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Introduction

Background

The Orr-Sommerfeld equation governs the stability of a 2D laminar parallel flow in the x-direction for a Newtonian flow of stationnary velocity U and Reynolds number Re submitted to infinitesimal 2D perturbations of celerity c and wave number k in the (x-y) plane (fig. 1). Denoting the disturbance stream function by ψ , it writes [START_REF] Orr | The stability or instability of the steady motions of a perfect liquid and of a viscous liquid[END_REF][START_REF] Sommerfeld | Ein beitrag zur Hydrodynamischen Erklaerung der Turbulenten Fluessigkeitsbewegungen[END_REF]:

( )( ) ( ) ψ ψ ψ 2 2 2 Re 1 k ik U k c U yy yy yy - ∂ = ∂ - - ∂ -
(1) The pioneering papers on the resolution of Orr-Sommerfeld equation in the case of an open channel flow were brought out by [START_REF] Yih | Stability of liquid flow down an inclined plane[END_REF] using a perturbation method and by Benjamin (1967) using asymptotic expansions. They showed that the flow is stable with respect to surface waves with short or infinite wavelength, while for long waves, the instability is due to the deformation of the airliquid interface. Defining the Reynolds number by

µ ρ h U 0 Re =
, where ρ is the fluid density, µ its dynamic viscosity, 0 U the basic flow surface velocity and h the film thickness, they stated that the critical Reynolds number characterizing the occurrence of that surface instability depends only on the channel slope β and it writes

β cot 6 5 Re = c (2)
Moreover, these waves propagate with a speed equal to twice the base flow surface velocity. To identify the mechanisms responsible for these surface instabilities, [START_REF] Kelly | The mechanism for surface wave instability in film flow down an inclined plane[END_REF] performed an energy balance of the flow. They showed that the dominant energy production term is associated with the work done by the perturbation shear stress at the free surface. Meanwhile, the mechanism of instability is associated with a shift of perturbation vorticity relative to the surface displacement resulting from advection.

Rheology

In daily life, in the industry and in nature the fluids encountered (paper pulp in water, latex paint, ice, blood, syrup, molasses, etc.) generally exhibit a shear-thinning or pseudoplastic rheological behavior described by the decreasing of viscosity with increasing shearing rate [START_REF] Bird | Dynamics of polymeric fluids (Fluid Dynamics I)[END_REF]. Indeed, the stability of gravity flow of liquid films is a key issue in chemical engineering as the occurrence of roll waves at the surface of a liquid layer would produce a non uniform matter deposition in coating application. As well in natural disaster, these roll waves would increase the destroying power of debris flows. In polymer systems (melts and solutions), at low shearing rates, the apparent viscosity approaches to a Newtonian plateau where the viscosity is independent of shearing rate (zero shear viscosity, 0 µ ). So, if τ and • γ denote the shear stress and the shearing rate, respectively, we have :

0 0 lim µ γ τ γ =           • → • (3)
Furthermore, only polymer solutions also exhibit a similar plateau at very high shearing rates (infinite shear viscosity, ∞ µ ), i.e.,

∞ • ∞ → =           • µ γ τ γ lim (4) 
Different semi-empirical laws exist that aim at describing shear-thinning rheological behaviour (Carreau & De Kee, 1979), such as : -Spriggs' law :

0 µ µ = if • γ < 0 • γ (5) 1 0 0 - • •           - = m γ γ µ µ if 0 • • > γ γ (6) -Carreau's law : 2 1 2 2 0 1 - • ∞ ∞               + = - - n γ λ µ µ µ µ (7)
where λ is a characteristic time and ∞ η a constant viscosity at very high shearing-rate -The hyperbolic tangent law

n k B A           * - = • γ µ tanh (8)
where ) tanh(x denotes the hyperbolic tangent function while

n k B A , , ,
denote constants deteremined with the help of experimental tests. Notably, it is verified that

A → µ when 0 → • γ (9) B A - → µ when ∞ → • γ (10)
Meanwhile, these semi-empirical laws are not generally used in the models. Indeed, the powerlaw is preferred, as despite its unability to provide a constant value of viscosity at low shearing rate, it generally leads to satisfactory approximations and allows analytical resolution [START_REF] Bird | Dynamics of polymeric fluids (Fluid Dynamics I)[END_REF].

If [ ]

T denotes the stress tensor,       • ε the straining rate tensor defined as

      + = • i j j i j i u u , , , 2 1 ε (11)
while the indices i and j are taken for the x and y components of the velocity field u and the Einstein summation convention has been used, [ ] d I the unit tensor, K the liquid consistency, n the power-law index and p the pressure field, the power-law equation of state is written

• - • + - = ε ε σ 1 n d K I p (12)
Enterring the norm of the rate of strain tensor (equivalent to the largest eigenvalue of 11), we get for the stress tensor

• ε ), denoted by • ε in Equ.(
• -                 ∂ ∂ +         ∂ ∂ + ∂ ∂ +       ∂ ∂ = ε σ 2 1 2 2 2 2 2 2 n y v x v y u x u k (13)
Further, constants 1 < n (power-law index) and K (liquid consistency) or its reduced value

K k n       = 2 1 are the rheological parameters. The Newtonian fluid is recovered if we consider 1 = n and µ = k
, the dynamic viscosity.

Stability analysis

As stated previously, despite its lack of relevance to reality at low shearing rates, the power-law model is more generally preferred in literature for modeling shear thinning flow in order to characterize their dynamics [START_REF] Moeleker | Linear temporal stability analysis of a thin layer of liquid sheared by an air stream[END_REF][START_REF] Federico | Viscous Spreading of Non-Newtonian Gravity Currents on a Plane[END_REF]Nsom et al., 2008 among others), their stability [START_REF] Dandapat | Waves on a film of power-law fluid flowing down an inclined plane at moderate Reynolds number[END_REF][START_REF] Dandapat | Waves on the surface of a falling power-law fluid[END_REF][START_REF] Sisoev | Bifurcation analysisof the travelling waves on a falling power-law fluid film[END_REF]Miladinova & al., 2004 among others) and for pointing out related properties such as drag reduction [START_REF] Nsom | Measurement of Drag Reduction in Dilute Polymer Solution using Triboelectric Effect[END_REF]. In literature, the linear stability of a thin film of power-law fluid down an incline of slope β was considered using different methods based on 3 parameters, say an aspect ratioδ , a power-law Reynolds number n Re and a Froude number 2 Fr respectively defined as:

L H = δ ; µ ρ n n n U H - = 2 ) (Re ; gH U Fr 2 2 ) ( = ( 14 
)
where H is a characteristic fluid height and L a characteristic horizontal wavelength. Notice the following relation that exists between the Reynolds number and the Froude number:

( )

) ( sin ) (Re 2 Fr n λ β = with n n n       + = 1 2 λ (15)
The lubrication models on the resultant fluid height ( ) t x h , obtained by superimposing a small perturbation to the uniform initial fluid height (e.g.: [START_REF] Ng | Roll waves on a shallow layer of mud modelled as a power-law fluid[END_REF][START_REF] Hwang | Linear stability of power law film flows down an inclined plane[END_REF]) consist in expanding the velocity field with respect to • ε and then introducing this expansion in the usual conservation law ( ) ( )dy

y t x u t x h h x t ∫ ∂ + ∂ 0 , , , (16) 
From a linear analysis, a stability criterion is then derived with the following expression for the critical Reynolds number:

( )

β λ g n n c n cot 2 2 3 ) (Re 2 1       - + = (17) 
The limitation of these theories is that in the supercritical regime, the lubrication equation is locally ill posed. Fernandez-Nieto et al. ( 2010) provide a clear review on the shallow water models. They show that while these models provide a good understanding of the stability of Newtonian fluids (e.g.: [START_REF] Ruyer-Quil | Modeling film flows down inclined plane[END_REF][START_REF] Ruyer-Quil | Improved modeling of flows down inclined plane[END_REF] and also the mathematical theory associated is well settled for Newtonian fluids, unfortunately, if applied to non-Newtonian fluids (e.g.: Amaouche et al., 2009), they are generally undetermined. So, they propose an improvement of the shallow water models for use with power law fluids and Bingham fluids as well. Their model is based on asymptotic expansions of solutions of the Cauchy Momentum equations in the shallow water scaling and in the neighbourhood of steady solutions. Noble & Vila (2012) derived models of shallow water type for thin power-law films down an incline in the case of laminar flow for which the boundary layer issued from the interaction of the flow with the bottom surface has an influence all over the transverse direction to the flow. At higher order correction in the linear analysis, they confirmed the previous stability criterion.

The stability of a power-law liquid flowing down an incline with an additional effect was considered in different recent papers. [START_REF] Pascal | Instability of gravity-driven flow of a heated power-law fluid with temperature dependent consistency[END_REF] brought out a theoretical study of the evolution of small perturbations of long wave length imposed on the equilibrium flow over a plate heated from below. Their model notably took into account the heat transfer from the liquid to the ambient gas above as well as a variation of the fluid rheology with temperature. To investigated the stability of a power-law on a porous substrate, Di Cristo et al. ( 2013) built a shallow-water model assuming a filtration flow in the porous medium governed by a modifed Darcy's law. They found a correlation between the the effects due to shear-thinning properties and permeability. A similar result was obtained by [START_REF] Usha | Shear-thinning film on a porous substrate: Stability analysis of a one-sided model[END_REF] on a Carreau fluid (Carreau et al. 1979 ;[START_REF] Carreau | Rheology of Polymeric Systems -Principles and Applications[END_REF]. [START_REF] Campomaggiore | Development of roll-waves in power-law fluids with non-uniform initial conditions[END_REF] examined the influence of non-uniform initial conditions (initial acceleration or deceleration) on perturbation celerity, disturbance evolution and roll-wave development for mild and steep slope channels. In summary, several authors have attempted to build a shallow-water model of the stability of a gravity-driven flow of a power-law fluid. As they were based on Shkadov approach (1967) they revealed inconsistent. Even in the most evolved of these models [START_REF] Ruyer-Quil | Wavy regime of a power-law film flow[END_REF]), various inconsistency appeared in some terms. The main reason of this difficulty is that a direct Orr-Sommerfeld analysis is not available. In order to fill that gap, the following four issues are tackled in this paper.

-build an equation of Orr-Sommerfeld type associated with appropriate boundary conditions -Solve the generalized Orr-Sommerfeld equation -From that solution, derive wave celerity -From that solution, derive the effect (stabilizing or not) of the different forces acting on the flow.

In addition, while the method used is standard in stability analysis (e.g. : [START_REF] Jenny | Primary instability of a Taylor-Couette flow with a radial stratification and radial buoyancy[END_REF], the novelty of this model is to adopt Reynolds and Froude numbers independent of fluid rheology, unlike shallow water models.models.

The unability of power-law to describe pseudoplastic behaviour at low shearing rates seems to make it irrelevant for approaching the free surface. In fact, this is true only at order

) ( 2 ε O
where such effects as streamwise viscous diffusion which is known to affect wave-to-wave interaction processes exist. These second-order viscous diffusion effects can be taken into account a regularization process at zero strain rate of the power-law [START_REF] Chakraborty | Dynamics & stability of a non-Newtonian falling film[END_REF]. As just stated, the present analysis aims at capturing ) (ε O phenomena. Therefore, it is consistent at first order so, no regularization process is needed. The second section of the paper states the equations of motion. The basic flow is computed in the third section while the fourth section is devoted to the statement of the stability problem. The solution to Orr-Sommerfeld equation generalized to power-law fluid is presented in the fifth section at zeroth order and in the sixth section at first order.

Equations of motion

The two-dimensional flow in the ( )

y x -
plane of an incompressible power-law fluid over an inclined solid surface is described by the equations of conservation of the mass or continuity equation and of the momentum which respectively write 0

, = i i σ (18) i j ij i f + = , σ γ (19)
where indices i and j denote dimensional coordinate x or y , γ r the acceleration vector and f r the external body force, gravity in this case. This set of equations assumes that the flow is laminar, as no turbulent stress is taken into account, and this is the limitation of the present model. Expanding Equs.( 18)-( 19), we get: 22) where u and v are respectively thex and - y components of the velocity and t is the time. To make these flow equations non dimensional and sort appropriate characteristic non dimensional parameters, we assume the following set of reference quantities: length 0 L , velocity 0 U , viscosity 0 µ , density 0 ρ and gravitational constant 0 g . 

0 = ∂ ∂ + ∂ ∂ y v x u (20) y x g x p y u v x u u t u xy xx ∂ ∂ + ∂ ∂ + + ∂ ∂ - =       ∂ ∂ + ∂ ∂ + ∂ ∂ τ τ β ρ ρ sin (21) y x g y p y v v x v u t v yy yx ∂ ∂ + ∂ ∂ + - ∂ ∂ - =       ∂ ∂ + ∂ ∂ + ∂ ∂ τ τ β ρ ρ cos (
0 = ∂ ∂ + ∂ ∂ y V x U b b (23) ( ) x xy xx b b b b b b g Fr y x x P y V V x U U t U 2 * 1 * 1 * 1 +         ∂ ∂ + ∂ ∂ + ∂ ∂ - = ∂ ∂ + ∂ ∂ + ∂ ∂ τ τ ρ ρ (24) ( ) y yy yx b b b b b b g Fr y x y P y V V x V U t V 2 * 1 1 * 1 +         ∂ ∂ + ∂ ∂ + ∂ ∂ - = ∂ ∂ + ∂ ∂ + ∂ ∂ τ τ ρ ρ (25)
where t is made non dimensional by using 0 0 U L as reference time.

This system has sorted four characteristic parameters, say a characteristic Reynolds number, a characteristic Froude number, a characteristic density and a characteristic viscosity respectively defined as:

0 0 0 0 * Re µ ρ L U = ; 0 0 0 * L g U Fr = ; 0 * ρ ρ ρ = ; 1 0 0 0 2 1 * -               = n n L U K µ µ (26)
The fluid considered being incompressible, if we take its density as the reference density and we use the fluid reduced consistency which is constant in the definition of the reference viscosity, we see that * ρ and * µ are equal to one. 

Basic flow

B G A y G n n y U n n b +       + + = + 1 1 / 1 1 ) ( with 
( ) θ sin * Re* 2 g Fr G - = (33) 
Application of the boundary conditions determines the integration constants A and B. We finally get:

( )

        -         - - + = + + 1 1 ) ( / 1 1 / 1 1 / 1 n w n w n b h y h G n n y U (34)
Notice that if we put 1 = n in the above solution the Newtonian solution is recovered [START_REF] Charru | Instabilités hydrodynamiques[END_REF]. From the solution obtained in Equ.(34), we can derive the depth averaged characteristic velocity defined as

( )dy y U h U w h b w ∫ - = 0 1 (35)
in the form

( ) (
)

n w n h G n n U / 1 1 / 1 1 2 + + = (36) 
If we take the surface velocity ( )

0 = = y U U s
in Equ.(36) as the reference velocity 0 U , we get

( ) n n h G n n U 1 1 0 / 1 0 1 + - + - = (37) 
Then, in non dimensional form, the velocity field of the basic flow writes

( ) ( ) n b ÿ U y U Ü 1 1 0 1 + - = = ( 38 
)
where the flow (negative) depth has been used as reference length for defining the non dimensional normal coordinate ÿ . The velocity profile is presented in Fig. 2 with respect to the power-law index. 

( )       2 2 2 , , P V U U r ( ) t y x u y U U , , ) ( 2 + = ; ( ) t y x v V , , 2 = ; ( ) t y x p y P P , , ) ( 2 + =
(39) after linearization with respect to the perturbation, write:

0 = ∂ ∂ + ∂ ∂ y v x u (40)                 ∂ ∂ + ∂ ∂         ∂ ∂ + ∂ ∂         + ∂ ∂ - = + ∂ ∂ + ∂ ∂ - - x v y u dy dU y n x u dy dU x p dy dU v x u U t u n n 1 2 2 1 Re* Re* 1 2 (41)                 ∂ ∂         ∂ ∂ +         ∂ ∂ + ∂ ∂ ∂ ∂         + ∂ ∂ - = ∂ ∂ + ∂ ∂ - - y v dy dU y x v y u x dy dU n y p x v U t v n n 1 1 Re* 1 2 Re* (42)
The velocity field and the pressure field used in these equations are non dimensional, but, for convenience, we dropped the symbol on top of P U , and y

The perturbation superimposed produces a deformation ( )

t y x , , η
of the free surface (fig. 1).

To satisfy identically the continuity equation, we introduce a stream function ( )

t y x , , ψ according to: ( ) ( ) y t y x t y x u ∂ ∂ = , , , , ψ ; ( ) ( ) x t y x t y x v ∂ ∂ - = , , , , ψ (43) 
As verified experimentally with the pseudoplastic fluid by Allouche (2015), it is assumed that the instability sets with respect to long waves, i.e. such that 1 . 0 ≈ = w kh α so that the wave number α can be viewed as a small parameter, similarly to the Newtonian case [START_REF] Liu | Measurements of the primary instabilities of film flows[END_REF][START_REF] Smith | The mechanism for the long-wave instability in thin liquid films[END_REF][START_REF] Kelly | The mechanism for surface wave instability in film flow down an inclined plane[END_REF]. Therefore, the investigation concerns the linear regime where the waves are sinusoidal. Assuming an expansion of the stream function, the perturbation on the free surface and the pressure field in normal modes with the form:

( ) ( ) ct x i e y t y x - = α ψ ψ ) ( , , ˆ ; ( ) ) ( , ˆct x i e t x - = α η η ; ( ) ( ) ct x i e y p t y x p - = α ) ( , , ˆ (44) 
where i is the imaginary unit defined by 1 2 -= i and α is the wave number. We consider a temporal analysis, i.e. we assume α to be real and the wave speed c to be complex with the form: 40)-( 42)), we get, after a straightforward analytical handling:

( ) ( )( ) [ ] ψ ψ α ψ α ψ α ψ α ψ ' ' ' ' ' Re* ' ' 2 ' ' ' ' 2 1 4 2 U c U U n i n - - - - + - - ( ) ( )                 + +       - + - + ' ' 4 ' ' ' ' ' ' ' 2 ' ' ' ' ' ' 2 1 2 2 ψ α ψ n U U U U n U U n ( ) ( ) 0 ' ' ' 2 ' ' ' ' ' ' ' ' 2 2 1 2 2 =                       - + + - - + ψ ψ α U U n U U U U n n n (45)
Notice that for a Newtonian fluid, i.e. for 1 = n we recover the well-known Orr-Sommerfeld equation, [START_REF] Orr | The stability or instability of the steady motions of a perfect liquid and of a viscous liquid[END_REF][START_REF] Sommerfeld | Ein beitrag zur Hydrodynamischen Erklaerung der Turbulenten Fluessigkeitsbewegungen[END_REF], say: 46) governs the flow stability of a power-law fluid over a sloping plane.

( )( ) [ ] 0 ' ' ' ' Re* ' ' 2 ' ' ' ' 2 4 2 = - - - - + - ψ ψ α ψ α ψ α ψ α ψ U c U i (46) Equ.(

Boundary conditions

The above generalized Orr-Sommerfeld equation for power-law fluid is associated to four boundary conditions summarized in ( )

R n P n n γ σ = - ⋅ - ⋅ 0 at η = y (52)
After an algebraic handling, these two equations write respectively

( ) ( ) 0 0 ' ' ) 0 ( ) 0 ( 0 ' ' = - + U U c ψ ψ (53) ( ) [ ] ( )         + - - - + - + * * 1 ) 0 ( ) 0 ( Re* ) 0 ( ' ) 0 ( Re* ) 0 ( ' 4 ) 0 ( ' ' ' 2 2 We Fr U c i U c i n n α ψ α ψ α ψ α ψ
where the s A i ' (constants of integration) are determined by the boundary conditions. Notice that Equ.(59) can also be solved by the Frobenius method, we obtain the same solution as when using the Euler's method.

Boundary conditions and solution

At order zero, the dynamic boundary conditions write

0 1 = A ; η 2 2 1 n n A + = (64) 
for the normal and for the tangential component, respectively, while the no slip condition leads to:

η n n A 1 3 + - = ; η n A 1 4 = (65) 
Substituting these expressions for the s A i ' in the stream function (Equ.63), the wave celerity at order zero can be derived by application of the condition of location of the interface, given by Equ.(50) yields:

n n c 1 0 + = (66) 
Applying to power-law rheological equation the phenomenological model they built for predicting the celerity of long surface waves on a non-Newtonian fluid flowing down an inclined plane, [START_REF] Millet | Wave celerity on a shear-thinning fluid flowing down an incline[END_REF] derived a similar result. Equ.(66) indicates that the perturbation celerity 0 c has a real value; the perturbation growth rate (imaginary part of celerity) is null. There is no instability with respect to the long wave perturbations considered, at zeroth order. Waves propagate without dispersion, at the same dimensional speed 0 2U for any wavenumber. Moreover, the ratio η ψ 0 being real, the interface and the stream function are in phase, while u and v the components of the perturbation velocities are respectively in phase and in quadrature of phase. Finally, as shown in Figure 3, the perturbation celerity 0 c decreases for increasing power law index, with a value of 2 as minimum for Newtonian fluid.

        + + - - + +                 + - + + + = n n n n n We Fr n n n n n i c α ( )( ) ( )( )( )           + + + + - + + + 3 2 3 2 1 13 17 3 2 Re ... 2 3 4 n n n n n n n n i (77)
Notice that the celerity correction 1 c is a pure imaginary so it does not bring a contribution to the wave celerity. It only affects its growth rate which at the order one in consideration is therefore ( ) 77) is solved by a shooting method. A trial value is given to one of the two other parameters and the value of the third parameter is sought in order to satisfy Equ.(77). That parametric study is presented in the following subsections.

Numerical results

Equ.(77) gives the solution to Orr-Sommerfeld equation generalized to power-law fluid at first order, stated in previous subsection. It provides a relation between the wave celerity and the Reynolds or Froude number for given flow configuration. In order to point out the effect of the different forces acting on the flow, the numerical results are presented in the form of a parametric study by a shooting method. For given slope, and power-law index the marginal stability curve is defined as the states separating the stable flows from the unstable ones in the (wavelength, Reynolds number) plane. For given slope, it is found that the solution to Equ. ( 77) is not sensitive to the wavenumber α but to a reduced wavenumber given by ratio 4)-( 5) show that when the slope increases, the critical Reynolds number increases for given reduced wavelength. Fig. 1 shows that inertia acts along the x -axis while pressure (hydrostatic) acts along the y -axis. Therefore, inertia has a destabilizing effect while pressure has a stabilizing effect. 

        =         = -         =         ∆ 0 Re 0 Re Re Re Re 2 2 2 2 We c We c We c We c c α α α α (79)

Conclusions

The stability of the 1D flow of shear-thinning fluid down an inclined plane was tackled theoretically. That flow configuration is important for chemical engineering (e.g.: coating process) as well as for environmental engineering (e.g.: debris flow impact) and it has received a generally unsatisfactory treatment in literature. The equations of conservation of the mass (continuity) and the momentum were written for the basic flow, together with appropriate boundary conditions at the solid bottom and at the open surface as well for the power-law rheological model. The hydrodynamic field was obtained analytically. A 2D small perturbation was then superimposed to that basic flow. The equations of motion associated to appropriate boundary conditions were applied to the resultant flow and they were solved by a perturbation method. A rigorous analysis of these equations vs. a small parameter defined using the property of long wave of the perturbations provided a secular equation that governs the stability problem in hand. The solution to the secular equation showed that at zeroth order, there is no instability with respect to the long wave perturbations considered. Waves propagate without dispersion, at the same dimensional speed for any wavenumber. Moreover, the interface and the stream function are in phase, while the components of the perturbation velocities are respectively in phase and in quadrature of phase. Finally, the perturbation celerity decreases for increasing power law index, with a value of 2 as minimum for the Newtonian fluid. At first order, the secular equation was solved numerically by a shooting method. The effect of the different forces acting on the flow has been pointed out. It was particularly shown that pressure and surface tension have a stabilizing effect, while inertia and rheofluidification have a destabilizing effect. Moreover, the relative variation of critical Reynolds number increases with increasing reduced wavenumber for all values of slope tested while it decreases with increasing power-law index for all values of reduced wavenumber tested. For practical application, the results obtained in this investigation can be used in process engineering. Indeed, for proces where flow is needed laminar (e.g. : coating, extrusion), pressure and surface tension must be increased, while for process where instability/turbulence is needed in the flow (e.g. : mixing), inertia and rheofluidification must be increased. REFERENCES Allouche, M.H. ( 2015) : « Etude théorique et expérimentale de la stabilité de l'écoulement de films de fluide non Newtonien sur plan incliné » Thèse Université Claude Bernard Lyon I, France (in French)

  Fig u r e 1: Flow of shear-thinning fluid driven by gravity g r with velocity U r and height w h down an incline with slope β in the ( ) y x, plane. Introducing the rheological equation (Equ.(12)) and using the previous set of reference quantities in the flow equations (Equs.(20)-(22)), we obtain the following non dimensional system for the velocity field ( ) b b V U , and the pressure field b P of the basic flow:

  Consider a one dimensional stationary flow along the x-direction with non dimensional velocityfield b U and pressure-field b P . The previous conservation equations (Equs. (23)-(25)) reduce to: to the following boundary conditions a/ At the free surface, the pressure is equal to the atmospheric pressure the free surface, the shearing stress is zero, as it constitutes the interface between the power liquid and the ambient inviscid air 0 where we have assumed that affecting a prime to a given function indicates the application of one order of differentiation with respect to y . The same notation will be used in the rest of the paper. c/ No slip condition at the solid bottom 0 pressure-field is found to have an hydrostatic profile from the solution of Equs.(16)-(17): velocity-field, Equ.(27) writes:

Figure 2 :

 2 Figure 2: Non dimensional velocity field of basic steady flow : velocity Ü vs. normal coordinate ÿ A similar result was obtained by Dandapat & Mukhopadhyay (2001). 4. Problem statement 4.1. The generalized Orr-Sommerfeld equation A small 2D perturbation with velocity field ( ) ( ) [ ] t y x v t y x u , , ; , , and pressure field ( ) t y x p , , being superimposed to the above steady basic flow, the equations of motion (Equs.(20)-(22)) for the resulting hydrodynamic field

  hydrodynamic field described by Equs.(43)-(44) in the equations of motion (Equs.(

  a/ The no slip condition indicates the impermeability of the solid wall. So, along the contact line, a liquid takes the same velocity as the solid wall 0 (43), we get in terms of the stream functions: kinematic condition indicates the impermeability of the interface described by its tangential vector t and normal vector n . Therefore, the normal velocity of the fluid n U r r r ⋅ at the interface must be equal to the normal velocity of the interface, defined as dynamic condition indicates that the shear stress is continuous at the interface and that the normal stress is subjected to a jump due to the interfacial tension. The stress vector in the

  number and Froude number are related by Equ.(56), the latter secular equation involves three parameters say, Reynolds number Re , reduced wavenumber We 2 α and power-law index n . For assigned value of any of these parameters, Equ.(

We 2 α.

 2 The computations are brought out for gentle slopes, such that °≤ ≤ °6 1 β and for power-law index lying in the range processed in laboratory experiments on polymer solutions, i.eof inertia and pressure on flow stability For given slope, the marginal stability curve is obtained as follows : a value of reduced wavelength is fixed and growing Reynolds numbers are used for computing Equ.(77). The values obtained for celerity 1 c are negative (defining stable flow) and then positive (defining unstable flow). Stable and unstable flows are separated by the marginal state where 0 1 = c and the corresponding value of the Reynolds number defines the critical Reynolds number noted c Re . Figs.(

Figure 4 :

 4 Figure 4 : Marginal stability curves : variation of reduced wavenumber We 2 α

Figure 6 :

 6 Figure 6 : Marginal stability curves : variation of reduced wavenumber We 2 α

  Figs.7-8 shows that the relative variation of critical Reynolds number decreases with increasing power-law index for all values of reduced wavenumber tested.

Figure 7 :

 7 Figure 7 : Relative variation of critical Reynolds number c c Re Re ∆ vs. power-law index n for given reduced wavenumber 8 1 ; 0

  

  

  

Table 1 :

 1 No slip condition

	Kinematic condition	Dynamic condition

Table 1 :

 1 Summary of the boundary conditions.

Table 2

 2 shows that the relative variation of critical Reynolds number increases with increasing reduced wavenumber for all values of slope tested.

		0	0	0	0		0	0	0
		1/9	7,4	7,2	7,6	7,3	7,0	6,7
		1/8	8,3	8,3	8,3	7,8	7,7	8,4
		1/7	9,8	9,8	9,7	9,5	9,0	9,2
		1/6	11,6	11,4	11,7	11,2	11,2	10,9
		1/5	14,2	14,2	14,3	14,0	14,0	13,4
		1/4	18,4	18,4	18,5	17,9	18,1	17,6
		1/3	26,1	26,2	26,9	25,7	25,9	26,0
		1/2	45,3	45,2	45,3	45,2	44,7	44,5
		1	166,6	166,4	167,2	165,9	166,4	166,4
	Table 2 : Relative variation of critical Reynolds number	∆	Re	c	Re	c	vs. reduced wavenumber
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	6.3.4					

. Effect of power-law index on relative variation of critical Reynolds number Defining

  

the relative variation of critical Reynolds number vs. power-law index

 54) will be solved analytically, using a perturbation method. In that analysis, the velocity field of the basic flow in non dimensional form was obtained in Equ.( 38) and it will be assumed following [START_REF] Charru | Instabilités hydrodynamiques[END_REF] 

. Furthermore, the celerity and the stream function can be investigated in the form of power series of that small parameter, say:

respectively. The index gives the order of the solution and the subscript on the non dimensional parameters We Fr, Re, will be dropped in the follow, for making the notations simpler. This stability problem will be solved by a perturbation method. 5. Solution at order zero 5.1. General solution Putting 0 = α in Eq.( 45) yields

After substitution of U and its derivatives by their respective expressions derived from Eq.( 38), and assuming the following change of function 

Equ.( 68) indicates that the left hand side of Orr-Sommerfeld equation at order one for pseudoplastic fluid has the same structure as at order zero, while the right hand side is the same as for the Newtonian fluid. It is associated to boundary conditions described by Equs.( 48); ( 50); ( 53) ; (54). They write:

General solution

The general solution of Equ.( 68) is the sum of the solution of the associated homogeneous solution with a particular solution. As noticed previously, the associated homogeneous equation is similar to Orr-Sommerfeld equation at order zero, while a particular solution to Equ.( 60) can be found by the method of constants variation. It has the form:

where the s v i ' are functions of y whose respective first derivatives are solution of the following algebraic system:

After a straightforward algebraic handling, the following secular equation which governs the marginal stability of the flow considered and which is obtained: