * i -, ṽ * i -). We introduce the Lagrangian associated with player i's minimization prob-lem as follows:

L i =J i (x 0 , ũ, ṽ) - T t=0 nt∈nt π nt µ i nt M i nt x nt + N i nt v i nt + r i nt + T t=1 nt∈nt π nt λ i nt A n - t x n - t + B i n - t u i n - t + j∈i - B j n - t u j n - t * -x nt + λ i n0 (x n0 -x 0 ), (6) 
where {λ i nt , n t ∈ n t , t ∈ T\{T }} are the co-state variables associated with the state transition over the event tree (1) and {µ i nt , n t ∈ n t , t ∈ T} are the Lagrange multipliers associated with the constraints (2). We have the following theorem regarding the necessary conditions for S-adapted open-loop Nash equilibrium for LQGET.

Theorem 5 Let assumption 2 holds true, then for an N -person LQGET, let

{u i nt * ≡ γ i o * nt (x 0 ), n t ∈ n ++ 0 \n T , v i nt * , n t ∈ n ++ 0 } be an S-
adapted openloop Nash equilibrium solution and {x * nt , n t ∈ n ++ 0 } be the corresponding equilibrium state trajectory. Then, there exists a finite sequence of co-state vectors {λ i nt , n t ∈ n ++ 0 } and multiplier vectors {µ i nt , n t ∈ n ++ 0 } for each player i ∈ N such that the following conditions are satisfied:

u i nt * ≡ γ i o * nt (x 0 ) = -(R ii nt ) -1 B i nt λ i π,n + t , (7) 
x

* ν = A nt x * nt + l∈N B l nt u l nt * , (8) 
ν ∈ n + t , n t ∈ n t , t ∈ T\{T }, x n0 = x 0 , λ i nt = A nt λ i π,n + t + Q i nt x * nt + p i nt -M i nt µ i nt * + L i nt v * nt , (9) 
n t ∈ n t , t ∈ T\{T }, λ i n T = Q i n T x * n T + p i n T -M i n T µ i n T * + L i n T v * n T , n T ∈ n T , (10) 0 
≤ l∈N D i nt il v l nt * -N i nt µ i nt * + L i nt i x * nt + d i nt i ⊥ v i nt * ≥ 0, n t ∈ n t , t ∈ T, (11) 
0 ≤ M i nt x * nt + N i nt v i nt * + r i nt ⊥ µ i nt * ≥ 0, ( 12 
) n t ∈ n t , t ∈ T.
The necessary conditions [START_REF] Genc | Dynamic oligopolistic games under uncertainty: A stochastic programming approach[END_REF] follow directly as the Lagrangian ( 6) is strictly convex in u i nt ; R ii nt is a positive definite matrix. Further, the terminal conditions [START_REF] Reddy | Timeconsistent Shapley value for games played over event trees[END_REF] are the transversality conditions associated with the constrained optimal-control problems. The conditions [START_REF] Parilina | Approximated Cooperative Equilibria for Games Played over Event Trees[END_REF][START_REF] Parilina | Node-Consistent Core for Games Played over Event Trees[END_REF] are the Kraush-Khun-Tucker conditions at each time period t ∈ T represented in complementarity form. Note that (8-10) represent parametric two-point boundary value problems (TPBVPs), parametrized with optimal multipliers and joint actions {(v * nt , µ * nt ), n t ∈ n ++ 0 }. Further, the complementarity conditions [START_REF] Parilina | Approximated Cooperative Equilibria for Games Played over Event Trees[END_REF][START_REF] Parilina | Node-Consistent Core for Games Played over Event Trees[END_REF] represent parametric linear complementarity problems, parametrized with the optimal state trajectory {x * nt , n t ∈ n ++ 0 }. Collecting [START_REF] Parilina | Approximated Cooperative Equilibria for Games Played over Event Trees[END_REF][START_REF] Parilina | Node-Consistent Core for Games Played over Event Trees[END_REF] for all players i ∈ N we have at every node n t ∈ n ++ 0 the following parametric linear complementarity problem

pLCP(x * nt ) : 0 ≤ D nt -N nt N nt 0 v * nt µ * nt + L nt Mnt x * nt + d nt r nt ⊥ v * nt µ * nt ≥ 0, ( 13 
)
where

[D nt ] ij = D i nt ij , N nt = ⊕ N i=1 N i nt , Lnt = row( L i nt i ) N i=1 , Mnt = col(M i nt ) N i=1 , d nt = col( d i nt i ) N i=1 and r nt = col(r i nt ) N i=1 .
Consequently, the necessary conditions for the constrained Nash equilibrium lead to a coupled system of parametric two-point boundary value problem and parametric linear complementarity problems. Next, exploiting the linearity and separable cost structure (4) we show in the following theorem that the two-point boundary value problem can be solved by restricting the costate variables to be affine in the state variable.

We have the following assumption.

Assumption 6

The costate variable is affine in the state vector

λ i nt := K i nt x * nt + β i on t , n t ∈ n ++ 0 , i ∈ N. (14) 
Theorem 7 Let assumptions 2 and 6 hold true. Further, let the set of matrices {Λ nt n + t , n t ∈ n ++ 0 \n T } defined in (15) be invertible, then the parametric equations (7-10) are uniquely solvable, and the matrices {K i nt , β i on t } in (14) are obtained recursively from [START_REF] Kall | Stochastic programming[END_REF][START_REF] Cottle | The Linear Complementarity Problem[END_REF][START_REF] Başar | Dynamic Noncooperative Game Theory[END_REF][START_REF] Engwerda | LQ Dynamic Optimization and Differential Games[END_REF].

Λ nt n + t = I + l∈N S l nt K l π,n + t , S l nt = B l nt (R ll nt ) -1 B l nt ( 15 
)
K i nt = Q i nt + A nt K i π,n + t Λ n + t nt -1 A nt ( 16 
)
K i n T = Q i n T , n T ∈ n T ( 17 
)
β i on t = p i nt -M i nt µ i nt + L i nt v * nt + A nt β i oπ,n + t -K i π,n + t Λ nt n + t -1 l∈N S l nt β l oπ,n + t ( 18 
)
β i on T = p i n T -M i n T µ i n T + L i n T v * n T , n T ∈ n T (19) 
PROOF. As the terminal condition should hold for all x * n T , we have

K i n T = Q i n T , and β i on T = p i n T -M i n T µ i n T + L i n T v * n T for i ∈ N and n T ∈ n T .
The state vector computed at the terminal nodes n T then satisfies

x * n T = A n - T x * n - T + l∈N B l n - T u l n - T * = A n - T x * n - T - l∈N B l n - T (R ll n - T ) -1 B l n - T λ l π,(n - T ) + , (20) 
where (n - T ) + ⊂ n T is the set of nodes with the node n - T as the common ancestor, and λ i π,(n -

T ) + = ν∈(n - T ) + π ν n - T λ i ν is the conditional sum of λ i ν
, which is the costate vector evaluated at the successor nodes ν ∈ (n - T ) + . From remark 1 we have that the equilibrium state vector evaluated at the successor nodes must take the same value, i.e.,

x * ν1 = x * ν2 = x * n T , ν 1 = ν 2 , ν 1 , ν 2 ∈ (n - T ) +
. Therefore, we have

λ i π,(n - T ) + = ν∈(n - T ) + π ν n - T K i ν x * ν + ν∈(n - T ) + π ν n - T β o i ν = K i π,(n - T ) + x * n T + β o i π,(n - T ) + . (21) 
Taking S l n -

T := B l n - T (R ll n - T ) -1 B l n - T
and substituting [START_REF] Rosen | Existence and uniqueness of equilibrium points for concave N person games[END_REF] in [START_REF] Jank | Existence and uniqueness of openloop Nash equilibria in linear-quadratic discrete time games[END_REF], we obtain

I+ l∈N S l n - T K l π,(n - T ) + x * n T = A n - T x * n - T - l∈N S l n - T β o l π,(n - T ) + . Since Λ (n - T ) (n - T ) + := I + l∈N S l n - T K l π,(n - T ) + is
invertible, the equilibrium state vector evaluated at the node n T is given by

x * n T = Λ n - T (n - T ) + -1 A n - T x * n - T - l∈N S l n - T β o l π,(n - T ) +
, and the costate variable evaluated at the ancestor node n - T is then given (from ( 9)) by

λ i n - T =A n - T λ i π,(n - T ) + + Q i n - T x * n - T + p i n - T -M i n - T µ i n - T + L i n - T v * n - T = Q i n - T + A n - T K i π,(n - T ) + Λ n - T (n - T ) + -1 A n - T x * n - T + p i n - T -M i n - T µ i n - T + L i n - T v * n - T + A n - T β o i π,(n - T ) + -K i π,(n - T ) + Λ n - T (n - T ) + -1 l∈N S l n - T β o l π,(n - T ) + . ( 22 
)
Note that the left-hand side of the above equation is equal to 16) and ( 18) on the scenario tree.

K i n - T x * n - T + β i n -
Λ T -2 T -1 = I + l∈N S l T -2 K l T -1 is invertible we repeat this process for n t ∈ n t , t = T -2, • • • , 1 to obtain the backward equations (
We address the uniqueness part as follows. If the set of backward equations (15-18) admits a solution, that is, the matrices {Λ nt n + t , n t ∈ n ++ 0 \n T } are invertible, then the two-point boundary value problem (8 -10) has a unique solution. To see this, let λi nt = λ i nt -K i nt x * nt + β i nt be any other solution of (8 -10). Then, substituting this in (8 -10), we write the twopoint boundary value problem in (x * , λ) coordinates as follows:

x * ν =(Λ nt n + t ) -1 A nt x * nt - l∈N S l nt λl π,n + t - l∈N S l nt β o l π,n + t , λi nt =A t λi π,n + t -A nt K i π,n + t l∈N S l nt λl π,n + t .
The above system of equations is decoupled. From the terminal conditions we have λi n T = 0, and as a result, we have λi nt = 0 for all n t ∈ n t , t ∈ T, and therefore the solution is unique.

The equilibrium actions [START_REF] Genc | Dynamic oligopolistic games under uncertainty: A stochastic programming approach[END_REF], in parametric form, are given by

u i nt * = -(R ii nt ) -1 B i nt K i π,n + t Λ n t n + t -1 A nt x * nt -(R ii nt ) -1 B i nt β o i π,n + t -Λ nt n + t -1 l∈N S l nt β o l π,n + t , (23) 
n t ∈ n t , t ∈ T\{T }, x * ν = Λ nt n + t -1 A nt x * nt -Λ nt n + t -1 l∈N S l nt β o l π,n + t , (24) 
ν ∈ n + t , n t ∈ n t , t ∈ T\{0}, x n0 = x 0 .

Procedure for solving the necessary conditions

Notice that restricting the costate variables to be affine functions in the state variable provides a unique solution to the parametric TPBVP. The resulting backward equations [START_REF] Zaccour | Sustainability of Cooperation in Dynamic Games Played over Event Trees[END_REF][START_REF] Kall | Stochastic programming[END_REF] evolve independently of the backward equations [START_REF] Başar | Dynamic Noncooperative Game Theory[END_REF]. Further, we obtain parametric linear backward difference equations [START_REF] Başar | Dynamic Noncooperative Game Theory[END_REF] parametrized by

{(v * nt , µ * nt ), n t ∈ n ++ 0 }.
From this observation it is then possible to represent the state variables as functions of the parameters {(v * nt , µ * nt ), n t ∈ n ++ 0 }. In the following, we seek to derive an explicit relation between the state variables and the parameters.

Letting β on

t := col(β i on t ) N i=1 , p nt := col(p i nt ) N i=1 , L nt := col(L i nt ) N i=1
and M nt := ⊕ N i=1 M i nt , the vector representation of ( 18) is then given by

β on t = p nt + L nt -M nt v * nt µ * nt + G nt o n + t β oπ,n + t , (25) n t ∈ n t , t ∈ T\{T }, β on T = p n T + L n T -M n T v * n T µ * n T , n T ∈ n T , (26) 
where

[G nt o n + t ] ij = -A nt K i π,n + t (Λ nt n + t ) -1 S j nt i = j, A nt -A nt K i π,n + t (Λ nt n + t ) -1 S i nt i = j. Let n + t := {ν 1 , ν 2 , • • • , ν |n + t |
} denote the successor nodes, then (25) can be represented as

β on t = p nt + L nt -M nt v * nt µ * nt + π n + t nt ⊗ G nt o n + t β o ν1 β o ν2 • • • β o ν |n + t | , n t ∈ n t , t ∈ T\{T }.
Enumerating the nodes at time t as

n t := {n 1 t , n 2 t , • • • , n |nt| t
}, we obtain the following backward recursion relating the set of all nodes at time t + 1 with the set of all nodes at time t, that is,

β on t = p nt + L nt -M nt v * nt µ * nt + G o t t+1 β on t+1 ,
where

β on t := col(β on i t ) |nt| i=1 , v * nt := col(v * n i t ) |nt| i=1 , µ * nt := col(µ * n i t ) |nt| i=1 , p nt := col(p n i t ) |nt| i=1 , L nt := ⊕ |nt| i=1 L n i t , M nt := ⊕ |nt| i=1 M n i t , and G o t t+1 := ⊕ |nt| i=1 (π n i t + n i t ⊗ G o n i t n i t + ).
Here, (25) represents a backward linear difference equation evolving on the event tree, with terminal condition (26) defined at the leaf nodes. We define the transition matrix associated with the linear backward difference equation (25) as

ψ o (t, τ ) = G t t+1 • • • G τ -2 τ -1 G τ -1
τ when τ > t, and as ψ o (t, τ ) = I when τ = t, and (25) is given by:

β on t = T τ =t ψ o (t, τ ) p nτ + L nτ -M nτ v * nτ µ * nτ .
(27) From ( 24) and (25), it is fairly easy to see that the equilibrium state trajectory {x * nt , n t ∈ n ++ 0 \n 0 } is an affine function of the parameters {(v * nt , µ * nt ), n t ∈ n ++ 0 \n 0 }. Next, we derive this explicit relation. Towards this end, the state variables at all the successor nodes can be writ-ten in the following vector form:

x * ν1 x * ν2 • • • x * ν |n + t | = 1 ⊗ Λ nt n + t -1 A nt x * nt + -π n + t nt ⊗ Λ nt n + t -1 S 1 nt S 2 nt • • • S N nt β o ν1 β o ν2 • • • β o ν |n + t | .
As before, we collect the state vectors defined at all nodes at time t

x * nt+1 = Āo t x * nt + Bo t+1 β on t+1 , (28) 
where Āo

t = ⊕ |nt| i=1 1 ⊗ Λ n i t n i t + -1 A n i t and Bo t+1 = ⊕ |nt| i=1 -π n + t nt ⊗ Λ nt n + t -1 S 1 nt S 2 nt • • • S N nt .
The above equation represents the forward linear difference equation that evolves on the event tree, and relates the state variables defined at all nodes at time t with the state variables defined at all nodes at time t + 1. Denoting the associated transition matrix as

φ o (ρ, t) = Āo t-1 Āo t-2 • • • Āo ρ
for ρ < t and φ o (t, ρ) = I when ρ = t, we have:

x * nt = φ o (0, t)x 0 + t-1 ρ=0 φ o (ρ+1, t) Bo ρ+1 β on ρ+1 , t ∈ T\{0}.
(29) Using ( 27) in (29), we have for t ∈ T\{0}

x * nt =φ o (0, t)x 0 + t-1 ρ=0 φ o (ρ + 1, t) Bo ρ+1 T τ =ρ+1 ψ o (t, τ ) p nτ + L nτ -M nτ v * nτ µ * nτ =φ o (0, t)x 0 + T τ =1 min(t,τ ) ρ=1 φ o (ρ, t) Bo ρ ψ o (ρ, τ ) p nτ + L nτ -M nτ v * nτ µ * nτ . (30) 
Next, we aggregate the variables in (30) as

x * T := col(x * nt ) T t=1 , p T := col(p nt ) T t=1 , v * T := col(v * nt ) T t=1 and µ * n T := col(µ * nt ) T t=1
the above equation can be compactly represented as

x * T = Φ o 0 x 0 + Φ o 1 p T + Φ o 2 v * T + Φ o 3 µ * T , (31) 
where

[Φ o 0 ] t = φ o (0, t), [Φ o 1 ] tτ = min(t,τ ) ρ=1 φ o (ρ, t) Bo ρ ψ o (ρ, τ ), [Φ o 2 ] tτ = min(t,τ ) ρ=1 φ o (ρ, t) Bo ρ ψ o (ρ, τ )L nτ and [Φ o 3 ] tτ = - min(t,τ ) ρ=1 φ o (ρ, t) Bo ρ ψ o (ρ, τ )M nτ for t, τ ∈ T\{0}.
Similarly, the parametric linear complementarity problems (13) over the nodes n t ∈ n t at time t ∈ T\{0} are aggregated as follows:

pLCP(x * T ) : 0 ≤ D T -N T N T 0 v * T µ * T + L T MT x * T + d T r T ⊥ v * T µ * T ≥ 0, (32) 
where

D T = ⊕ T t=1 ⊕ |nt| i=1 D n i t , N T = ⊕ T t=1 ⊕ |nt| i=1 N n i t , LT = ⊕ T t=1 ⊕ |nt| i=1 Ln i t , MT = ⊕ T t=1 ⊕ |nt| i=1 Mn i t , d T = col col(d n i t ) |nt| i=1 T t=1
and r T = col col(r

n i t ) |nt| i=1 T t=1
. Now, substituting for x * T in (32) using (31) we have the following single large-scale linear complementarity problem

LCP o : 0 ≤ M o v * T µ * T + q o ⊥ v * T µ * T ≥ 0, ( 33 
)
where

M o = D T + L T Φ o 2 -N T + L T Φ o 3 N T + MT Φ o 2 MT Φ o 3 and q o = d T + L T Φ o 1 p T + L T Φ o 0 x 0 r T + MT Φ o 1 p T + L T Φ o 0 x 0 .
To summarize, using assumptions 2 and 6 we have reformulated the necessary conditions as solvability of a single large-scale linear complementarity problem. The solutions of pLCP(x n0 ) and LCP o along with (7) constitute candidates for the S-adapted open-loop Nash equilibrium strategies for LQDGET.

Sufficient conditions

Let

v * n 0 µ * n 0 and v * T µ *
T be the solutions of pLCP(x n0 ) and LCP o , respectively. We can write player i's objective as follows:

J i (x 0 , ũ, ṽ) = T t=0 nt∈nt π nt 1 2 x nt Q i nt x nt + p i nt + L i nt v * nt -M i nt µ i nt * x nt + T -1 t=0 nt∈nt π nt 1 2 u i nt R ii nt u i nt + j∈i - u j nt R ij nt u j nt + T t=0 nt∈nt π nt d i nt i v i nt + x nt L i nt i (v i nt -v i nt * ) + x nt L i nt i -(v i - nt -v i - nt * ) + d i nt i -v i - nt + µ i nt * M i nt x nt + 1 2 v i nt D i nt ii v i nt + 2v i nt D i nt ii -v i - nt + v i - nt D i nt i -i -v i - nt . (34) 
Next, we provide conditions under which the objective function (34) is strictly convex in player i's decision variables for an arbitrary choice of decision variables of players in i -.

Theorem 8 Let the solutions of E i nt of the symmetric difference matrix Riccati equations defined on the event tree

E i nt =A nt E i π,n + t A nt + Q i nt -A nt E i π,n + t B i nt T i nt -1 B i nt E i π,n + t A nt , (35) 
n t ∈ n t , t ∈ T\{T } E i n T = Q i n T , n T ∈ n T , t ∈ T T i nt = R ii nt + B i nt E i π,n + t B i nt exist for n t ∈ n t , t ∈ T, (hence we assume T i nt = R ii nt + B i nt E i π,n + t B i
nt is invertible for all n t ∈ n t , t ∈ T\{T }). Then, for any set of decision variables (ũ i , ṽi ), i ∈ N the following recursive difference equations defined on the event tree:

f i nt =(p i nt + L i nt v * nt -M i nt µ i nt * ) + A nt E i π,n + t δ i nt + A nt f i π,n + t -A nt E i π,n + t B i nt b i nt , (36) 
f i n T =(p i n T + L i n T v * n T -M i n T µ i n T * ), (37) 
b i nt =T i nt -1 B i nt E i π,n + t δ i nt + f i π,n + t , b i n T = 0, ( 38 
)
g i nt =g i π,n + t + 1 2 δ i nt E i π,n + t δ i nt + f i π,n + t δ i nt - 1 2 b i nt T i nt b i nt + 1 2 j∈i - u j nt R ij nt u j nt , (39) 
g i n T = 0,
are solvable backwards for t ∈ T, where

δ i nt = j∈i -B j nt u j nt .
Define the matrices T i , C i and D i for i ∈ N as follows:

T i = ⊕ T t=1 ⊕ |nt| k=1 T i n k t , D i = ⊕ T t=1 ⊕ |nt| k=1 D i n k t ii
and

C i = ∂ 2 Ji ∂u i n t ∂v i nτ {nt∈nt, t∈T\{T }, nτ ∈nτ , τ ∈T}
. If the matrices Ti C i Ci Di are positive definite for i ∈ N, then player i's objective function is strictly convex in (ũ i , ṽi ) for an arbitrary choice of (ũ i -, ṽi -).

PROOF. The proof of the theorem follows the same reasoning as in [20, Theorem 2.1] when adapted to the event tree setting. We define V i nt = 1 2 x nt E i nt x nt + f i nt x nt + g nt for n t ∈ n t , t ∈ T. We start with the difference

ν∈n + t π ν nt -V i nt and take ξ i nt = T i nt -1 B i nt E i π,n + t A nt x nt +b i nt .
Then after a few algebraic manipulations using the recursive equations ( 35)-(39), we can rewrite the objective function (34) as

J i (x 0 , ((ũ i , ṽi ), (ũ i -, ṽi -))) = V i n0 + T -1 t=0 nt∈nt π nt 1 2 ||u i nt + ξ i nt || T i n t + T t=0 nt∈nt π nt x nt L i nt i v i nt -v i nt * + x nt L i nt i -v i - nt -v i - nt * + d i nt i v i nt + d i nt i -v i - nt + 1 2 ||v i nt || 2 [D i n t ] ii + 2v i nt D i nt ii -v i - nt + v i - nt D i nt i -i -v i - nt + µ i nt * M i nt x nt . ( 40 
)
The matrix Ti C i Ci Di is the Hessian matrix corresponding the player i's objective computed with the decision variables (ũ i , ṽi ) for an arbitrary choice of (ũ i -, ṽi -). Clearly, convexity of (34) follows from the positive definiteness of the Hessian matrix.

Remark 9

The matrix C i captures the coupling between the decision variables ũi and ṽi . Further, due to the linear state dynamics the elements of C i do not depend on the choice of the decision variables (ũ i , ṽi ).

Using Theorem 8 we have transformed the dynamic game into a static game. If assumption 2 holds true then players' action sets are non-empty, convex and bounded. Further, if conditions in Theorem 8 hold true, then players' objectives are strictly convex. Therefore, the LQDGET is a convex game; see Rosen [START_REF] Rosen | Existence and uniqueness of equilibrium points for concave N person games[END_REF], where player i minimizes the objective using (ũ i , ṽi ) subject to constraints while the remaining players' actions are fixed at (ũ i -, ṽi -). We recall the following result for the existence of a Nash equilibrium for convex games. PROOF. We want to show that the solutions obtained from solving pLCP(x n0 ) and LCP o along with (23) indeed provide an S-adapted open-loop Nash equilibrium. To establish this, we fix the strategies of players in i - at their Nash equilibrium values. Then, the best reply of player i is obtained by minimizing the objective (40) with respect to (ũ i , ṽi )

x ν = A nt x nt + B i nt u i nt + j∈i -B j nt u j nt * , ν ∈ n + t , n t ∈ n t , t ∈ T\{T }, x n0 = x 0 and M i nt x nt +N i nt v i nt +r i nt ≥ 0, v i nt ≥ 0, n t ∈ n t , t ∈ T.
Since the objective function is convex in the decision variables, the KKT conditions provide the necessary and sufficient conditions for a minimum. The KKT conditions are as follows:

for n t ∈ n t , t ∈ T\{T },

T i nt (u i nt + ξ i nt ) + T τ =t+1 α∈nτ ∩n ++ t π α nt ∂x α ∂u i nt L i α i (v i α -v i α * ) -M i α (µ i α -µ i α * ) = 0, for n t ∈ n t , t ∈ T, 0 ≤ D i nt ii v i nt + D i nt ii -v i - nt * -N i nt µ i nt + L i nt i x nt + d i nt i ⊥ v i nt ≥ 0, 0 ≤ M i nt x nt + N i nt v i nt + r i nt ⊥ µ i nt ≥ 0, where x nt = A n - t x n - t + B i n - t u i n - t + j∈i - B j n - t u j n - t * .
Next, we substitute for v i nt = v i nt * in the above equations to obtain the following equations: for n t ∈ n t , t ∈ T\{T },

T i nt (u i nt + ξ i nt ) = 0, for n t ∈ n t , t ∈ T, 0 ≤ D i nt ii v i nt * + D i nt ii -v i - nt * -N i nt µ i nt * + L i nt i x nt + d i nt i ⊥ v i nt * ≥ 0, 0 ≤ M i nt x nt + N i nt v i nt * + r i nt ⊥ µ i nt * ≥ 0,
where

x nt = A n - t x n - t + B i n - t u i n - t + j∈i - B j n - t u j n - t * .
The decision variables u i nt * are obtained by solving the TPBVP [START_REF] Genc | An Analysis of Capacity and Price Trajectories for the Ontario Electricity Market Using Dynamic Nash Equilibrium under Uncertainty[END_REF][START_REF] Pineau | Impact of some parameters on investments in oligopolistic electricity markets[END_REF]. The control action of player i given by

u i nt * := -B i nt R i i λ i π,n + t solves T i nt (u i nt + ξ i nt ) = 0.
Then, the state trajectory generated by u i nt * is x * nt . Therefore, it remains to verify if v i nt * satisfy the remaining KKT conditions, that is,

for n t ∈ n t , t ∈ T, 0 ≤ D i nt ii v i nt * + D i nt ii -v i - nt * -N i nt µ i nt * + L i nt i x * nt + d i nt i ⊥ v i nt * ≥ 0, 0 ≤ M i nt x * nt + N i nt v i nt * + r i nt ⊥ µ i nt * ≥ 0.
Clearly, the above conditions are satisfied by {v i nt * , µ i nt * , n t ∈ n ++ 0 } as they are precisely the parametric linear complementarity problems evaluated along the equilibrium state trajectory (8).

S -adapted feedback Nash equilibrium

We introduce the reachable set X nt ∈ R n , i.e., the set of all state variables x nt ∈ R n at node n t that are reachable when the players use some combination of admissible actions along a realized sample path n 0 n t starting from the root node n 0 . Recall that the set of admissible actions taken by the players along a sample path n 0 n t is given by {ψ α , α ∈ n 0 n t }; see Figure 1.

Definition 12 (S-adapted feedback Nash equilibrium)

The set of strategies

( ψ * 1 , ψ * 2 , • • • , ψ * N )
constitute an Sadapted feedback Nash equilibrium for the LQDGET if it satisfies the following set of backward recursive inequalities:

for every n T ∈ n T J i x 0 , {ψ α , α ∈ n 0 n - T }, (ψ i n T , ψ i- n T * ) ≤ J i x 0 , {ψ α , α ∈ n 0 n - T }, (ψ i n T * , ψ i- n T * ) , ( 41 
)
for every n t ∈ n t , t = T -1, T -2, • • • , 0 (recursively) J i x 0 , {ψ α , α ∈ n 0 n - t }, (ψ i nt , ψ i- nt * ), {ψ * nτ , n τ ∈ n ++ t \n t } ≤ J i x 0 , {ψ α , α ∈ n 0 n - t }, (ψ i nt * , ψ i- nt * ), , {ψ * nτ , n τ ∈ n ++ t \n t } . (42) 
In the above definition, the first inequality holds true for all the admissible actions {ψ α , α ∈ n 0 n - T } taken along the sample path n 0 n - T . Similarly, in (42), the inequalities defined recursively backward at time t = T -1, • • • , 0, hold true for all the admissible strategies {ψ α , α ∈ n 0 n - t } taken along the realized sample path n 0 n - t . We have the following proposition.

Proposition 13 Every N -tuple ( ψ * 1 , ψ * 2 , • • • , ψ * N )
that satisfies the set of inequalities (42) also satisfies the set of N inequalities (5).

The proof of the above proposition follows directly from Proposition 3.9 of [START_REF] Başar | Dynamic Noncooperative Game Theory[END_REF] when adapted to an event tree setting. The proposition says that every S-adapted feedback Nash equilibrium, obtained through solving (41-42), is also an S-adapted Nash equilibrium, i.e., they also solve [START_REF] Haurie | S-Adapted Equilibria in Games Played over Event Trees: An Overview[END_REF].

Remark 14

The above recursive formulation naturally leads to a static game at node n t where the downstream decisions at the nodes n ++ t \n t are fixed at their equilibrium values. During this recursive procedure, if there exist at any time period more than one Nash equilibrium, then we will need to solve the upstream static games for each one of these equilibria to obtain the complete set of feedback Nash equilibria.

For any x nt ∈ X nt the subgame starting at (n t , x nt ) associated with the LQDGET is then given by sg(n t , x nt ) : min

ψ nτ :=(ψ i nτ ,ψ i- nτ ), nτ ∈n ++ t J i (n t , x nt , {(ψ i nτ , ψ i- nτ ), n τ ∈ n ++ t }), (43) 
subject to

xnτ = A n - τ xn - τ + B i n - τ u i n - τ + j∈i - B j n - τ u j n - τ , n τ ∈ n τ , τ ∈ T\{0}, xnt = x nt , and 
M i nτ xnτ + N i nτ v i nτ + r i nτ ≥ 0, v i nτ ≥ 0, n τ ∈ n ++ t ,
where

J i (n t , x nt , (ψ i nt , ψ i- nt ), {ψ nτ , n τ ∈ n ++ t \n t }) = T -1 τ =t nτ ∈nτ ∩n ++ t π nτ g i (n τ , x nτ , (u i nτ , u i- nτ ), (v i nτ , v i- nτ )) + n T ∈n T ∩n ++ t π n T gv i (n T , x n T , (v i n T , v i- n T )). ( 44 
)
We make the following additional assumption, besides assumption 2, concerning the players' objectives.

Assumption 15

We define s × s matrices Dnt for n t ∈ n ++ 0 as

Dnt :=        D 1 nt 11 D 1 nt 12 • • • D 1 nt 1N D 2 nt 21 D 2 nt 22 • • • D 2 nt 2N . . . . . . . . . . . . D N nt N 1 D N nt N 2 • • • D N nt N N        (45)
and assume that the matrix Dnt + D nt is positive definite for all n t ∈ n ++ 0 . Here, D i nt jk , j, k ∈ N is the s j × s k submatrix associated with the quadratic term

v nt D i nt v nt := j∈N k∈N v j nt D i nt jk v k nt in the player i's objective (4).
We have the following theorem characterizing the Sadapted feedback Nash equilibrium of LQDGET.

Theorem 16 Let assumptions 2 and 15 hold true. For an N -person constrained LQDGET the set of strategies

{u i nt * ≡ γ i f * nt (x nt ), n t ∈ n ++ 0 \n T , v i
nt * , n t ∈ n ++ 0 } provides a feedback-Nash equilibrium solution if and only if there exist value functions W i (n t , x nt ) : X nt → R such that the following backward recursive equations defined on the event tree are satisfied:

W i (n t , x nt ) = min {u i n t ,v i n t } g i (n t , x nt , (u i nt , γ f i - nt * (x nt )), (v i nt , v i - nt *
))

+ ν∈n + t π ν nt W i (ν, x ν ) (46) subject to x ν = A nt x nt + B i nt u i nt + j∈i - B j nt γ f j nt * , ν ∈ n + t , t ∈ T\{T }, x n0 = x 0 M i nt x nt + N i nt v i nt + r i nt ≥ 0, v i nt ≥ 0 and W i (n T , x n T ) = gv i (n T , x n T , (v i n T * , v i - n T * )) -µ i n T * (M i n T x n T + N i n T v i n T * + r i n T ), ∀n T ∈ n T where (v * n T , µ * n T ) = SOL(pLCP(x n T )), ∀n T ∈ n T .
PROOF. The proof of the theorem follows from [2, Theorem III.3] when adapted to the event tree setting.

Although Theorem 16 provides a characterization of Sadapted feedback-Nash equilibrium, through the value function (46), it does not give additional information on the solvability of (46). Notice that the minimization problem (46) involves one constrained minimization problem for each player i ∈ N. Due to separability of the objective function and due to the unique solution (v * nt , µ * nt ) = Sol(pLCP(x nt )) the value function at node n t is obtained by substituting the feedback-Nash equilibrium solution in the associated Lagrangian as

W i (n t , x nt ) = g i (n t , x nt , (γ f i nt * (x nt ), γ f i - nt * (x nt )), (v i nt * , v i - nt * )) -µ i nt * (M i nt x nt +N i nt v i nt * +r i nt )+ ν∈n + t π ν nt W i (ν, x ν ).
The second term µ i nt * (M i nt x nt + N i nt v i nt * + r i nt ) = 0 due to complementarity condition associated with pLCP(x nt ). In the remaining section, we show that this observation enables to relate the value function (46) with the value function associated with a parametric unconstrained dynamic game defined on the event tree; thereby providing a way for solving (46) and computing the S-adapted feedback Nash equilibrium. To this end, we define the following parametric dynamic game defined on the event tree. Introduce the parametric linearquadratic game defined on the event tree as follows:

pLQDGET : min

u i nτ , nτ ∈n ++ 0 \n T J p i (x 0 , ũ; ( w, θ))
(47) subject to (1), where

J p i (x 0 , ũ; ( w, θ)) = J i (x 0 , ũ, ṽ) - T t=0 nt∈nt π nt θ i nt M i nt x nt + N i nt w i nt + r i nt .
Theorem 17 For an N -person unconstrained pLQD-GET the set of strategies {u i nt * := ξ i nt (x nt ), n t ∈ n t , t ∈ T\{T }} provides a feedback-Nash equilibrium solution if and only if there exist value functions W i p (n t , • ; {(w α , θ α ), α ∈ n ++ t }) : R n → R such that the following backward recursive equations defined on the event tree are satisfied:

W i p (n t , x nt ; {(w α , θ α ), α ∈ n ++ t }) = min u i n t g i n t , x nt , (u i nt , ξ i nt (x nt ; (w α , θ α ), α ∈ n ++ t )) , (w i nt , w i - nt ) -θ i nt M i nt x nt + N i nt w i nt + r i nt + ν∈n + t π ν nt W i p (ν, x ν ; {(w α , θ α ), α ∈ ν ++ }) , (48) 
W i p (n T , x n T ; {(w n T , θ n T ), n T ∈ n T }) = gv i (n T , x n T , (w i n T , w i - n T )) -θ i n T M i n T x n T + N i n T w i n T + r i n T , (49) 
where

x ν = A nt x nt + B i nt u i nt + j∈i -B j nt ξ j nt (x nt ; (w α , θ α ), α ∈ n ++ t ), ν ∈ n + t , n t ∈ n t , t ∈ T\{T }, x n0 = x 0 .
Every such parametric Nash equilibrium solution admits a representation given by

u i nt := ξ i nt (x nt ; (w α , θ α ), α ∈ n ++ t ). (50) 
PROOF. The existence of a feedback-Nash equilibrium for pLQDGET follows directly from the proof of [2, Lemma III.4] when adapted to event tree. Since there are no cross terms between the decision variables u i nt and the parameters (w nt , θ nt ) the decision variable u i nt in the KKT conditions is a function the current state and the parameters {(w α , θ α ), α ∈ n ++ t }. Therefore, the feedback Nash equilibrium strategy {u i nt , n t ∈ n ++ 0 \n T } admits the representation (50).

The following theorem relates the Nash equilibrium strategy associated with LQDGET and the parametric feedback Nash equilibrium strategy associated with pLQDGET.

Theorem 18 Let assumptions 2 and 15 hold true. The constrained S-adapted feedback Nash equilibrium is given by the set of strategies where

u i nt * := γ f i nt * (x nt ) = ξ i nt (x nt ; {(v * α , µ * α ), α ∈ n ++ t }), (51) with 
(v * α , µ * α ) = sol(pLCP(x α ))
and the state trajectory evolves on the scenario tree as follows:

x ν = A nt x nt + j∈N B j nt ξ j nt (x nt ; {(v * α , µ * α ), α ∈ n ++ t })
Further, we have

W i (n t , x nt ) = W i p (n t , x nt ; {(v * α , µ * α ), α ∈ n ++ t }). (52) 
PROOF. The proof of the theorem follows from [2, Theorem III.5] when adapted to the event tree setting.

To summarize, besides obtaining the S-adapted Nash equilibrium of LQDGET through a parametric Nash equilibrium strategy (51), Theorem 18 also provides a way to obtain the value function (46), from the parametric value function (48), through the relation (52).

Procedure for solving the dynamic programming equation

In this subsection, we show that under a few additional assumptions on strategy spaces, and a functional form of the parametric value function it is possible to solve the dynamic programming equation (48). We have the following assumption.

Assumption 19

The equilibrium controls that enter the dynamics (1) are restricted to be affine in the state variable, i.e.,

u i nt * ≡ E i nt x nt +F i nt , E i nt ∈ R mi×n , F i nt ∈ R mi , ∀i ∈ N.
(53) Further, the value function for player i ∈ N at time t takes the following parametric form:

W i p (n t , x nt ; {(w α , θ α ), α ∈ n ++ t }) = 1 2 x nt P i nt x nt + β i f nt x nt + η i nt + α∈n ++ t π α nt 1 2 w α θ α D i α -N α -N α 0 w α θ α +d i α w α .
We write down the Lagrangian associated with player i's minimization problem (48) as follows:

L i nt := g i n t , x nt , u i nt , ξ i- nt * (x nt ; {(w α , θ α ), α ∈ n ++ t }), (v i nt , v i- nt * ) -µ i nt M i nt x nt + N i nt v i nt + r i nt ) + ν∈n + t π ν nt W i p ν, x ν ; {(w α , θ α ), α ∈ ν ++ } , (54) 
where

x ν = A nt x nt + B i nt u i nt + j∈i -B j nt ξ j nt * (x nt ; {(w α , θ α ), α ∈ n ++ t }).
The Karush-Kuhn-Tucker conditions associated with the minimization problem (48) are given by

R ii nt + B i nt P i π,n + t B i nt (E i nt x nt + F i nt ) + B i nt P i π,n + t A nt + j∈i - B j nt E j nt x nt + B i nt P i π,nt j∈i - B j nt F j nt + B i nt β i fπ,n + t = 0. ( 55 
)
Since the above equalities have to hold true for all x nt ∈ X nt , equating the coefficients of x nt , we get for every i ∈ N the following equations:

R ii nt + B i nt P i π,n + t B i nt E i nt + j∈i - B i nt P i π,n + t B j nt E j nt = -B i nt P i π,n + t A nt , (56) 
R ii nt + B i nt P i π,n + t B i nt F i nt + j∈i - B i nt P i π,n + t B j nt F j nt = -B i nt β i fπ,n + t . (57) 
The following theorem characterizes the feedback-Nash equilibrium strategy associated with pLQDGET.

Theorem 20 Consider the N -person pLQDGET with assumption 19 holding true. Then, {x nt , n t ∈ n ++ 0 } constitutes a feedback Nash equilibrium state trajectory, if the following set of backward recursive equations are satisfied:

P i nt = Q i nt + A nt + l∈N B l nt E l nt P i π,n + t A nt + l∈N B l nt E l nt + l∈N E l nt R il nt E l t , (58) 
β i fn t = p i nt + L i nt v * nt + l∈N E l nt R il nt F l nt + A nt + l∈N B l nt E l nt β i fπ,n + t + P i π,n + t l∈N B l nt F l nt , (59) 
η i nt = η i π,n + t + 1 2 l∈N F l nt R il nt F l nt + 1 2 l∈N B l nt F l nt P i π,n + t l∈N B l nt F l nt + l∈N B l nt F l nt β i fπ,n + t , (60) 
with terminal conditions given by

P i n T = Q i n T , β i fn T = p i n T + L i n T v * n T , and 
m i n T = 0. Further, if (R ii nt + B i nt P i π,n + t B i nt
) is positive definite, then the equilibrium control u i nt * is unique and is given by

u i nt * = ξ i nt * (x nt ; {(w α , θ α ), α ∈ n ++ t }) = E i nt x nt +F i nt ,
where the matrices E i nt and F i nt are obtained by solving (56) and (57) for i ∈ N, t ∈ T\{T }. PROOF. To prove the result, it is sufficient to apply the verification result (48) from Theorem 17. The positive definiteness of the matrices guarantee a unique solution to the dynamic programming equation (48). The parametric feedback-Nash equilibrium is obtained by solving (56) and (57).

Next, we derive the relation between parametric feedback Nash equilibrium strategy and the parameters

{(w α , θ α ), α ∈ n ++ 0 }. We represent R nt := ⊕ N i=1 R ii nt , P nt := col(P i nt ) N i=1 , β fn t : col(β i fn t ) N i=1 , Bnt := ⊕ N i=1 B i nt , B nt := row(B i nt ) N i=1 , E nt := col(E i nt ) N i=1 and 
F nt := col(F i nt ) N i=1 .
Then, (56) and (57) can be written in vector form as follows:

R nt + B nt P π,n + t B nt E nt = -B nt P π,n + t A nt , (61) 
R nt + B nt P π,n + t B nt F nt = -B nt β fπ,n + t . (62) 
In order to solve the above equations, we make the following assumption:

Assumption 21 The matrix R nt + B nt P π,n + t B nt is invertible for n t ∈ n t , t ∈ T\{T }. Let Γ nt = -R nt + B nt P π,n + t B nt -1 for n t ∈ n t , t ∈
T\{T }, then equation ( 59) can be represented in vector form as follows:

       β 1 f nt β 2 f nt . . . β N f nt        =        p 1 nt + L 1 nt w nt -M 1 nt θ 1 nt p 2 nt + L 2 nt w nt -M 2 nt θ 2 nt . . . p N nt + L N nt w nt -M N nt θ N nt        +        E 1 nt R 11 nt E 2 nt R 12 nt • • • E N nt R 1N nt E 1 nt R 21 nt E 2 nt R 22 nt • • • E N nt R 2N nt . . . . . . . . . . . . E 1 nt R N 1 nt E 2 nt R N 2 nt • • • E N nt R N N nt               F 1 nt F 2 nt . . . F N nt        +         A nt + l∈N B l nt E l nt P 1 π,n + t A nt + l∈N B l nt E l nt P 2 π,n + t . . . A nt + l∈N B l nt E l nt P N π,n + t                B 1 nt B 2 nt . . . B N nt               F 1 nt F 2 nt . . . F N nt        + I ⊗ A nt + l∈N B l nt E l nt        β 1 f π,n + t β 2 f π,n + t . . . β N f π,n + t       
,

β fn t = p nt + L nt -M nt w nt θ nt + G f nt n + t β fπ,n + t , (63) 
where

G f nt n + t := I ⊗ A nt + l∈N B l nt E l nt -        E 1 nt R 11 nt E 2 nt R 12 nt • • • E N nt R 1N nt E 1 nt R 21 nt E 2 nt R 22 nt • • • E N nt R 2N nt . . . . . . . . . . . . E 1 nt R N 1 nt E 2 nt R N 2 nt • • • E N nt R N N nt        Γ nt B nt -         A nt + l∈N B l nt E l nt P 1 π,n + t A nt + l∈N B l nt E l nt P 2 π,n + t . . . A nt + l∈N B l nt E l nt P N π,n + t         B nt Γ nt B nt ,
and the terminal conditions at the leaf nodes are given by

β fn T = p n T + L n T -M n T w n T θ n T . (64) 
Like before, enumerating the nodes at time t as n t := {n 1 t , n 

n i t + n i t ⊗ G f n i t n i t +
). Here, (63) represents a linear difference equation evolving backwards on the event tree, with terminal condition (64) defined at the leaf nodes. We define the transition matrix associated with the linear backward difference equation (63) as

ψ f (t, τ ) = G f t t+1 • • • G f τ -2 τ -1 G f τ -1 τ
when τ > t and ψ f (t, τ ) = I when τ = t, and (63) is given by:

β fn t = T τ =t ψ f (t, τ ) p nτ + L nτ -M nτ w nτ θ nτ
The state variable evolves according to the following forward difference equation:

x ν = A nt x nt + l∈N B l nt u l nt = (A nt + B nt E nt )x nt -B nt Γ nt B nt β fπ,n + t ,
that is,

x ν1 x ν2 • • • x ν |n + t | = 1 ⊗ (A nt + B nt E nt ) x nt + -π n + t nt ⊗ B nt Γ nt B nt β fν 1 β fν 2 • • • β fν |n + t |
As before, we collect the state vectors x nt := col(x n i t )

|nt| i=1 defined at all the nodes at time t, and write the above equation as: 

x nt+1 = Āf t x
x nt = φ f (0, t)x 0 + t-1 ρ=0 φ f (ρ+1, t) Bf ρ+1 β fn ρ+1 , t ∈ T\{0}.
(65) Using ( 63) in (65), we have for t ∈ T\{0}

x nt = φ f (0, t)x 0 + T τ =1 min(t,τ ) ρ=1 φ f (ρ, t) Bf ρ ψ f (ρ, τ ) p nτ + L nτ -M nτ w nτ θ nτ . (66)
Next, we aggregate the variables in (66) as x T := col(x nt ) T t=1 , w T := col(w nt ) T t=1 , and θ T := col(θ nt ) T t=1 and represent the above equations for all t ∈ T\{0} compactly as follows:

x T = Φ f 0 x 0 + Φ f 1 p T + Φ f 2 w T + Φ f 3 θ T , (67) 
where

Φ f 0 t = φ f (0, t), Φ f 1 tτ = min(t,τ ) ρ=1 φ f (ρ, t) Bf ρ ψ f (ρ, τ ) and Φ f 2 tτ = min(t,τ ) ρ=1 φ f (ρ, t) Bf ρ ψ f (ρ, τ )L nτ Φ f 3 tτ = - min(t,τ ) ρ=1 φ f (ρ, t) Bf ρ ψ f (ρ, τ )M nτ for t, τ ∈ T\{0}.
Here, (67) represents the equilibrium state trajectory associated with pLQDGET, and is an affine function of the parameters {(w α , θ α ), α ∈ n ++ 0 \n 0 }.

Recall from Theorem 18 that the feedback-Nash equilibrium associated with LQDGET is obtained by setting the parameters {(w α , θ α ), α ∈ n ++ 0 } as solutions of {(v * nt , µ * nt ) := sol(pLCP(x nt )), n t ∈ n ++ 0 } where {x nt , n t ∈ n ++ 0 } represents the equilibrium state trajectory given by (67). The vector representation of the parametric linear complementarity problems is given by (32) where x T is given by (see also (31)):

x T = Φ f 0 x 0 + Φ f 1 p T + Φ f 2 v * T + Φ f 3 µ * T . (68) 
Notice, that (68) and (32) represent a fixed-point problem as intersection of two parametric maps. Substituting for x T in (32) using (68) the associated fixed points are obtained as solutions of the following single large scale linear complementarity problem

LCP f : 0 ≤ M f v * T µ * T + q f ⊥ v * T µ * T ≥ 0, (69) 
where

M f = D T + L T Φ f 2 -N T + L T Φ f 3 N T + MT Φ f 2 MT Φ f 3 and q f = d T + L T Φ f 1 p T + L T Φ f 0 x 0 r T + MT Φ f 1 p T + L T Φ f 0 x 0 .
The main result of this section is provided in the following theorem.

Theorem 22 Let assumptions 2, 15 and 21 hold true. Let (v * 0 , µ * 0 ) and (v * T , µ * T ) represent the solutions of pLCP(x n0 ) and LCP f respectively. Define for every player i ∈ N, the strategies ψ *

i := {γ i nt * (x nt ), n t ∈ n t , t ∈ T\{T }}, {v i n T * , n T ∈ n T } , with γ i nt * = E i nt x nt +F i nt
, where E i nt and F i nt are given by (56) and (57), and the state trajectory {x nt , n t ∈ n ++ 0 } is given by (68). Then, { ψ * 1 , ψ * 2 , • • • , ψ * N } provides a feedback Nash equilibrium strategy for LQDGET.

PROOF.

From assumption 2, pLCP(x n0 ) and LCP f are feasible, and from assumption 15 SOL(pLCP(x n0 )) = ∅. Let (v * T , µ * T ) be a solution of LCP f . Again, from assumption 15 we have that (v * T , µ * T ) is the unique solution of pLCP(x T ). Here, x T given by (68) represents the equilibrium state trajectory associated with pLQD-GET where the parameters are set to (v * T , µ * T ). The remaining part of the proof follows immediately from Theorems 17 and 18.

Computation of S-adapted Nash equilibrium

In this section, we provide some geometric insights related to the computation of S-adapted Nash equilibrium. Notice, as it is evident from (33) and (69) that both the open-loop and feedback S-adapted Nash equilibria are obtained as solutions of a single large-scale linear complementarity problems. In the open-loop (respectively, feedback) case, (33) ((69)) is obtained by substituting for the state variables in (32) using (31) (respectively (68)). So, the S-adapted Nash equilibria with both information structures are obtained as intersection points of two parametric maps. The first mapping is given by x T (., .) : R s

(|n ++ 0 |-1) × R c(|n ++ 0 |-1) → R n(|n ++ 0 |-1)
, from (31) and (68) for a given x n0 . The second mapping is given by sol(pLCP(.)) : R n

(|n ++ 0 |-1) → R s(|n ++ 0 |-1) × R c(|n ++ 0 |-1)
, from (32). Clearly, this geometric interpretation hints about the number of S-adapted equilibrium solutions in LQDGET. There may not exist any equilibrium solution, and there could be one, more than one or a continuum of solutions.

Numerical illustration

To illustrate our results in the most simplest way, we consider a duopoly selling a homogeneous good over a finite horizon. Let Q i nt be the quantity produced by firm i at node n t , and let the price be given by the following affine stochastic inverse demand function:

P Q 1 nt , Q 2 nt = A nt -B nt Q 1 nt + Q 2 nt , n t ∈ n ++ 0 .
Here, we assume fixed slope (B nt = 10) and intercept parameter A nt varies as the game evolves over the event tree. In each node of the event tree, A nt goes up (high) or down (low) by 30% with equal probability and A n0 = 25.

Firms invest in R&D to decrease their unit-production cost, which depends on accumulated knowledge. Let R i nt be the investment in R&D, and denote by X i nt the stock of knowledge of firm i, whose evolution is described by the difference equation

X i ν = µ i X i nt + R i nt + λ i R j nt , j = i, i, j ∈ {1, 2}, ν ∈ n + t
where µ i is a positive parameter, and λ i ∈ (0, 1) is the spillover parameter. This means that each firm cannot fully appropriate its investment in R&D, as part of it spills over to its rival. Let K i nt be the production capacity, and denote by I i nt the investment in this capacity. The evolution of this capacity is given by

K i ν = δ i K i nt + I i nt , i ∈ {1, 2}
where (1 -δ i ) is the depreciation rate. The quantity produced is subject to available capacity, i.e., 0

≤ Q i nt ≤ K i nt , i ∈ {1, 2}.
The production cost is given by h

i (X i nt , Q i nt ) = (c i - γ i X i nt )Q i nt .
The investment costs in R&D and production capacity are given by g

i (R i nt ) = ( a i 2 )(R i nt ) 2 and f i (I i nt ) = ( b i 2 )(I i nt ) 2 respectively.
Here, c i is the initial cost, γ i is the positive cost learning parameter, and a i and b i are positive parameters.

The salvage value at a terminal node n T is given by S

i (X i n T , K i n T ) = ω i (X i n T ) 2 + θ i (K i n T ) 2
, where ω i and θ i are positive parameters. Assuming cost-minimization behavior, player i's objective is given by

Π i = n T ∈n T π n T β T S i X i n T , K i n T + T -1 t=0 nt∈nt β t g i R i nt + f i I i nt + T t=0 nt∈nt β t h i X i nt , Q i nt -P Q 1 nt , Q 2 nt Q i nt .
Clearly, this game belongs to the LQGET class. Indeed, we have three control variables, namely, production, investment in capacity and investment in R&D. The two investment variables enter the dynamics, that is, the state equations of capacity and knowledge accumulation, and are not constrained. The output decision is constrained at each period by the available production capacity and does not play any role in the dynamics. To attribute any difference in the results to only the information structure, we assume that the game is symmetric and adopt the following parameter values:

λ i = 0.25, µ i = 0.8, δ i = 0.8, γ i = 0.2, c i = 0.5 a i = 1, b i = 0.75, ω i = -0.1, θ i = -0.25, i = 1, 2 T = 9, A n0 = 25, B n0 = 10, β = 0.9, X i n0 = 3, K i n0 = 3, i = 1, 2.

Table 1 illustrates the comparison of open-loop and constrained feedback-Nash equilibrium strategies for two realizations of the uncertainty. In both scenarios, we observe that the investments in the knowledge stock and the production capacity are consistently higher when feedback strategies are used, which is somewhat expected, as feedback intensifies competition with respect to precommitment (open-loop). In the sample path -1, the demand in the periods t = 1, 2, 3, 4 is high, hence the players produce more, and this explains why the production constraints are binding during the periods t = 2, 3, 4. The demand in the subsequent periods t = 5, 6, 7, 8, 9 is low and as a result the constraints are not binding. Notice also that investments in the knowledge stock and production capacity increase during the periods t = 1, 2, 3, 4 due to high demand and decrease in subsequent periods.

In sample path -2, the demand is high for the periods t = 1, 2 and as a result production constraints are binding during the period t = 2. The demand is low during period t = 3, so production constraints are not binding during this period. The demand in the periods t = 4, 5, 6 is high hence the production constraints are binding during the periods t = 5, 6. The decrease in investment behavior follows the demand trend, i.e., investments decrease during the periods t = 3 and t = 7. We have used the freely available software, the PATH solver (see http://pages.cs.wisc.edu/ferris/path/), for solving linear-complementarity problems.

Concluding remarks

In this paper, we extended the results in [START_REF] Reddy | Open-loop Nash equilibria in linear-quadratic difference games with constraints[END_REF][START_REF] Reddy | Feedback Nash equilibria in linear quadratic difference games with constraints[END_REF] obtained for deterministic games to dynamic games played over event trees. The characterization of both open-loop and feedback-Nash equilibria, as well as the proposed computational approaches, rely heavily on the fact that the control variables that enter the dynamics are not constrained, while those part of joint state-control constraints do not enter the dynamics. In some applications, e.g., electricity markets, the investment in production capacity is irreversible, that is, it cannot assume negative values. Extending this work to the case where the control variables entering the dynamics are constrained is methodologically interesting and empirically relevant. Finally, allowing for coupling constraints, that is, making the players' action sets interdependent, would provide the tools to deal with many applications in environmental economics and power markets, see, e.g., Schiro et al. [START_REF] Schiro | On the solution of affine generalized Nash equilibrium problems with shared constraints by Lemke's method[END_REF]. 
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  2 t , • • • , n |nt| t} we obtain the following backward recursion relating the set of all nodes at time t + 1 with the set of all nodes at time tβ fn t = p nt + L nt -M nt w nt θ nt + G f

			t t+1 β fn t+1
	where β fn t := col(β fn i t	) |nt| i=1 , w nt := col(w n i t ) |nt| i=1 ,
	θ nt := col(θ n i t ) |nt| i=1 and G f	t t+1 := ⊕ |nt| i=1 (π

  nt + Bf t+1 β fn t+1 , Āf ρ for ρ < t and φ f (t, ρ) = I when ρ = t, then the solution of the above difference equation is given by

	where Āf t = ⊕ |nt| i=1 1 ⊗ (A nt + B nt E nt ) and Bf t+1 =
	⊕	|nt| i=1 -π	n + t nt ⊗ B nt Γ nt B nt	. Denoting the associated
	state transition matrix as φ f (ρ, t) = Āf t-1	Āf t-2 • • •

Table 1

 1 Comparison of open-Loop and feedback Nash equilibrium strategies for two sample paths. 'H' refers to an increase in demand by 30% and 'L' refers to a decrease in demand by 30%. The bold faced items in the table illustrate periods where production constraints are binding along the sample paths.

	Period (t)	0	1	2	3	4	5	6	7	8	9
	Sample path -1		H	H	H	H	L	L	L	L	L
	(demand)										
	X i o	3.0000 3.7571 4.7633	6.0711	7.7441	9.8296	10.4319 10.2194 9.6575 9.0658
	K i o	3.0000 2.7093 2.8526 3.6749 4.7987 6.2717	5.9680	5.8856	6.2518 7.1449
	Q i o	1.6733 2.1890 2.8526 3.6749 4.7987 3.5207	2.5609	1.8843	1.4087 1.0787
	R i o	1.0857 1.4061 1.8084	2.3097	2.9075	2.0546	1.4991	1.1856	1.0718 0.0000
	I i o	0.3093 0.6852 1.3928	1.8588	2.4327	0.9507	1.1112	1.5433	2.1435 0.0000
	X i f	3.0000 3.7607 4.7724	6.0884	7.7736	9.8765	10.4892 10.2816 9.7198 9.1224
	K i f	3.0000 2.7093 2.8528 3.6752 4.7993 6.2727	5.9691	5.8867	6.2529 7.1462
	Q i f	1.6733 2.1890 2.8528 3.6752 4.7993 3.5218	2.5623	1.8860	1.4106 1.0807
	R i f	1.0886 1.4111 1.8164	2.3223	2.9261	2.0704	1.5122	1.1956	1.0773 0.0000
	I i f	0.3093 0.6853 1.3930	1.8591	2.4333	0.9509	1.1114	1.5436	2.1439 0.0000
	Sample path -2		H	H	L	H	H	H	L	H	H
	(demand)										
	X i o	3.0000 3.7571 4.7633	6.0711	6.4600	7.1785	8.2054	9.4745	9.6320 9.7584
	K i o	3.0000 2.7093 2.8526 3.6749	3.3381	3.4606 4.4414 5.7909	6.1512 7.0299
	Q i o	1.6733 2.1890 2.8526 2.0494	2.6611	3.4606 4.4414 3.2630	4.2069 5.4270
	R i o	1.0857 1.4061 1.8084	1.2825	1.6084	1.9701	2.3282	1.6419	1.6423 0.0000
	I i o	0.3093 0.6852 1.3928	0.3982	0.7902	1.6729	2.2378	1.5185	2.1090 0.0000
	X i f	3.0000 3.7607 4.7724	6.0884	6.4830	7.2103	8.2488	9.5301	9.6904 9.8115
	K i f	3.0000 2.7093 2.8528 3.6752	3.3385	3.4613 4.4424 5.7924	6.1528 7.0317
	Q i f	1.6733 2.1890 2.8528 2.0497	2.6616	3.4613 4.4424 3.2646	4.2087 5.4288
	R i f	1.0886 1.4111 1.8164	1.2898	1.6191	1.9845	2.3448	1.6531	1.6474 0.0000
	I i f	0.3093 0.6853 1.3930	0.3983	0.7905	1.6734	2.2385	1.5189	2.1095 0.0000

Here, we restrict our attention to one period and it is quite straight forward to incorporate longer delays. We will see in sections 3 and

that this one period lag assumption leads to recursive formulation in the computation of Nash equilibria.