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Abstract

Bovine Viral Diarrhea (BVD) is a viral disease that affects cattle and that is
endemic to many European countries. It has a markedly negative impact on the
economy, through reduced milk production, abortions, and a shorter lifespan of
the infected animals. Cows becoming infected during gestation may give birth
to Persistently Infected (PI) calves, which remain highly infective throughout
their life, due to the lack of immune response to the virus. As a result, they are
the key driver of the persistence of the disease both at herd scale, and at the
national level. In the latter case, the trade-driven movements of PIs, or gestat-
ing cows carrying PIs, are responsible for the spatial dispersion of BVD. Past
modeling approaches to BVD transmission have either focused on within-herd
or between-herd transmission. A comprehensive portrayal, however, targeting
both the generation of PIs within a herd, and their displacement throughout
the country due to trade transactions, is still missing. We overcome this by de-
signing a multiscale metapopulation model of the spatial transmission of BVD,
accounting for both within-herd infection dynamics, and its spatial dispersion.
We focus on Italy, a country where BVD is endemic and seroprevalence is very
high. By integrating simple within-herd dynamics of PI generation, and the
highly-resolved cattle movement dataset available, our model requires minimal
arbitrary assumptions on its parameterization. We use our model to study the
role of the different productive contexts of the Italian market, and test possi-
ble intervention strategies aimed at prevalence reduction. We find that dairy
farms are the main drivers of BVD persistence in Italy, and any control strat-
egy targeting these farms would lead to significantly higher prevalence reduc-
tion, with respect to targeting other production compartments. Our multiscale
metapopulation model is a simple yet effective tool for studying BVD dispersion
and persistence at country level, and is a good instrument for testing targeted
strategies aimed at the containment or elimination of this disease. Furthermore,
it can readily be applied to any national market for which cattle movement data
is available.
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1. Introduction1

Bovine Viral Diarrhea (BVD) virus is a pathogen responsible for a livestock2

disease of major concern in Europe, causing high prevalence in affected coun-3

tries and important economic impacts (Lindberg et al., 2006). Induced costs4

are mainly due to production losses, derived from the immunosuppressive and5

abortive actions of the etiological agent, and to the biosecurity and immuniza-6

tion measures often implemented for its control or eradication (Thomann et al.,7

2017; Lindberg et al., 2006; Gunn et al., 2004). In addition, the disease can also8

facilitate the introduction and spread of other pathogens (Servizio Informativo9

Veterinario, 2011).10

BVD normally displays mild clinical symptoms, though it may predispose11

affected animals to more severe forms of enteric and respiratory ailments, and12

in some cases result in the highly lethal Mucosal Disease. Transmission mainly13

occurs perorally or nasopharingeally, but excretion in semen, as well as iatro-14

genic diffusion and environmental persistence have been reported (Lanyon et al.,15

2014; Niskanen and Lindberg, 2003; Traven et al., 1991; Kirkland et al., 1991;16

Meyling and Mikél Jensen, 1988). Pregnant cattle are the segment of the popu-17

lation that is most at risk, and of the greatest epidemiological relevance. If viral18

contact occurs during the very initial phase of gestation, abortion will likely oc-19

cur. Contact during the first third of pregnancy has instead a high probability of20

resulting in an immunotolerant persistently infected (PI) calf. Infection during21

later stages of pregnancy can result in fetal malformations and a considerable22

number of abortions.23

PIs are the main epidemiological agent responsible for disease diffusion and24

persistence within a farm (Ezanno et al., 2007). Their viral excretion is or-25

ders of magnitude larger than that of an immunocompetent transiently infected26

animal, and is life-long (Reardon et al., 2016; Lanyon et al., 2014). Pregnant27

dams that carry a PI are latent persistently infected animals (PILs) and hardly28

detectable by serological tests as they are immune (Lanyon et al., 2014). They29

are an epidemiologically important aspect of the infection dynamics as their off-30

spring will introduce PIs in the farm, potentially leading to disease persistence.31

PI animals tend to be smaller and underdeveloped compared to their healthy32

peers. Their lifespan is considerably shorter and their productivity severely33

hampered, so that they are more likely to be sold, thus further increasing the34

spatial spreading potential.35

No therapy exists for BVD other than symptomatic treatment. Vaccines are36

available, but their effectiveness is often limited by the extremely high infectious37

pressure of PI animals. For these reasons, the current approach to BVD preven-38

tion mainly revolves around the implementation of biosecurity measures aimed39

at preventing contacts between infected animals and pregnant cows (Courcoul40

and Ezanno, 2010; Lindberg et al., 2006; Ezanno et al., 2007; Lanyon et al., 2014;41

Ezanno et al., 2008). Large variations across countries are however observed,42

and efficiency of the implemented measures is hard to evaluate. Modeling thus43

provides a convenient framework to study BVD dynamics, identify key drivers44

for transmission and propose control and eradication strategies.45
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Much research has been devoted to the development of BVD models for46

within-farm spread (Viet et al., 2007; Ezanno et al., 2007; Gunn et al., 2004;47

Cherry et al., 1998; Innocent et al., 1997b,a; Sørensen et al., 1995; Damman48

et al., 2015; Smith et al., 2009; Ezanno et al., 2008; Viet et al., 2004). Models49

focused on the complexity of the infection dynamics (e.g. horizontal and ver-50

tical transmission, persistently infected and transiently infected animals) and51

its parametrization, the disease consequences on herd demography (e.g. impact52

on reproduction, probability of abortion, reduced lifespan), the role of herd53

structure and herd-management practices, the economic impact and the evalu-54

ation of interventions. Though the presence of a single PI in an infection-free55

herd was estimated to pose a considerable risk with potentially long-term conse-56

quences (Innocent et al., 1997a), reseeding events were found to be critical for the57

persistence of the disease (Viet et al., 2004; Damman et al., 2015; Smith et al.,58

2009). The external risk of BVD introduction was generally modeled through59

synthetic importation schemes, only effectively accounting for geography and60

trade. Courcoul and Ezanno first proposed a spatially explicit metapopulation61

approach to model the regional spread of BVD in a group of 100 dairy herds as-62

similated to patches (Courcoul and Ezanno, 2010; Ezanno et al., 2008). Trade63

movements were however synthetically modeled through a random network.64

As such, they did not capture the heterogeneities and temporal correlations65

observed in cattle mobility that were found to strongly impact epidemic dy-66

namics (Bajardi et al., 2011; Valdano et al., 2015; Ensoy et al., 2013; Vernon67

and Keeling, 2009; Ezanno et al., 2006). A data-driven spatial approach was68

proposed by Tinsley et al. that integrated data on cattle movements between69

beef farms in Scotland to simulate BVD spread at a larger scale and identify70

movement-informed interventions (Tinsley et al., 2012). To account for the com-71

plexity intrinsic to the network of cattle trade movements, the infection dynam-72

ics was however simplified through the use of a susceptible-infected-susceptible73

process where farms are treated as single units with no further population sub-74

structure. Moreover, only farms of one productive type were considered. An75

important discussion ensued, however, on quantifying the role of local contacts76

in infection persistence (Ersbøll et al., 2010; Graham et al., 2016), integrating77

them with an estimation of the effects of biosecurity measures as well as trade78

network movements (Gates et al., 2013), and understanding the implications of79

trading pregnant cattle or open cows with a calf at their side, clearly identi-80

fying an age-related probability of being a PI (Gates et al., 2014). Thulke et81

al. (Thulke et al., 2017) extends these works in the context of the Irish eradi-82

cation program with an in-depth consideration of the changes in costs involved83

in switching the diagnostic strategy from direct tissue testing to indirect sero-84

logical testing of a subsample of animals. A very important contribution is the85

study of the effects of latency in PI removal on the eradication time. However,86

the simulation requires high resolution data for its starting disease conditions,87

which are not always available, and the productive contexts are discretized as88

either beef or dairy, while the authors place greater stress on the role of animal89

age and sex.90

The aim of our work is to propose a novel multiscale spatially explicit91

metapopulation approach to model the geographic dispersion of BVD at the92

national scale, accounting for within-farm dynamics and high-resolution cattle93

movement data. Heterogeneities of BVD incidence per farm and reintroduc-94

tion events are the result of the explicitly modeled dynamics, self-consistently95
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producing geotemporal estimates for spreading potential and probability of ex-96

posure without the need for synthetic assumptions. We apply our study to the97

cattle population of Italy and more specifically we focus on the role that dif-98

ferent productive contexts may have in the spreading dynamics. We consider99

the full animal-level Italian database of cattle trade movements, accounting for100

different premises types (e.g. farms, slaughterhouses, markets, assembly cen-101

ters, etc.) and four farm productive classes (beef with and without on-premise102

reproduction, dairy or mixed). We simulate different transmission profiles and103

generate simulated BVD prevalences at endemic equilibrium. Our findings on104

the role of different productive contexts are then used to inform efficient targeted105

interventions aimed at a considerable reduction of prevalence in the country.106

2. Materials and Methods107

2.1. Data108

We use the complete dataset of all individual animal movements, births,109

deaths and thefts covering the period from January 1st to December 31st 2014110

provided by the Istituto Zooprofilattico Sperimentale (IZS) dell’Abruzzo e del111

Molise, the Italian national reference centre for the bovine movement database.112

The dataset is similar to the ones analyzed in (Bajardi et al., 2011, 2012; Natale113

et al., 2011, 2009; Valdano et al., 2015).114

For each movement, we have an anonymized animal ID along with the cor-115

responding age, breed, sex, date of movement, origin and destination premises.116

We consider three distinct categories of animals: males, females below repro-117

ductive age, and females of reproductive age. For each premise, we have an118

anonymized node ID, structure and production type labels and initial values for119

each of the three animal categories. The percentage of females in each animal120

holding on January 1st, 2014 is also provided.121

The bovine dataset covers a total of 5.9 million movements between 144,403122

premises throughout the country, involving 3.9 million bovines during the year123

2014 (Figure 1a). The movement dataset is represented in the form of a time-124

referenced directed weighted network, where nodes represent premises and links125

represent bovine movements (Bajardi et al., 2011, 2012; Natale et al., 2011,126

2009; Valdano et al., 2015).127

2.2. Model128

We propose a multiscale spatially explicit metapopulation approach that129

simulates disease transmission between animals within each farm and disease130

dispersal in space through the movement of infected animals. Animal premises131

correspond to the patches of the model where BVD infection dynamics occurs,132

and trade movements correspond to the spatial coupling between patches, bring-133

ing the description of the disease spread from a local perspective to the national134

scale.135

The infection dynamics are based on a compartmental model that represents136

the BVD spread in cattle herds, and includes the persistently infected animals137

(PI) and the persistently infected (latent) animals (PIL) (Figure 1c). If at least138

one PI is present within a farm, each week we use binomial sampling to generate139

PILs from susceptible cows (S) according to the following equations:140

ε∗i ∼ B
(
Ni −

(
NPIL

i +NPI
i

)
, εαi

)
, (1)
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where Ni is the total number of animals within premise i, NPIL
i and NPI

i are141

the number of PIL and PI animals within the same premise, αi is the fraction142

of females of breeding age present at that time in the premise and ε is the143

transmission parameter. In this equation, B(n, p) is a binomial distribution144

with n trials and success probability p. This is allowed to take place only in145

farms, and only in productive contexts that allow breeding (i.e., not fattening146

farms). This rate does not vary with the number of PIs.147

To account for the gestation stages and birth events, PILs become PIs at148

rate ϕ, expressed as ϕ = 1
2/3 ∆tg

(1−pa), where ∆tg represents the average cattle149

gestation length and pa the probability of having an abortion. This parameter150

does not represent the pregnancy period-at-risk of vertical transmission, but the151

rate at which a PIL cow where transmission has already occurred gives birth to152

a PI.153

PIs are removed with rate µ accounting for both the infection-induced mor-154

tality and the culling of detected infected animals. In addition, rate M cor-155

responds to both the possibility of developing the Mucosal Disease as well as156

the increase in veterinary interventions that this clinical manifestation entails.157

When this occurs, the farm will be cleared of all PI and PIL animals. The158

parameter M is the only direct route for elimination of PILs, as they are unaf-159

fected by the processes modeled through µ (i.e. they are not clinically affected160

by the disease and are hard to detect).161

To account for immunity after transient infection, we model the transition162

from Susceptible to Recovered with rate ε(1−αi). This immunity is considered163

life-long and no further transitions are possible from this compartment, but the164

animals may be traded regularly, possibly leading to the slaughterhouse.165

All rates are converted to probabilities before their application in the model.166

The infection dynamics are applied to all animal holdings. Heterogeneity167

in within-farm disease dynamics is given by the farm productive class and as-168

sociated herd management and demography. Here we consider four different169

productive types of interest (Figure 1b), similarly to (Dutta et al., 2014; Natale170

et al., 2009):171

1. Dairy: all farms concerned with dairy production;172

2. Beef with reproduction: farms hosting beef cattle with on-premise repro-173

duction;174

3. Beef without reproduction: farms fattening and raising beef cattle but not175

having on-premise reproduction;176

4. Mixed: all farms that cannot be ascribed to a single productive type.177

Cattle movements between premises are responsible for the spatial disper-178

sion of a BVD epidemic. These are sold and purchased from farm to farm or179

through markets and may be divided into three categories of male cattle, and180

female cattle below or above reproductive age. Animal movements, as well as181

birth and deaths, are explicit and completely data-driven. The single-animal182

movements from holding A to holding B for the week N are aggregated, since183

data are daily based, and the number of males, females below reproductive184

age and females above reproductive age is counted. Then, the number of PILs185

and PIs moved is stochastically determined based on the classes of moved ani-186

mals, and the counts at the origin and at the destination are updated. Within187

each demographic category, animals are moved according to trade data and the188

probability that a moving animal belongs to a given disease status is simply189
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Figure 1: Metapopulation model for BVD transmission at the national scale. (a) Geographical
visualization of the position of the 144,403 cattle premises in Italy of the 2014 movement
database. Provinces are color coded according to the productive class mostly present in the
area (red for beef fattening farms, blue for beef reproductive farms, green for dairy and violet
for mixed attitude farms, as in panel (b)). Farms are represented as points on the map.
(b) Schematic representation of the network of cattle movements where animal premises are
labeled according to their type (farm, slaughterhouse, etc.) and productive class (beef with
and without reproduction, dairy, mixed). (c) Scheme of the infection dynamics within each
premise.

proportional to the fraction of animals in that disease class. Only females at or190

above reproductive age may determine movement of a PIL, while all classes may191

move a PI. Newborns and animals imported from foreign countries are assumed192

to be healthy and susceptible. While we do not account for the seasonality of193

breeding explicitly, by using the real birth data as part of our collection of ani-194

mal movement the introduction of new susceptible animals follows the seasonal195

patterns.196

All transitions (related to the infection dynamics or the movements) are197

modeled as discrete and stochastic processes to account for stochastic fluctu-198

ations due to small population sizes inside premises. The time step of the199

simulation is 1 week. The model is implemented in Scala using the Breeze li-200

braries for Mathematics. Each premise uses a thread-local implementation of201

the Mersenne-Twister random number generator from the Apache Commons202

Math 3 library.203

2.3. Model parametrization204

The only free parameters of our model are the transmission rate ε and the re-205

moval rate µ. All other parameters are fixed and taken either from the literature206

or from expert opinion. Reproductive age is set at 15 months with a gestation207

length ∆tg = 36 weeks. Both values are chosen as intermediate values between208

the reproductive performances of dairy and beef breeds based on expert opinion.209

We consider a probability of abortions pa = 0.7 (Damman et al., 2015; Ezanno210

et al., 2007), thus yielding ϕ = 0.0125week−1. We also examine the effect of211

a larger period-at-risk, using two thirds of gestation. Keeping all other factors212
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Parameter name Values Units
Epsilon (ε) 0.0033 - 0.01 - 0.02 week−1

Mu (µ) 0.0033 - 0.01 - 0.02 week−1

Phi (ϕ) 0.00125 - 0.00250 week−1

M (M) 0.00769 week−1

Years of simulation 60
Seeding conditions 50
Repetitions 10
Seeding percentage 1 %

Table 1: Summary of all parameter values used in parameter exploration

constant, this yields ϕ = 0.025week−1. The percentage αi of females of breeding213

age in animal holding i is set from data at the beginning of the simulations. De-214

velopment of the Mucosal Disease is considered to occur after an average period215

of 2.5 years (i.e. 130 weeks), similarly to (Haskell, 2011; Kelling, 2004; Innocent216

et al., 1997a), thus yielding the rate M = 1
130weeks = 0.00769week−1.217

Simulations start on January 1, 2014 and all cattle population is initialized218

in the susceptible class, except for a uniform seeding of 1% of all farms chosen219

at random. These farms are seeded with one PI each. This initial prevalence220

value was chosen as the lower estimate reported by Houe et al. (Houe, 1999)221

for the United Kingdom. The aim of our work is to study the equilibrium222

dynamics of the BVD epidemic, so we consider simulations running for several223

years on the 2014 weekly aggregated demographic and movement data with224

periodic boundary conditions, in a similar manner to Tinsley et al. (Tinsley225

et al., 2012). We use 1 year of data, as trade was rather stable in 2014, to neglect226

intrinsic changes over time due to the trade system and industrial expansions227

or reductions that can alter the equilibrium dynamics.228

Three values of the removal rate parameter are used, i.e. µ = 0.0033week−1,229

µ = 0.01week−1, and µ = 0.02week−1. The same range of values is used for the230

transmission parameter ε. Results were computed over 500 replications for each231

transmission scenario explored. All parameters are summarized in Table 1.232

2.4. Experimental scenarios of interventions233

To support the findings of our study on the equilibrium dynamics of BVD234

circulation in Italy, we propose a set of experimental scenarios modeling inter-235

ventions. They are aimed at isolating farms from the system, thus synthetically236

simulating the effect of 100% effective surveillance and control measures at the237

local scale. Assuming limited resources, we test removal strategies on a set of238

farms chosen with different approaches:239

• random removal of farms240

• targeted removal of farms based on productive context241

– removal of beef reproductive farms242

– removal of beef fattening farms243

– removal of mixed farms244

– removal of dairy farms245
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Parameter name Values Units
Epsilon (ε) 0.01 - 0.02 week−1

Mu (µ) 0.01 - 0.02 week−1

Phi (ϕ) 0.00125 week−1

M (M) 0.00769 week−1

Repetitions 5
Years of simulation 60
Seeding conditions 5
Seeding percentage 1 %
Intervention percentage 1 - 6 - 12 - 18 - 24 %
Total number of intervention scenarios 253

Table 2: Summary of all parameter values used in experimental scenarios

For each percentage value of farms removed, the targeted experimental sce-246

narios are compared to the random removal, i.e. a choice not informed by the247

resulting epidemic relevance of each productive context.248

We progressively increased the amount of farms we removed: 1%, 6%, 12%,249

18% and 24% of the total amount of farms in the network, either at random or250

limited to the chosen context. The highest value we employed is limited by the251

number of dairy holdings in the system. In the case of mixed farms, removal252

could only be performed up to 12%, due to the limited size of that productive253

context.254

Each experimental scenario was repeated 25 times to stabilize model outputs.255

All parameters are summarized in Table 2.256

2.5. Analyses257

First, we analyzed the Italian cattle trade dataset for 2014 to characterize258

the different productive contexts in terms of farm size, trading patterns, and259

sex of animals.260

Second, we observed the evolution in time of BVD prevalence in the cattle261

trade system, from the initial seeding condition to the equilibrium dynamics.262

Third, we explored the dependence of the simulated BVD prevalence on the263

transmission rate and on the productive contexts. We considered different mea-264

sures of prevalence, at the animal level and at the farm level, accounting for265

the productive type. More precisely, the local PI animal prevalence in farms of266

productive class c is computed as NPI
c /Nc, where NPI

c is the total number of267

PI animals in farms of productive class c, and Nc is the number of these farms.268

We also computed the contribution of PI in farms of productive class c over269

all farms, to account for the sharply different sizes of the productive categories:270

NPI
c /Nf , where Nf is the total number of heads in all farms in the country.271

The national PI animal prevalence across all productive types was computed as272

NPI
f /Nf , where NPI

f counts the total number of PIs in all farms. At the farm273

level, we considered a farm to be infected if there is at least one PI (or PIL).274

The national PI farm prevalence is therefore given by nPI
c /nc, and by nPI

c /nf ,275

where nPI
c represents the number of PI infected farms of productive class c, nc276

is the number of farms of productive class c, and nf is the total number of farms277

in the country. Analogous measures were defined also for PILs.278
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Fourth, we assessed the impact of the proposed experimental scenarios of279

interventions by comparing the resulting BVD national farm prevalence at equi-280

librium after the removal of a certain fraction of farms.281

For each model output, average and 95% credible interval (95% CI) are282

computed.283

While other types of premise are present in our dataset and are accounted284

for by our simulator, the focus of our work is the presentation and discussion of285

the results pertaining to farms.286

3. Results287

Beef farms represent the most common productive context in the Italian288

cattle trade system during the year 2014, with a total of 44,170 fattening farms289

(33.58% of all farms) and 36,350 reproduction farms (27.64%), amounting to290

more than 61% of the total number of farms (Figure 2a). When considering291

total herd size, they tend to be small, with a median of 3 heads (95% percentile292

120) in fattening farms and 7 heads (95% percentile 69) in the reproduction ones293

(Figure 2b). Mixed production farms have a total size similar to beef farms with294

reproduction (median 7 heads, 95% percentile 82), however they represent the295

least common production type in our dataset (18,638 farms, 14.17%). Finally,296

dairy farms represent 24% of the system (32374 farms) and on average host297

the largest number of total heads (median 23 heads, 95% percentile 207). The298

presence of females varies substantially across productive contexts, with the299

largest values reported for milk production (average 55% of females according to300

data for January 1, 2014), reproduction purposes (41%) and mixed production301

(38%), and the smallest presence in beef farms without reproduction (14%).302

Figure 2: Description of productive contexts in Italy in 2014. (a) Number of farms per
productive class. (b) Distribution of the farm size per productive class. Wiskers are calculated
as median± 1.5 IQR

Trading patterns too are largely affected by production classes, with average303

trading volumes varying widely (Figure 3a). Dairy farms represent the most304

common origin of animal movements (44.7% of all movements), whereas beef305

farms without reproduction is the most common destination (54.3%). Move-306

ments follow a seasonal behavior, already outlined in (Bajardi et al., 2011; Val-307

dano et al., 2015), with a considerable drop in activity around summer when308
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animals are moved to pastures (these movements are not traced in the national309

database). Distinct trading patterns are observed when tracing the movements310

of female vs. male animals. A large number of male calves born every year in311

dairy farms are continuously sold to beef fattening farms before being moved312

to slaughterhouses at a later time (Figure 3b). The largest proportion of move-313

ments to slaughterhouses (65%) is indeed performed by beef fattening farms. A314

similar pattern is followed by beef farms with in-house reproduction. Female315

cows are strongly traded across dairy farms throughout the year.316

Figure 3: Movements of the 2014 cattle trade network in Italy. (a) Number of moved heads
per month between productive classes. The title of each column correspond to the productive
class of origin. Different colors refer to the productive class of destination. (b) Number of
heads sent to slaughter each month. The title of each column correspond to the productive
class of origin. In both panels, the top row reports the movements of female heads, the bottom
row the ones of male heads.

This heterogeneous picture dependent on productive contexts and affect-317

ing farm size, trading pattern and percentage of females becomes particularly318

relevant when modeling the spread of BVD and accounting for horizontal and319

vertical transmission as well as herd composition.320

We explored nine total combinations of the ε and µ parameters, and for321

each combination we experimented with two values of φ representing different322

periods-at-risk during gestation. Under the transmission conditions considered,323

our simulations reach the endemic equilibrium after about 20 years (Figure 4).324

When ε is very low, the system maintains very low levels of prevalence, but the325

disease still persists in the cattle population at levels below 0.01%. We do not326

observe complete eradication for the parameters considered. For ε = 0.02 and327
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Figure 4: Exploration of the effects of parameter change on PI prevalence. Columns are values
of the transmission parameter ε, rows are values of the elimination parameter µ. For each
subplot, the line represents the PI prevalence across all productive contexts. The linetype
depends on the value of the parameter φ, responsible for the evolution of PIs from PILs. The
error bars are 95% credibility intervals of the mean.

µ = 0.01, the higher value of φ results in a higher prevalence of up to 2.83%328

(95% CI 2.74-2.96%) compared to 1.28% (95% CI 1.23-1.34%) of the lower value.329

The value of the parameter µ exerts less influence over the average prevalence,330

resulting in a change from 3.05% (95% CI 2.96-3.19%) for the lowest value to331

2.54% (95% CI 2.46-2.66%) for the highest one, for ε = 0.02 and φ = 0.00250.332

For values of φ = 0.00125week−1 and µ = 0.01week−1, our study predicts333

a total PI prevalence between 1.22% (95% CI 1.18-1.28%) and 1.28% (95% CI334

1.23-1.34%) from intermediate to high values of ε, respectively, when consid-335

ering prevalence across all productive classes. These figures are in line with336

the estimates previously reported in a predominance of studies showing similar337

prevalence in the range of approximately 0.5% and 2% PI animals in differ-338

ent countries (Houe, 1999), and thus support our choice for the two higher339

values of the transmission rate explored in this study. For the rest of the340

results we present, we will therefore focus mainly on this set of parameters:341

µ = 0.01week−1, ϕ = 0.00125week−1, ε = 0.01− 0.02week−1.342

Interestingly, the described heterogeneities cause animal prevalence curves343

at the farm level to rapidly differentiate, reaching different values of BVD cir-344

culation at the endemic equilibrium. Dairy farms are the ones reporting the345

largest percentage of PIs, independently of the transmission condition, followed346
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Figure 5: Weekly PI animal prevalence at endemic equilibrium. (a) Average weekly local
PI animal prevalence in farms of productive class c, NPI

c /Nc, at endemic equilibrium as a
function of the transmission rate ε. (b) Average weekly national PI animal prevalence in farms
of productive class c, NPI

c /Nf , at endemic equilibrium as a function of the transmission rate
ε. Colors refer to different productive classes or to the ensemble of all farms. Error bars are
95% credibility intervals of the mean.

by mixed farms (Fig. 5a). PI animal prevalence within the productive class347

is equal to 1.76% (95% CI 1.65-1.87%) for dairy farms and to 1.59% (95% CI348

1.46-1.71%) for mixed farms when ε > µ (1.79% (95% CI 1.69-1.89%) and349

1.46% (95% CI 1.33-1.60%) for ε = µ, respectively). Dairy farms are the ones350

contributing the largest amount of PIs to the system (Fig. 5b), leading to a351

predicted overall animal prevalence of 0.7% (95% CI 0.67-0.78%) for the higher352

transmission condition, and of 0.73% (95% CI 0.68-0.78%) for the intermediate353

value. This is also due to the large size of dairy farms compared to the other354

reproductive types.355

Figure 5 clearly shows that the ranking of productive contexts that are356

mostly affected by the disease is maintained across transmission conditions.357

Most importantly, the overall contribution of PIs to the system by dairy alone is358

55.23% (95% CI 54.91-57.65%) of the total, indicating that this productive type359

is the strongest single contributor to the circulation of BVD. Beef farms without360

on-site reproduction are the least affected. A picture similar to PI circulation is361

also observed for the spread of PILs (50.51% (95% CI 49.74-51.44%) for dairy362

vs. 29.64% (95% CI 29.09-30.23%) for mixed farms, as shown in Figure 6). Since363

the generation of new PILs happens mostly in categories with high reproductive364

capability, beef farms with in-house reproduction show a higher prevalence in365

the case of PILs (up to 24.54%, 95% CI 23.46-25.73%) than fattening farms (up366

to 2.13%, 95% CI 2.00-2.31%). The presence of PILs inside the beef fattening367

farms is not due to a generative activity of the compartment itself, but to the368

movement of PILs from other compartments. Finally we note that PILs reach369

a higher simulated prevalence than PIs, at 28.06% (95% CI 27.18-29.35%) vs370

1.28% (95% CI 1.23-1.34%) in the high transmission condition.371

Dairy productive class results to be the most affected productive context also372

when measuring the percentage of infected farms, with a predicted within-class373

prevalence of up to 54.57% (95% CI 53.19-56.04%) and across-class prevalence374
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of 13.43% (95% CI 13.09-13.79%) (Figure 7). Beef fattening farms appear more375

relevant in contributing to the national farm prevalence than observed before376

for animal prevalence, likely because of the large number of smaller premises.377

Figure 6: Weekly PIL animal prevalence at endemic equilibrium. (a) Average weekly local
PIL animal prevalence in farms of productive class c, NPIL

c /Nc, at endemic equilibrium as
a function of the transmission rate ε. (b) Average weekly national PIL animal prevalence in
farms of productive class c, NPIL

c /Nf , at endemic equilibrium as a function of the transmission
rate ε. Colors refer to different productive classes or to the ensemble of all farms. Error bars
are 95% credibility intervals of the mean.

Given the central role of productive contexts in the simulated endemic per-378

sistence of BVD in the cattle population in Italy, we test different experimen-379

tal scenarios for intervention, comparing control measures randomly applied380

to farms with targeted ones based on their productive class. A dairy-focused381

intervention is predicted to be considerably more efficient in protecting the cat-382

tle population than a random farm intervention, for any degree of application383

of the intervention (Figure 8). Once 24% of the farms are removed, a dairy-384

targeted intervention leads to a drop of 53.81% (95% CI 53.45-53.89%) of the385

farm prevalence compared to the 29.51% (95% CI 28.84-30.03%) drop observed386

in the case farms were chosen randomly. Control measures focused on other387

productive classes are found instead to be less efficient than random interven-388

tions, as shown for example by the predicted 28.34% (95% CI 28.11-28.68%)389

drop when all beef farms with reproduction are targeted and the 15.21% (95%390

CI 14.80-15.56%) decrease when all mixed farms are selected. Beef fattening391

farms are the least effective target, with a total expected prevalence reduction392

of 12.32% (95% CI 10.60-13.75%).393

4. Discussion394

We use a spatially explicit metapopulation approach to model BVD endemic395

dynamics in the cattle population in Italy, based on demographic and mobil-396

ity data for the year 2014. We find that farm productive contexts strongly397

impact the circulation of the disease in the country, due to the specific sizes,398

herd structures and trading patterns associated to different productions. Dairy399
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Figure 7: Weekly PI farm prevalence at endemic equilibrium. (a) Average weekly national PI
farm prevalence in farms of productive class c, nPI

c /nc, at endemic equilibrium as a function of
the transmission rate ε. (b) Average weekly national PI farm prevalence in farms of productive
class c over all farms, nPI

c /nf , at endemic equilibrium as a function of the transmission rate
ε. Colors refer to different productive classes or to the ensemble of all farms. Error bars are
95% credibility intervals of the mean.

Figure 8: Random vs. targeted interventions. (a) Average weekly national infected farm
prevalence in farms of productive class c, nI

c/nc, at endemic equilibrium as a function of the
percentage of farms affected by the intervention. A farm is infected when it contains at least 1
PI or 1 PIL. Transmission rate is set to ε = 0.01. (b) as (a) for ε = 0.02. Different colors refer
to different experimental scenarios for interventions. Error bars are 95% credibility intervals
of the mean.

farms generate the largest number of persistently infected (PI) and latent persis-400

tently infected (PIL) animals. Basing their production mainly on self-sustenance401

through raising their own offspring internally, these farms represent the ideal402

habitat for a self-perpetuating and persistent BVD virus infection. Calves are403

indeed more often in close proximity with pregnant dams, present on the farm404

throughout the year, and this effect may in reality be further amplified by the405

fact that PIs are probably sold with preference because of reduced growth or406

insufficient productivity. As they also dominate national disease prevalence in407

the number of infected premises, we suggest dairy farms to be the ideal target408
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for limited-resources control and interventions. Our results predict that dairy-409

focused measures would be more than twice as effective in prevalence reduction410

as measures applied randomly to the same number of farms independently of411

their productive context. While representing a synthetic scenario for interven-412

tion, our proposed model could translate in the implementation of accurate and413

efficient local surveillance and biosecurity measures within a specific produc-414

tive context, or immunization practices where available. For example, in areas415

where the disease is present and vaccination is not implemented, control strate-416

gies based on the analysis of bulk milk at dairy farms would greatly reduce417

the overall costs of testing while ensuring a good coverage and efficiency at the418

system level, as it has been done for other diseases (Muratore et al., 2017). In419

Switzerland, near-eradication has been achieved by serological testing of every420

head, followed by bulk milk surveillance of disease-free farms (Thomann et al.,421

2017). This might also be performed in Italy as well, should sufficient resources422

become available. Given the importance of trade movements, quarantine mea-423

sures following movements and the regulation of sales according to the disease424

status of a farm or a region would also be extremely important in BVD mitiga-425

tion, as previously also suggested by (Courcoul and Ezanno, 2010) and as done426

for other diseases.427

Other productive classes have a more limited role in the spread and mainte-428

nance of BVD. Fattening farms, for example, tend to be receivers and gatherers429

of PI animals. However these are mainly sent directly to slaughterhouses, thus430

reducing their impact on further spatial spread. Beef farms with on-site re-431

production and mixed production farms are both potentially more dangerous432

than fattening farms in propagating the disease because of their transversal and433

non-trivial patterns of trade movements across different productive classes. As434

mixed attitude farms are mostly small, the resources required for monitoring435

them may be limited, and these are the contexts that may individually profit436

most from restoring their full productive potential through disease eradication.437

However, the use of targeted measures in our simulations predicts that even438

complete coverage of this productive class would be no better than the random439

application of these interventions. The relative importance and urgency of mea-440

sures that are specific to this productive type are probably largely dependent441

on a limited local context, and their consideration at a national scale may be442

ineffective.443

Our study predicts a total PI prevalence between 1.22% (95% CI 1.18-1.28%)444

and 1.28% (95% CI 1.23-1.34%) from intermediate to high transmission condi-445

tions, respectively, when considering prevalence across all productive classes446

(for φ = 0.00125week−1 and µ = 0.01week−1). These figures are in line with447

the estimates previously reported in a predominance of studies showing similar448

prevalence in the range of approximately 0.5% and 2% PI animals in different449

countries (Houe, 1999), and thus support our choice for the two higher values450

of the transmission rate explored in this study.451

Direct comparisons with disease prevalence estimates in Italy is difficult,452

however, since most sources focus on specific areas or single premises or premise453

types (Cavirani et al., 2013; Nigrelli et al., 2009; Luzzago et al., 1999; Ferrari454

et al., 1999), thus limiting their generalizability to the national level. Also, the455

lack of a nationwide control and surveillance plan in the country implies a strong456

heterogeneity of vaccination patterns and control measures. Given the current457

situation, our findings may help better informing the design and implementation458
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of a national strategy for intervention and surveillance.459

Prevalence data will become available over the course of three to four years460

once a plan is put into action (Thulke et al., 2017), and any modern interven-461

tion strategy should be sufficiently agile to continuously update itself as new462

information is obtained.463

From a modeling point of view, our approach couples within-farm infection464

dynamics with cattle trade movements at the national scale, accounting for data-465

driven demography and herd structure. This is an important expansion to the466

existing modeling literature for this pathogen, as previous works have mainly467

focused on the within-farm scale, investigating the infection dynamics within468

the herd structure (Viet et al., 2007; Ezanno et al., 2007; Gunn et al., 2004;469

Cherry et al., 1998; Innocent et al., 1997b,a; Sørensen et al., 1995; Damman470

et al., 2015; Smith et al., 2009; Ezanno et al., 2008; Viet et al., 2004), spurred471

by the intrinsic complexity of BVD disease transmission and the lack of accurate472

parameter estimates. Importations, however, have been recognized to be impor-473

tant for the maintenance of the disease in the farm (Courcoul and Ezanno, 2010;474

Ezanno et al., 2008), and synthetic processes for introductions have been consid-475

ered. Data-driven movements at the national scale were previously integrated476

in a farm-to-farm transmission dynamics, neglecting within-farm structure and477

transmission between animals (Tinsley et al., 2012). Neighboring farm effects478

were considered in a 100-patches metapopulation model for BVD, however trade479

patterns were assumed to be homogeneous in topology and fluxes (Courcoul480

and Ezanno, 2010). Several studies have shown on the other hand the large481

heterogeneity associated to trade movements (Bajardi et al., 2011; Kao et al.,482

2006; Vernon and Keeling, 2009; Lindström et al., 2010; Dutta et al., 2014). In483

the Italian dataset for 2014, for example, the number of yearly exchanges with484

neighboring farms for animal purchases ranges from 1 to 7019 (1-656 for animal485

sales), and animals are moved in yearly batches of 1 to 1534 units. More impor-486

tantly, the amount of incoming and outgoing traffic is very heterogeneous across487

premises, with many of them exchanging few animals, and some hubs featur-488

ing several connections to many other holdings (Valdano et al., 2015). Finally,489

comprehensively considering all productive contexts as well as the entire cattle490

trade system (144,403 premises vs. 100 dairy farms in (Courcoul and Ezanno,491

2010)) allows us to capture the entire trade dynamics, where farms of differ-492

ent productive classes are coupled together by non-homogeneous movements, as493

well as with marketplaces and other types of premises.494

The adopted approach presents, however, some limitations. We do not model495

transiently infected animals to limit the complexity of our modeling approach496

when considering multiple scales up to the national scale. Their role in the497

persistence of the disease is still controversial, with modeling studies consider-498

ing (Thulke et al., 2017; Viet et al., 2004; Cherry et al., 1998; Innocent et al.,499

1997a) or not (Gunn et al., 2004; Sørensen et al., 1995) the associated compart-500

ment. Our choice may thus lead to farm prevalence values on the lower side of501

the 33-53% estimated in the literature (Nigrelli et al., 2009; Luzzago et al., 1999;502

Houe, 1999). These farm-level figures, however, need to be interpreted with cau-503

tion, given that the definition of infected farm varies widely across studies (e.g.504

depending on the minimum number of PI, or PIL, or transiently infected an-505

imals present in the farm). We also assume that all animals introduced from506

abroad are healthy and susceptible. Foreign animal imports account for 18%507

of all movements, and 85% of that number follows a direct path to a fattening508
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farm and then to slaughter. Because of this, we consider them to have a limited509

influence on disease dynamics. The cattle movement dataset did not report510

the country of origin, preventing us to assign an imported animal a country-511

dependent probability of being infected. For these reasons, we implicitly assume512

imported cattle are healthy. Extending our study to include cross-border move-513

ments would definitely provide a more comprehensive picture of the diffusion514

dynamics, however it is beyond the scope of the present analysis and would515

require the integration of several different datasets. We use a single value for516

the ε disease diffusion parameter across the system, and use the percentage α517

of females of reproductive age on premises to simulate different generation and518

spreading potentials across the various productive classes. This approach does519

not account, for example, for the varying length of the cow-calf contact window,520

or for the spectrum of possible biosecurity measures. We find that our choice is521

consistent with the intent of maintaining a data-driven approach and limiting522

the number of ad-hoc parameters we consider. It is very difficult to reliably523

infer how modern a premise is, and therefore its management routines or biose-524

curity practices, with the available data. Further studies and field work would525

be necessary to expand the available knowledge on this particular aspect.526

While we consider the entire geotemporal dataset of trade movements be-527

tween premises, we do not include pastures, as these are not compulsorily528

tracked in the national database. Mixed production farms and beef farms are529

those that may be mostly affected by the lack of these movements, since the530

practice of moving to pasture in Italy is typical of small, traditional farms.531

While the role of pastures in livestock disease dynamics is currently the ob-532

ject of preliminary investigations (Palisson et al., 2017) due to lack of data and533

different national practices, neighboring relationships used in (Courcoul and534

Ezanno, 2010) to model animal escapes or contacts at pasture were found to535

only influence epidemic size.536

Conclusions537

Through a novel data-driven multiscale modeling approach, we show that538

farm productive contexts play an important role in the dynamics of BVD diffu-539

sion due to their herd composition and the trading patterns they establish. We540

find that BVD epidemic is dominated by dairy farms, containing the highest541

number of infected animals and representing the largest contribution to the na-542

tional farm prevalence. Our model captures the heterogeneity of BVD dynamics543

in a realistic way. Most importantly, our study suggests possible avenues for544

the implementation of efficient interventions based on the targeted application545

of control measures to dairy farms. This may contribute to the mitigation and546

eradication of the disease, and reduction of associated costs. Though the pre-547

sented work focuses on a single country and a specific disease, the approach can548

easily be applied to other geographical or epidemiological contexts where trade549

and herd composition are important element for disease diffusion.550
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