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EXISTENCE OF MIN-MAX FREE BOUNDARY DISKS

REALISING THE WIDTH OF A MANIFOLD

PAUL LAURAIN AND ROMAIN PETRIDES

Abstract. We perform a replacement procedure in order to produce a free
boundary minimal surface whose area achieves the min-max value over all disk

sweepouts of a manifold whose boundary lies in a submanifold. Our result is
based on a proof of the convexity of the energy for free boundary harmonic
maps and a generalization of Colding-Minicozzi replacement procedure.
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1. Introduction

Minimal surfaces are fundamental objects in Riemannian geometry. Beyond 
their intrinsic interest and beauty, they have been used to prove many fundamental 
results in geometry and topology. Recently, the min-max approach initiated by 
Almgren and Pitts [38] who developed a very deep theory of existence and regularity
of minimal hypersurfaces, has known a new birth in the minimal surface theory. The 
most striking application is the proof by Marques-Neves of the Willmore conjecture
[32] or the result by Irie-Marques-Neves who solve the Yau conjecture in the generic 
situation [17]. We have to note that Guaraco has proposed a new approach relying
on the AllenCahn equation [15], see also Chodosh-Mantoulidis [4]. Rivière has also 
performed a promising viscosity method to solve extrinsic min-max problems for 
minimal surfaces in any co-dimension, see [45, 40].

In this paper we are interested in the seminal approach of the existence theory
of minimal surfaces, the one used by Douglas and Radó to solve the Plateau prob-
lem, namely the variational approach. In this issue, the natural continuation to 
look for critical points is a min-max, a setting which finds its foundation in the
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work of Palais [36]. A min-max version of this approach has been performed in
the very nice paper by Colding-Minicozzi which especially permits to define the
width of a 3-sphere. Inspired by the work by Douglas and Radó they replaced the
area by the Dirichlet energy functional, and inspired by the Birkhoff’s so-called
curve-shortening procedure, gave a strong harmonic replacement procedure, based
on the local convexity of the energy under small energy assumptions. Following the
work by Colding-Minicozzi, we extend this result to free-boundary minimal surfaces.
Those surfaces can be seen as a generalization of closed geodesics, in the sense
that the boundary of the disk is a 1/2-harmonic map which is the 1-dimensional
equivalent of the harmonic map. Indeed, free boundary minimal surfaces are also
subject to a non-local approach, see [7] and reference therein.

The main goal of this paper is to perform a free-boundary harmonic replacement
procedure in order to produce a free boundary minimal surface whose area achieves
the min-max value over all disk sweepouts of a manifold whose boundary lies in a
submanifold.

Let N be a n-dimensional closed manifold and M ⊂ N a connected m-dimensional
compact submanifold. We let

A = {u ∈W 1,2(D, N) ∩ C0(D, N) | u(∂D) ⊂M}

be the set of admissible parametrized disks in N whose boundaries lie in M , endowed
with the ‖ . ‖L∞ + ‖∇ . ‖L2-norm. We fix a parameter t0 ∈ ∂Bk−2 and an arbitrary
point m0 ∈M . We define a sweepout as a map σ : Bk−2 → A on a k− 2-ball which
is the set of parameters with k ≥ 2 satisfying

• ∀t ∈ ∂Bk−2, σt is a constant function in M .
• t 7→ σt is continuous in A.
• σt0 = m0

1.

Let ω be a homotopy class of sweepouts, we can set a topological invariant, called
the width as

(1.1) W (N,M,ω) = inf
σ∈ω

max
t∈Bk−2

Area(σt).

Notice that there is a non-trivial homotopy class of sweepouts (or there is a sweepout
non-homotopic to a constant one) if and only if πk(N,M) 6= {0}, see section 1.3 of
[13]. In particular in those cases, W (N,M,ω) > 0 and our main theorem applies.
Our setting is very general since it contains the classical Plateau problem for M
being a closed curve and k = 2. And it of course contains also some real min-max,
for instance, if M is the boundary of a strictly-convex domain in R3, the level set of
the height function generates a non-trivial homotopy class and π3(N,M) 6= {0}.

The definition of the classical width goes back to Birkhoff [3] for the problem of
geodesics : it is the smallest length we need for some circle to pull-over a compact
manifold. In our context, we define the smallest area we need to cross over a compact
manifold with an interface which has the topology of a disk whose boundary slides
on this compact manifold.

1 the condition that σt0 = m0 can be removed when M is simply connected. Else, it is necessary

to get that πk−2(A) ∼= πk(N,M).



3

Like for the problem of geodesics or the Douglas-Radó approach, it is more
convenient to use the energy as a functional instead of the area. We know that
for u ∈ A, Area(u) ≤ E(u) := 1

2

´
D |∇u|

2 with equality if and only if u : D → N
is conformal. Moreover, on a disk, for any immersion u ∈ A, we can change the
parametrization so that u ◦ φ ∈ A is a ”almost-conformal” map, and we can do it
continuously along any sweepout without changing the homotopy class, see appendix
D in [5]. Therefore, we have

(1.2) W (N,M,ω) = inf
σ∈ω

max
t∈Bk−2

1

2

ˆ
D
|∇σt|2.

The critical maps u : D → N of the energy with the constraint that u(∂D) ⊂ M
are the so-called free-boundary harmonic maps, that is harmonic maps such that
∂νu ∈ (TuM)⊥ on ∂D. Notice that looking at the Hopf differential, a harmonic map
with free boundary on the disk is automatically conformal and then minimal. This
means that the set of critical points is the same considering either the energy or the
area. Here is our main theorem.

Theorem 1.1. Let N a n-dimensional closed regular manifold and M a m-dimensional
compact submanifold, let ω a homotopy class of sweepouts such that W (N,M,ω) > 0.
Then, there is a minimizing sequence of sweepouts σn ∈ ω such that for any sequence
of parameters tn ∈ Bk−2 satisfying

Area(un)→W (N,M,ω) as n→ +∞
with un = σntn , then, up to a subsequence, there exists r ≥ 0 (possibly branched)
minimal disks with free boundary in M , θi : D→ N and s ≥ 0 (possibly branched)
minimal spheres ωj : S2 → N such that

uj →
r∑
i=1

θi +

s∑
j=1

ωj

in the sense of the W 1,2-bubble convergence2. Moreover, they achieve the width, i.e.

W (N,M,ω) =

r∑
i=1

Area(θi) +

s∑
j=1

Area(ωj).

Remark: Bubble convergence implies varifold convergence, as proved in A.3 of
[5].

This gives an existence theorem as soon as πk(N,M) 6= 0, either there is a mini-
mal disk with free boundary, or a minimal sphere. This existence part was already
obtained by Fraser [13]. Notice that our limiting surfaces are not a priori embedded
and can even possess some isolated branched points. Thanks to a min-max method
using geometric measure theory tools, Li [28] and Li-Zhou [52] proved the existence
of properly embedded minimal disks in the case when M is the boundary of a
domain in Rn, without convexity assumption on M . However, their disk does not a
priori achieve the width.

Our conclusion is optimal in the general case, since examples where the limiting
surface should be a union of disconnected spheres or disks have to occur. We cannot

2see section 2 for a precise definition.
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either expect C0-bubble convergence, and of course, the limit is not a priori in
the same homotopy class, even in the minimization case. For instance consider
a manifold which contains a minimal sphere which enclosing a singularity and
which is asymptotically flat, as the Schwarzschild space. If we consider M , not
simply connected, being far from the minimal horizon and we try to minimize
the area of disk in the homotopy class that encloses the singularity and bounds
a non-homotopically trivial curve then we are going to blow at least one minimal
horizon and possibly a minimal free boundary disk that does not enclose the horizon.

It is a very interesting question to know if the width can be achieved by a single
surface. We can easily exclude interior blow-up points assuming there is no minimal
sphere in N which is the case as soon as the curvature of N is non-positive for
instance, see corollary 8.6.3 of [20]. In the general case we expect some bubbling
phenomena to occur at the boundary. Nevertheless we expect the situation to be
much more rigid when M is the boundary of a two-convex domain since in this case
the minimal disk must stay in the interior.

Definition 1.1 (Definition 1.2 of [14]). A hypersurface M in a Riemannian manifold
N is two-convex if the sum of any pair of principal curvatures of M with respect to
the inward pointing unit normal is positive. A two-convex domain is a domain with
smooth two-convex boundary.

Since, the boundary of a two-convex domain is a barrier for minimal disk, see
proof of theorem 2.1 in [14], we have the following immediate corollary

Corollary 1.1. Let N a two-convex domain in Rp or in manifold with non-positive
curvature, let ω a homotopy class of sweepouts such that W (N, ∂N, ω) > 0 then
there is a minimizing sequence of sweepouts σn ∈ ω such that for any sequence of
parameters tn ∈ Bk−2 satisfying

Area(un)→W (N, ∂N, ω) as n→ +∞

with un = σntn , then, up to a subsequence, there exist r ≥ 1 minimal disks with free
boundary in ∂N , θi : D→ N such that

un →
r∑
i=1

θi

in the sense of the W 1,2-bubble convergence. Moreover, they achieve the width, i.e.

W (N, ∂N, ω) =

r∑
i=1

Area(θi).

Finally, inspired by the result of Fraser, theorem 1 of [13], see also [43], we should
be able to prove in an incoming work that the sum of the indices of the minimal
disks is at most k − 2, hence using the fact that the index of a minimal disk in a
convex domain of Rp is at least [(p− 2)/2], see theorem 2.5 of [13], we will have an
upper bound on r in the convex case, especially that r = 1 for a convex domain in
R3 and get a universal bound on r with respect to the topology in Rp with p ≥ 3.
For a general domain, when r > 1 it will be a very interesting question to localize the
blow-up point and to describe the possible configuration of free boundary minimal
disks that can occur .
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Our study can be viewed as the free-boundary counterpart of the classical
existence results of harmonic maps on a 2-sphere into closed manifolds initiated
by Sacks-Uhlenbeck [46] in the minimization case and Micallef-Moore [34] for the
min-max. Even in the closed case, the main problem to apply the classical methods
for min-max is that we need some Palais-Smale assumption for the energy functional.
We need that a sequence of maps un ∈W 1,2(S2, N) satisfying

(1.3) ∆un = A(un)(∇un,∇un) + fn

converges in W 1,2 up to a subsequence, where A is the second fundamental form
given by the embedding N ⊂ Rp and fn → 0 as n → +∞ in W−1,2. Of course,
when fn = 0, it is the harmonic map equation. It is well known that even for fn = 0,
we cannot expect W 1,2-convergence. The optimal result was given by Parker, see
[37], with a W 1,2 ∩ C0-bubble convergence. However, in this paper, Parker also gave
an example of un satisfying (1.3) which cannot even converge in the W 1,2-bubble
convergence sense.

Notice that we have more information than (1.3) since the problem comes from a
min-max, and even if we renounce to prove that any minimizing sequence for the
min-max converges we can select a suitable one by a regularization process. There
are two classical strategies.

The first one, the so-called viscosity method is to change the functional depending
on a smoothing parameter α so that it satisfies the Palais-Smale assumption for the
regularized functional and prove the convergence of the critical min-max solutions
associated to α as α→ α0. In this case, we have of course a sequence of solutions
of (1.3), but they are also critical points of the regularized functional. Therefore we
add another structure on the sequence of equations and we can expect convergence.
This approach was introduced by Sacks-Uhlenbeck using the so-called α-energy

Eα(u) =
1

2

(ˆ
S2

(
1 + |∇u|2

)α − ˆ
S2

1

)
where Eα → E as α → 1. It suffices to study a sequence of critical points of
Eα, satisfying the ”α-harmonic map equation” and hope for some convergence as
α → 1. The main step they proved is ε-regularity independent from α, leading
to the celebrated existence theorem. Fraser used the same method to prove the
existence part in the free-boundary case, adding an important work for free-boundary
regularity. However, we need another step in order to prove bubble convergence and
energy identities : the ”no-neck energy” lemma. Unfortunately, such a lemma is not
true a priori for a sequence of α-harmonic maps, this was proved by Li-Wang [29].
Again, of course, we have more information than the α-harmonic map equation :
the sequence comes from min-max solutions, and thanks to the monotonicity trick
by Struwe [49], up to a subsequence, one can add an entropic condition that Lamm
used [21] to prove the W 1,2-bubble convergence. The viscosity method was also
performed by Rivière in the extrinsic case, adding to the area functional [45] or
Willmore functional [41] adapted smoothers depending on a Lp-norm of the second
fundamental form.

The second strategy is to start from a minimizing sequence and replace it with
a suitable procedure by a new competitor which satisfies conditions leading to
compactness. This idea goes back to Birkhoff in the case of closed geodesics, with
the famous curve shortening process : choosing sets of points sufficiently close, we
replace each portion between two successive points by the unique geodesic which
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joins these points. Then, we can use the compactness of the space of sweepouts of
piecewise geodesic curves. We use this strategy to prove Theorem 2.1, based on the
modern adaptation by Colding and Minicozzi [5], and their proof of W 1,2-bubble
convergence for the min-max problem for 2-spheres in a compact manifold diffeo-
morphic to S3. Generalizations for tori and higher genus surfaces was performed
by Zhou in [50] and [51] where harmonic maps are not automatically conformal.
In the next section, we will give the main steps of proof of Theorem 2.1 (implying
Theorem 1.1), which handles this strategy for free boundary issues.

In order to perform the replacement procedure, one needs to get at least the
uniqueness of harmonic maps with small energy with respect to the Dirichlet
boundary data. Even though it is a direct consequence of maximum principle
when the target manifold is Rp it is much harder in the general case. Colding and
Minicozzi proved in fact much more, since they proved the energy convexity of the
energy functional using some property of holormorphic functions, see section C of
[5]. In fact, the crucial point is the compactness compensation phenomena which
appears in all conformally invariant problems. This remark permits the first author
and Lin [25] to prove the convexity for some biharmonic maps, see also [24] for
a review. In the present paper we prove the following free boundary version of
Colding-Minicozzi energy convexity.

Theorem 1.2. Let N be a compact submanifold of Rn and M a closed submanifold
of N . Then, there exists a constant ε0 > 0 such that if u, v ∈ W 1,2(D+, N) with
u|A = v|A, for almost every x ∈ I, v(x) ∈ M and u(x) ∈ M , E(u) ≤ ε0 and u is
weakly harmonic meeting M orthogonally along I, then we have the energy convexity

(1.4)
1

2

ˆ
D+

|∇(v − u)|2 ≤
ˆ
D+

|∇v|2 −
ˆ
D+

|∇u|2 .

Where D+ = D ∩ {(x1, x2) |x2 > 0} and ∂D+ = A ∪ I with I = (−1, 1) × {0} and
A = ∂D+ \ I.

This kind of energy convexity is also of first importance to get some strong
convergence of the flow associated to some conformally invariant problem such as
harmonic maps or bi-harmonic maps, see [30] and [25]. Moreover, using the flow as
another smoother for sweepouts could lead to some compactness, as in Fraser-Schoen
[12]. Notice that energy identities for harmonic flow have already been performed,
see for instance [9].

Organization of the paper: In section 2, we give a detailed statement of our main
theorem and we give a detailed sketch of the proof, since the proof is somehow
technical. The strategy is the one of Colding-Minicozzi [5]. Section 3 is devoted to
the proof of energy convexity. In section 4, we perform the replacement procedure
to produce the energy decreasing map. Section 5, is the key point of the paper since
we prove the no neck energy which will ensure that the width is achieved. Section 6
is dedicated to the proof of the main theorem. Finally in the appendix, we give our
version of the ε-regularity for free boundary harmonic maps.

Added in proof :We have been told recently by Lin, that with his collaborator
Zhou and Sun, they prove a similar result.
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2. Main theorem and sketch of the proof

In this section we give the full statement of our main theorem and we detail the
strategy of the proof in what follows.

Theorem 2.1. Let N a n-dimensional closed regular manifold and M a m-dimensional
compact submanifold, then

πk(N,M) 6= 0⇔ ∃ω a homotopy class of sweepouts such that W (N,M,ω) > 0

and in this case, there is a minimizing sequence of sweepouts σn ∈ ω such that for
any sequence of parameters tn ∈ Bk−2 satisfying

Area(un)→W (N,M,ω) as n→ +∞

with un = σntn , then, up to a subsequence, there exists r ≥ 0, s ≥ 0 and

• u∞ : D → N (possibly constant or branched) minimal disks with free
boundary on M ,
• θ1, · · · , θr : D→ N non constant (possibly branched) minimal disks with free

boundary on M , some centers an1 , · · · , anr ∈ ∂D, and scales λn1 , · · · , λnr → 0
as n→ +∞,
• ω1, · · · , ωs : S2 → N non constant (possibly branched) minimal spheres,

some centers bn1 , · · · , bns ∈ D and scales νn1 , · · · , νns → 0 as n→ +∞,

such that

• un converges to u∞ in W 1,2
loc (D \ {b∞1 , . . . , b∞s }),

• un ◦ φani (λni φ
−1
1 (.)) converges to θi in W 1,2

loc (D \ {Si}) for 1 ≤ i ≤ r, where
Si is a finite set,
• un(bnj + νnj .) converges to ωj ◦ π−1 in W 1,2

loc (R2 \ {Sj}) for 1 ≤ j ≤ s, where
Sj is a finite set,

where π : S2 → R2 is the stereographic projection with respect to the north pole and
φa : D→ R2

+ satisfies φa(z) = ia−za+z . Moreover, we have the energy identity :

lim
n→+∞

ˆ
D
|∇un|2 =

ˆ
D
|∇u∞|2 +

r∑
i=1

ˆ
D
|∇θi|2 +

s∑
i=1

ˆ
D
|∇ωi|2 .

The conclusion of the theorem gives a classical so-called ”W 1,2 bubble conver-
gence”, see [37],[49] and [23]. Notice that the parameters satisfy

|anα − anβ |
λnα + λnβ

+
λnα
λnβ

+
λnβ
λnα
→ +∞ as n→ +∞

for 1 ≤ α < β ≤ r and

|bnα − bnβ |
νnα + νnβ

+
νnα
νnβ

+
νnβ
νnα
→ +∞ as n→ +∞

and
1− |bnα|
νnα

→ +∞ as n→ +∞

for 1 ≤ α < β ≤ s.
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In the rest of the paragraph we detail the strategy of the proof. As we already
mentioned, the proof follows the strategy of Colding-Minicozzi for the sphere case,
we will mainly focus on the new difficulties given by the presence of a boundary.
Especially we have to develop new tools since the classical argument which permits
to get estimates by reducing the size of the set does not work at the boundary.

By Nash’s theorem [35], we may assume in the rest of the paper that N is
isometrically embedded in some Rp.

STEP 0: W = WE

Setting

WE(N,M,ω) = inf
σ∈ω

max
t∈Bk−2

1

2

ˆ
D
|∇σt|2,

we have WE = W .

This was the seminal idea of Douglas-Radó to work on the Energy rather than
the Area. The main idea is that any W 1,2-map can be reparametrized as a quasi-
conformal map for which the Area and the Energy are as close as desired. Colding
and Minicozzi carefully improved this idea to the sweepout setting. The main point
is that the reparametrization has to be continuous with respect to the parameters of
the sweepout. Since the sphere case and the disk case are similar, they both possess
only one conformal class, we just remind the main three steps of appendix D of [5].

• It is clear that W ≤WE . Then let us consider σ such that max
t∈Bk−2

Area(σt) ≤

W +
ε

2
, for some ε > 0.

• Then, in lemma D.1 of [5], improving the density argument of Schoen-
Uhlenbeck, see last proposition of [48], Colding-Minicozzi explained how
to regularize the sweepout σ to some σ̃ ∈ C0(Bk, C2(D, N)), verifying
max
t∈Bk−2

Area(σ̃t) ≤W + ε. We have to notice that in our case the boundary

of the mollified sweepout is a priori not in M . In order to solve this issue,
it suffices to consider the family of C0-curves ct = σt|∂D, and to regularize
it to some c̃t which still take values into M . Then we consider ṽt = πN (ht)
where ht is the harmonic extension of c̃t into Rp and πM the projection
onto N . This ṽt is a smooth map close to σ̃t in some neighborhood of ∂D.
Finally it suffices to interpolate σ̃t and ṽt in this neighbourhood to get a
C2 sweepout, still denotes σ̃t, which is W 1,2 ∩ C0 closed to σt and which
sends ∂D to M .
An alternative approach for the ”projection” of σ̃ consists in considering, for
δ > 0, a map Fδ : N → N such that |DFδ| = 1+O(δ) such as Fδ |N\Mδ

= Id,
see section 4 for the definition of Mδ, and Fδ is a retract of Mδ2 onto M .

• Considering the pullback metric σ̃∗t (ξ) on the disk, it can be degenerated,
hence one considers gδ,t = σ̃∗t (ξ) + δ|dz|2 with δ > 0. Then thanks to the
Riemann mapping theorem for variable metric of Ahlfors-Bers [1], see also
section 3.2 of Jost [19], one finds a unique conformal diffeomorphism hδ,t
which fixes three points on the boundary and pulls back gδ,t to |dz|2, with
some W 1,2 ∩ C0 control on the diffeomorphism.
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• Finally using this control and choosing δ > 0 small enough, Colding-
Minicozzi proved that the Energy of σ̃t ◦ hδ,t can be made as close as
we want to the Area of σt.

STEP 1: ε-regularity for a sequence of harmonic maps with free boundary of
uniformly bounded energy

An ε-regularity convergence for a sequence of critical points has to be true for
Theorem 2.1. This result was proved by Laurain-Petrides [27] when N = B3 and
M = S2 thanks to reflexion methods and the use of Rivière’s conformal invariant
equations theory. Jost-Liu-Zhou generalized this result for any N and M , see [18].
For sake of completeness, we recall the ε-regularity result in the appendix (see
Proposition A.1) with a concise argument.

STEP 2: Convexity for free boundary energy

This is a key step of the paper of Colding and Minicozzi in order to define a
replacement procedure. In the classical problem of geodesics by Birkhoff, we replace
portions of curves by a geodesic which joins their ends, but we need uniqueness
of geodesics: the points have to be below the injectivity radius. We state here an
analogous result for surfaces.

Let D+ = D∩{(x1, x2) |x2 > 0}. We denote ∂D+ = A∪I where I = (−1, 1)×{0}
and A = ∂D+ \ I. The next result states that the energy functional is strictly convex
around small energy maps with the constraint that the boundary I is sent in some
submanifold M of N .

Theorem 2.2. Let N be a compact submanifold of Rp and M a closed submanifold
of N . Then, there exists a constant ε0 > 0 such that if u, v ∈ W 1,2(D+, N) with
u|A = v|A, for almost every x ∈ I, v(x) ∈ M and u(x) ∈ M , E(u) ≤ ε0 and u is
weakly harmonic meeting M orthogonally along I, then we have the energy convexity

(2.1)
1

2

ˆ
D+

|∇(v − u)|2 ≤
ˆ
D+

|∇v|2 −
ˆ
D+

|∇u|2 .

We can deduce the following uniqueness result as an immediate corollary.

Corollary 2.1. Let N be a compact submanifold of Rp and M a closed submanifold
of N . Then, there exists a constant ε0 > 0 such that if u, v ∈ W 1,2(D+, N) are
weakly harmonic meeting M orthogonally along I, with u|A = v|A, E(u) ≤ ε0 and
E(v) ≤ ε0 then u ≡ v.

Notice that the previous theorem is a ”free-boundary” version of the energy
convexity result by Colding and Minicozzi in [5] :

Theorem 2.3. Let N be a compact submanifold of Rn. Then, there exists a constant
ε0 > 0 such that if u, v ∈W 1,2(D, N) with u|∂D = v|∂D, E(u) ≤ ε0 and u is weakly
harmonic, then we have the energy convexity

(2.2)
1

2

ˆ
D
|∇(v − u)|2 ≤

ˆ
D
|∇v|2 −

ˆ
D
|∇u|2 .

Besides the uniqueness consequence, this theorem is very useful for many other
problems such as flow convergence, see [25]. In fact our proof simplifies the original
proof by Colding-Minicozzi and the one of Lamm-Lin [22]. In fact our idea applies
probably to all conformally invariant problem, since it relies only on the ε-regularity,
the fact that the right hand side of the equation is orthogonal to TN . Those two
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facts were the key ingredients of the proof of a quantization phenomena for all
conformally invariant problem, see [23]. The last ingredient is a Hardy inequality.
In order to get the convexity for the free boundary setting we need to generalize the
Hardy inequality to free boundary problems. It is something already known, see
theorem 1 of [11], but for the sake of completeness we give a complete statement
and a full proof see theorem 3.2. We would like to remark that the Hardy inequality
can be seen as a special case of some weighted Poincaré inequality, or even Poincaré
inequality on non-compact manifolds. We will discuss this point of view in an
incoming paper [26].

STEP 3: The harmonic replacement procedure and decreasing energy map

In the proof of Theorem 2.1, we first take a minimizing sequence of sweepouts.
Of course, we extract a classical Palais-Smale sequence un (satisfying (1.3) in the
interior) but as already said, we cannot conclude for W 1,2-bubble convergence. We
aim at replacing this sequence by another one which will satisfy stronger Palais-
Smale-like properties used in STEP 4 to prove convergence. This is stated in
Theorem 4.1. Let’s sketch this procedure in the particular case of minimization (the
set of parameters is trivial Bk−2 = {0}).

Let u ∈ A. Let E the set of finite families of disjoint element of B and HB where

B = {B(a, r) s.t. B(a, r) ⊂ D}

and

HB = {B(a, r) ∩ D s.t. a ∈ ∂D and ∂B(a, r) intersect orthogonally}.

For α ∈ (0, 1], and B ∈ E we denote by αB the collection of disks concentric
to those of B with radius dilated by α and half disks which meet the boundary
orthogonally, with center collinear to those of B and with radius dilated by α.

For and B ∈ E such that the energy of u on
⋃
B∈B B is less than the ε0 of Theorem

1.2, then we denote by H(u,B) : D→ N the map that coincides

• on D \
⋃
B∈B B with u

• on
⋃
B∈B B with the (unique) energy minimizing map from

⋃
B∈B B to N

that agrees with u on
⋃
B∈B ∂B \ ∂D with the constraint that it lies in M

on
⋃
B∈B ∂B ∩ ∂D.

We aim at decreasing the energy of u as much as we can. We set

eu = sup

{
E(u)− E(H(u,B));B ∈ E ,

ˆ
⋃
B∈B B

|∇u|2 ≤ ε0

}
,

so that if u is not already harmonic, we can pick some B̃ such that

(2.3) E(u)− E(ũ) ≥ eu
2

where ũ = H(u, B̃) is the replaced map we choose. For this map, we can easily
prove thanks to Theorem 1.2 and Theorem 2.3 in STEP 2, an exchange formula
(see (4.19) in lemma 4.2) and the definition of eu that for any B
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1

4

ˆ
D
|∇ũ−∇H(ũ,

1

2
B)|2 ≤ E(ũ)− E(H(ũ,

1

2
B))

≤ E(u)− E(H(u,B)) +
(E(u)− E(ũ))

1
2

κ

≤ eu +
(E(u)− E(ũ))

1
2

κ

and with the definition of ũ (see (2.3)) we conclude that

(2.4)

ˆ
D
|∇ũ−∇H(ũ,

1

2
B)|2 ≤ C (E(u)− E(ũ))

1
2 .

for any B ∈ E with
´⋃

B∈B B
|∇u|2 ≤ ε0, up to decrease ε0 and for some constant C

which only depends on M and N .
Therefore, if {un} is a minimizing sequence (we recall that we assumed that

the set of parameters is trivial Bk−2 = {0}), we can define a new sequence as
previously {ũn} satisfying 2.4. By construction, {un} ∈ A and E(ũn) ≤ E(un) and
by continuity of the harmonic replacement (see proposition 4.1), by shrinking the
radii of the balls and half balls used to define ũn, we see that un and ũn lie in the
same homotopy class. Therefore, {ũn} is also a minimizing sequence so that thanks
to 2.4, ˆ

D
|∇ũn −∇H(ũn,

1

2
B)|2 → 0 as n→ +∞

for any B ∈ E such that
´⋃

B∈B B
|∇un|2 ≤ ε0.

As already said, the general case is given in Theorem 4.1. The idea is the same
but much more technical since we have to define a replacement procedure all along
the sweepouts. This is possible by an intensive use of proposition 4.1.

STEP 4: A specific Palais-Smale assumption

Thanks to the previous steps, we can build a minimizing sequence of sweepouts
σn ∈ ω such that for any sequence of parameters tn ∈ Bk−2 satisfying

Area(un)→W (N,M,ω) as n→ +∞
with un = σntn , we have the assumptions (2.5) and (2.6) of the following theorem
implicitly proved in section 5

Theorem 2.4. Let un ∈ A be a sequence of maps with uniformly bounded energy
such that

(2.5)

ˆ
D
|∇un −∇H(un, ηB)|2 → 0 as n→ +∞

for any B ∈ E such that
´⋃

B∈B B
|∇un|2 ≤ ε0 and

(2.6) Area(un) = E(un) + o(1) as n→ +∞ .

Then, up to a subsequence, {un} W 1,2-bubble converges.

We can consider (2.5) as a kind of ε-regularity property for minimizing sequences
of the energy. Indeed, outside a finite number of points where the energy could
concentrate over ε0, we deduce a strong convergence in W 1,2 to a harmonic map.
(2.6) is a crucial assumption in order to get a no-neck energy lemma (see proposition



12 PAUL LAURAIN AND ROMAIN PETRIDES

5.1). Usually, for harmonic equations, we use a Pohožaev identity to prove a no-neck
energy lemma. Here, we do not have any equation but (2.6) is a quasi-conformal
assumption, where being conformal is even stronger than a Pohožaev identity. It is
why we can generalize Theorem 2.4 even in the case where un is defined on a set of
degenerating conformal classes on a surface (this work was performed by Zhou in
the closed case).

3. Proof of theorem 1.2

Before proving theorem 1.2, we have to prove some generalization of the Hardy
inequality. Before that, let us remind the classical case, see section 1.3.1 of [33], see
also [31].

Theorem 3.1. Let u ∈W 1,2
0 (D) then

(3.1)

ˆ
D

u2

(1− |x|)2
dx ≤ 1

4

ˆ
D
|∇u|2 dx .

For our purpose we prove an trace version of this classical result, largely inspired
by theorem 1.1 in [11].

Theorem 3.2. Let u ∈ W 1,2(D+) such that the trace of u = 0 on A. Then, the

trace of u on I which we still denote u belongs to L2
(
I, 1

1−x2
1

)
and

(3.2)

ˆ
I

u2

1− x21
dx1 ≤

π

2

ˆ
D+

|∇u|2 dx1dx2 .

We would like to remark that the Hardy inequality can be seen as a special case
of some Weighted Poincaré inequality, or even Poincaré inequality on a non-compact
manifold. We will discuss this point of view in an incoming paper [26].

Proof of theorem 3.2 :

We let φ ∈ C∞(I × R) a positive function and u ∈ C∞c (I × R). Then
ˆ
I×[0,+∞]

∣∣∣∣∇u− ∇φφ u

∣∣∣∣2 =

ˆ
I×[0,+∞]

|∇u|2 +
|∇φ|2

φ2
u2 −

ˆ
I×[0,+∞]

∇φ
φ
∇(u2) .

After an integration by parts, we get

−
ˆ
I

φx2

φ
u2 =

ˆ
I×[0,+∞]

|∇u|2 +

ˆ
I×[0,+∞]

∆φ

φ
u2 −

ˆ
I×[0,+∞]

∣∣∣∣∇u− ∇φφ u

∣∣∣∣2 .
Setting

φ(x1, x2) = 1− 2

π
arctan

(
x2

1− x1

)
,

we get that

−φx2

φ
(x1, 0) =

2

π

1

1− x1
and that ∆φ = 0 so that

(3.3)

ˆ
I

u2

1− x1
≤ π

2

ˆ
I×[0,+∞]

|∇u|2 .
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By an analogous computation, letting φ(x1, x2) = 1− 2
π arctan

(
x2

1+x1

)
we get

(3.4)

ˆ
I

u2

1 + x1
≤ π

2

ˆ
I×[0,+∞]

|∇u|2 .

Summing (3.3) and (3.4) gives (3.2) for u ∈ C∞c (D+ ∪ I).

To conclude, let u ∈ W 1,2(D+) such that the trace of u = 0 on A. By density,
let un ∈ C∞c (D+ ∪ I) be a sequence such that un converges to u in W 1,2(D+).
In particular up to a subsequence, un converges to the trace of u on I almost
everywhere. By Fatou theorem,ˆ

I

u2

1− x21
≤ lim inf

n→+∞

ˆ
I

u2n
1− x21

≤ lim inf
n→+∞

π

2

ˆ
D+

|∇un|2 =
π

2

ˆ
D+

|∇u|2 ,

which completes the proof of Theorem 3.2.
♦

Proof of theorem 1.2:

Let u, v ∈ W 1,2(D+, N) with u|A = v|A, for almost every x ∈ I, v(x) ∈ M and
u(x) ∈M , E(u) ≤ ε0 and u is harmonic meeting M orthogonally along I. Notice
that by proposition A.1, u is a smooth map until the boundary I. Then, setting

(3.5) Θ =

ˆ
D+

|∇v|2 −
ˆ
D+

|∇u|2 −
ˆ
D+

|∇(v − u)|2

we get

(3.6) Θ = 2

ˆ
D+

〈∇(v − u),∇u〉 = 2

ˆ
D+

(v − u) .∆u+ 2

ˆ
I

(v − u) .∂νu

by an integration by parts since u = v on A. Now, we use proposition 3.1, see below,
twice. First, since ∆u = A(u) (∇u,∇u) ⊥ TuN , where A is the second fundamental
form of the submanifold N of Rn, we get
(3.7)ˆ

D+

(v − u) .∆u ≥ −‖A‖∞
ˆ
D+

∣∣∣(v − u)
⊥
∣∣∣ |∇u|2 ≥ −‖A‖∞ κN

ˆ
D+

|v − u|2 |∇u|2 .

Also, since ∂νu ⊥ TuM on M , submanifold of Rn, we get

(3.8)

ˆ
I

(v − u) .∂νu ≥ −
ˆ
I

∣∣∣(v − u)
⊥
∣∣∣ |∂νu| ≥ −κM ˆ

I

|v − u|2 |∂νu| .

Gathering (3.5), (3.6), (3.7) and (3.8), we get a constant C > 0 such that

(3.9) Θ ≥ −C

(ˆ
D+

|v − u|2 |∇u|2 +

ˆ
I

|v − u|2 |∂νu|

)
which conclude the proof of theorem 1.2, applying ε-regularity which gives

|∇u| ≤ C

1− |x|
√
ε0

, see theorem A.1 in the appendix, theorem 3.1 and theorem 3.2.
♦
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We recall now a lemma by Colding and Minicozzi used to prove theorem 1.2 (see
(C.11) of [5]).

Proposition 3.1. Let M be a submanifold of Rn. Then, there is a constant κM > 0
such that

∀p, q ∈M,
∣∣∣(p− q)⊥∣∣∣ ≤ κM |p− q|2

where (p− q)⊥ denotes the normal component of p− q with respect to p ∈M .

We leave to the reader the proof or Theorem 2.3 thanks to proposition 3.1 together
with the ε-regularity for harmonic maps and the Hardy inequality (Theorem 3.1).

4. Replacement procedure and Energy decreasing map

In this section, we aim at building a systematic replacement procedure in order
to regularize a minimizing sequence of sweepouts for the min-max problem, in order
to obtain a sequence which satisfies a kind of Palais-Smale assumption. We precise
it in Theorem 4.1.

In the following, we let δ > 0 be such that for the open neighborhoods

Nδ = {x ∈ Rp; d(x,N) < δ} and Mδ = {x ∈ Rp; d(x,M) < δ}

of the submanifolds N and M of Rp respectively, there are smooth projection maps
πN : Nδ → N on N and πM : Mδ →M on M such that

(4.1) sup
Nδ

‖DπN‖ ≤ 2 and ∀x ∈ Nδ, ‖DπN (x)‖ ≤ 1 + C|x− πN (x)|

and

(4.2) sup
Mδ

‖DπM‖ ≤ 2 .

Moreover, we can extend πM : M δ
2
→M by a smooth map π̃M : Rp → Rp. For

instance, thanks to a smooth cut-off function χ such that χ = 1 on M δ
2

and χ = 0

on Rp \Mδ, we can set π̃M = χπM .

4.1. Continuity of the harmonic extension map. The main goal of this para-
graph is to prove that the harmonic replacement is a continuous map in the free
boundary case, see section 3.2 of [5] for the interior case. The free boundary case
is far from being a simple adaptation of Colding and Minicozzi argument since we
have to pay a particular attention to the boundary, especially when we construct
some competitors.

Proposition 4.1. There exists ε0 > 0, such that for every u ∈ W 1,2 ∩ C0(D+, N)
such that u(I) ⊂ M with energy less than ε0 there is a unique energy minimizing
map from D+ to N that agrees with u on A with the constraint that it lies in M on
I denoted by ũ. Moreover, u 7→ ũ is continuous for the W 1,2 ∩ C0 topology.

Proof of proposition 4.1 :

Existence is standard (see theorem 2 of 4.6 in [8]) and uniqueness is given by
Theorem 1.2. For the continuity of the map u 7→ ũ, we follow three steps.
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STEP 1 : There exists C > 0 such that for any u and v in W 1,2 ∩ C0(D, N) with
u(I) ⊂M and v(I) ⊂M of energy less than ε0, we have

(4.3) |E(ũ)− E(ṽ)| ≤ C (‖u− v‖C0 + ‖∇(u− v)‖L2) .

First of all, up to take C big enough, we can assume that ‖u−v‖C0 < δ
2+sup ‖id−Dπ̃M‖ ,

since |E(ũ)− E(ṽ)| ≤ ε0.

Then, we set

v̄ = ũ+ π̃M (ũ+ v − u)− π̃M (ũ) + v − π̃M (v)− (u− π̃M (u))

in order to get some comparison function close to ũ as u is close to v such that

(4.4) ∀x ∈ I, v̄(x) ∈M and ∀x ∈ A, v̄(x) = v(x) .

Indeed, since ‖u− v‖C0 ≤ δ
2 , v̄ = π̃M (ũ+ v − u) = πM (ũ+ v − u) ∈M on I.

Now, we can set

v̂ = πN (v)

since

d(v̄, N) ≤ |v̄ − ũ| ≤ |π̃M (ũ+ v − u)− π̃M (ũ)|+ |(id− π̃M )(v)− (id− π̃M )(u)|

so that

(4.5) d(v̄, N) ≤ (sup ‖DπM‖+ sup ‖D(id− π̃M )‖) ‖u− v‖C0 .

and d(v̄, N) < δ by (4.2). Then v̂ is an admissible function for the variational
characterization of ṽ since v̂ ∈ N and v̂ satisfies the same properties of (4.4) as v̄,
hence

(4.6) E(ṽ) ≤ E(v̂).

Now, thanks to (4.1) and (4.5),

(4.7)

ˆ
D+

|∇v̂|2 ≤
(
1 + C‖v − u‖C0(D+)

)2 ˆ
D+

|∇v̄|2 .

Now, we estimate the energy of v̄. We have

∇v̄ −∇ũ = (Dπ̃M (ũ+ v − u)−Dπ̃M (ũ)) .∇ũ
+Dπ̃M (ũ+ v − u).∇(v − u)

+ ((id−Dπ̃M )(v)− (id−Dπ̃M )(u)) .∇v
+(id−Dπ̃M )(u).∇(v − u) ,

so that

|∇v̄ −∇ũ| ≤ sup ‖D2π̃M‖(|∇ũ|+ |∇v|)‖v − u‖C0(D+)

+ (sup ‖Dπ̃M‖+ sup ‖id−Dπ̃M‖) |∇(v − u)| ,

and there is a constant C such that

(4.8)

ˆ
D+

|∇v̄|2 ≤
ˆ
D+

|∇ũ|2 + C

‖v − u‖C0(D+) +

(ˆ
D+

|∇(v − u)|2
) 1

2

 .

Finally, by symmetry we can assume that E(ũ) ≤ E(ṽ) so that by (4.6), (4.7) and
(4.8), we get STEP 1.
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STEP 2 : We let un → u in W 1,2 ∩ C0(D+, N). We aim at proving that ũn → ũ
in W 1,2(D+).

As in STEP 1, we can set

wn = πN (ũ+ π̃M (ũ+ un − u)− π̃M (ũ) + un − π̃M (un)− (u− π̃M (u))) .

Adapting the proof of STEP 1, we easily prove that

(4.9) ‖wn − ũ‖W 1,2 = o(1) as n→ +∞ .

By STEP 1, we know that E(ũn) − E(ũ) = o(1) as n → +∞, so that by (4.9),
E(ũn) − E(wn) = o(1) as n → +∞. By the energy convexity, Theorem 1.2, we
deduce that ‖∇(wn − ũn)‖L2(D+) = o(1) as n → +∞. Thanks to the Poincaré
inequality, we also have

(4.10) ‖wn − ũn‖W 1,2(D+) = o(1) as n→ +∞ .

Finally, we deduce STEP 2 from (4.10) and (4.9).

STEP 3 : We let un → u in W 1,2 ∩ C0(D+, N). We aim at proving that ũn → ũ
in C0(D+).

The proof of STEP 3 is written in the spirit of Qing [39]. We crucially use that
there is no concentration of energy on the boundary A (which is a consequence of
STEP 2) and ε-regularity on symmetrized function ũn on D given in the proof of
Proposition A.1. Notice that in our case, we have to deal with the boundary I. We
aim at proving uniform equicontinuity on {ũn}.

By contradiction, let η > 0 sequences x1n, x
2
n ∈ D+ such that up to some subse-

quence, ∣∣x1n − x2n∣∣ ≤ 1

n
and

∣∣ũn(x1n)− ũn(x2n)
∣∣ ≥ η

and {xn} and {yn} converge to some point x ∈ D+. We set

δin = 1−
∣∣xin∣∣ .

and we assume that up to a subsequence, δin > 0 for any n (the case δin = 0 is easier
since the construction below is made to link xin to the boundary).

Thanks to Proposition A.1, if 1− |x| > 0, we get

η <
∣∣ũn(x1n)− ũn(x2n)

∣∣ ≤ ‖∇ũn‖
L∞

(
D

1− 1−|x|
2

) ∣∣x1n − x2n∣∣ ≤ 2C
(´

D+
|∇ũn|2

) 1
2

n(1− |x|)
.

Then we get a contradiction, hence the distance δin → 0 and
´
Dαδin (x

i
n)
|∇ũn|2 → 0

for i = 1, 2 and all 0 < α < 1, since there is no concentration to the boundary.
In particular, using again Proposition A.1, we have that for i = 1, 2,

(4.11) ∀z ∈ D δin
2

(xin) ∩ D+,
∣∣ũn(xin)− ũn(z)

∣∣ < η

4
.

Now, we are going to extend un to the whole plane. First we set for all (x, y) ∈ D−,

un(x, y) = −3un(x,−y) + 4un

(
x,−y

2

)
.

Then, the new un ∈W 1,2(D,R) and there exists C > 0 independent of n, see section
5.4 of [10] such that

‖∇un‖L2(D) ≤ C‖∇un‖L2(D+).
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Then, we extend ũn by an inversion on R2 so that ũn(z) = ũn( 1
z ) if z ∈ R2 \ D,

which just doubles the energy of the map and keeps the energy small around the xin
.

Then, for i = 1, 2, by the Courant-Lebesgue lemma, we take
δin
4 < rin <

δin
2 such

that

(4.12)

ˆ
∂Drin (x

i
n)

|∂θũn|2 dθ ≤
1

ln 2

ˆ
D δin

2

(xin)

|∇ũn|2

(4.13) ∀p, p′ ∈ ∂Drin(xin), |ũn(p)− ũn(p′)|2 ≤ π

ln 2

ˆ
D δin

2

(xin)

|∇ũn|2

Moreover, for i = 1, 2, again by the Courant-Lebesgue lemma, we take 2δin <
Rin < 4δin such that

(4.14)

ˆ
∂DRin (x

i
n)

|∂θũn|2 dθ ≤
1

ln 2

ˆ
D4δin

(xin)

|∇ũn|2

(4.15) ∀q, q′ ∈ ∂DRin(xin), |ũn(q)− ũn(q′)|2 ≤ π

ln 2

ˆ
D4δin

(xin)

|∇ũn|2

Then, for i = 1, 2, we choose

pin ∈ ∂Drin(xin) ∩ D+

and

qin ∈ ∂DRin(xin) ∩A .

Those intersections are not empty since rin ≤
δni
2 and Rin ≥ 2δin.

For i = 1, 2, we let vin be the solution of
∆vin = 0 in DRin(xin) \ Drin(xin)

vin = ũn(pin) on ∂Drin(xin)
vin = ũn(qin) on ∂DRin(xin)

and win be the solution of
∆win = 0 in DRin(xin) \ Drin(xin)
win = ũn on ∂Drin(xin)
win = ũn on ∂DRin(xin)

Since vin − win is a harmonic map, and thanks to (4.12), (4.13), (4.14), (4.15) and
the fact the conformal class of the annuli is bounded since 4 ≤ Rin/r

i
n ≤ 16, for

i = 1, 2,

(4.16)

ˆ
DRin (x

i
n)\Drin (x

i
n)

∣∣∇vin∣∣2 =

ˆ
DRin (x

i
n)\Drin (x

i
n)

∣∣∇win∣∣2 + o(1)

But it is easy to notice that for i = 1, 2,

(4.17)

ˆ
DRin (x

i
n)\Drin (x

i
n)

∣∣∇vin∣∣2 =
2π

ln
(
Rin
rin

) ∣∣ũn(pin)− ũn(qin)
∣∣2 .
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Then,

η ≤
∣∣ũn(x1n)− ũn(x2n)

∣∣
≤

(
2∑
i=1

(∣∣ũn(xin)− ũn(pin)
∣∣+
∣∣ũn(pin)− ũn(qin)

∣∣))+
∣∣ũn(q1n)− ũn(q2n)

∣∣
≤ η

2
+

 ln
(
Rin
rin

)
2π


1
2
 2∑
i=1

(ˆ
DRin (x

i
n)\Drin (x

i
n)

∣∣∇vin∣∣2
) 1

2

+ o(1)

≤ η

2
+

 ln
(
Rin
rin

)
2π


1
2
 2∑
i=1

(ˆ
DRin (x

i
n)\Drin (x

i
n)

∣∣∇win∣∣2
) 1

2

+ o(1)

+ o(1)

≤ η

2
+ 2

 ln
(
Rin
rin

)
2π


1
2 (ˆ

D4δin
(x1
n)∪D4δin

(x2
n)

|∇ũn|2
) 1

2

+ o(1)

≤ η

2
+ o(1)

where we used

• in the third inequality that (4.11) and the definition of pin, (4.17) and
that

∣∣q1n − q2n∣∣ ≤ R1
n + R2

n + 1
n → 0 as n → +∞ with qin ∈ A so that∣∣ũn(q1n)− ũn(q2n)

∣∣ =
∣∣un(q1n)− un(q2n)

∣∣ = o(1),
• in the fourth inequality (4.16)
• in the fifth inequality the definition of win
• in the last inequality STEP 1 and 4 ≤ Rin/rin ≤ 16.

This leads to a contradiction and achieves the proof of STEP3.

Gathering STEP 2 and STEP 3, the proof of Proposition 4.1 is complete.
♦

4.2. The replacement procedure. Let E the set of finite families of disjoint
element of B and HB where

B = {B(a, r) s.t. B(a, r) ⊂ D}

and

HB = {B(a, r) ∩ D s.t. ∂D and ∂B(a, r) intersect orthogonally}.
For any element B of HB we denote AB = ∂B ∩ D.
For α ∈ (0, 1], and B ∈ E we denote by αB the collection of disks and concentric

to those of B with radius dilated by α and half disks which meet the boundary
orthogonally, with center collinear to those of B and with radius dilated by α..

For u : D→ N with u(∂D) ⊂M and B ∈ E such that the energy of u on
⋃
B∈B B

is less than the ε0 of theorem 1.2, then we denote by H(u,B) : D → N the map
that coincides

• on D \
⋃
B∈B B with u

• on
⋃
B∈B B with the (unique) energy minimizing map from

⋃
B∈B B to N

that agrees with u on
⋃
B∈B ∂B \ ∂D with the constraint that it lies in M

on
⋃
B∈B ∂B ∩ ∂D.
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We will also denote by induction

H(u,B1,B2, · · · ,Bτ ) = H(H(u,B1,B2, · · · ,Bτ−1),Bτ ) .

We will need the following proposition :

Proposition 4.2. There is a constant κ > 0 depending on M and N such that if
u ∈ C0(D, N) ∩W 1,2(D, N) with u(∂D) ⊂M and if B1 and B2 lie in E so that the
energy of u on

⋃
B∈B B is less than ε0

3 , then
(4.18)

E(u)− E(H(u,
1

2
B2)) ≤ E(H(u,B1))− E(H(u,B1,B2)) +

(E(u)− E(H(u,B1)))
1
2

κ

and
(4.19)

E(H(u,B1))−E(H(u,B1,
1

2
B2)) ≤ E(u)−E(H(u,B2))+

(E(u)− E(H(u,B1)))
1
2

κ
.

In order to prove Proposition 4.2, we use the following lemmas. The first one
was proved by Colding and Minicozzi, see lemma 3.11 [5], and the second one is an
adaptation in the case of half-disks. Again, a careful attention is given to the setting
of competitors which are admissible functions (in particular, sending I into M).

Lemma 4.1. There is η > 0 and a large constant K depending on N such that for
any R > 0 and for any f, g ∈W 1,2(∂DR, N), if f and g agree at one point, f 6= g
and3

R

ˆ
∂DR
|∇θ(f − g)|2 dσ ≤ η2,

then we can find ρ ∈
(
0, R2

]
and a map w ∈ C0∩W 1,2(DR\DR−ρ, N) with w|∂DR−ρ =

f
(

R
R−ρ .

)
and w|∂DR = g which satisfies the estimates

ˆ
DR\DR−ρ

|∇w|2 ≤ K
(
R

ˆ
∂DR
|∇θ(f − g)|2 dσ

) 1
2
(
R

ˆ
∂DR

(
|∇θf |2 + |∇θg|2 dσ

)) 1
2

.

Lemma 4.2. There is η > 0 and a large constant K depending on N and M
such that for any R > 0 and for any f, g ∈ W 1,2(AR, N) with f(∂AR) ⊂ M and
g(∂AR) ⊂M , where AR = ∂B(0, R)∩ {y ≥ 0}, if f and g agree at one point, f 6= g
and

R

ˆ
AR

|∇θ(f − g)|2 dσ ≤ η2,

where ∇θf means df
rdθ ,then we can find ρ ∈ (0, R2 ] and a map w ∈ C0 ∩W 1,2(D+

R \
D+
R−ρ, N) with w(IR \IR−ρ) ⊂M , w|AR−ρ = f

(
R
R−ρ .

)
and w|AR = g which satisfies

the estimates

ˆ
D+
R\D

+
R−ρ

|∇w|2 ≤ K
(
R

ˆ
AR

|∇θ(f − g)|2 dσ
) 1

2
(
R

ˆ
AR

(
|∇θf |2 + |∇θg|2 dσ

)) 1
2

.

3∇θf means df
rdθ

.
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Proof of lemma 4.2 :
Since the statement is scale invariant, we can assume that R = 1. We set

ρ2 =

´
AR
|∇θ(f − g)|2

8
´
AR

(
|∇θf |2 + |∇θg|2

) .
Since f 6= g we have 0 < ρ ≤ 1

2 .
We define

(4.20) ŵ(r, θ) = f(θ) +
r + ρ− 1

ρ
(g(θ)− f(θ))

for 1− ρ ≤ r ≤ 1.
We have that

dist(ŵ(r, 0),M) ≤ |ŵ(r, 0)− f(0)| = r + ρ− 1

ρ
|g(0)− f(0)| ≤ |g(0)− f(0)| ≤

√
πη

and similarly

dist(ŵ(r, π),M) ≤
√
πη.

We choose η ≤ δ√
π

so that we can set :

(4.21)

w̃(r, θ) = ŵ(r, θ) +
π − θ
π

(πM (ŵ(r, 0))− ŵ(r, 0)) +
θ

π
(πM (ŵ(r, π))− ŵ(r, π))

so that

|∇w̃|2 ≤ 3

(
|∇ŵ|2 +

∣∣∣∣∇{π − θπ (πM − id)(ŵ(r, 0))

}∣∣∣∣2 +

∣∣∣∣∇{ θπ (πM − id)(ŵ(r, π))

}∣∣∣∣2
)

We have that

|∇ŵ|2 (r, θ) =

∣∣∣∣g(θ)− f(θ)

ρ

∣∣∣∣2 +
1

r2

∣∣∣∣1− rρ ∇θf(θ) +
r + ρ− 1

ρ
∇θg(θ)

∣∣∣∣2
≤ π

ρ2

ˆ
A

|∇θ(f − g)|2 +
2

r2

(
|∇θf |2 + |∇θg|2

)
.

We also have that∣∣∣∣∇{π − θπ (πM − id)(ŵ(r, 0))

}∣∣∣∣2 =

∣∣∣∣∂r {π − θπ (πM − id)(ŵ(r, 0))

}∣∣∣∣2
+

1

r2π2
|(πM − id)(ŵ(r, 0))|2

with

|(πM − id)(ŵ(r, 0))|2 =

∣∣∣∣ˆ r

1−ρ
∂s {(πM − id)(ŵ(s, 0))} ds

∣∣∣∣2
≤ ‖dπM − id‖2L∞(Mδ̂)

(ˆ r

1−ρ
|∂sŵ(s, 0)| ds

)2

≤ 9 |f(0)− g(0)|2

≤ 9π

ˆ
A

|∇θ(f − g)|2

≤ 18π

ˆ
A

(
|∇θf |2 + |∇θg|2

)
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and ∣∣∣∣∂r {π − θπ (πM − id)(ŵ(r, 0))

}∣∣∣∣2 ≤ ‖dπM − id‖2L∞(Mδ̂)
|∂rŵ(r, 0)|2

≤ 9π

ρ2

ˆ
A

|∇θ(f − g)|2

so that∣∣∣∣∇{π − θπ (πM − id)(ŵ(r, 0))

}∣∣∣∣2 ≤ C0

(
1

ρ2

ˆ
A

|∇θ(f − g)|2 +
1

r2

ˆ
A

(
|∇θf |2 + |∇θg|2

))
for some constant C0. The same computation gives∣∣∣∣∇{ θπ (πM − id)(ŵ(r, π))

}∣∣∣∣2 ≤ C0

(
1

ρ2

ˆ
A

|∇θ(f − g)|2 +
1

r2

ˆ
A

(
|∇θf |2 + |∇θg|2

))
so that gathering all the previous inequalities, we get a constant C1 > 0 such thatˆ π

0

|∇w̃|2 (r, θ)dθ ≤ C1

(
1

ρ2

ˆ
A

|∇θ(f − g)|2 +
1

r2

ˆ
A

(
|∇θf |2 + |∇θg|2

))
for any 1− ρ ≤ r ≤ 1. Now,ˆ
D+\D1−ρ

|∇w̃|2 ≤ C1

(ˆ 1

1−ρ

(
r

ρ2

ˆ
A

|∇θ(f − g)|2 +
1

r

ˆ
A

(
|∇θf |2 + |∇θg|2

)))
≤ C1

(
1

ρ

ˆ
A

|∇θ(f − g)|2 + ρ

ˆ
A

(
|∇θf |2 + |∇θg|2

))
≤ C1

(ˆ
A

|∇θ(f − g)|2
) 1

2
(ˆ

A

(
|∇θf |2 + |∇θg|2

)) 1
2

.

Thanks to the definition of w̃ (see (4.21) and (4.20)) and the assumptions
f(0), g(0), f(π), g(π) ∈ M we have that w̃(I \ I1−ρ) ⊂ M , w̃|A1−ρ = f((1 − ρ)−1.)
and w̃|A = g. Moreover, letting 1− ρ ≤ r ≤ 1 and 0 ≤ θ ≤ π, we have that

dist(w̃(r, θ), N) ≤ dist(ŵ(r, θ), N) + dist(ŵ(r, 0),M) + dist(ŵ(r, π),M)

≤ |ŵ(r, θ)− f(θ)|+ 2
√
πη

≤ ρ− 1 + r

ρ
|g(θ)− f(θ)|

≤ 3
√
πη

So that letting η ≤ δ
3
√
π

we can set w = πN (w̃). The projection on N gives that

w(I \ I1−ρ) ⊂M , w|A1−ρ = f((1− ρ).) and w|A = g and we obtain the inequalityˆ
D+\D1−ρ

|∇w|2 ≤ 4

ˆ
D+\D1−ρ

|∇w̃|2

≤ 4C1

(ˆ
A

|∇θ(f − g)|2
) 1

2
(ˆ

A

(
|∇θf |2 + |∇θg|2

)) 1
2

which ends the proof of proposition 4.2.
♦

The following proof is analogous to the one given by Colding Minicozzi [5] (lemma
3.8) even if we slightly change the presentation and give a proof which works in the
free-boundary case.
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Proof of proposition 4.2 :

Notice that the energy of u on B1 ∪ B2 is less than 2ε0
3 so that the energy of

H(u,B1) on B2 is less than 2ε0
3 . For all the proof, we set

B−2 = {B ∈ B2;∀B̃ ∈ B1,
1

2
B * B̃}

B+2 = B2 \ B−2
We set u1 = H(u,B1) and we only prove (4.18) since we can follow the same proof
for (4.19) switching the role of u1 and u.

We can assume that 9
´
D |∇u1 −∇u|

2 ≤ η2 where η is given by lemmas 4.1 and
4.2. If not, we use the convexity inequalities in Theorems 1.2 and 2.3 to getˆ

D
|∇u|2 −

ˆ
D
|∇u1|2 ≥

η2

18
= κ2ε20

setting κ = η

18
1
2 ε0

so that (4.18) is true.

STEP 1 : Let B ∈ B−2 . We prove that there is a universal constant C > 0 such
thatˆ
B

|∇u1|2 −
ˆ
B

|∇H(u1, B)|2 ≥
ˆ

1
2B

|∇u|2 −
ˆ

1
2B

∣∣∣∣∇H(u,
1

2
B)

∣∣∣∣2
−C

(ˆ
B

|∇u|2 + |∇u1|2
) 1

2
(ˆ

B

|∇(u− u1)|2
) 1

2

.

We denote R the radius of B. Then there is r ∈
[
3R
4 , R

]
such that

ˆ
∂Br∩D

|∇u1 −∇u|2 ≤
9

R

ˆ R

3R
4

ˆ
∂Bs∩D

|∇u1 −∇u|2 ds ≤
9

r

ˆ
BR

|∇u1 −∇u|2

andˆ
∂Br∩D

|∇u|2 + |∇u1|2 ≤
9

R

ˆ R

3R
4

ˆ
∂Bs∩D

|∇u|2 + |∇u1|2 ds ≤
9

r

ˆ
BR

|∇u|2 + |∇u1|2

Since B ∈ B−2 and r > R
2 , then ∂Br contains a point outside every ball of B1 : u

and u1 coincide at such a point. By lemmas 4.2 and 4.1, if u1 6= u on ∂Br, there is
ρ ∈ (0, R2 ] and w : Br \Br−ρ → N such that w(r, θ) = u1(r, θ), w(r − ρ, θ) = u(r, θ)
and

(4.22)

ˆ
Br\BR−ρ

|∇w|2 ≤ K
(ˆ

BR

|∇u1 −∇u|2
) 1

2
(ˆ

BR

|∇u|2 + |∇u1|2
) 1

2

and if u = u1 on ∂Br, we let ρ = 0. In fact the w furnished by lemma 4.1 is
defined on Dr \ Dr−ρ but can easily push it to Br \ Br−ρ through the conformal
diffeomorphism from the half plane to the disk, which leave the considered norm
unchanged. Then we set

v(x) =


u1(x) if x ∈ BR \Br
w(x) if x ∈ Br \Br−ρ
H(u,Br)

(
rx
r−ρ

)
if x ∈ Br−ρ
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Then v ∈W 1,2(B) andˆ
BR

|∇H(u1, BR)|2 ≤
ˆ
BR

|∇v|2

=

ˆ
BR\Br

|∇u1|2 +

ˆ
Br\Br−ρ

|∇w|2 +

ˆ
Br−ρ

∣∣∣∣∇H(u,Br)

(
rx

r − ρ

)∣∣∣∣2
=

ˆ
BR\Br

|∇u1|2 +

ˆ
Br\Br−ρ

|∇w|2 +

ˆ
Br

|∇H(u,Br)|2

Then,ˆ
BR

|∇u1|2 −
ˆ
BR

|∇H(u1, BR)|2 ≥
ˆ
Br

|∇u1|2 −
ˆ
Br

|∇H(u,Br)|2 −
ˆ
Br\Br−ρ

|∇w|2

≥
ˆ
Br

|∇u|2 −
ˆ
Br

|∇H(u,Br)|2

−(K +
√

2)

(ˆ
BR

|∇u1 −∇u|2
) 1

2
(ˆ

BR

|∇u|2 + |∇u1|2
) 1

2

.

Here we used (4.22) and thatˆ
Br

|∇u1|2 −
ˆ
Br

|∇u|2 ≥ −
ˆ
Br

(|∇u|+ |∇u1|) |∇u−∇u1|

≥ −
√

2

(ˆ
Br

|∇u1 −∇u|2
) 1

2
(ˆ

Br

|∇u|2 + |∇u1|2
) 1

2

.

We get STEP 1 with C = K +
√

2 noticing thatˆ
Br

|∇H(u,Br)|2 ≤
ˆ
Br\BR

2

|∇u|2 +

ˆ
BR

2

∣∣∣∇H(u,BR
2

)
∣∣∣2 .

STEP 2 : We have

(4.23) E(u1)− E(H(u1,B−2 )) ≥ E(u)− E(H(u,
1

2
B−2 ))− (E(u)− E(u1))

1
2

κ

Indeed, we sum the inequality of STEP 1 for all B ∈ B−2 , and we set κ =
ε
1
2
0

C . We
get this inequality using that∑

ajbj ≤
(∑

a2j

) 1
2
(∑

b2j

) 1
2

and that by the convexity inequality (Theorem 1.2and 2.3),ˆ
D
|∇(u− u1)|2 ≤ 1

2
(E(u)− E(u1))

STEP 3 : We conclude by the proof of (4.18). We apply

E(H(u,B1,B+2 )) ≤ E(H(u,B1,
1

2
B+2 )) = E(H(u,B1)) ≤ E(H(u,

1

2
B+2 )) ,
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to obtain

(4.24) E(u)− E
(
H

(
u,

1

2
B+2
))
≤ E(u)− E(u1) + E(u1)− E

(
H
(
u1,B+2

))
.

We then apply (4.23) and (4.24) on the right side of the equality

E(u)−E
(
H

(
u,

1

2
B2
))

= E(u)−E
(
H

(
u,

1

2
B−2
))

+E(u)−E
(
H

(
u,

1

2
B+2
))

and we get (4.18) with

E(u1)− E (H (u1,B2)) = E(u1)− E
(
H
(
u1,B+2

))
+ E(u1)− E

(
H
(
u1,B−2

))
.

♦
Then, by Besicovitch covering theorem, we know that for k ∈ N there exists τ ,

depending only on k, such that for any covering of a compact subset K of Rk−2 by a
family balls {B(x, rx)}x∈K with rx > 0, then there is a finite sub-cover {Bi}i=1···m
such that

1 ≤
m∑
i=1

1Bi ≤ τ .

Let σ : Bk−2 → A be a sweepout where we denote

A = {u ∈W 1,2 ∩ C0(D, N);u(∂D) ⊂M}
the set of admissible maps. We set for some t ∈ Bk

eσ,ε(t) = sup

{
E(σt)− E(H(σt,

1

2τ−1
B));B ∈ E ,

ˆ
⋃
B∈B B

|∇σt|2 ≤ ε

}
.

Proposition 4.3. Let t ∈ Bk−2. If σt is not a harmonic map with free boundary
and 0 < ε ≤ ε0, then there is a ball Ct in Bk−2 centered in t such that

∀s ∈ 2Ct, eσ, ε2 (s) ≤ 2eσ,ε(t) .

Proof of proposition 4.3 :

Notice that since σt is not harmonic, eσ,ε(t) > 0. By proposition 4.1, and since
t ∈ Bk 7→ σt ∈ A is continuous, then t 7→ E(H(σt,

1
2τ−1B)) is also continuous. Let a

ball Ct centered in t such that for any s ∈ 2Ct

(4.25)

∣∣∣∣E(H(σt,
1

2τ−1
B))− E(H(σs,

1

2τ−1
B))

∣∣∣∣ ≤ eσ,ε(t)

2

and

(4.26)

ˆ
D

∣∣∣|∇σt|2 − |∇σs|2∣∣∣ ≤ min

{
ε

2
,
eσ,ε(t)

2

}
.

Now, let s ∈ 2Ct and B ∈ E such that
´⋃

B∈B B
|∇σs|2 ≤ ε

2 . Then, by (4.26),

(4.27)

ˆ
⋃
B∈B B

|∇σt|2 ≤ ε

and by (4.25) and (4.26),

(4.28)

∣∣∣∣E(σs)− E(H(σs,
1

2τ−1
B))− (E(σt)− E(H(σt,

1

2τ−1
B)))

∣∣∣∣ ≤ eσ,ε(t) .
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With (4.27) and (4.28) and the definition of eσ,ε(t), we get that∣∣∣∣E(σs)− E(H(σs,
1

2τ−1
B))

∣∣∣∣ ≤ 2eσ,ε(t)

and we take the supremum on B. ♦

Proposition 4.4. We assume that W > 0. Let σ̃ be a sweepout such that for any
t ∈ Bk−2, if σ̃t is a harmonic map with free boundary, then σ̃t is constant. Then,
there are families B1, · · · ,Bm ∈ E and continuous functions r1, · · · , rm : Bk−2 →
[0, 1] such that for any t ∈ Bk−2,

• ]{j; rj(t) > 0} ≤ τ and for any such j,
´⋃

B∈Bj
B
|∇σ̃t|2 ≤ ε0

3τ−1

• If E(σ̃t) ≥ W
2 , then there is j(t) such that

E(σ̃t)− E
(
H

(
σ̃t,

rj(t)(t)

2τ−1
Bj(t)

))
≥
eσ̃, ε0

3τ+1
(t)

8

Proof of proposition 4.4 :

We set A = {t ∈ Bk−2;E(σ̃t) ≥ W
2 }. Let t ∈ A. Then, there is Bt ∈ E such that

•
´⋃

B∈Bt
B
|∇σ̃t|2 ≤ ε0

3τ ,

• E(σ̃t)− E
(
H
(
σ̃t,

1
2τ−1Bt

))
≥

e
σ̃,
ε0
3τ

(t)

2

By Proposition 4.3, there is a closed ball Ct centered at t such that for any s ∈ 2Ct,

eσ, ε0
3τ+1

(s) ≤ 2eσ, ε03τ (t) .

By continuity of s 7→ σ̃s in C0 ∩W 1,2 we reduce Ct so that

• σ̃s has energy less than ε0
3τ−1 on Bt for s ∈ 2Ct.

•
∣∣E(σs)− E(H(σs,

1
2τ−1Bt))−

(
E(σs)− E(H(σs,

1
2τ−1Bt))

)∣∣ ≤ e
σ̃,
ε0
3τ

(t)

4

Since A is compact, let Ct1 , · · · , Ctm be a Besicovitch covering of A that is

∀t ∈ Bk−2, 1 ≤
m∑
i=1

1Cti (t) ≤ τ .

For 1 ≤ j ≤ m, we set rj : Bk−2 → [0, 1] a continuous map which satisfies rj = 1 on
Ctj and rj = 0 on Bk−2 \

(
2Ctj

)
∪
⋃
{i;Cti∩Ctj=∅}

Cti .

Then, rj = 0 on Cti if Cti ∩Ctj = ∅ so that for t ∈ Bk−2, rj(t) is positive at most
τ times. We let Bj = Btj and thenˆ

⋃
B∈Bj

B

|∇σ̃t|2 ≤
ε0

3τ−1
.

Finally, for t ∈ A, there is j(t) such that

E(σ̃t)− E
(
H

(
σ̃t,

rj(t)(t)

2τ−1
Bj(t)

))
≥
eσ̃, ε03τ (tj(t))

4
≥
eσ̃, ε0

3τ+1
(t)

8

which completes the proof of proposition 4.4.
♦

Now, we can state the main theorem of the section. Notice that for the proof of
this theorem, we follow the STEP 3 in the section sketch of proof, working carefully
on the replacement all along the sweepout.
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Theorem 4.1. We fix W > 0. There is a constant ε1 > 0, a constant 0 < η ≤ 1
and a continuous map Ψ : R+ → R+ with Ψ(0) = 0 such that for any sweepout
σ̃ : Bk−2 → A such that

• for any t ∈ Bk−2, if σ̃t is a harmonic map with free boundary, then σ̃t is
constant,
• max

t
E(σt) ≥W ,

there exists a sweepout σ : Bk−2 → A homotopic to σ̃ such that

• For any t ∈ Bk−2, E(σt) ≤ E(σ̃t).
• For any t ∈ Bk−2 with E(σ̃t) ≥ W

2 , then for any B ∈ E such that the energy
of σt on

⋃
B∈B B is less than ε1, then
ˆ
D
|∇ (σt −H(σt, ηB))|2 ≤ Ψ(E(σt)− E(σ̃t)) .

Proof of Theorem 4.1 :

Let B1, · · · ,Bm ∈ E and r1, · · · , rm given by proposition 4.4 on σ̃. We set by
induction on 1 ≤ j ≤ m{

σ0 = σ̃

σjt = H(σj−1t , rj(t)Bj) for any t ∈ Bk−2

and we set σ = σm. By proposition 4.1, it is clear that σ : Bk−2 → A is continuous.
Moreover, using again proposition 4.1, we can prove by induction that for any
1 ≤ j ≤ m, σj is homotopic to σ0. Indeed, the map

F (θ)t = H(σj−1t , θrj(t)Bj)

for θ ∈ [0, 1] and t ∈ Bk−2 defines a homotopy between σj and σj−1.

We fix t ∈ Bk−2 such that E(σ̃t) ≥ W
2 and let j(t) given by proposition 4.4, such

that

(4.29) E(σ̃t)− E
(
H

(
σ̃t,

rj(t)(t)

2τ−1
Bj(t)

))
≥
eσ̃, ε0

3τ+1
(t)

8
.

Up to permutation, without changing the order in {j ∈ {1, · · · ,m}; rj(t) > 0},
we assume that rj(t) = 0 for j ≥ τ + 1. Therefore, σt = H(σ̃t,B1, · · · ,Bτ ) and
j(t) ∈ {1, · · · , τ}. For 1 ≤ i ≤ τ , using (4.18) i− 1 times, we can prove that

E(σ̃t)− E(H(σ̃t,
1

2i−1
Bi)) ≤

(
1 +

i− 1

κ

)
(E(σ̃t)− E(H(σ̃t,B1, · · · ,Bi)))

1
2 .

We write this for i = j(t) noticing that j(t) ≤ τ ,

E(σ̃t)− E(H(σ̃t,
1

2τ−1
Bj(t))) ≤

(
1 +

τ − 1

κ

)
(E(σ̃t)− E(σt))

1
2 .

With (4.29), we get a constant K such that

(4.30) eσ̃, ε0
3τ+1

(t) ≤ K (E(σ̃t)− E(σt))
1
2
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Now, we set ε1 = ε0
3τ+1 and η = 1

22τ−1 and we let B ∈ E be such that the energy
of σt on

⋃
B∈B B is less than ε1. Using (4.19) τ times, we get

E(σt)− E(H(σt, ηB)) ≤ E(σ̃t)− E(H(σ̃t,
1

2τ−1
B)) +

τ

κ
(E(σ̃t)− E(σt))

1
2 .

By the definition of eσ̃, ε0
3τ+1

and (4.30), we complete the proof of Theorem 4.1 setting

Ψ(r) =
(
K + τ

κ

)
r

1
2 .

♦

5. Energy identity

In this section, we aim at proving theorem 2.4. The min-max sequences satisfy
the assumptions (2.5) and (2.6) of the theorem so that we get the energy identity.
The bubble tree construction is now classical as soon as we are able to prove a
fundamental no-neck-energy lemma. We do not detail this construction since it is
standard, written in [27] for instance.

Let’s focus on the no-neck-energy lemma. It was already proved in the interior
case in proposition [5]. Here we focus mostly in the boundary case, where the main
improvement is in proposition 5.1 where thanks to our previous work [27], see also
[23], we are able to prove that the angular part of the gradient is small as soon as
the energy is small enough.

Proposition 5.1. There is a constant ε2 > 0 such that for any 0 < η ≤ 1, for any
sequence λn → 0, for any sequence of maps {un} in W 1,2(D+ \ Dλn , N) satisfying
un(I \ Dλn) ∈M such that

ˆ
D+\Dλn

|∇un|2 ≤ ε2,

sup
B∈E and

∀B∈B,B∈D+\Dλn

{ˆ
D+\Dλn

|∇(un −H(un, ηB))|2
}

= o(1)

and

1

2

ˆ
D+\Dλn

|∇un|2 −
ˆ
D+\Dλn

√
|∇θun|2 |∇run|2 − 〈∇θun,∇run〉2 = o(1) .

Then,

lim
R→+∞

lim sup
n→+∞

ˆ
D+∩

(
D 1
R
\DRλn

) |∇un|2 = 0 .

In fact, thanks to the first assumption and the second assumption we aim at
proving that

(5.1) lim
R→+∞

lim sup
n→+∞

ˆ
D+∩

(
D 1
R
\DRλn

) |∇θun|2 = 0 .

Indeed, we easily deduce from the third assumption that for any R > 0,

(5.2)

ˆ
D+∩

(
D 1
R
\DRλn

) |∇run|2 =

ˆ
D+∩

(
D 1
R
\DRλn

) |∇θun|2 + o(1) as n→ +∞



28 PAUL LAURAIN AND ROMAIN PETRIDES

so that once (5.1) is proved, we get proposition 5.1. Notice that if {un} is already a
sequence of harmonic maps defined on D+ with free boundary in M on I, the third
assumption can be deleted since (5.2) is already true by a Pohožaev identity, see
[27] for the case M = Sn which extend straightforward to general target. However,
the third assumption is in some sense stronger because in this case, we do not need
un to be defined on D+.

In order to prove (5.1), we will first prove a weaker property than (5.1), for free
boundary harmonic maps.

Proposition 5.2. For any δ > 0, there exists ε3 > 0 and α > 1 such that for any
harmonic map u : D+ \ D 1

α3
→ N with free boundary in M on I \ D 1

α3
satisfying

ˆ
D+\D 1

α3

|∇u|2 ≤ ε3 ,

we have ˆ
D+∩

(
D 1
α
\D 1

α2

) |∇θu|2 < δ

ˆ
D+\D 1

α3

|∇u|2 .

Proof of proposition 5.2 :

Let 0 < ε3 < ε0, with ε0 as in Proposition A.1 and ε3 will be fixed later. As in
the proof of Proposition A.1, let us consider ũ the extension of u on D \ D 1

α3
. A

priori, we have to reduce the ball, but since the final result is on a reduced ball, we
don’t do it not to make the notation heavier. As in Claim 3.1 of [27]4 or the seminal
paper [23], we can choose α0 > 1 such that,

‖∇θũ‖
L2,1

(
D 1
α0

\D 1
α2
0

) ≤ C
ˆ
D\D 1

α3
0

|∇ũ|2 ≤ C
ˆ
D+\D 1

α3
0

|∇u|2 ,

the last inequality comes from the fact that we uniformly control the L2-norm of
the extension by the one of the initial map, see Proposition A.1. Then it suffices to
prove that L2,∞-norm of ∇ũ can be made as small as we want up to take ε3 < ε0
small enough and α > α0 big enough. For this it suffices to prove that for any η > 0,
there exists ε3 < ε0 and α > α0 such that for all r ∈

(
4
α2 ,

1
4α

)
, we haveˆ

D2r\D r
2

|∇ũ|2 ≤ η
ˆ
D+\D 1

α3

|∇u|2 .

Indeed, by ε-regularity we have for all x ∈ D 1
2α
\ D 2

α2
that

|∇ũ(x)| ≤ C

|x|

√√√√ˆ
D2|x|\D |x|

2

|∇ũ|2.

Then using the fact that 1
|x| is into L2,∞(R2), we will get the result.

Now, let us assume by contradiction, that there exists a sequence un satisfying
the assumptions of the theorem and a sequence rn → 0 such that

4In fact the theorem deals with free boundary harmonic maps into the ball, but after extension
the equation is exactly the same as here, hence it can be applied verbatim.
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(5.3)

ˆ
D2rn\Drn/2

|∇ũn|2 > η

ˆ
D+\D 1

α3
n

|∇un|2 .

and

(5.4)

ˆ
D+\D 1

α3
n

|∇un|2 = εn → 0 as αn → +∞ .

Then, setting vn =
ũn( . rn)−

ffl
∂D ũn( . rn)√
εn

and using once again the ε-regularity, we

easily see that vn converges in W 1,2
loc (R2 \ {0}) to a non trivial harmonic map which

takes values in some tangent space identifies with some Rn, since obtained from a
free boundary harmonic map by reflection. Still by ε-regularity we have that there
exists C > 0 such that

|∇v(x)| ≤ C

|x|
,

Thanks to the classical Bôcher theorem [2], we necessarily get that

v(x) = a ln(|x|) + b.

Finally, remembering that ∇v must be bounded in L2(R2 \ {0}) by conformal
invariance, v must be constant, which is a contradiction with (5.4). This achieves
the proof of the proposition.

♦

Now, using proposition 5.2, we prove a similar result for a more general class of
maps than harmonic maps with free boundary, the conclusion is still weaker than
(5.1).

Proposition 5.3. For any δ > 0, there exists ε4 > 0 and α > 1 such that for
any η > 0, there exists µ > 0 such that for any map u ∈ W 1,2(D+ \ D 1

α5
, N) with

u(I \ D 1
α5

) ⊂M satisfying ˆ
D+\D 1

α5

|∇u|2 ≤ ε4

and

sup
B∈E and

∀B∈B,B⊂D+\D 1
α5


ˆ
D+\D 1

α5

|∇(u−H(u, ηB))|2
 ≤ µ

ˆ
D+\D 1

α5

|∇u|2 ,

we have ˆ
D+∩

(
D 1
α2
\D 1

α3

) |∇θu|2 ≤ δ
ˆ
D+\D 1

α5

|∇u|2 .

Proof of proposition 5.3 :
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Let ε3 > 0 and α > 0 given by proposition 5.2. By contradiction, we assume
that there is a sequence of maps un ∈ W 1,2(D+ \ D 1

α5
, N) with un(I \ D 1

α5
) ⊂ M

satisfying

(5.5)

ˆ
D+\D 1

α5

|∇un|2 ≤ ε3 ,

(5.6) sup
B∈E and

∀B∈B,B∈D+\D 1
α5


ˆ
D+\D 1

α5

|∇(un −H(un, ηB))|2
 ≤ 1

n

ˆ
D+\D 1

α5

|∇un|2 ,

and

(5.7)

ˆ
D+∩

(
D 1
α2
\D 1

α3

) |∇θun|2 > δ

ˆ
D+\D 1

α5

|∇un|2 .

CASE 1 : We assume that
´
D+\D 1

α5

|∇un|2 is bounded from below.

Then, with (5.5) and (5.6), it is clear that un converges inW 1,2
(
D+ ∩

(
D 1
α
\ D 1

α4

)
, N
)

to some a harmonic map u : D+ ∩
(
D 1
α
\ D 1

α4

)
→ N with free boundary in M

on I ∩
(
D 1
α
\ D 1

α4

)
. Then passing to the limit in (5.7) gives a contradiction, by

proposition 5.2.

CASE 2 : Up to a subsequence, we assume that
´
D+\D 1

α5

|∇un|2 → 0. Then,

un → p ∈M in W 1,2 as n→ +∞. Then, we are going to blow-up un arround p in
order to produce a harmonic map into TpN with free boundary into TpM .

Take a family of balls {Bi}1≤i≤m centered in xi ∈ D+
1
α

\ D 1
α4

and half balls

centered in xi ∈ I ∩
(
D 1
α
\ D 1

α4

)
included in D \ D 1

α5
such that

D+ ∩
(
D 1
α
\ D 1

α4

)
⊂

k⋃
i=1

η

2
Bi .

We set for 1 ≤ i ≤ m

vin = H(un, ηBi) and ṽin =
(
vin − vin

)ˆ
D+\D 1

α5

|∇un|2
− 1

2

and

ũn = (un − un)

ˆ
D+\D 1

α5

|∇un|2
− 1

2

where un is the mean of un on D+ \ D 1
α5

. For 1 ≤ i ≤ m, it is clear that up to

subsequences,

ṽin → ṽi ∈ C2
(η

2
Bi

)
as n→ +∞
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where ṽi is harmonic into TpN and ∂ν ṽi(x) ∈ (TpM)⊥ for any x ∈ I ∩
(
η
2Bi

)
. Now,

by (5.6), ˆ
ηBi

∣∣∇(ũn − ṽin)
∣∣2 ≤ 1

n

so that ∇ũn → ∇ṽi in L2
(
η
2Bi

)
. Moreover, by a Poincaré inequality, ũn is also

bounded in L2 so that it converges to some map ũ in W 1,2
(
D+ ∩

(
D 1
α
\ D 1

α4

))
.

On η
2Bi, this map is equal to ṽi up to constant so that ũ is also harmonic in TpN

with free boundary in TpM on I ∩
(
D 1
α
\ D 1

α4

)
. Passing to the limit in (5.7), we get

(5.8)

ˆ
D+∩

(
D 1
α2
\D 1

α3

) |∇θũn|2 ≥ δ ,
which contradicts proposition 5.2, since this last one is true for any ε3 for harmonic
maps into TpN ∼= Rn with free boundary into TpM ∼= Rm.

♦
Now, we are able to complete the proof.

Proof of proposition 5.1 :

Thanks to the remark after Proposition 5.1, we just have to prove (5.1). We fix
δ > 0, let α > 1, ε2 = ε4 and µ > 0 be given by proposition 5.3 and let R > α3. We
aim at proving that there is some constant C such that

(5.9) lim sup
n→+∞

ˆ
D+∩

(
D 1
R
\DRλn

) |∇θun|2 ≤ Cδ .
We let Nn be the smallest integer greater than −2 ln(R)−ln(λn)

lnα , we set

Ak = D+ ∩
(
D 1

Rαk
\ D 1

Rαk+1

)
and Ãk = D+ ∩

(
D 1

Rαk−2
\ D 1

Rαk+3

)
for 0 ≤ k ≤ Nn − 1, and

En = {k ∈ [0, Nn − 1]; sup
B∈E and
∀B∈B,B⊂Ãk

{ˆ
Ãk
|∇(un −H(un, ηB))|2

}
≤ µ
ˆ
Ãk
|∇un|2} ,

Fn = {k ∈ [0, Nn − 1]; sup
B∈E and
∀B∈B,B⊂Ãk

{ˆ
Ãk
|∇(un −H(un, ηB))|2

}
> µ

ˆ
Ãk
|∇un|2}

so that

(5.10)

ˆ
D+∩

(
D 1
R
\DRλn

) |∇θun|2 =
∑
k∈En

ˆ
Ak
|∇θun|2 +

∑
k∈Fn

ˆ
Ak
|∇θun|2 .

By proposition 5.3,

(5.11)
∑
k∈En

ˆ
Ak
|∇θun|2 ≤

∑
k∈En

δ

ˆ
Ãk
|∇un|2 ≤ δ

Nn−1∑
k=0

k+2∑
i=k−2

ˆ
Ai
|∇un|2 ≤ 5ε2δ .

Now let k ∈ Fn and Bkn ∈ E with ∀B ∈ Bkn, B ⊂ Ãk such that{ˆ
Ãk

∣∣∇(un −H(un, ηBkn))
∣∣2} > µ

ˆ
Ãk
|∇un|2 .
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We set for 1 ≤ j ≤ 5

B̃jn =
⋃
k∈Fn

k=j mod 5

Bkn .

Then, B̃jn ∈ E and there is 1 ≤ j ≤ 5 such that
ˆ
D+\Dλn

∣∣∣∇(un −H(un, ηB̃jn))
∣∣∣2 ≥ 1

5

5∑
i=1

ˆ
D+\Dλn

∣∣∣∇(un −H(un, ηB̃in))
∣∣∣2

≥ 1

5

5∑
i=1

∑
k∈Fn

k=i mod 5

ˆ
D+\Dλn

∣∣∇(un −H(un, ηBkn))
∣∣2

≥ µ

5

∑
k∈Fn

ˆ
Ãk

|∇un|2

≥ µ

5

∑
k∈Fn

ˆ
Ak

|∇un|2 .

Then using the second assumption in proposition 5.1, we get∑
k∈Fn

ˆ
Ak

|∇un|2 = o(1) as n→ +∞ .

Combining this with (5.10) and (5.11), we get (5.9) with C = 5ε2. This completes
the proof of (5.1), and as already said Proposition 5.1 thanks to the remark after it.

♦

6. Proof of Theorem 2.1

In this section, we aim at gathering all the previous results in order to prove
the main theorem. Before applying the replacement procedure in theorem 4.1, we
need to build a minimizing sequence of sweepouts satisfying that any free boundary
harmonic slice has to be constant. The proof is in the same spirit as Theorem 2.1
in [5]

Proposition 6.1. Let σ : Bk−2 → A be a sweepout and ε > 0. Then, there is a
sweepout σ̃ : Bk−2 → A homotopic to σ such that

• ∀t ∈ Bk−2, ‖σ̃t − σt‖W 1,2 ≤ ε
• ∀t ∈ Bk−2 if σ̃t : D→ N is a harmonic map with free boundary in M , then
σ̃t is a constant map.

Proof of Proposition 6.1 :

We first set for 0 < η < 1
2 and x ∈ D1−η

σηt =

ˆ
R2

φ
(
y
η

)
η2

σt(x− y)dy

a regularization of σηt where φ ≥ 0 is a smooth function with compact support in
D. By classical results on convolutions, we have that σηt ∈ C∞(D 1

2
), that t 7→ σηt is

continuous from Bk−2 to C2(D 1
2
) and

(6.1) lim
η→0

sup
t∈Bk−2

‖σηt − σt‖
W 1,2∩C0

(
D 1

2

) = 0 .
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We can define for η small enough

σ̃ηt (x) = πN (θ(x)σηt (x) + (1− θ(x))σηt (x))

where θ ∈ C∞c (D 1
2
), 0 ≤ θ ≤ 1, θ = 1 in D 1

4
. Let η > 0 be such that

(6.2) sup
t∈Bk−2

‖σ̃ηt − σt‖W 1,2∩C0(D) ≤
ε

2
.

Now, we define for 0 < ρ < 1
4 a map Φρ : R2 → R2 by

Φρ(r cos θ, r sin θ) =


2(r cos θ, r sin θ) if r ≤ ρ

2

(ρ cos θ, ρ sin θ) if ρ
2 ≤ r ≤ ρ

(r cos θ, r sin θ) if r ≥ ρ
.

and we set

σ̃t = σ̃ηt ◦ Φρ

and let ρ > 0 small enough such that

(6.3) sup
t∈Bk−2

‖σ̃ηt − σ̃t‖W 1,2∩C0(D) ≤
ε

2
.

Then, σ̃t ∈W 1,2 ∩ C0(D, N) and it is clear that σ̃ is homotopic to σ : we first define
an homotopy from σ̃ to σ̃η by shrinking ρ to 0 and then an homotopy from σ̃η to σ by
shrinking η to 0 (with (6.1)). Moreover if for some t ∈ Bk−2, σ̃t : D→ N is harmonic
with free boundary, then, it is conformal5, and since ∂rσ̃t = Dσ̃ηt (Φρ).∂rΦρ = 0 in
Dρ \D ρ

2
, we get that σ̃t is constant in Dρ \D ρ

2
. Since σ̃t is harmonic, σ̃t is constant

everywhere, by classical unique continuation results for second order elliptic PDEs.
Thanks to (6.2) and (6.3), we have the expected approximation.

♦
Proof of Theorem 2.1 :

Let {sn} be a minimizing sequence of homotopic sweepouts for W , that is

max
t∈Bk−2

E(snt )→W as n→ +∞ .

Indeed recalling STEP 0 of the sketch of the proof in section 2, the Min-Max for
the Energy or the Area achieves the same value.
Applying Proposition 6.1, there is a sequence {s̃n} such that if for some t ∈ Bk−2,
s̃nt is harmonic with free boundary, then s̃nt is constant and that

sup
t∈Bk−2

‖s̃nt − snt ‖W 1,2 → 0 as n→ +∞ .

It is clear that {s̃n} is also a minimizing sequence for W . Let σn be the sweepout
given by the procedure of theorem 4.1 starting from s̃n. Using theorem 4.1, we have

(6.4) ∀t ∈ Bk−2, E(σnt ) ≤ E(s̃nt ) .

In particular, {σ̃n} is also a minimizing sequence for W . Now let tn be a sequence
of parameters such that Area(σntn)→W as n→ +∞. Then

(6.5) W + o(1) = Area(σntn) ≤ E(σntn) ≤ E(s̃ntn) ≤W + o(1) .

5 It can be easily seen considering teh Hopf differential of the immersion and noting it must be
real on the boundary, see [8].
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Then, E(σntn)− E(s̃ntn) = o(1) as n→ +∞ and by theorem 4.1, there exist ε1 > 0
and 0 < η ≤ 1 such that for any B ∈ E such that the energy on

⋃
B∈B B is less than

ε1, we have

(6.6)

ˆ
D
|∇σnt −H(σnt , ηB)|2 → 0 as n→ +∞ .

We also have, thanks to (6.5), that

(6.7) lim
n→+∞

E(σntn)−Area(σntn) = o(1) .

Thanks to (6.6) and (6.7) and Proposition 5.1 we have the no-neck-energy for the
sequence σntn . Now we can conclude by the classical bubble tree decomposition to

get the W 1,2-bubble convergence, following for instance verbatim section 3 of [27],
Step 1 and Step 2 being consequences of the fact that there is a free boundary
harmonic map W 1,2-close which satisfies the ε-regularity. Finally, in Step 3, Claim
3.1 has to be replace by the no-neck-energy we have just proved. ♦

Appendix A. ε-regularity for free boundary harmonic maps

In this section we proved a generalisation of our preceding ε-regularity result (see
Claim 2.3 of [27]) to a general target manifold. In order to do so, we will prove
some extension of the theorem 3.4 of [18].

Proposition A.1. There is ε0 > 0 and a constant Ck such that if a weakly harmonic
map with free boundary u ∈W 1,2(D+, N) satisfiesˆ

D+

|∇u|2 ≤ ε0 ,

then ũ ∈ C∞(D+
1
2

) and for any k ≥ 1,

(A.1) ‖∇u‖Ck(D+
1
2

) ≤ Ck ‖∇u‖L2(D+) .

Proof :
We only prove some W 1,p-estimate for p > 2, since it is classical, see for instance §4
of [16], that once we get some C0,α estimate we can bootstrap it, since the equation
becomes sub-critical.

We are under the assumption of the Proposition 3.3 of [18], then there exists an
extension of u, ũ ∈W 1,2(D 3

4
) a weak solution of

div(Q∇ũ) = ΩQ∇ũ,
where Q ∈W 1,2(D 3

4
, GL(m)) ∩ L∞(D 3

4
, GL(m)) and Ω ∈ L2(D 3

4
, o(m)), moreover

there exists C > 0 such that

|Ω| ≤ C|∇ũ| almost everywhere .

In order to prove the ε-regularity, we follow the strategy of Rivière [44], see also
[47]. Since Ω is anti symmetric, there exists P ∈W 1,2(D 3

4
, SO(m)), such that

div( tP∇P − tPΩP ) = 0,

and
‖∇P‖2 ≤ 2‖Ω‖2.

Hence we have ,
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div(Q̃∇ũ) = ∇⊥B(Q̃∇ũ)

with Q̃ = tPQ and ∇⊥B = − tP∇P + tPΩP . Then we would like to rewrite
the system like a Jacobian on the right hand-side. Let A ∈W 1,2(D 3

4
, Gl(m)) and

C ∈W 1,2(D 3
4
,Mn), such that

div(AQ̃∇ũ) = ∇AQ̃∇ũ+A∇⊥B(Q̃∇ũ) = ∇⊥C∇ũ.
Hence A and C must satisfy

(A.2)

{
∆A = ∇⊥C∇(Q̃−1)−∇A∇⊥B
∆C = ∇A∇⊥Q̃− div(A∇BQ̃)

This is exactly the same system as in (V.36) of [42]. Hence there exists A ∈
W 1,2(D 3

4
, Gl(m)) and C ∈W 1,2(D 3

4
,Mm) such that

(A.3)


∆A = ∇⊥C∇(Q̃−1)−∇A∇⊥B on D 3

4

∂νA = 0 on ∂D 3
4

and
´
D 3

4

A = 9π
16 Id

∆C = ∇A∇⊥Q̃+ div(A∇BQ̃) on D 3
4

C = 0 on ∂D 3
4

with ˆ
D 3

4

|∇A|2 dx+ ‖dist(A,SO(m))‖∞ ≤ C
ˆ
D 3

4

|Ω|2 dx

and

ˆ
D 3

4

|∇C|2 dx ≤ C
ˆ
D 3

4

|Ω|2 dx.

Finally setting, Ã = AQ̃, we have

∆(Ã∇ũ) = ∇⊥C∇ũ.
Then we are reduced to some classical Wente-type equation and the result follow

directly from theorem V.3 of [42]. We would like to mention that we have to pay
attention, that the Wente inequality is in general false with the Neumann data, but
here since C ∈W 1,2

0 it works, see[6]. ♦
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Sophie Germain, Case 7012, 75205 PARIS Cedex 13, France

Email address: paul.laurain@imj-prg.fr
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