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Abstract

A new approach combining the eXtended Finite Element Method (X-FEM) and automatic Adaptive Mesh
Refinement (AMR) is presented taking advantage of both methods. The X-FEM, developed over the past
two decades by a large community, have proven its efficiency to handle evolving discontinuities in a variety
of fracture analysis. Since this method enables to describe the crack and its propagation independently
of the mesh of the structure, a simple hierarchical mesh refinement procedure can be applied. Automatic
adaptive remeshing is a valuable method in 3D elastic-plastic crack propagation analysis since it permits a
locally fine mesh and then an accurate description of physical quantities in a limited area around the crack
front. This is particularly important when local fracture criteria are concerned.Moreover local refinement
saves computational effort, which is relevant for engineer-sized problems, particularly when the propagation
path is not a priori known. In the present work, it is shown that both methods combine with minimal effort:
the kinematic continuity relations and the field transfer process, needed for history-dependent material, must
include in a proper way the enrichment of the model. If this requirement is not fulfilled, numerical error may
be introduced. Implementation of this combined X-FEM/AMR approach is presented in detail. In particular,
an innovative field transfer strategy is proposed. Numerical applications in 2 and 3 dimensions of crack
propagation in elastic-plastic media demonstrate accuracy, robustness and efficiency of the technique.

Keywords: eXtended Finite Element Method, automatic Adaptive Mesh Refinement, 3D crack propagation,
non-Linear behaviour, field transfer

1. Introduction

To guarantee the high level of safety of industrial
components under exceptional loadings or fatigue cy-
cles without adding unnecessary wide safety margin,
it is essential to be able to predict the initiation and
the growth of cracks during the entire life time of
components.

Physics of cracks propagation is complex, mainly
because it involves mechanisms at different scales.
Firstly, the global response of the studied structure
to any given thermal or mechanical loading is needed.
Secondly, theory of fracture mechanics introduced by
Griffith [1] and Irwin [2] (also detailed in a large lit-
erature like the books of Lemaitre and Chaboche [3]
or Kaninnen and Popelar [4]) demonstrates the exis-
tence of a zone where the strain and the stress fields
are proportional to 1√

r
, r being the distance to the

crack front. The zone where this asymptotic solu-
tion is predominant is called K-dominance zone. If

∗Corresponding author
Email address: gael.gibert@cea.fr (Benoit PRABEL)

the loading is sufficiently small compared to the plas-
ticity threshold, small scale yielding conditions apply
and the K-dominance zone is preponderant over the
plastic zone (figure 1a). When increasing the load-
ing, plasticity may become non-negligible, and the
plastic zone become more important (figure 1b). As
showed by Elguedj [5], the energy dissipated in this
zone may significantly influence the propagation of
the crack. Finally, at an even lower scale, the process
zone describes the highly non-linear decohesion pro-
cess responsible for the failure of the material (e.g.
growth and coalescence of micro cavities).

Consequently, an accurate modeling of crack prop-
agation should take into account all these scales of
interest. This is why in the context of Finite Ele-
ment Analysis, automatic adaptive refinement tech-
niques have been widely developed for crack prop-
agation modeling in order to "catch" every signifi-
cant scales. Referring to the classification proposed
by Zienkiewicz et al [6, 7], it is possible to distin-
guish: the h-refinement consisting in resizing ele-
ments which are too large or too small for the ex-
pected quality, from the p-refinement which intro-
duces higher order shape functions in elected ele-
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Figure 1: Hypothesis of confined plasticity

ments. It is once again possible to split h-refinement
into two main variants (but others exist):

(i) the element subdivision scheme approach that
just splits elected elements (generally as power
of 2) tending to preserve their aspect ratio but
generally introducing hanging nodes,

(ii) and remeshing approaches that locally or glob-
ally change the mesh according to a prescribed
density.

initial mesh (QUA4)(a) initial mesh hierarchical h−refinement (RAFF)(b) non-conformal
element subdivision

hierarchical conforming h−refinement (RAFT)(c) conformal element
subdivision

remeshing (SURF+RAFT)(d) global remeshing

Figure 2: h-refinement

Refinement techniques imply a transfer (also called
mapping) from the previous discretizationMn to the
new one Mn+1 of the displacement, strain, stress,
and internal variables which constitute the state. Prac-
tically, some quantities are first transfered to the
new discretization and then others are deduced from
model considerations in order to reach as good as
possible equilibrium, kinematic compatibility, and con-

sistency with the constitutive equation, on a trans-
fered state as close as possible to the one on the pre-
vious discretization (conservation of the dissipated
energy and minimization of the numerical diffusion
for example).

The main difficulty on this step is to transfer vari-
ables that are only known at the integration points
of the old meshM1. Different procedures exist:

(i) This transfer operator can be constructed by
taking a constant value over the area associ-
ated with every integration points of the old
mesh. This was presented for example by Bérard
[8].

(ii) The most popular possibility is to construct a
continuous approximation of the variable field
and then interpolate this approximation at the
point where it is needed. Ortiz and Quigley [9]
propose this kind of approach using a specific
mesh built upon the integrations points them-
selves, while Peric et al [10] use the shapes
functions of the finite elements of Mn in the
context of small strain. Lee and Bathe [11]
describe a similar approach extended to finite
strain elasto-plasticity. Mediavilla et al [12]
also uses this kind of procedure and shows that
it usually requires a balancing step and a recov-
ering of the yield condition afterward.

(iii) A last type of method presented by Brancherie
et al [13] considers the transfer as a minimiza-
tion problem and does not rely on the finite
element shape functions but on a diffuse ap-
proximation. In this approach, equilibrium and
constitutive laws can be seen as constrains of
the minimization algorithm so balancing and
recovering steps can be avoided.

In the general case, the fields transfer from a mesh to
another may be a very complex task. This explains
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why automatic refinement techniques are often lim-
ited to the linear elastic crack propagation simula-
tion.

As detailed in the review [14], the second ap-
proach (remeshing) is adopted by most numerical
softwares like FRANC3D [15] or ADAPCRACK [16]
in which remeshing is limited to the vicinity of the
crack front (with some submodelling technique). Gen-
erally limited to fatigue simulation, an application of
this method to dynamic crack propagation can be
found in [17]. Chiaruttini et al [18] have developed
an efficient global remeshing tool (named "Z-crack")
to get a very fine mesh for the process zone (with a
mesh size about h = lc/4, lc being the characteristic
length of the process zone) in which may lie some
cohesive elements enable to dissipate surface energy,
and a more coarse mesh for the non-damaged zone
close to the process zone (with a prescribed element
size of h = lc). Since the non-linearity is concen-
trated in the cohesive elements, there is no projec-
tion of inelastic variable in the bulk. Khoei et al [19]
use the modified-superconvergent patch recovery for
remeshing. Murotani et al [20] present an efficient
automatic adaptive meshing strategy based on a hier-
archical mesh generated by edge collapse and vertex
split, and combine it with a p-refinement to avoid
too small element size at the crack tip.

The first approach (subdivision) is rarely used for
crack propagation modeling. Park et al [21] com-
bine it with cohesive zone model for dynamic crack
propagation modeling and Meyer et al [22] use this
approach for bi-dimensional fatigue. For both the
subdivision of element must be compatible with the
crack growth. Except for in-plane crack propaga-
tion, the crack surface generally does not intersect
the middle of the edge of element, resulting in an ar-
bitrary subdivision. Then more computational effort
is required and element may be split into large and
tiny subelements. This limitation motivates a cou-
pling with the X-FEM/G-FEM methods. Another
promising way of investigation concerns the coupling
of subdivision h-refinement with phase-field approach
like proposed in [23, 24]

The eXtended Finite Element Method proposed
by Belytschko et al [25] in 1999 and the General-
ized Finite Element Method (G-FEM) proposed by
Duarte et al [26] in 2000 have been developed over
the past two decades by a rather large community
([27, 28, 29, 30, 31, 32, 33, 34]...). X-FEM/G-FEM
methods are based on the partition of unity. The
bulk structure is meshed disregarding the crack. Spe-
cific enriched shapes functions are added to represent
the crack opening and the crack tip singularity. As
a counterpart, integration of such function may be
cumbersome if machine-accuracy is targeted [35, 36],
but simplified integration scheme can be used [5,
37]. These methods have been applied successfully

to many different industrial fracture mechanics prob-
lems. For instance, in the industrial finite element
code Cast3m [38] the X-FEM has been used to sim-
ulate various cases from the dynamic propagation of
a cleavage crack [37, 39] to rolling fatigue involv-
ing frictional contact between the cracks lips [40].
Although these methods aim at producing a satis-
factory solution for a relatively coarse mesh, accu-
racy can only be achieved by using a sufficiently fine
mesh.

One possibility developed by Rannou [41],[42],
and Passieux [43] is to couple the X-FEM method
with a multigrid algorithm. This method has proven
its efficiency for linear fracture mechanics. However
when dealing with non-linear behavior, it rises some
non trivial difficulties.

hp-refinement combined with G-FEM is proposed
in [44, 45], where the h-refinement is performed using
a hierarchical subdivision approach with a conformal
meshing between refined and unrefined zones that
avoid hanging nodes. In [46] an other conformal au-
tomatic h-adaptive mesh refinement strategy is pro-
posed but combined with X-FEM for 3D elastic crack
propagation. A straightforward hierarchic refinement
algorithm has been successfully coupled with X-FEM
by Fries et al [47] for 2D elastic non-propagating
crack. The case of enriched hanging nodes is dis-
cussed. In [48], Prange et al also adopt a hierarchic
mesh refinement technique for 2D crack problems,
but avoid the case of enriched hanging nodes. They
use the Zienkiewicz and Zhu error estimator because
more adapted to the inelastic case in comparison with
the error estimator of Duflot and Bordas [49].

In the present paper is proposed an extension
of these approaches combining X-FEM and auto-
matic adaptive hierarchical mesh refinement dedi-
cated to 2D and 3D crack propagation in elastic-
plastic media. Considering a history-dependent ma-
terial makes this extension not straightforward be-
cause remeshing implies field transfer which can be
a delicate matter [11, 10, 12, 13], and usual tech-
niques have to be adapted to X-FEM. Considering
the X-FEM kinematics, there is no need to mesh the
crack. Hence, the automatic adaptive mesh refine-
ment strategy adopted can be the robust subdivision
approach. The coupling between these two meth-
ods in the context of crack propagation modeling in
a non-linear media is the main contribution of this
work. The following sections first present the prob-
lem statement, then detail the numerical method de-
veloped (X-FEM, automatic AMR and field transfer)
in sections 3, 4 and 5 and finally illustrate its effi-
ciency and robustness on several 2D and 3D numer-
ical applications. Even if this paper focuses on fa-
tigue, the numerical methods aim at being employed
for other kinds of fracture (brittle, ductile, creep...)
with nonlinear material laws.
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2. Problem statement

2.1. Mechanical problem
Let Ω be an open set of R3 denoting the domain

of a solid deformable body containing a crack Γ. The
boundary of Ω is named ∂Ω and can be split into
∂Ωu on which apply Dirichlet boundary conditions
and ∂ΩF subjected to Neumann boundary conditions
(3).

Figure 3: Mechanical model

The displacement field is noted u(x) and is con-
sidered sufficiently small so that assumptions of in-
finitesimal displacements, rotations and strains can
be considered. Hence the linear stress tensor σ and
the linearized strain tensor ε can be adopted:

ε = ∇su (1)

The solution of this problem must satisfy both
the static equilibrium characterized by the equation:

div(σ) = 0 in Ω (2)

and the boundary conditions:{
σ · n = F ext on ∂ΩF

u = uext on ∂Ωu
(3)

In the present paper, non-linearity is limited to
the constitutive law of the material. For instance,
for an elastic-plastic behavior with the following de-
composition into an elastic and a plastic part holds:

ε = εe + εp (4)

and with the isotropic hardening constitutive laws:

εe = D−1 : σ (5)

φ(σ, p) = σvm(σ)− σY (p) ≤ 0 (6)

if φ < 0 ε̇p = 0

if φ = 0 ε̇p = λ ∂φ∂σ

∣∣∣
p=cst

withλ ≥ 0
(7)

D is the Hooke tensor, σvm = ||σ − 1
3 tr(σ)I|| is

the equivalent von Mises stress, p =
t∫
t0

||ε̇p||dt is

the equivalent plastic strain, φ is the yield function,
σY is the threshold stress whose dependence with
the equivalent plastic strain is a characteristic of the
material (i.e. the traction curve) and λ is the plastic
multiplier.

2.2. Crack propagation
To achieve the description of the mechanical model,

possibility for the crack to propagate has to be taken
into account. Thus the crack surface Γ becomes time
dependent and an evolution law has to be added to
the model. However, when failure by fatigue is under
consideration the discontinuity evolves slowly. Thus
N , the number of loading cycles can be considered as
a pseudo time variable. In 2D, this dependency can
be parametrized by the propagation direction θ and
the propagation velocity da

dN where a is the crack
length. Here a propagation criteria based on the
stress intensity factors KI and KII is chosen.

The propagation direction is computed with equa-
tion (8) issued from [50] based on the maximal cir-
cumferential stress :

θ = 2 tan−1

 KI

KII
− sgn(KII)

√(
KI

KII

)2

+ 8

 (8)

The propagation velocity can be computed us-
ing the well known Paris evolution law [51] or Elber
evolution law [5]:

da

dN
= C (∆Keq)

m (9)

where Keq is a function of KI and KII . Nei-
ther the physical relevance of this criteria, nor its
numerical computation are discussed here. But it
must be noted that this criteria implies confined plas-
ticity, which means that the zone around the crack
front where plasticity occurs should remain limited
(a limit value of rpa around a few percent according
to the literature [5], rp being the radius of the plas-
tic zone). In the applications test cases presented
in sections 6.1 and 6.2 this hypothesis is not exactly
verified, particularly at the end of the propagation.
However the predicted crack path and crack velocity
remains rather accurate.

When crack propagates, the configuration changes
and, as a feedback effect, the mechanical equilibrium
may also change. Since the times scales of the load-
ing cycles and the crack propagation are separated it
is relevant to adopt an uncoupled approach.

For a given mechanical loading and a given crack
length, mechanical equilibrium is computed. Then,
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once the equilibrium is reached, the propagation cri-
teria is applied, giving a new crack length (or a num-
ber of cycles if crack increment is imposed).

This uncoupling between the time scale of the
evolution of the mechanical loading and the time
scale of crack propagation enables a direct and effi-
cient procedure of crack propagation detailed in al-
gorithm 1.

Algorithm 1: Iterative propagation algorithm
using X-FEM and automatic adaptive mesh re-
finement.

- Initial healthy geometry and initial crack

- Boundary conditions and loading

repeat
- Refinement around the crack tip.

- Level-set creation on the new mesh using
the old crack position

- Model and material on the refined mesh

- Enrichment of the relevant elements

- Field transfer on the new mesh

- Level-set and enrichment update using
the new position of the crack

- Balancing step

- Mechanical computation

- Evaluation of a propagation criteria

- Step forward of the crack

until End of propagation;

- Post processing

On the one hand, the structure is meshed with
quadrangular relatively coarse elements disregarding
the existence of a crack. And on the other hand, the
initial crack is meshed explicitly with a rather fine
discretization. Boundary conditions and loading are
defined on that geometry.

Then at each propagation step, the bulk mesh is
refined around the crack front to obtain a suitable
accuracy of the discretization in the area of interest.
The details of this refinement will be developed in §4.
LetMn+1 be that refined mesh for the propagation
step n+ 1.

A finite element model is created on this refined
mesh, using the material behavior presented in sec-
tion 2.1. Using level-sets functions, an appropriate
set of elements around the crack are enriched to al-
low crack opening. At first this enrichment consid-
ered the previous position of the crack. This enriched
model will be presented in section §3.

Since the behavior of the structure is time depen-
dent, it is then necessary to initialize the mechanical
computation of a propagation step with the mechan-
ical state of the structure at the end of the previous
step. To do so, a field transfer procedure fromMn

toMn+1 is needed. This operation must be realized
with some precautions such as developed in section
§5.

Once the previous state as been transfered on the
new mesh, the model is updated with new enrich-
ments to allow the crack opening toward the new
position of the crack front. A non-linear solver en-
ables to reach the equilibrium during a loading cycle
and update the strain, stress and internal variables.

From the solution of this computation a propa-
gation criterion is applied and crack growth is per-
formed by adding a new layer of interfacial elements
to the crack surface extending from the crack front.

From this new crack mesh the previous steps: re-
finement, model creation and enrichment, field trans-
fer, mechanical computation, propagation criterion
are repeated until the end of propagation is detected.

3. The eXtended Finite Element Method

3.1. Description of the crack
One main feature of the X-FEM is its ability to

describe the crack geometry independently of the
mesh of the structure. An explicit/implicit approach
was implemented in Cast3M [52] very similar to the
one concomitantly published by Fries [53]. It enables
to combine advantages of both descriptions.

As a first step, the crack geometry is meshed with
flat triangles in 3D (and with linear segment in 2D)
independently of the structural mesh as depicted on
figure 4a. It is the explicit description of the crack.
It is worthwhile to notice that this mesh can be the
support of local crack behavior like cohesive zone
model [54] or frictional contact [40, 55].

As a second step, the level set functions named
(ψ, φ) are computed at nodes of the structure close
to the crack surface as illustrated on figure 4b. Those
level stets allow an implicit geometric description of
the crack [27, 56]. This step implies minimization of
basic geometric computations which can be run in
parallel since each nodal value is independent of the
other.
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(a) Explicit description of the crack dis-
sociated from the structural mesh

(b) Implicit description of the crack using level sets

Figure 4: Explicit/implicit description of the crack: example
of a penny-shaped crack

3.2. Enrichment strategy
Once the crack is described by level set functions,

it is then possible to enrich the displacement field by
adding enrichment shape functions and the associ-
ated degrees of freedom to the discretization. Indeed,
the mesh of the structure is built disregarding the
crack, and the X-FEM enables to take it into account
just by adding specific enrichment functions. With
the help of partition of unity, discontinuous shape
function defined by equation (10) is added at the
nodes of the elements totally split by the crack, and
the four singular shape functions of equation (11) are
added at the nodes of the elements containing the
crack front.

H(x) =

{
+1 if φ(x) > 0

−1 if φ(x) < 0
(10)

F1(x) =
√
r sin(θ/2)

F2(x) =
√
r sin(θ/2) sin(θ)

F3(x) =
√
r cos(θ/2)

F4(x) =
√
r cos(θ/2) sin(θ)

(11)

r and θ are polar coordinates of the point x in a local
system of axes linked to the crack front as illustrated
in figure 5. These local coordinates are deduced from
the level-set functions like in [28, 27].

Let ΩF denotes the nodes of the elements con-
taining the crack front and ΩH the nodes of the el-
ements totally split by the crack. Then the X-FEM
discretization of the displacement field can be defined
by the equation (12):

u(x, t) '
∑
i∈Ω

Ni(x)ui(t) +
∑
i∈ΩH

Ni(x)H(x)ai(t)

+
∑
i∈ΩF

Ni(x)
( ∑
j=1..4

Fj(x)bj,i(t)
)

(12)
where Ni is the finite element shape function as-

sociated to the node i of coordinate xi of the mesh,
and ui, ai and bij are coefficients associated with
the classical, discontinuous and singular degrees of
freedom [25].

The singular enrichment function proposed by equa-
tion (11) are designed to fit the asymptotic behavior
of the linear elastic fracture mechanic problem. As
long as the behavior of the structure is elastic this en-
richment function improves a lot the accuracy of the
approximation since the shape functions fit exactly
the expected singularity. When dealing with plas-
ticity or elastodynamic problem, the expected sin-
gularity changes, so that the enrichment functions
(11) are not the optimal ones. However those shape
functions remain a good compromise between accu-
racy and efficiency for implementation in an indus-
trial code. This enables the crack opening along the
lips in the front element, which is a main feature of
XFEM.

e1

e2

e3

x=ψe1+ϕe2

θ

r

Figure 5: Level set functions determined for nearby points x
of the structure in the local plane (e1, e2).

For the sake of simplicity and to limit the num-
ber of degrees of freedom added in the discretiza-
tion, a topological enrichment is chosen as illustrated
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crack tip at tn

(a) Enrichment at time tn

crack tip at tn

crack tip at tn+1

(b) Enrichment at time tn+1

Figure 6: Enrichment strategy

on figure 6. Only one layer on element around the
crack is enriched. If the geometrical enrichment,
in which a fixed zone aroud the crack tip is en-
riched, is known to have stronger convergence prop-
erties [57], this method can lead to a deterioration
in the conditioning of the resulting stiffness matrix.
An other strategy that could have been considered is
the degrees of freedom gathering that has been in-
troduced by Laborde et al [58] and extended to 3D
by Agathos et al [59].

When crack propagates, new discontinuous and
new singular degrees of freedom are added to the
finite element approximation(marked by � and 4 on
Figure 6b).

Consequently ΩH(tn) and ΩF (tn) are respectively
included in ΩH(tn+1) and ΩF (tn+1). However the
new F -functions are different from the previous ones
taking into account the new position of the crack
front. This strategy, initially proposed in [60], en-
sures energy conservation. However, if the crack
grows relatively slowly in comparison to elements’ size,
the same set of nodes have a chance to be enriched
with almost the same singular functions, leading to
a bad conditioning of the elementary stiffness ma-
trix. As a practical solution to avoid this case, it is
proposed here to incrementally unenrich nodes which
were previously enriched with singular functions from
the previous time step. This can be easily achieved
by identifying them and creating a kinematic con-
straint forcing them to zero at the end of the time
step. In the example of figure 6b, this enrichment
strategies implies that the "old" F -enriched nodes
(i.e. marked by M) are the one which are imposed to
zero during the time step from tn to tn+1.

3.3. Resolution of the discretized problem
The use of spatial approximation (12) does not

change the nature of the system to be solved from
the standard finite element method. In this example

we use the Cast3M non linear solver [38]. The quasi-
static equilibrium of equations (2) and (3) expressed
in a weak form leads to the non linear discretized
equation (13).

F int
(
u(x, tn+1),σ(x, tn+1)

)
= F ext(tn+1) (13)

This equation is solved at every pseudo time step
tn+1 of the loading cycle using the classical Newton-
Raphson algorithm developed for example in [3]. Here
the constitutive law is a non-linear isotropic harden-
ing. The local resolution of the constitutive equation
is tackled with a radial return algorithm. [61]

4. Automatic adaptive mesh refinement strat-
egy

4.1. Hierarchic refinement
Since the X-FEM permits to mesh the structure

ignoring the conformity with the crack, a simple mesh
refinement procedure is possible in order to capture
the different scales close to the crack tip with a lo-
cally relevant element size. The h-refinement [6] is
adopted here. Its hierarchic nature is easy to imple-
ment and simplifies the field transfer step.

An important amount of literature exists about
numerical implementation and performance of such
approaches, so that they are not recalled here, as
illustrated in figure 7. For brevity, given an initial
coarse mesh Mn and a target density function h
defined on this mesh, the refinement step consists in
subdividing by power of 2dim the elements whose the
measured volume exceeds hdim (dim= 2 in 2D and
= 3 in 3D). This results in a new mesh namedMn+1

and a set of linear relations to impose the continuity
of the discretization at the hanging nodes of this new
mesh. Those relations can be stored in a rectangular
matrix γ as developed in the following paragraph.

The target density may be obtained with a pos-
teriori error estimators like the Zienkiewicz and Zhu
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one. Rodenas et al [62] have proposed an adaptation
of the super convergence patch recovery method in
the XFEM context to allow the use of this estima-
tor. An other example of error estimator adapted to
XFEM method is the one proposed by Duflot and
Bordas [63, 49] relying on the moving least-squares
smoothing and using the diffraction method to pre-
serve the discontinuity.

However a simpler choice is made here by con-
sidering that the distance to the crack front char-
acterizes the gradient of the solution, and then the
need of fine mesh. In this work, the mesh refine-
ment is not driven by an error indicator. The tar-
get density is a priori set as a function of the dis-
tance to the crack front as illustrated by figure 8.
In XFEM context the distance to the crack front is
simply d =

√
psi2 + φ2. This approach avoids the

pre-computation of a solution on a coarse mesh.

Figure 7: Target density on initial mesh and refined final mesh

r 

d

d
max

d
min

r
2

r
1

Figure 8: Target density as a fuction of the distance to the
crack front.

4.2. Management of the non-compatibility of the
mesh

As mentioned above, due to the non-compatibility
of the refined mesh the continuity of the displace-
ment field is not automatically fulfilled, contrary to fi-
nite element meshes. Fries [31] presents two different
approaches to impose continuity on non-conformal
meshes with X-FEM enrichment.

• The first consists in introducing a new partition
of unity with specific shape functions for the
elements with hanging nodes [64].

• In the second one, kinematic relations imposed
with Lagrange multipliers (noted λ) allow to

ensure continuity of the displacement field in a
weak sense (mortar approximation [65]). This
is the solution adopted in this work.

Lets consider that the hanging node k of coordi-
nate xk with the corresponding degree of freedom :

uk =
{
eX eY eZ

}
·
{
ukX ukY ukZ

}T (14)

Lets consider that this hanging node is the center
of the non-compatible edge between nodes i and j
(of coordinate xi and xj). Then continuity of the
finite element approximation on both sides of the
edge leads to the linear relation:

ukI =
1

2
uiI +

1

2
ujI (15)

for I ∈ {X,Y, Z}.
This is realized by introducing in the linear system

a Lagrange multiplier λkI . The constraint (15) is
then imposed in a weak form by:

λukI .

(
1

2
uiI +

1

2
ujI − ukI

)
= 0 (16)

To maintain displacement continuity when some
element have enriched nodes, the following rules have
to be applied:

• If a node (hanging or not) is involved in a com-
patibility relation and holds enriched degrees of
freedom then the same compatibility relation
must be imposed on the enriched degrees of
freedom.

• Then the hanging node of this compatibility
relation has to be a posteriori enriched (if it
was not the case.)

Hence the presence of hanging nodes in the en-
riched zone forces to: write compatibility relations for
the enrichment degree of freedom, and add enrich-
ment to some nodes which were not initially detected
by the enrichment procedure.

For the first item above, thanks to the partition
of unity, the continuity of the approximation can be
written directly introducing a new Lagrange multi-
plier for the enrichment:

λak I .

(
1

2
ai I +

1

2
aj I − ak I

)
= 0 (17)

for I ∈ {X,Y, Z}.
Figure 9 illustrates some specific situations where

the second item cited above applies.
Adding those constraints to the discrete equilib-

rium resulting from the finite element model, Au =
b, leads classically to the following linear system: A γukI γakI

γukI
T 0 0

γakI
T 0 0

 .
 uλukI
λakI

 =

b0
0

 (18)

8



Edge with standard 
compatibility relations 

Edge with H 
compatibility relations

F-enriched node

H-enriched node

A posteriori H-
enricherd node

Crack

Figure 9: Enrichment strategy with incompatible meshes

γukI being a zero vector with −1 at positions uk I and
1/2 at position u

i I and u
j I .

This constraint must be applied for each degree
of freedom, I, of each hanging node, k, hence there is
as many relations (and new Lagrange multipliers) as
hanging nodes times the dimension of the problem.
In practice the linear system (18) is always invert-
ible, due to Dirichlet Boundary conditions and spe-
cific numerical solver accounting for redundant linear
equations in Cast3M [66].

At this point coupling between X-FEM and auto-
matic AMR is properly realized, but, in the context of
history-dependent materials, a suitable field transfer
strategy is needed.

5. Field transfer

5.1. General remarks
Based on an incremental approach of crack prop-

agation with possible non-linear material, a new step
of computation may start with a new crack position,
from a given state of the structure.

Mapping (or transfer) from the previous discretiza-
tion Mn to the new one Mn+1 is needed for the
displacement, strain, stress, and internal variables.

In the X-FEM and automatic AMR coupling con-
text, not only the mesh but also the enrichment
evolve. This is due to the crack growth, meaning
that both aspects of the discretization change. This
explains why this step must be done carefully. As
already mentioned in the introduction, there exists
several recipes [9, 11, 10, 12, 13] but few have been
applied to X-FEM/G-FEM approaches.

In the present work the quantities elected to be
transfered are: the stress tensor, the internal vari-
ables (e.g. the equivalent plastic strain) and the
(enriched) displacement field. The other ones are
deduced after projection steps. Taking advantage of
the hierarchical nature of the local refinement, the
following general procedure is adopted here:

1. Enrich the new mesh with the old position of
the crack.

2. Transfer the displacement field (with enriched
degrees of freedom) to the new mesh.

3. Transfer the stress and the internal variable
fields to the integration points of the new mesh.

4. Set to zero every negative values of the internal
variable.

5. Update the enrichment with the new position
of the crack.

6. Perform a balancing step to recover the equi-
librium and yield condition.

Step 2, 3 and 6 of this algorithm are detailed in the
subsequent paragraphs.

5.2. Field transfer performed at the integration points
The difficulty lies in the fact that the field to

transfer are only defined at the Gauss points thus
there is no continuous approximation of them in the
whole domain. A first approach proposed here is
quite close to the one of Peric [10], Lee [11] or
Mediavilla[12], but thanks to the hierarchical nature
of the remeshing, it is simplified. This approach,
that will be referred to as "naive" projection, is sum-
marized by algorithm 2. First, the element, En, of
the "old" mesh Mn where lies the "new" integra-
tion point, xn+1

i is detected and its local coordinates
computed. Then, the field under consideration is ex-
trapolated from the "old" integration points to the
nodes of this element. No averaging with the neigh-
boring elements is done. A nodal vector σ̂n is ob-
tained from the values, σn, known at the integration
points of Mn by solving the equation (19). Finally
finite element interpolation is performed to evaluate
a value at each Gauss points in the element of the
"new" meshMn+1.

Remarks : This procedure can be done indepen-
dently for every elements of the "old" mesh Mn.
This allows the procedure to be parallelized. More-
over,this limits the possible numerical diffusion dur-
ing the projection. Indeed no information coming
from the neighboring "old" elements is used to com-
pute the projected values. So numerical errors can
not be diffused by the projection beyond the size
of one "old" element. However, a "naive" projec-
tion using only the classical shape function N leads
to strong error when transferring variables like the
equivalent plastic strain or the stress tensor.

As an illustration a mode I loading on a 2D square
containing a crack is considered. A projection of a
stress field σn obtained from an elasto-plastic com-
putation is realized. This original field is plotted on
figure 10a. The field is transfered using the pro-
jection procedure presented in algorithm 2 on the
very mesh it is defined on, this example is called self-
projection. Then the projection can be compared
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(d) |σn+1 − σn| for "X-FEM stress" projection

Figure 10: Stresses self-projection

10



Algorithm 2: Projection of σ fromMn inte-
gration points toMn+1 integration points

- For each integration points, xn+1
i ofMn+1,

find the element, En ofMn where it lies and
compute its local coordinates.

- A nodal vector σ̂n is extrapolated from the
values of σ atMn integration points, by
solving the equation (19).∫
En

NnT (x)Nn(x)σ̂ndΩ =

∫
En

NnT (x)σn(x)dΩ

(19)
where Nn(x) is the vector of the standard
shape functions in the elementE of meshMn

- Evaluate the finite element interpolation at
each integration point xn+1

i ofMn+1

σn+1(xn+1
i ) = Nn(xn+1

i )σ̂n (20)

to the original field at each integration points. fig-
ure 10b , 10c, and 10d, show the difference between
the original field and the transfered one for tree dif-
ferent transfer methods. As we can see on figure 10b
the "naive" self-projection induce a is rather signifi-
cant error.

One of the main contributions of the present work
is to remark that the "naive" projection presented
above is not sufficient and that the X-FEM approxi-
mation must be used for extrapolation and interpo-
lation. Indeed, a way to reduce the projection er-
ror is to include the enriched shapes function of the
X-FEM formulation in the extrapolation and inter-
polation steps of the projection. The approach will
be called "X-FEM" projection. and is described in
details in algorithm 3. As illustrated on figure 10c
the projection error is mainly limited to the vicinity
of the crack tip but stays locally significant.

This error was expected since the enriched shapes
functions of the X-FEM formulation are designed to
represent the displacement field and not the strains or
stress field. Indeed, if the discretized space generated
by the derivatives of the classical finite element shape
functions is included in the space generated by shape
functions themselves, that is not the case for the X-
FEM shape functions.

Thus a third approach that will be referred to
as "X-FEM stress" projection is proposed. The idea
is to enrich the finite element basis of shape func-
tions with singular functions inspired from (11) but
adapted to the representation of stresses, FSi defined
by equation (24). Then use this enriched discretiza-
tion in the projection procedure is described by equa-

Algorithm 3: Projection of σ fromMn inte-
gration points toMn+1 integration points

- For each integration points,xn+1
i ofMn+1,

find the element, En ofMn where it lies and
compute its local coordinates.

- A vector σ̂n of size 6nno is extrapolated
from the values of σ atMn integration
points, by solving the equation (21).∫
En

φnT (x)φnσ̂n(x)dΩ =

∫
En

φnT (x).σn(x)dΩ

(21)
where φn is an element vector of size 6nno
defined by equation (22):

φn6(i−1)+1(x) = Nn
i (x)

φn6(i−1)+2(x) = H(x)Nn
i (x)

φn6(i−1)+3(x) = F1(x)Nn
i (x)

φn6(i−1)+4(x) = F2(x)Nn
i (x)

φn6(i−1)+5(x) = F3(x)Nn
i (x)

φn6(i−1)+6(x) = F4(x)Nn
i (x)

(22)

and nno the number of nodes in element En.

- Evaluate the enriched finite element
interpolation at each integration point xn+1

i

ofMn+1

σn+1(xn+1
i ) = φn(xn+1

i )σ̂n (23)

tions (21), (22) and (23).

FS1 (x) = 1√
r

sin(θ/2)

FS2 (x) = 1√
r

sin(θ/2) sin(θ)

FS3 (x) = 1√
r

cos(θ/2)

FS4 (x) = 1√
r

cos(θ/2) sin(θ)

(24)

Figure 10d shows that this approach leads to
smaller error in this simple self-projection case.

Considering a basis of enrichment with all the
derivatives of the enriched shape functions for the
projection lead to near singular matrix φnTφn and
rises difficulties in the resolution of equation (21).
This justifies the use of the reduced basis (24) that
includes the most important contribution to the stresses
near the crack tip (proportional to 1√

r
).

In figure 11 the evolution of the error in terms of
energy norm (defined by equation (25)) for the self-
projection example with homogeneous h-refinement
is showed. These evolution confirm the previous con-
clusion.
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Figure 11: Error convergence of the stresses auto-projection
example

ηe =

√√√√√
∫
Ω

(σn − σn+1) : D−1 : (σn − σn+1) dΩ∫
Ω

σn : D−1 : σn dΩ

(25)

5.3. Field transfer performed at the X-FEM nodes
Nodal field projection is an easy task whenMn+1

is thinner than Mn. In other words when the sub-
space of degrees of freedom Sn is included in Sn+1.
However, when Mn+1 is locally coarser than Mn

(un-refinement), some difficulties can arise, as illus-
trated in figure 13. In this example, a standard node
i (of coordinate xi) in Mn becomes H-enriched in
Mn+1. Then the information contained in the uni
degree of freedom must be "distributed" between
the standard one un+1

i and the enriched one an+1
i .

This problem is locally ill-posed. So it not possible
to transfer separately the standard degrees of free-
dom and the enriched ones. To avoid this difficulty
of non compatible discretization spaces, the strat-
egy described by algorithm 4 have been adopted and
validated.

From the displacement field defined at the nodes
ofMn, a strain value at the integration points is ob-
tained using matrix Bn, containing the derivatives
of the shapes functions of Mn. This strain field is
transfered toMn+1 using the "X-FEM stress" pro-
jection presented above, then integrated using a vir-
tual linear problem. The displacement un+1 is ob-
tained by solving a virtual elastic equilibrium.

Figure 14 shows the convergence of the error in
term of L2 norm for a self-projection test. The L2

error is defined as follows :

ηL2 =

√√√√√
∫
Ω

(un − un+1) . (un − un+1)dΩ∫
Ω

(un .un) dΩ
(30)

This error is computed with homogeneous h-refinement

Algorithm 4: Projection from Mn nodes to
Mn+1 nodes

- From the initial displacement un, the strain
εn is computed at the integration points of
the initial discretization,Mn.

εn = Bnun = ∇sun (26)

- Strain εn is projected onto the final
configuration εn+1 using the "X-FEM stress"
projection.

- A virtual linear stress is computed form that
stain.

σn+1
line = Dεn+1 (27)

- The corresponding nodal forces F intn+1 are
evaluated

F intn+1
=

∫
Mn+1

Bn+1Tσn+1
linedΩ (28)

- The linear system is solved then un + 1 is
obtained as the projection of un∫
Mn+1

Bn+1TDBn+1 dΩ un+1 = F intn+1

(29)

x
i

x
i

(a) Mesh at propagation step n,Mn

x
i

x
i

(b) Mesh at propagation step n+ 1,Mn+1
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Figure 12: Example of incompatible discretization

and the projection procedure of algorithm 4. As ex-
pected, since there is an auto-projection error for the
stresses with algorithm 3 (as shown on figure 11)
there is also an auto-projection error for the displace-
ment in the approach proposed here but this error
converges with the size of the elements.
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y , projection using algorithm 4

Figure 13: Projection of the ’AY’ degree of freedom
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field

Figure 13 shows the interest of this approach in
the situation of incompatible discretization. Figure
13a shows the field of the any degrees of freedom
representing the mode I crack opening in an elastic
media computed on the enriched meshMn, defined
on figure 12a. Figure 13b shows the same field for
the same loading but computed on meshMn+1 de-
fined on figure 12b. On figures 13c and 13d, the
ay field issued form tow different projection of any
(computed on Mn) on Mn+1 are plotted. As this
problem is elastic, the projected fields should be ex-
actly the same as the direct computation of figure
13b. The projection used to obtain figure 13c field
has been done by directly evaluating the finite ele-
ment approximation ofMn at the nodes ofMn+1.
Figure 13c show that this "standard" projection is
not able to provide the right value of ay at the node
Xi for which the two discretization are incompatible.
On the contrary, the projection of algorithm 4 gives

a correct projected an+1
y field, as illustrated on figure

13d.

5.4. Balancing step
Once the fields are transfered on the new dis-

cretization we proceed to a balancing step to re-
cover an admissible state in agreement with govern-
ing equations (2), (5), (6) and (7) as suggested in
[12].

6. Illustration of the method on numerical ap-
plications

6.1. Example of 2D elastic-plastic crack propagation
problem

In this section our methodology for crack prop-
agation is used to simulate a bi-dimensional mixed
mode propagation test that has been performed by
Rethoré et al. Our numerical results are compared
to the experimental ones obtained in [67].

A thin plate is considered with the following di-
mensions: length L = 150 mm , width l = 50 mm
and thickness e = 4 mm. This plate is pierced with
a d = 5 mm diameter hole in its center and a notch
of initial length a0 = 5 mm is created on one edge of
the plate with a variable offset from the center of the
hole δ ∈ {2.5mm, 4mm, 6mm} as illustrated on fig-
ure 16. This offset will be a parameter of this study.
This plate is made of 316L steel. It is modeled with
an isotropic hardening elastic-plastic behavior. The
material properties of 316L steel are the following :

• Young modulus : E = 208.182GPa

• Poisson ratio : ν = 0.3
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Figure 15: Tensile test, yield strength (Pa) against the equiv-
alent strain for steel 316L

• Experimental stress-strain curves has been es-
tablished with a 1D tensile test as illustrated
on figure 15.

In 2D, the vertical displacement of the plate lower
edge Linf is blocked, and the upper edge Lsup is
summited to cyclic fatigue loading. These cycles are
applied with a 5Hz frequency and a ratio Fmin/Fmax =
0.1. Two different levels of maximum loading are
considered on different specimens:

Fmax ∈ {15 kN, 22.5 kN}.
The loading frequency is low enough to neglect

the inertia effects. Thus we can use a quasi-static
model.

Figure 16: Precracked plate with a hole

This fatigue test has been simulated in 2D using
the procedure presented here, refining the mesh only
around the crack. Between each propagation step
a 0.25 mm long crack increment of is added in the
direction computed by equation (8).
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Figure 17: Global response of the cracked plate for the two
refinement strategy

Good agreement can be observed between the
simulation and the experimentation in term of crack
path. The crack is first loaded mainly in mode I
and so propagates in a straight line. Then, closer
to the hole, the dis-symmetry of the loading induce
the crack turns in direction on the hole. For the first
2 positions of the offset δ ∈ {2.5 mm, 4 mm} the
crack dives into the hole whereas for δ = 6 mm the
crack approaches the hole but eventually continues
in the horizontal direction as illustrated on figure 18.

trajets de fissuration

Figure 18: Simulated crack path for δ ∈ {2.5 mm, 4 mm,
6 mm}

The computation has been done for two different
refinement strategies: refining all along the crack as
illustrated on figure 19a and refining only around the
crack front and coarsening after it as illustrated on
figure 19b. In the two cases residual stresses in a
plastic wake along the crack path are visible. Of
course in the second strategy the mesh is coarsened
along the crack away from the crack tip. So this plas-
tic wake is not well discretized. However the use of
the enriched base of approximation for the projection
allows discontinuities in that coarse zone. In figure 17
the maximal vertical displacement of fatigue cycle is
plotted against the crack length during the propaga-
tion for the two refinement strategies. We can see
that if the local shape of the plastic wake is affected

14



Propagation step 1 Propagation step 30

Propagation step 50 Propagation step 60
(a) Crack refinement

Contraintes MAX

SCAL

>−8.74E+05

< 6.20E+08

 5.73E+07

 1.14E+08

 1.72E+08

 2.29E+08

 2.86E+08

 3.44E+08

 4.01E+08

 4.58E+08

 5.15E+08

 5.72E+08

 6.30E+08

 6.87E+08

 7.44E+08

 8.02E+08

 8.59E+08

 9.16E+08

Contraintes MAX

SCAL

>−3.10E+06

< 6.31E+08

 5.73E+07

 1.14E+08

 1.72E+08

 2.29E+08

 2.86E+08

 3.44E+08

 4.01E+08

 4.58E+08

 5.15E+08

 5.72E+08

 6.30E+08

 6.87E+08

 7.44E+08

 8.02E+08

 8.59E+08

 9.16E+08

Propagation step 1 Propagation step 30

Contraintes MAX

SCAL

>−1.66E+07

< 7.00E+08

 5.73E+07

 1.14E+08

 1.72E+08

 2.29E+08

 2.86E+08

 3.44E+08

 4.01E+08

 4.58E+08

 5.15E+08

 5.72E+08

 6.30E+08

 6.87E+08

 7.44E+08

 8.02E+08

 8.59E+08

 9.16E+08

Contraintes MAX

SCAL

>−3.55E+07

< 7.54E+08

 5.73E+07

 1.14E+08

 1.72E+08

 2.29E+08

 2.86E+08

 3.44E+08

 4.01E+08

 4.58E+08

 5.15E+08

 5.72E+08

 6.30E+08

 6.87E+08

 7.44E+08

 8.02E+08

 8.59E+08

 9.16E+08

Propagation step 50 Propagation step 60
(b) Front refinement

Figure 19: von Mises stresses during mixed mode propagation Fmax = 15 kN, δ = 2, 5mm
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by the coarsening, the global response of the sample
is not.

Figure 20: Elastic simulation in green, Elastic-plastic simula-
tion in red Fmax = 22.5 kN, δ = 6 mm

In figure 20 the experimental picture of the de-
formed plate during propagation is superposed with
the lip of the crack computed form the X-FEM mod-
elization with an elastic and an elastic-plastic model.
In this particular case (δ = 6 mm, Fmax = 22, 5 kN)
plasticity has an important influence on the crack
opening. The elastic-plastic modelization proposed
here leads to an acceptable agreement with the ex-
perimental observation with limited number of ele-
ments : 5119 on the last mesh. This agreement
could be improved by a better modelization of the
boundary conditions of this test but this is beyond
the scope of this paper.

6.2. Simulation of 3D compact tension sample
In this section a compact tension sample has been

meshed in 3D using the presented propagation pro-
cedure: the mesh is refined around the crack front as
illustrated on figure 22a or all along the crack surface
as illustrated on figure 22b. The dimensions of the
sample are the following: length 62.5 mm , width
60 mm and thickness 12.5 mm. For this example the
304L industrial steel is considered and its material
characteristics are the following:

• Young modulus : E = 329.9 GPa

• Poisson ratio : ν = 0.3

• The experimental stress-strain curve has been
established with a 1D tensile test as illustrated
on figure 21.

• The Paris Law coefficients have been estab-
lished experimentally by Gourdin et al [68] :
da
dN = 1.406× 10−9(∆Keq)

3.299

with da
dN in mm/cycles and ∆Keq in MPa

√
m

The sample is loaded with a fatigue cycle with an
imposed strength on pins.

In the literature one can find several 3D propa-
gation criteria, Richard lists and compare a signifi-
cant number of them in in [69]. However, the study
of those 3D propagation criteria and the numerical
methods to implement them is not the objective of

 Tensil test

 p

σ Y
 (
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)
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Figure 21: Tensil test: yield strength (Pa) against the equiv-
alent strain for steel 304L

this paper. So, in this simple example, the crack front
is considered as a straight line and the 2D propaga-
tion criteria presented in § 2.1 is used. Between each
propagation step a 0.25 mm long crack increment
is added in the direction computed by equation (8)
The number of load cycles correspnding to this crack
increment is computed using equation (9).

Due to the symmetry of the problem only a quar-
ter of the sample needs to be simulated. Specific
boundary conditions must be applied on the two planes
of symmetry in particular in the plane y = 0 which is
the plane of the crack. The following conditions must
be applied on the elements adjacent to this plane:

ux(y) = ux(−y)
uy(y) = −uy(−y)
uz(y) = uz(−y)

(31)

Given the enrichment strategy described by (12) and
parity of those enrichment functions, the boundary
condition of equation (31) is met by imposing on the
crack plan (y = 0):

ax = bx1 = bx4 = 0

az = bz1 = bz4 = 0

uy = by3 = by2 = 0

(32)

Figure 23 shows the displacement and its enriched
component representing the crack opening during the
propagation for a mesh only refined around the crack
front. On figure 24 the crack opening at the maxi-
mal load of a fatigue cycle is plotted against the crack
length during the propagation for a simulation with
coarsening (Front refinement), a simulation without
coarsening (Crack refinement) and compared to ex-
perimental data that was obtained in the CEA [68].
We can see that the global response of the sample
is not affected by the coarsening. Indeed the agree-
ment between experimental data and simulation is
the same for the two discretization. On the other
hand the computational cost of the front refinement
strategy is much lower. Table 1 shows the average
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(a) refinement around the crack front
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(b) refinement along the crack surface

EPROUVETTE CT25 3D
(c) non adaptive refinement around the crack path

Figure 22: Meshes at the propagation step 25 for different
refinement strategies
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Figure 23: Displacement and crack opening on the 3D sample.
Propagation step : 25 Front refinement
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Figure 24: Crack opening against the crack length for the two
different refinement strategies compare to experimental data
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number of elements in the meshes used during the
propagation for the two refinement strategies pro-
posed here and for a non-adaptive strategy in which
all the zone the where crack could propagate is re-
fined.

Non-adaptive
refinement

Crack
refinement

Front
refinement

68395 26362 11238

Table 1: Average number of elements during the propagation
for different refinement strategies
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Figure 25: Crack opening against the crack length for the two
different refinement strategies compare to experimental data

Figure 25 shows the crack length plotted against
the number of load cycles for both refinement strate-
gies and during the experimentation. The agreement
between the simulated and the computed crack ve-
locity is not quite satisfying. To improve it a 3D
propagation criteria and a curved representation of
the crack front might be needed.

7. Conclusion

The objective of this work is to provide an effi-
cient and robust procedure to simulate 3D elastic-
plastic crack propagation without a priori knowlege
of the crack path. To do so, a multi scale approach
coupling the X-FEM method with automatic adap-
tive mesh refinement has been presented in this pa-
per.This approach is close to Fries one [31] for elastic
problems. But, in the context of history dependent
behavior a projection of the mechanical state from
one mesh to another during the propagation is nec-
essary. The handling of this projection step is the
main contribution of the present paper. For quan-
tities only defined at the integration points, as well
as for the nodal displacement field new transfer pro-
cedures have been proposed to tackle the difficulty
risen by the evolution of the enrichment from one
mesh to another.

The quality of this transfer procedure has been
evaluated for 2D elastic-plastic simple examples. Then
the method has been applied in 2D and 3D cases
where the simulation results could be compared to
experimental data. These results show the robust-
ness and adaptability of the procedure providing highly
accurate results for a modest computational cost com-
pared to the alternative of uniform refinement.

This propagation procedure has been applied here
to quasi-static examples of fatigue crack propaga-
tion. However the robustness of the modeling allows
to extend the applications to many different crack-
ing problems given the relevant propagation criteria.
For instance, the extension to dynamic cracking is
under consideration. The introduction of a damage
model or cohesive laws could also be done with minor
impact to the procedure.

Another promising prospect is the choice of an er-
ror estimator to control and optimize the mesh adap-
tation procedure.
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