
HAL Id: hal-03486925
https://hal.science/hal-03486925

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

STRATFram: A framework for describing and
evaluating elasticity strategies for service-based business

processes in the cloud
Aïcha Ben Jrad, Sami Bhiri, Samir Tata

To cite this version:
Aïcha Ben Jrad, Sami Bhiri, Samir Tata. STRATFram: A framework for describing and evaluating
elasticity strategies for service-based business processes in the cloud. Future Generation Computer
Systems, 2019, 97, pp.69-89. �10.1016/j.future.2018.10.055�. �hal-03486925�

https://hal.science/hal-03486925
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

STRATFram: A framework for describing and evaluating Elasticity Strategies for
Service-based business processes in the Cloud

Aicha Ben Jrada,b,∗, Sami Bhiria, Samir Tatac

aOASIS, National Engineering School of Tunis, University Tunis El Manar, 2092, Tunisia
bSAMOVAR, Telecom SudParis, CNRS, University of Paris-Saclay, 9 rue Charles Fourier 91011 EVRY, France

cAlmaden Research Center, IBM Research, San Jose, CA, USA

Abstract

In the recent years, growing attention has been paid to the concept of Cloud Computing as a new computing paradigm
for executing and handling operations/processes in an efficient and cost-effective way. Cloud Computing’s elasticity
and its flexibility in service delivery have been the most important features behind this attention which encourage
companies to migrate their operation/processes to the cloud to ensure the required QoS while using resources and
reduce their expenses. Elasticity management has been considered as a pivotal issue among IT community that works
on finding the right tradeoffs between QoS levels and operational costs by developing novel methods and mechanisms.
However, controlling process elasticity and defining non-trivial elasticity strategies are challenging issues. Also, despite
the growing attention paid to the cloud and its elasticity property in particular, there is still a lack of solutions that
support the evaluation of elasticity strategies used to ensure the elasticity of processes at service-level. In this paper,
we present a framework for describing and evaluating elasticity strategies for Service-based Business Processes (SBP),
called StratFram. It is composed of a set of domain-specific languages designed to generalize the use of the framework
and to facilitate the description of evaluation elements that are needed to evaluate elasticity strategies before using them
in real cloud environment. Using StratFram, SBP holders are allowed to define: (i) an elasticity model with specific
elasticity capabilities on which they want to define and evaluate their elasticity strategies, (ii) a SBP model for which
the elasticity strategies will be defined and evaluated, (iii) a set of elasticity strategies based on the elasticity capabilities
of the defined elasticity model and for the provided SBP model, and (iv) a simulation configuration which identifies
simulation properties/elements. The evaluation of elasticity strategies consists in providing a set of plots that allows the
analysis and the comparison of strategies. Our contributions and developments provide Cloud tenants with facilities to
choose elasticity strategies that fit to their business processes and usage behaviors.

Keywords: Service-based business process, Elasticity Strategies, Evaluation, Elasticity Model, Cloud Computing

1. Introduction

Cloud Computing is gaining more and more importance
in the Information Technologies (IT) scope as an emerg-
ing computing paradigm for managing and delivering ser-
vices over the internet. One of the major assets of this
paradigm is its economic model based on pay-as-you-go
model. It allows the delivering of computing applications
as a service rather than a product by enabling ubiquitous,
convenient, and on-demand network access to large pools
of computing resources (e.g., storage, computing, network,
applications and services) that can be dynamically provi-
sioned by increasing and decreasing services capacity to
match workloads demands and usage optimization [1].

In today’s information society, more and more compa-
nies are adopting the Cloud-based technologies in their

∗Corresponding author
Email addresses: aicha.ben_jrad@telecom-sudparis.eu

(Aicha Ben Jrad), sami.bhiri@gmail.com (Sami Bhiri),
stata@us.ibm.com (Samir Tata)

day-to-day activities to handle customer service in an ef-
ficient and cost-effective way. A survey conducted by the
IDG Enterprise Cloud Computing across more than 1,600
IT and security decision-makers at a variety of industries
in 2014 has shown that 69% of the companies have at least
one application or a portion of computing infrastructure
in the Cloud [2]. The movement to the Cloud Comput-
ing as an IT infrastructure enables companies to operate
more efficiently on the continuous incremental change in
business operations. Cloud Computing’s elasticity and its
flexibility in service delivery are the most important fea-
tures behind this movement which encourage companies
and allow the delivery of services with the required qual-
ity of service (QoS) to costumers while reducing costs.

Elasticity is defined as the ability of a system to be ad-
justable to the workload change by provisioning as many
resources as needed in autonomic manner in order to meet
the QoS requirements [3]. Provisioning of resources can be
made using either vertical elasticity, horizontal elasticity,
or hybrid elasticity (combination of horizontal and verti-

Preprint submitted to Journal Future Generation Computer Systems September 3, 2018

© 2018 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0167739X18306125
Manuscript_eaaac543c383f2e93117793bd2472901

http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0167739X18306125
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0167739X18306125

cal elasticity). Vertical elasticity, also known as resizing of
resources, consists in changing the characteristics/proper-
ties (e.g., memory, CPU cores) of the used instances in
the system by increasing or decreasing them. Horizontal
elasticity, also known as replication of resources, consists
in adding/removing instances of system elements to bal-
ance the current workload. As a combination of horizontal
and vertical elasticity, hybrid elasticity allows to add/re-
move instances with different characteristics. These elas-
ticity capabilities are the main construction of an elasticity
model which defines the ground terms and functionalities
that describe the elasticity of the managed system such as
the elasticity actions to be undertaken, metrics to monitor
to trigger the elasticity actions and properties to access
and reconfigure.

Elastic systems are usually managed by elasticity con-
trollers implementing specific elasticity models . The main
function of an elasticity controller is to automate the pro-
visioning of resources by controlling the elasticity deci-
sions according to an elasticity strategy that is used to
manage elasticity by deciding when, where and how to
use elasticity capabilities/actions (e.g., adding or remov-
ing resources) defined in the elasticity model of the man-
aged system. Many strategies can be defined to ensure
systems elasticity. The abundance of possible strategies
requires their evaluation and validation in order to guar-
antee their effectiveness before using them in real Cloud
environments. Few works have targeted the evaluation
of elasticity strategies [4, 5]. However, most of them do
not allow formal evaluation of elasticity strategies. The
formal evaluation of elasticity strategies is an important
step to be performed before using the strategies which
allows to detect any suspicious behavior that may cost
extra-utilization of resources.

In this paper, we present our StratFram framework, for
describing and evaluating elasticity strategies for service-
based business processes (SBPs). The StratFram frame-
work enables the evaluation, through simulation, differ-
ent elasticity strategies based on different elasticity mod-
els. It is designed based on a set of domain-specific lan-
guages (DSLs) for describing different simulation elements
from the elasticity model to the simulation configuration
in order to conceal the used formal methods/systems and
the implementation complexity from SBP holders. Using
StratFram, SBP holders are allowed to define (i) an elas-
ticity model with specific elasticity capabilities on which
they want to define and evaluate their elasticity strategies,
(ii) a SBP model for which the elasticity strategies will be
defined and evaluated, (iii) a set of elasticity strategies
based on the elasticity capabilities of the defined elasticity
model and the provided SBP model, and (iv) a simulation
configuration which identifies the elements of the evalua-
tion. As results for an evaluation, StratFram provides a
set of plots that allows the analysis and the comparison of
strategies.

This paper is organized as follows. Section 2 presents a
review of related works for managing and evaluating elas-

ticity in the cloud. In Section 3, we introduce our frame-
work architecture and give an overview of its languages and
their relationships. Then, we describe each of its compo-
nents, namely, SBP language in Section 4, StratModel
language in Section 5, Strat language in Section 6, and
StratSim language in Section 7. We chain up with the
evaluation of our framework in Section 8, which contains
the implementation details and some experiment results.
The final section presents the conclusions and proposes
some lines of future work.

2. State of the art

Since the advent of Cloud Computing, more and more
companies are moving their applications to the Cloud.
They are now required to manage their cloud services at
any time to preserve their QoS. The quality and reliabil-
ity of the cloud services become an important aspect, as
customers have no direct influence on services. QoS has
been a critical issue in several customer-centric disciplines
such as manufacturing ([6, 7]), healthcare ([8, 9, 10, 11])
and information management ([12, 13, 14, 15]). It denotes
the levels of performance, reliability, and availability of a
service/process offered by the platform or the infrastruc-
ture that hosts it. The expectation of cloud users from
providers to deliver the required level of service quality and
the neediness of cloud providers to find a good compromise
between QoS levels and operational costs, are what make
QoS a fundamental issue for both parties.

Elasticity played an important role in many research
works that propose methods and mechanisms to harness
the ability of services/processes running in the cloud to
be elastic regarding the change in workload to ensure that
the customer gets the desired level of QoS while avoiding
over-provisioning and under-provisioning of resources. In
the following, we cite some previous works related to the
work presented in this paper.

2.1. Approaches for elasticity strategies evaluation

In [16], the authors proposed an analytical model, using
queuing theory, to evaluate the impact of elasticity strate-
gies on the performance of three-tier applications deployed
on Cloud infrastructures. They have simulated the logic
of scale-out and scale-in actions based on CPU utilization.

In [17], a formal model has been proposed for quanti-
tative analysis of horizontal elasticity at the infrastruc-
ture scope using Markov Decision Processes (MDPs). The
model has been defined to formally control at runtime the
adding and removing of VMs to/from the managed sys-
tem. However, these works have been proposed to use
strategies that are limited to infrastructure metrics (such
as CPU utilization) to base their decision and do not con-
sider metrics related to deployed processes. They also fo-
cus on evaluating strategies providing horizontal elasticity
decisions (i.e., scale-in and scale-out).

2

In another work, Copil et al. [4] have proposed a frame-
work, named ADVISE, for the evaluation of Cloud ser-
vice/application elasticity behavior based on a learning
process and a clustering-based evaluation process that de-
termines at runtime the expected elasticity behavior of
Cloud service. It is proposed in order to evaluate different
elasticity control processes with different elasticity capa-
bilities exposed by cloud provided and cloud services and
determine the most appropriate one regarding the consid-
ered Cloud service and a particular situation.

Nevertheless, the existing works do not allow formal
evaluation of elasticity strategies before investing in us-
ing them in a real Cloud environment and they do not
consider the evaluation of SBPs elasticity.

2.2. Languages for describing elasticity strategies

In [18], a Simple Yet-Beautiful Language (SYBL) has
been proposed for specifying elasticity requirements for
Cloud applications. An elasticity strategy is expressed
by SYBL as logical combination of constraints on met-
ric values obtained from one of three main layers that the
strategy is associated to: (1) application, (2) component,
and (3) programming (e.g., level of infrastructure includ-
ing rules on CPU usage). The violation or fulfillment of
those constraints can lead to triggering particular elastic-
ity actions.

Another DSL language, named Scalability Rule Lan-
guage (SRL), has been proposed in [19] for specifying event
patterns of multi-Cloud application as well as scaling ac-
tions. SRL has been inspired from OWL-Q language by
adopting some of its terminologies as well as the metric
description. It allows specifying elasticity rules as well as
metrics and actions as models. Though, its modeling as-
pect makes it effortful to use and express complex rules.
Contrary to our work, an elasticity rule in SYBL and SRL
is associated to one specific component identified by its
name. SBP holder cannot attach the same rule to differ-
ent tasks/services. Moreover, these languages don’t use
symbolic constants and embed rather constant values di-
rectly in rule specifications what makes rule definitions and
maintenance difficult.

Another work has been presented in [20] where the au-
thors propose a Domain-specific language called SPEEDL
that simplifies the specification of elastic strategies of IaaS
services. SPEEDL has been proposed to facilitate the cre-
ation of event-driven policies for resource management by
leasing and releasing VMs. Our interest is to provide a
language that triggers the elasticity of SBPs and their ser-
vices.

Apart from language related aspects; these works don’t
take into consideration fundamental characteristics of
SBPs, which make them unsuitable for defining elastic-
ity strategies for SBPs. Indeed the executions of process
instances are scattered over a set of services related to
each other according to the process control flow. First
these services may have different resource requirements
and have thereafter different elastic behavior. Second due

to task/service dependencies prescribed by the control flow
an elasticity strategy of a given service may need to refer to
other related services’ states. It is not clear how current
approaches can expand their local analysis of the moni-
tored information to have a more global view. Moreover,
all the above proposals assume that QoS related require-
ments (e.g, the defined thresholds for QoS metrics) are the
same for all requests. However, enactment requests of a
SBP are different and require therefore different amount of
resources. For example, some process (or service) requests
can be more data-intense than others, which could lead to
different QoS if we handle them in the same manner.

2.3. Approaches for constructing elasticity controllers

The provisioning of resources is usually conducted auto-
matically by an elasticity controller which has been the fo-
cus of many research works. In [21], two adaptive horizon-
tal elasticity controllers has been proposed to control the
adding and removing of VMs to prevent QoS violations. In
[22], a self-trained elasticity controller has been proposed
for managing cloud-based storage services elasticity. It is
defined to automatically train itself while serving workload
in order to update its control model which is used to make
elasticity decisions for adding/removing servers to/from
the underlying storage system. In [23], the authors pro-
posed an elasticity approach that uses control theory to
synthesize a controller for vertical memory elasticity of
cloud applications. Another work tackled the problem of
memory elasticity of virtual machines (VMs) has been pro-
posed in [24]. The paper introduced a framework, called
CloudVAMP, for monitoring VMs and adjusting their allo-
cated memory to adapt the current memory requirements
of their running applications using a cloud vertical elastic-
ity controller/manager. While most of these approaches
are recently proposed, they focused on a specific elasticity
model for constructing their elasticity controllers, which
only tackle either horizontal or vertical elasticity at infras-
tructure scope.

3. STRATFram: Elasticity Strategies Evaluation
Framework for SBPs

Elasticity strategies govern the provisioning of neces-
sary (to respect the agreed QoS) and sufficient (to handle
the amount of requests) resources despite variations in en-
actment requests load. Many strategies can be defined
to steer processes elasticity. The abundance of possible
strategies requires their evaluation in order to guarantee
their effectiveness before using them in real Cloud environ-
ments. In this section, we present our elasticity strategies
evaluation framework for SBPs, named StratFram. We
first present StratFram overview, followed by the rela-
tionships between StratFram languages.

3.1. StratFram overview

Fig. 1 shows an overview of StratFram framework for
evaluating elasticity strategies. The framework allows SBP

3

Figure 1: StratFram architecture overview

holders to evaluate, through simulation, elasticity strate-
gies for a given SBP model and under a given usage be-
havior based on a given elasticity model. As illustrated
in Fig. 1, StratFram is composed of two main parts:
(1) StratFram languages, and (2) StratFram functions.
The first part is composed of a set of languages designed
to generalize the use of the framework and to facilitate the
description of evaluation elements, i.e., elasticity strategies
that will be evaluated, SBP model for which the elasticity
strategies will be defined, elasticity model on which the
elasticity strategies will be based, and simulation config-
uration, while concealing the implementation complexity
and the used formal method from the users. Each language
is provided with its dedicated editor from which the SBP
holders define their evaluation elements and perform their
evaluation. The StratFram languages part is composed
of the following languages:

1. SBP language : It is a domain-specific language for
defining a SBP model that represents the elastic exe-
cution environment of a SBP in the cloud. It allows
SBP holders to specify in declarative way the charac-
teristics of components composing of the elastic exe-
cution environment of a SBP and their connections.
The use of SBP language releases SBP holders from
dealing with the specification of the underline formal
method used for the evaluation;

2. STRATModel language [25]: It is a domain-
specific language for describing elasticity models for
SBPs which allows to define different elasticity mod-
els. It permits business process holders to define dif-

ferent elasticity models, with different elasticity capa-
bilities/mechanisms and customized monitoring met-
rics, and to generate their associated elasticity con-
trollers in order to use them to evaluate elasticity
strategies on a given SBP model.

3. STRAT language [26]: It is a rule-based domain-
specific language for describing elasticity strategies for
SBPs deployed in Cloud environments. It was initially
proposed based on a specific elasticity model. There-
after, we generalized the use of Strat to be able to
adapt to any elasticity model provided by SBP hold-
ers.

4. STRATSim language : It is designed as domain-
specific language for specifying simulation proper-
ties/elements in a declarative manner and providing
SBP holders with a simulation launcher for their eval-
uation scenario.

Each one of the StratFram languages is provided with
a code generator that is responsible for generation a con-
crete implementation of the described element based on
the formal method/system used in the second part of
StratFram. The latter represents the StratFram en-
gine which provides common classes and functions used
and triggered by the generated items either for process-
ing or profiling the SBP model. The provided classes and
functions are implemented based on the underlying used
api for a specific formal method/system, e.g., SNAKES
API for defining and executing petri-nets.

4

Figure 2: BPMN model of Molecular Evolution Reconstruction Pro-
cess

Currently, StratFram evaluation results can be dis-
played as plots showing the behavior of resource alloca-
tions for executing each elastic service in the defined SBP
model as well as the one of the overall process according
to some defined indicators for a specific elasticity strategy.

Example 1. Let’s consider an elastic system composed of
(i) a SBP for molecular evolution reconstruction (MER)
based on an input protein sequences of genomes, (ii)
an elasticity controller implementing a specific elasticity
model and (iii) an elasticity strategy that have to be eval-
uated before using it in a real cloud environment.

The MER process is a data-centric process. As illus-
trated in Fig. 2, it is composed of 8 services. Some ser-
vices (e.g., S2) are more complex than others which make
them expensive in terms of time and resource consump-
tion. Their time and resource consumption are strongly
related to the size of the input file. Some input files will
contain small sets of protein sequences of genomes that are
expected to be processed in short time and to use a little
amount of computational resources, while others will con-
tain large sets that are expected to take much more time
to be processed and its processing occupies a large amount
of computational resources. So, at some point of time, the
process will get invoked many times with different input
files which lead some of the composed services to over-
come their capacity which in turn leads to loss of QoS.
In such case, the elasticity controller will perform the re-
quired elasticity action on the bottleneck services according
to the given elasticity strategy which defines when, where
and how to use elasticity actions.

The elasticity controller implements an elasticity model
for hybrid scaling that performs two main elasticity actions
namely ’Duplicate’ and ’Consolidate’ and defined to use
reactive elasticity strategies. The duplication action allows
adding a new service copy with a different configuration.
Two properties are re-configurable by the action namely the
capacity and the group property. The consolidation action
allows releasing service copies whenever needed.

The elasticity strategy that will be used in our elastic
system and have to be evaluated by our StratFram defines
rules for the actions defined in the elasticity model based on
waiting time of requests. So, the duplication action creates
a new copy of a service for requests under a specific group
if at least one of the waiting requests of that group exceeds
the maximum waiting time threshold and the same applied
for all its copies. Otherwise, if there is no longer waiting
requests and the consumed capacity of a service copy is
equal to 0 and the response time of the service is below

its minimum threshold, a consolidate action is triggered
by releasing the service copy.

We show in the following sections how each component
of our elastic system can be described using our frame-
work/languages in order to evaluate how the chosen strat-
egy will behave in the system.

3.2. Relationships between StratFram languages

The design of StratFram was based on the idea of pro-
viding a language for describing elasticity strategies that is
general enough to describe strategies for different elastic-
ity models and allows the adding of new possible actions.
The first solution was to provide Strat language gram-
mar with a constant set of actions used in the commer-
cial cloud-solutions and the research papers. Such solution
makes the SBP holders constrained to a set of pre-defined
actions and parameters and does not enable the adapta-
tion to new elasticity capabilities that can be provided by
the community.

The second solution that we adopted in designing our
framework is to provide a set of languages that allow users
to separately define an elasticity model on which Strat
language will be based. So, the latter will provide SBP
holders with only the elasticity capabilities defined in the
elasticity model by the elasticity manager. This solution
is based on the notion of ”cross-reference” to create links
between languages. The elasticity capabilities are defined
using StratModel as objects and then their references are
used in Strat language as part of its grammar. Along
the elasticity capabilities, StratModel allows users to de-
fine a set of metrics that can be used as QoS metrics
or functions called inside Strat script using their refer-
ences, and to specify the properties that the users can re-
configure when applying an action according to a Strat
strategy. The links created between the two languages,
i.e., StratModel and Strat, only constraints the users
with the order of defining their system elements. So, they
have to first define an elasticity model using StratModel
on which Strat will be based and then they can define
their elasticity strategies.

Other links has been made between StratModel and
SBP language, and StratSim and all the other languages.
Using StratModel, a user can (optionally) define his elas-
ticity model for a specific SBP by indicating the reference
to an already defined SBP model, using SBP language,
as the managed component of the elasticity model. Since
it is designed to indicate the elements of an evaluation
scenario, StratSim provides users with references to the
already defined elements that can be used in an evaluation.

In the following sections, we describe the detail of each
language in our framework with its use in defining an ele-
ment of the elastic system given in Example 1.

4. SBP Language

SBP language is proposed to facilitate the description
of the elastic execution environment of a SBP by using

5

elements composing an elastic execution environment in
the cloud. The execution environment of a given elastic
SBP can be seen as a network, of service engines (refer
to containers such as micro-container [27], Docker [28])
isomorphic to the SBP model. The execution of a SBP in-
stance (request) is routed over several services (execution)
engines that match each of the SBP component services via
routers which are resources that provide message format
transformations and routing. The structure of execution
environment of a SBP evolves over time according to re-
quests load by adding/removing service engine copies in
order to meet its QoS requirements (e.g., maximum re-
sponse time). The service engine copies are related to a
load balancer service to balance the incoming load between
them. In our previous work [29], we argued that it is ben-
eficial to adopt formal models to describe elastic execution
environment of SBPs which provides rigorous description
and allows formal evaluation and verification of SBP elas-
ticity. We proposed to use petri nets to formally describe
the elastic execution environments of SBPs. However, al-
lowing SBP holder to express their processes in terms of
petri nets needs knowledge on petri net concepts and how
to use them for describing elastic execution environment
of SBP. To facilitate the modeling of SBPs elasticity and
the extensibility of our framework, we propose a domain-
specific language, named SBP, for describing an elastic
execution environment for a SBP and generating its cor-
responding formal model according to the provided SBP
generator. So, SBP language can be seen as an interface
that provides an abstract representation of SBP model en-
tities. By providing different SBP generators for different
formal modeling techniques or systems, we allow STRAT-
Fram to be extensible and used across different systems.
In the following, we present our formal model of SBP elas-
ticity that is used and generated by SBP language.

4.1. Formal Modelling of SBP elasticity

We proposed, in [29], a formal model for describing elas-
tic execution environments for SBPs. The model is defined
based on High-Level Petri Nets [30] to describe the char-
acteristics of service engines, hosted services in a SBP,
and their requests in order to allow defining more sophis-
ticated elasticity strategies using different elasticity indi-
cators. The High-Level Petri Net model has been pro-
posed to extend classical petri nets by introducing higher-
level concepts, such as representing tokens by complex
data structure, and using expressions to annotate net ele-
ments (i.e., Places/Transitions/Arcs) which makes it pos-
sible to describe the elements of our execution environment
of SBPs. In our model, a place denotes either a service en-
gine or a load balancer, a transition denotes a router and a
token denotes a service request/instance which may carry
a data value referenced by a token color.

A service engine place is characterized by a function
representing the time complexity of the hosted service.
This complexity function enables estimating the process-
ing time needed for handling each request. Also, it has

Figure 3: TC-SBP petri net system of MER process

a processing speed and a capacity indicating the quan-
tity of data that can be processed simultaneously by the
service engine. It can be either an elastic service engine
or not. Moreover, if it is an elastic one, it might have
many copies hosting the same service related by an equiv-
alence relation and connected to a load balancer. A load
balancer/buffer place is characterised by a capacity indi-
cating its queue length. Both types of places (i.e., service
engine place and buffer place) have temporal information
enabling to indicate when a request becomes outdated. A
service request/token is characterized in our model by its
data size, its belonging category (according to the data size
or representing a tenant) and a state defining its progress
(waiting/under-processing/finished) representing its data
value along with the processing/waiting time representing
its age. A data value with an age attached to the request/-
token named timed token color. Each place in our model
can hold many requests/tokens that represent its mark-
ing. To connect places in our model, we use a transition
as a router to transfer requests between places (service
engines/load balancers) according to the behavioral spec-
ification of the SBP. Finally, arcs connecting places and
transitions in our model allow to modify the characteris-
tics of requests when they are ”transferred” from one place
to another using expressions on the arcs.

Example 2. Let’s take the SBP presented in Example 1
(cf., Fig. 2). Fig. 3 represents the corresponding petri-net
model of sub-SBP for MER. Each place in the petri net
model is annotated with its type, its time complexity func-
tion C, its capacity, its processing speed, its time interval
I, the marking M for no empty places and whether the
place is elastic or not. The accepted token format for the
places from S1.1 to S3.1 is of type CAT×PAIR×INT×INT
where CAT is a set of groups which contains three groups
c1, c2 and c3 respectively for the small, medium and large
sequence files (request), PAIR represents a couple of inte-
ger values (N, L) for the number of sequences in the file

6

and the length of sequences, INT×INT represents the state
and the age of the token. For example, the service place
S2.1 corresponding to the service S2 in Fig. 2, is of time
complexity O(N2 ×L+N ×L2). We assume that its cor-
responding service engine has a capacity 6×105 (quantity
of data that the service engine can process) and can pro-
cess 105 instructions per time unit and it considers any
request that has been in it for more than 2440 time units
as an outdated request. We assume that at time t1 the ser-
vice engine associated to the place S2.1 holds four requests:
one waiting request (c1, (20,80), 0) of group c1 with data
size (20,80) and an age equal to 3, three under-processing
requests with data value (c2, (1000,200), 1) and an age 20.

4.2. SBP Grammar

Based on the composition of an elastic execution envi-
ronment, we define the grammar of SBP language that
allows to specify SBP models using elastic execution en-
vironment components rather than using formal notation
and terminologies of the used formal method. The top-
level of SBP specification grammar is given in Grammar 1
using the Backus Normal Form (BNF).

〈SBPModel〉 ::= ’Process’ 〈id〉 ’{’ 〈ProcessDescription〉
’}’ 〈Requests〉

〈ProcessDescription〉 ::= 〈Reference〉 〈Description〉
〈Groups〉 〈Nodes〉 〈Routers〉 〈Links〉

〈Groups〉 ::= 〈Group〉 〈Groups〉 | 〈empty〉

〈Nodes〉 ::= 〈Node〉 〈Nodes〉 | 〈Node〉

〈Node〉 ::= 〈ServiceEngine〉 | 〈LoadBalancer〉

〈Routers〉 ::= 〈Router〉 〈Routers〉 | 〈empty〉

〈Links〉 ::= 〈Link〉 〈Links〉 | 〈empty〉

〈Requests〉 ::= 〈Request〉 〈Requests〉 | 〈empty〉

Grammar 1: General SBP Grammar

A SBP model is composed of a structure and a marking
that corresponds to a set of requests in the process. The
structure description part is given in a block defined by
the keyword Process (i.e., indicates the beginning of the
SBP model) and identified by a name. As described in the
formal model, a SBP structure can be composed of four
sets: (i) a set of groups, (ii) a set of nodes where a node
can be either a service engine or a load balancer, (iii) a
set of routers, and (iv) a set of links connecting nodes and
router to each other. To describe the SBP model, the SBP
holder can provide a process reference to indicate its name
outside the framework and a descriptive text.

A group represents one set of requests with specific char-
acteristics/requirements. As shown in Grammar 2, it is

identified by a name which refers to a tenant, a group of
users (such as premium user, normal user, and guest user),
or a group of requests according to the indicated type. For
the latter, the group is defined depending on the size of
requests data. So, the user can indicate the range of data
size for request to be belonging to the group. This catego-
rization of requests allows SBP holders to specify different
QoS requirements for different groups and assign groups
to specific service engine copies.

〈Group〉 ::= ’group’ ’:’ 〈GroupDescription〉 ’;’

〈GroupDescription〉 ::= 〈Name〉 〈Type〉 〈Range〉

〈Name〉 ::= ’name’ ’:’ 〈id〉

〈Type〉 ::= ’type ’:’ 〈GroupType〉 | 〈empty〉

〈GroupType〉 ::= ’REQUEST DATA’ | ’REQUEST USER’ |
’TENANT’

Grammar 2: Grammar for describing process groups in SBP

A service engine represents the container on which a
service is hosted. A container can be either a VM or a
container like Docker [28] or micro-container [27]. The
service engine, as shown in Grammar 3, is described by
a set of attributes specifying its characteristics. A service
engine’s name is used to identify the elements inside the
framework while its reference indicates its actual name or
location.

A service engine can be included in the SBP for a spe-
cific set of groups. So, SBP holders can associate groups
to the service engine by referring to their names as given
in the groups section. For the simulation purpose, a com-
plexity function can be given to estimate the processing
time needed for handling each request. The capacity and
processing speed attributes can be provided to indicate the
quantity of data that can be processed simultaneously by
the service engine. The latter are given with a cost which
may restrict the use of resources. The timeout attribute
can be used to indicate when a request becomes outdated
inside the service engine. Additionally, a service engine
can be specified as an elastic service engine or not. In
the first case, it might have many copies hosting the same
service connected to a specific load balancer. So, ’initial ’,
’copies’ and ’lb’ attributes represent respectively the orig-
inal service engine copy from which the current one has
been duplicated, the list of service engine copies which are
given by referring to their names, and a reference to the
load balancer node that is associated to the current ser-
vice. Moreover, the set of belonging requests can be given
by referring to their identifiers.

After introducing the service engines composing a SBP,
load balancers can be primary described by a name, a ref-
erence and an associated service engine (cf. Grammar 4).
A load balancer represents a service that is responsible for

7

〈ServiceEngine〉 ::= ’ServiceEngine’ ’:’ 〈SEDesc〉 ’;’

〈SEDesc〉 ::= 〈Name〉 〈Reference〉 〈OriginalCopy〉
〈Container〉 〈Complexity〉
〈NodeGroups〉 〈Capacity〉 〈Speed〉
〈Elastic〉 〈Cost〉 〈TimeOut〉
〈ServiceLoadBalancer〉 〈ServiceCopies〉
〈NodeRequests〉

〈OriginalCopy〉 ::= ’initial’ ’:’ [ServiceEngine] |
〈empty〉

〈ServiceLoadBalancer〉 ::= ’lb’ ’:’ [LoadBalancer] |
〈empty〉

〈ServiceCopies〉 ::= ’copies’ ’:’ 〈SetCopies〉 | 〈empty〉

〈SetCopies〉 ::= [ServiceEngine] ’,’ 〈SetCopies〉 | [Ser-
viceEngine]

〈NodeRequests〉 ::= ’requests’ ’:’ 〈SetRequests〉 |
〈empty〉

〈SetRequests〉 ::= [Request] ’,’ 〈SetRequest〉 | [Request]

Grammar 3: Grammar for describing ServiceEngine in SBP

receiving requests and forward them to a specific service
engine copy in order to balancer the load between copies of
the same service according to a load balancing algorithm
such as Round Robin. Moreover, a load balancer has a
capacity (or a queue) representing the maximum number
of requests that can keep in its queue before forward them
to their target service engine copy. Similar to service en-
gines, a load balancer might have a temporal information
(i.e., timeout) indicating when a request in the queue will
be considered outdated, a set of allowed groups, and a set
of requests.

〈LoadBalancer〉 ::= ’LoadBalancer’ ’:’ 〈LBDesc〉 ’;’

〈LBDesc〉 ::= 〈Name〉 〈Reference〉 〈Service〉
〈NodeGroups〉 〈Queue〉 〈TimeOut〉
〈Algorithm〉 〈NodeRequests〉

〈Service〉 ::= ’service’ ’:’ [ServiceEngine]

Grammar 4: Grammar for describing LoadBalancers in SBP

In order to transfer requests between services (either
service engines or load balancers), a router is used to take
requests from services as output and transfer them the
next services as input. For simulation purpose, a router
can be given with an expression representing a condition
on requests to be transferred by the router. As we might
have more than one copy of a service engine, we might

have also a set of routers related by equivalent relation
connected to the copies. So, in the router description, a
SBP holder can identify the initial router element, from
which the other copies are copied from, by referring to the
name of the router. Moreover, the set of router copies
can be introduced by referring to their name as a list.
the formal grammar for defining routers is given in the
Grammar 5.

〈Router〉 ::= ’router’ ’:’ 〈RouterDesc〉 ’;’

〈RouterDesc〉 ::= 〈Name〉 〈OriginalRouter〉 〈Expression〉
〈RouterCopies〉

〈OriginalRouter〉 ::= ’initial’ ’:’ [Router] | 〈empty〉

〈RouterCopies〉 ::= ’copies’ ’:’ 〈SetRouters〉 | 〈empty〉

〈SetRouters〉 ::= [Router] ’,’ 〈SetRouter〉 | [Router]

Grammar 5: Grammar for describing process routers in SBP

Therefore, for routers to be able to do their function,
they should be connected to services via input and output
links (cf. Grammar 6). An input link connects a router to
a service (either a service engine or a load balancer) which
gives to the latter requests as input. In the other hand,
an output link connects a service to a router which takes
requests from the former as output. In order to describe
the change that is made by services on input requests, the
SBP holder can provide links with an expression which
allows to modify the characteristics of requests when they
are transferred from node to node.

〈Link〉 ::= 〈InLink〉 | 〈OutLink〉

〈InLink〉 ::= ’in’ ’:’ [Router] ’to’ [Node]
〈LinkExpression〉

〈OutLink〉 ::= ’out’ ’:’ [Node] ’to’ [Router]
〈LinkExpression〉

Grammar 6: Grammar for specifying links between nodes and routers
in SBP

A request can be characterized by a set of attributes
defining its static and dynamic aspects. The static charac-
teristics of a request are an identifier and a reference. The
same request sent by a user traverses a set of services to
attend the final result. So, some request’s characteristics
might change from service to service, such as its data size
and its belonging group (if the type of the group is data
based) which can take new values according to the output
data of one service and the input data of the next service,
and some others might change inside the service such as
the request’s age which represents the processing/waiting
time and the request’s status which defines the request’s
progress (waiting/running/finished/dead).

8

〈Request〉 ::= ’Request’ 〈id〉 ’{’ 〈RequestDesc〉 ’}’

〈RequestDesc〉 ::= 〈Reference〉 〈RequestNode〉
〈RequestGroup〉 〈RequestStatus〉
〈RequestAge〉 〈RequestExecutionTime〉
〈RequestTotalTime〉 〈RequestData〉

〈RequestNode〉 ::= ’node’ ’:’ [Node]

〈RequestGroup〉 ::= ’group’ ’:’ [Group] | 〈empty〉

〈RequestStatus〉 ::= ’status’ ’:’ 〈Status〉 | 〈empty〉

〈Status〉 ::= ’WAITING’ | ’RUNNING’ | ’FINISHED’ |
’DEAD’

Grammar 7: Grammar for defining Requests in SBP

As indicated in Grammar 7, more than one attribute
can be given to a request to indicate time information.
’age’ attribute can be given to indicate the total waiting
and processing time of the request since it has been send
to the service. ’executionTime’ attribute represents the
processing time of a request and from which the waiting
time can be concluded while ’totalTime’ attribute repre-
sents the time that has been spend by the request since
the beginning of the process.

Example 3. Listing 1 presents the description of our
SBP model presented in Example 1 using SBP language.
It presents the description of the group ’c1’ for small re-
quests. It is defined depending on the size of requests data.
In our example the size of requests data is the size of a
two-dimension matrix, cf. NxM where N is the number of
lines and M is the number of column (i.e., the length of a
sequence). The group ’c1’ is one of the groups that are as-
sociated to the service engine ’S2’. The service ’S2’ is of
time complexity O(N2×L+N×L2). As we have previously
indicated, its corresponding service engine has a capacity
6×105 (quantity of data that the service engine can pro-
cess) and can process 105 instructions per time unit and
it considers any request that has been in it for more than
2440 time units as an outdated request. In its initial state,
the service ’S2’ does not need a load balancer to balance
the incoming load. With the creation of new service copies
to serve the increasing incoming load, a load balancer will
be used. So, a load balancer named ’B2’ is specified for
the service engine ’S2’. It is characterized with a queue
indicating how many requests it can keep waiting before
forwarding them to a service copy. The requests in a load
balance can became outdated after waiting 150 time units.
A request is defined to be timed and to have data value as
a tuple (x, y).

Process MERProcess{
referenceID : ’ Mo l e cu l a rEvo lu t i onRecons t ruc t i on ’
group :

name : c1
type : REQUEST DATA
range : 10000

;
. . .

serviceEngine :
name : ’ S2 ’
complexity : ’N∗N∗L+N∗L∗L ’
groups : c1 , c2 , c3
capacity : 600000
speed : 200000
e l a s t i c : t r u e
timeout : 2440

;
loadBalancer :

name : ’B2 ’
serv ice : S2
groups : c1 , c2 , c3
queue : 10
timeout : 150

;
. . .

router : name : ’T1 ’
. . .

out : S1 to R1
in : R1 to S2

. . .
}
Request Req1 {

referenceID : ’ req1 ’
node : S2
group : c1
age : 0
executionTime : 0
totalTime : 0
data : 100 .0 , 100 .0

}
Listing 1: Example of describing the SBP Model of our MER process
using SBP language

4.2.1. SBP Core

After describing a SBP model using SBP grammar, the
script should be processed to generate its corresponding
formal model according to the chosen technique. In order
to do so, some basic functionalities are provided to the
language composing its core. This part is composed of the
three main components that can be adapted to the cho-
sen formal technique by providing a new implementation:
(1) a validator that is responsible for checking the model
structure coherence and the provided expressions correct-
ness which might be given to routers and links, (2) a scope
provider which aids users to edit their script by providing
a set of expected elements, and (3) a generator that trans-
lates a SBP script into a Petri net model according to the
described model.

5. STRATModel Language

In order to allow SBP holders to customize the eval-
uation framework to their needs, StratModel language
has been designed to allow describing elasticity models
and generating their associated elasticity controllers using
a pre-defined elasticity controller template. An elasticity

9

model defines the ground terms and functionalities that
describe the elasticity of SBPs such as the elasticity ac-
tions to be undertaken, metrics to monitor to trigger the
elasticity actions and properties to access and reconfig-
ure. Hence, it is the basis for specifying elasticity strate-
gies and constructing an elasticity controller that manages
and evaluates SBPs elasticity. An elasticity controller is
used to monitor a SBP execution and analyze its perfor-
mance by inspecting an elasticity strategy in order to ap-
ply some actions whenever needed which may reconfigure
some properties of the managed component [29]. So, the
monitoring metrics, actions, and properties are the com-
position of an elasticity model in StratModel.

A StratModel metric can be defined as a basic met-
ric, i.e., obtained directly from the monitored component
property, or a composed metric by introducing the compo-
sition expression of basic metrics. A StratModel action
is defined to make changes on a SBP model and it targets
a specific type of component, e.g., Service. StratModel
is designed relying on the specification of SBP model.

Describing elasticity model in StratModel depends on
what characteristics SBP holders want to provide to their
SBP models such as temporal information, how they want
to manage them by the generated elasticity controller, and
which type of elasticity strategies they want to specify.
Such information is required to know whether to include
or exclude some functionalities to/from the generated elas-
ticity controller.

5.1. STRATModel Grammar

The top-level of StratModel specification grammar
is given in Grammar 8 using the Backus Normal Form
(BNF). StratModel documents are composed of two
parts: (i) the elasticity model description part which de-
fines the essential elements to describe an elasticity model
and (ii) SBP transformation states which define the trans-
formations occurred on the SBP model when applying
some defined elasticity actions. In the following, we will
discuss each of the composed parts in more details.

〈ElasticityModel〉 ::= 〈ModelDescription〉 〈ProcessStates〉

〈ProcessStates〉 ::= 〈ProcessState〉 〈ProcessStates〉 |
〈empty〉

Grammar 8: General StratModel Grammar

5.1.1. Elasticity Model Description

An elasticity model in StratModel as given in Gram-
mar 9 is composed of two sets of statements, descrip-
tive and functional, encapsulated in a block defined by
ElasticityModel and identified by a name.

The user is allowed to firstly describe the general as-
pect of elasticity model such as the managed component,

the use of knowledge base and the frequency of monitor-
ing, etc. Thereafter, the functional statements can be pro-
vided to specify the essential elements for describing the
functionality of the elasticity controller implementing the
elasticity model. They are split into actions to be under-
taken, metrics to monitor to fire the elasticity actions and
properties to access and to reconfigure.

〈ModelDescription〉 ::= ’ElasticityModel ’ 〈id〉 ’{’
〈ModelStatements〉 ’}’

〈ModelStatements〉 ::= 〈GeneralDescription〉
〈ItemsDefinitions〉

〈ItemsDefinitions〉 ::= 〈ItemDefinition〉
〈ItemsDefinitions〉 | 〈empty〉

〈ItemDefintion〉 ::= 〈Action〉 | 〈Metric〉 | 〈Property〉

Grammar 9: Grammar for describing elasticity model in StratModel

Example 4. Let’s consider our elasticity model for hybrid
scaling that performs two main elasticity actions namely
’Duplication’ and ’Consolidation as described in Exam-
ple 1. We specify our SBP model written in SBP language
as the managed component. The elasticity strategies that
will be used on the latter are reactive and they do not need a
knowledge base for elasticity decisions. Listing 2 presents
a general description of the elasticity model named ’Elas-
ticityModel1’.

Elast ic i tyModel E l a s t i c i t yMod e l 1 {
referenceID : ’ E l a s t i c i t yMode l 1 ’
managedComponent : MERProcess
routing : DEFAULT
timer : t r u e
knowledgebase : f a l s e
frequency : 3
. . .

}
Listing 2: Example of describing an Elasticity Model with
StratModel

- Action : An action, as shown in Grammar 10, is de-
fined by a set of statements for describing its functionality
details and for generating its implementation mechanism.
It is defined by a name, a reference ID and a component.
The latter is used to specify on which type of elements the
action can be applied, i.e., Process, Service, Router or
Request. For example, a Routing action can be defined
for Router to allow to control the execution flow of re-
quests between SBP’s services. The keywords delay and
multiple are used to define respectively the time delay of
applying the action and whether its multiple application
is allowed.

The execution of the defined action changes the struc-
ture of the managed SBP model. It transforms the SBP

10

〈Action〉 ::= ’action ’ ’:’ 〈ActionStatements〉 ’;’

〈ActionStatements〉 ::= 〈Name〉 〈Reference〉
〈Component〉 〈Delay〉 〈Multiple〉
〈Transformation〉

〈Delay〉 ::= ’delay ’ ’:’ 〈int〉 | 〈empty〉

〈Multiple〉 ::= ’multiple ’ ’:’ 〈Boolean〉 | 〈empty〉

〈Transformation〉 ::= ’cases ’ ’:’ 〈Examples〉

〈Examples〉 ::= 〈Example〉 〈Examples〉 | 〈empty〉

〈Example〉 ::= ’apply ’ ’on ’ 〈Elements〉 ’transform ’
[ProcessState] ’to ’ [ProcessState]

Grammar 10: Grammar for describing elasticity actions in
StratModel

model from one state to another. This transformation can
be specified in StratModel as transformation cases. A
transformation case is defined by giving an example of an
initial state of the SBP model and the resulting state after
applying the action by referring to the provided process
states (cf. Grammar 13). The idea of using examples to
specify the transformation on SBP model follows the by-
example paradigm [31] which allows the software to drive
information from a set of examples specifying how things
are done or what the user expects. The most prominent
approaches for by-example paradigm are Query by-example
[32] which has been developed for querying database sys-
tems by allowing users to give examples of query results
and Programming by-example [33] that permits to create
a program from user’s actions which are recorded as re-
playable macros. These approaches allow the use of ex-
amples in some way to overcome the complexity of se-
lected problems in the field of computer science. In this
work, we argue that providing transformation examples
is more friendly for SBP holders than defining complex
formal transformations instructions. So, in StratModel,
the user is allowed to give a set of examples to describe
different cases of applying the action on specific elements.

Example 5. In the following, we describe the duplication
action of our running example. It targets service engines
components. Its execution will be delayed by 4 time units.
There are two transformation cases. The first case is when
the duplication action will be applied for the first time on
a service engine to create a new copy and a service engine
load balancer. The second case is when there already exists
more than one service copy sharing a load balancer in the
process model. The description of the action is given in
Listing 3.

Elast ic i tyModel E l a s t i c i t yMod e l 1 {
. . .

action :
name : ’ Dup l i ca te ’

referenceID : ’D’
component : Service
delay : 4
cases :

apply on ’ S2 ’ transform s t a t e 1 to s t a t e 2
apply on ’ S2 ’ transform s t a t e 3 to s t a t e 4

;
. . .

}
Listing 3: Example of describing an action with StratModel

- Metric: A metric in StratModel is identified by a
name and has a low-level reference. It is related to an en-
tity that can be a process, a service, a load balancer or a
requests. It also can be obtained for a specific group by
allowing grouping. A metric can be either a basic metric
which obtained from a low-level property or a composite
metric that is denoted by the values of other base or com-
posite metrics. For example, the metric executionTime

is a basic metric that refers to the age of a service re-
quest. When defining composite metrics, expression is
used to specify how the value is computed. Also, a met-
ric can be obtained for a specific group of requests by
indicating group as true. The specification of metrics
in StratModel is given by Grammar 11 using also the
Backus Normal Form (BNF).

〈Metric〉 ::= ’metric’ ’:’ 〈MetricStatements〉 ’;’

〈MetricStatements〉 ::= 〈Name〉 〈Reference〉 〈Entity〉
〈OnGroups〉 〈Unit〉 〈MetricExpression〉

〈Entity〉 ::= ’level’ ’:’ 〈MetricLevel〉

〈MetricLevel〉 ::= ’Service’ | ’LoadBalancer’ | ’Process’
| ’Request’

〈OnGroups〉 ::= ’group’ ’:’ 〈Boolean〉 | 〈empty〉

〈Unit〉 ::= ’unit’ ’:’ 〈string〉 | 〈empty〉

〈MetricExpression〉 ::= ’expression’ ’:’ 〈Expression〉

Grammar 11: Grammar for describing metrics in StratModel

Example 6. Listing 4 describes a metric named ’waiting-
Time’ which captures the waiting time of a request in a
service. It is the subtraction of the value of two metrics:
’processingTime’ and ’executionTime’ which refers to the
’age’ attribute of request.

Elast ic i tyModel E l a s t i c i t yMod e l 1 {
. . .
metric :

name : ’WaitingTime ’

11

l e v e l : Request
expression : execut ionTime − process ingTime

;
metric :

name : ’ executionTime ’
referenceID : ’ age ’
l e v e l : Request

;
. . .

}
Listing 4: Example of describing metrics with StratModel

- Property : In elasticity model, some actions may requires
to access or modify some low-level properties/attributes
of the managed SBP and its services. So, the user is
allowed to define those properties and whether they are
configurable or not. A property is primary defined in
StratModel by a name and a reference.

〈Property〉 ::= ’property’ ’:’ 〈PropertyStatements〉 ’;’

〈PropertyStatements〉 ::= 〈Name〉 〈Reference〉 〈Config〉

〈Config〉 ::= ’configurable’ ’:’ 〈Boolean〉

Grammar 12: Grammar for describing properties in StratModel

Example 7. As we previously indicated, there is two
properties that are accessible and reconfigurable by the du-
plication action. Listing 5 presents how they are specified
using StratModel.

Elast ic i tyModel E l a s t i c i t yMod e l 1 {
. . .
property :

name : ’ cap ’
referenceID : ’ capac i t y ’
config : t r u e

;
property :

name : ’ cat ’
referenceID : ’ groups ’
config : t r u e

;
. . .

}
Listing 5: Example of describing properties with StratModel

5.1.2. SBP transformation state definition

As previously indicated, the execution of an action
transforms the SBP model from one state to another. A
state represents the managed SBP model at timestamp t.
It is specified in a block defined by ProcessState and
identified by a name which is used to refer to the state in
the action description section (cf. Grammar 13).

Two ways are allowed to define the SBP model at times-
tamp t. The first is by describing the process and its com-
ponents using SBP language notations. So, as described

in section 4.2, the item SBPModel is composed of Pro-
cess block describing the structural representation of the
SBP model at timestamp t followed by the description of
requests contained in the SBP’s services. The block en-
capsulates the process general description, the groups of
requests allowed in the process, its services that are split
into service engines and load balancer, the routers that
connect its services, and the links between services and
routers. The second way for providing the SBP model de-
scription at timestamp t, is by indicating the URL of the
SBP petri net model encoded in the Petri Net Markup
Language (PNML).

〈ProcessState〉 ::= ’ProcessState ’ 〈id〉 ’{’
〈ProcessDefinition〉 ’}’

〈ProcessDefinition〉 ::= 〈SBPModel〉
| ’url ’ ’:’ 〈string〉

Grammar 13: Grammar for defining a SBP state in StratModel

Example 8. Listing 6 describes two states of the transfor-
mation states used to describe the mechanism of the dupli-
cation action. We focus on the service ’S2’ to show how
the states can be described in StratModel. The process
used to describe the states is our SBP model.

ProcessState s t a t e 1 {
Process Process1 {

. . .
serviceEngine :

name : ’ S2 ’
complexity : ’N∗N∗L + N∗L∗L ’
groups : c1 , c2 , c3
capacity : 600000
. . .
requests : req1 , req2 , req3

;
. . .

}
. . .

}
ProcessState s t a t e 2 {

Process Process1 {
. . .

serviceEngine :
name : ’ S2 ’
complexity : ’N∗N∗L + N∗L∗L ’
groups : c1 , c2 , c3
capacity : 600000
. . .
l b : LB S2
copies : S21
requests : req1 , req2 , req3

;
serviceEngine :

name : ’ S21 ’
i n i t i a l : S2
complexity : ’N∗N∗L + N∗L∗L ’
groups : c1
capacity : 50000
. . .
l b : LB S2

12

;
loadBalancer :

name : ’LB S2 ’
serv ice : S2

;
. . .

}
. . .

}
. . .

Listing 6: Example of describing transformation states with
StratModel

5.2. StratModel core

After describing an elasticity model using StratModel
syntax, the StratModel document should be processed to
generate its corresponding elasticity controller based on a
pre-defined template that groups the common functional-
ities of a controller. In order to achieve this, StratModel
language is provided with a set of functionalities construct-
ing its core which includes: (1) a validator to check the co-
herence of the provided elements, (2) a scope provider, and
(3) a generator that uses a pre-defined controller template
grouping the common functionalities of a controller.

Usually, a controller is represented by a control loop
to provide autonomic management which gives the sys-
tem the ability to manage its resources automatically and
dynamically whenever needed. This loop consists in (i)
harvesting monitoring data, (ii) analyzing them using (op-
tionally) a knowledge base and (iii) generating reconfig-
uration actions to correct violation (self-healing and self-
protecting) or to target a new state of the system (self-
configuring and self-optimizing) [34].

The pre-defined template as shown in Fig. 4 is mod-
eled using high-level petri nets [30] to allow the formal
evaluation of elasticity strategies on a SBP model [29]. It
represents the basic construction of elasticity controllers
on which the generation is based. It contains a central
place BP of type net system that represents the managed
component and surrounded with a set of transitions repre-
senting the actions to be performed on a SBP model (token
in the place BP). The Monitor transition is used to trigger
the monitoring of the SBP. It is guarded with a delay rep-
resenting the frequency of monitoring. For example, if the
Monitor transition is guarded with value 3, it means that
there is three cycles between two successive monitoring ac-
tions. The firing of the transition adds new metrics values
to the place KB representing the used knowledge base in
which the history of monitoring metrics are stored. The
Check transition is used to inspect an elasticity strategy
and to check for QoS violations. It can optionally use in-
formation from the knowledge base component (i.e., place
KB) according to the defined elasticity model. The firing
of the Check transition generates a set of actions to be
applied according the used strategy and locks the entities
on which the actions will be performed. The generated ac-
tions are stored in the place Actions. The Inv transition
is used to introduce new requests to the SBP model from

Figure 4: Elasticity Controller Petri Net Model Template

the place Seq which stores the sequence of requests arrival.
According to the description of the elasticity model, two
other transitions are optionally used from the template.
The first one is the Routing transition which is responsi-
ble for routing requests between services in the SBP model.
It can be omitted from the template in order to allow the
user to use its customized routing action. The second one
is the Timer transition which can be used and included
in the template if the SBP model includes temporal in-
formation. It is used to increment the clocks in the SBP
model.

Given an elasticity model, the elasticity controller petri
net model is generated by enriching the pre-defined tem-
plate with new transitions for the defined actions. Each
action is translated to a transition where the name of the
transition is the name of the action. It can be associated
with a time delay of applying the action. The firing of
the transition executes the action on the SBP model if the
place named ’Actions’ contains some actions (tokens) that
can be consumed by the transition.

Example 9. Let’s take the elasticity system described in
Example 1. The elasticity model performs two main ac-
tions namely Duplicate and Consolidate. So, the default
routing mechanisms is used by the generated controller.
The elasticity strategies that will be used on the latter are
reactive and they do not need a knowledge base for elas-
ticity decisions. Fig. 5 illustrates the generated elasticity
controller petri net model. We added two transitions to the
template named Duplicate and Consolidate correspond-
ing respectively to the action ’Duplicate’ and the action
’Consolidate’ in the elasticity model. Since the used SBP
model contains temporal information, the Timer transi-
tion is allowed in the final model. The elasticity model
also specifies that the default routing mechanism will be
used and there is no need for a knowledge base in the an-
alyzing step (i.e., Check transition).

13

Figure 5: Example of a generated elasticity controller Petri Net
Model

6. STRAT Language

Elasticity Strategy Description Language (Strat for
short) [26] has been proposed as a rule-based Domain Spe-
cific Language for specifying strategies governing SBP elas-
ticity. It allows to specify QoS requirements of a SBP at
different granularity levels (i.e., process, service, and in-
stance level) with taking into consideration the fundamen-
tal characteristics of SBP. Strat is proposed based on a
specific elasticity model that defines the actions that users
can define to manage their process, the metrics that users
can call in action’s rules and the properties that users can
access and reconfigure. In order to adapt the language to
different elasticity models, we link Strat to StratModel
that gives the description of the elasticity model that the
Strat language will be based on. So, a StratModel
script is required from the SBP holders before defining
elasticity strategies to adapt Strat to the described elas-
ticity model.

6.1. Strat Grammar

The top-level of Strat specification grammar is given
in Grammar 14 using the Backus Normal Form (BNF). A
strategy Strat is composed of two sections encapsulated
in a block defined by Strategy (i.e., indicates the begin-
ning of the strategy) and identified by a name. The SBP
holder is allowed to separate the rules section identified by
Actions from the definition of constants sets used by the
rules like thresholds sets and time constrains. This sepa-
ration facilitates the adjustment and the maintenance of
strategy’s code. The latter is an optional section and is
identified by Sets.

The Sets section as given in Grammar 15 could either
be empty or consist of several constants sets. A set can be
defined as a bound of a quality of service metric by indicat-
ing the represented metric, which refers to a metric defined
in the provided elasticity model, and whether it is an up-
per bound or a lower bound. It allows the specification
of the invariant requirements and characteristics of a SBP

〈ScalingPolicy〉 ::= ’Strategy’ 〈name〉 ’{’ 〈Statements〉
’}’

〈Statements〉 ::= 〈Initialization〉 〈ActionsBlock〉
| 〈ActionsBlock〉

〈Initialization〉 ::= ’Sets’ ’:’ 〈Sets〉

〈ActionsBlock〉 ::= ’Actions’ ’:’ 〈Actions〉

Grammar 14: General Strat Grammar

and its services such as the maximum and the minimum
capacity of services in a SBP, time constraint, budget for
deployment a service, etc. These invariant can be spec-
ified hierarchically from the top-level component, e.g., a
process, to its fine-granular level, e.g., a sub-group of ser-
vice’s requests. This is done by using sets of sets providing
the hierarchical construction. So, an item in a set is associ-
ated to either a value or another set specializing the item.
The term Default is used in the latter case to provide the
requirement (or characteristic) of the item in its top-level.
Listing 7 presents an example of specifying the maximum
execution time for two elastic services s2 and s4 accord-
ing to their request groups c1 and c2. This specification
allows the SBP holder to define elasticity action rules that
incorporate the characteristic of the processing requests
into the decision making. We are currently working on
providing a formal model of SBP elasticity that allows the
distinguishing of services requests by their characteristics.

〈Sets〉 ::= 〈Set〉 ’;’ 〈Sets〉 | 〈empty〉

〈Set〉 ::= 〈id〉 ’=’ ’{’ 〈Items〉 ’}’ 〈QoS 〉

〈QoS 〉 ::= ’as’ 〈Bound〉 [StratModel::Metric] |
〈empty〉

〈Bound〉 ::= ’upper bound qos’ |
’lower bound qos’

〈Items〉 ::= 〈Item〉 | 〈Item〉 ’,’ 〈Items〉

〈Item〉 ::= 〈id〉 ’=’ 〈value〉
| 〈id〉 ’:’ ’{’ 〈Items〉 ’}’ ’Default’ 〈value〉

Grammar 15: Grammar of defining Sets in Strat

Strategy . . . {
Sets :

max ex = { s2 :{ c1 =65, c2=120} Defau l t 70 ,
s4 :{ c1 =25, c2=75} Defau l t 30}

. . .
Actions :

. . .
}
Listing 7: Example of defined maximum execution time Set with
Strat

14

〈Actions〉 ::= 〈Action〉 ’:’ 〈Rules〉 ’.’
| 〈Action〉 ’:’ 〈Rules〉 ’.’ 〈Actions〉

〈Rules〉 ::= 〈Rule〉 | 〈Rule〉 ’;’ 〈Rules〉

〈Rule〉 ::= 〈Condition〉 〈Operator〉 〈Condition〉
| 〈Condition〉

〈Action〉 ::= [StratModel::Action] ’(’ 〈id〉 〈Copies〉
〈Configuration〉 ’)’ 〈Multiple〉

〈Configuration〉 ::= ’,’ ’[’ 〈ConfigItem〉 〈ConfigItems〉 ’]’
| 〈empty〉

〈ConfigItems〉 ::= ’,’ 〈ConfigItem〉 〈ConfigItems〉 |
〈empty〉

〈ConfigItem〉 ::= [StratModel::Property] 〈ConfigOps〉
〈ItemValue〉

〈Multiple〉 ::= ’by’ 〈int〉 | 〈empty〉

〈Copies〉 ::= ’,’ 〈id〉 〈Copies〉
| 〈empty〉

Grammar 16: Grammar of specifying Actions and their Rules in
Strat

Under the Actions section, elasticity mechanisms could
be provided by setting a set of rules grouped by their in-
tended elasticity action as shown in Grammar 16. The
actions allowed in Strat are the ones defined in the given
StratModel script. So, by changing the provided script,
the actions allowed in Strat change as well. Moreover, we
provide the grammar with a syntactic validator and scope
provider modules to adapt actions parameters according
to their definitions in the used elasticity model by dynam-
ically activate and deactivate parts of syntactic definition
of Action. The parameters of an action are: (1) the ele-
ments on which the action will be applied, (2) the resulting
configuration performed by the action, and (3) the multi-
plicity of applying the action. The first two parameters
are recognized from the defined cases of the action while
the multiplicity of the action is allowed if the action is de-
fined as multiple. The configurable properties used in the
second parameter are referred to the properties defined in
StratModel as configurable.

Each provided action might have one or more rules or-
dered according to their priority. This means that for a
specific action the first provided rule is the most priority
one from all the action’s rules, thereafter the next one is
the second most priority and so on. A rule in Strat is
composed of a set of conditions connected by logical oper-
ators (i.e., and/or).

Conditions are the reflection of system’s state at a cer-
tain point of time. They are split into boolean (i.e.,
true/false), boolean function, iteration, comparison,

negation, time-based condition, or another rule. The time-
based condition allows the execution of an action after
some period of time or after the persistence of system’s
state for some period using for to specify that period,
e.g., the rule ”Duplicate(s): true for 60 min” schedules
a duplication of each elastic service s in every ”60 min”.
Unlike existing languages in the literature for controlling
elasticity, we incorporate the concept of iteration into the
definition of Strat in order to get a global view of the sys-
tem’s state. For example, to be able to determine the state
of a service at a given time we have to check the state of all
its copies so we get a global perspective instead of a local
one (i.e., for only one service’s copy). To do so, foreach
and exists operators are used to express respectively ’∀’
and ’∃’ symbols of the first-order logic. The Sequence ele-
ment of an iteration represents either a function returning
a list or a constant list. The specification of conditions
in Strat is given by Grammar 17 using also the Backus
Normal Form (BNF).

〈Condition〉 ::= 〈Boolean〉
| 〈Function〉
| 〈Iteration〉
| 〈Comparison〉
| 〈Condition〉 ’for’ 〈value〉
| ’not’ 〈Condition〉
| ’(’ 〈Rule〉 ’)’

〈Comparison〉 ::= 〈Operand〉 〈Ops〉 〈Operand〉

〈Iteration〉 ::= ’foreach’ 〈name〉 ’in’ 〈Sequence〉 ’:’
〈Condition〉

| ’exists’ 〈name〉 ’in’ 〈Sequence〉 ’:’
〈Condition〉

〈Sequence〉 ::= 〈Function〉 | 〈List〉

Grammar 17: Grammar for Conditions in Strat

Example 10. In Listing 8, we describe how the strategy
used in our running example (cf., Example 1) can be de-
fined using our Strat language. We indicate that the set
’max t’ contains the QoS thresholds for each service and
group which is associated to the metric ’executionT ime’
defined in the elasticity model ’ElasticityModel1’. The
Duplicate action is provided to allow to create a new copy
for a specific group with a different capacity if the requests
of that group with waiting status has been waiting for a
certain amount of time. The waiting time thresholds are
given in a set named ’max w’.

Strategy S t r a t e g y1 {
Sets :

max t = {S1 :{ c1=12, . . . } Default 195 , . . . }
as upper bound qos execut ionTime

min t = {S1 = 1 , . . . }
. . .

Actions :

15

Duplicate (s , [ca t=’c3 ’ , cap+=600000]) :
STRAT. has group (s , ’ c3 ’) and
(ex i s t s req in STRAT. wa i t i n gReque s t s (s , ’ c3 ’) :

wait ingTime (req) >= max w [s] [’ c3 ’]) and
foreach s s in STRAT. cop i e s (s) :

(ex i s t s req2 in STRAT. wa i t i n gReque s t s (ss , ’ c3 ’) :
wait ingTime (req2) >= max w [s] [’ c3 ’]) .

. . .
}

Listing 8: Describing an elasticity strategy using Strat

6.2. Strat Core

It groups the basic functionalities of Strat which in-
clude: (1) a validator to check the coherence of the given
rules, (2) a scope provider, and (3) a generator that pro-
cesses the Strat scripts and generate their corresponding
output.

7. StratSim language

StratSim is a simulation domain-specific language for
specifying simulation properties/elements in a declarative
manner and generating a simulator launcher. StratSim
document is composed of a set of (property, value) pairs
that represents the parameters that customize the simula-
tor to perform the wanted simulations.

〈Simulation〉 ::= 〈ElasticityModel〉 〈Items〉 〈Invocation〉
〈OutputPath〉

〈ElasticityModel〉 ::= ’elasticityModel’ ’:’
[StratModel::ElasticityModel]

〈Items〉 ::= 〈Item〉 〈Items〉 | 〈empty〉

〈Item〉 ::= 〈Process〉 | 〈Strategy〉 | 〈UsageBehavior〉

〈Process〉 ::= ’process’ ’:’ [SBP::SBPModel]

〈Strategy〉 ::= ’strategy’ ’:’ [Strat::ScalingPolicy]

〈UsageBehavior〉 ::= ’workload’ ’:’ 〈string〉 〈Values〉

〈Invocation〉 ::= ’frequency’ ’:’ 〈int〉
| 〈empty〉

〈OutputPath〉 ::= ’output’ ’:’ 〈string〉

Grammar 18: General StratSim Grammar

As described in the Grammar 18, SBP holders have to
provide the elasticity model on which the simulations will
be based on, by referring to the existing elasticity model.
Along this the elasticity model, they can specify a set of
items composed of processes defined using SBP language,
Strat strategies and workloads that represent different
configuration of specifying the arrival law of process enact-
ment requests. These items indicate to the simulator the

series of simulations that have to be performed. Addition-
ally, SBP holders can optionally indicate the frequency of
process invocations which represents the distance between
two process invocations. Finally, the ’output’ property is
used to specify the path in which the results will be saved.

Example 11. Listing 9 presents an example of simula-
tion script writen in StratSim for evaluating the elastic-
ity strategy ’Strategy1’ on the SBP model ’MERProcess’
using the elasticity model ’ElasticityModel1’.

e las t i c i t yMode l : E l a s t i c i t yMod e l 1
process : MERProcess
s t ra tegy : S t r a t e g y1
workload : ’ . . . g en e r a t o r s . hpoisson ’ 4 100
frequency : 12
output : ’ path ’

Listing 9: Example of simulation scenario with StratSim

8. Implementation and evaluation

We present in this section an overview of the implemen-
tation of StratFram framework. We also provide insights
on its use through two evaluation scenarios.

8.1. Implementation

The StratFram framework1 is an eclipse-based frame-
work. It is designed and implemented on two parts: (1)
the StratFram languages part and (2) the StratFram
functions part.

The first part is developed using Xtext2 an eclipse-
based development framework for creating DSLs. Each
designed language in StratFram has its editor which pro-
vides user with code completion, syntax highlighting, auto-
mated parsing and quick fixes functionalities that facilities
the edition of scripts. In addition to these functionalities,
we provided each language with a scope provider that is
customized according to the semantics of the language,
along with a validator that is implemented to perform ad-
ditional constraint checks.

In the current implementation of StratFram, the sec-
ond part of the framework is composed of a set of functions
and classes designed and implemented based on SNAKES
toolkit [35] a Python library that provides all the necessary
to define and execute many sorts of Petri nets, in particu-
lar algebras of Petri nets. The functions and classes imple-
mented in this part provide mainly the common function-
alities of StratFram that manipulate SBP models and
are triggered by the generated elasticity controller. A set
of functions are implemented as pre-defined functions for
Strat language that can be used in a strategy.

1StratFram framework and the evaluation projects used in this
paper can be found in the following link: https://github.com/

AichaBenJrad/STRATFram
2https://eclipse.org/Xtext/

16

SBP |Services| |AND| |XOR|
1 3 0 0
2 3 0 1
3 4 1 0
4 5 1 3
5 8 1 1

Table 1: Evaluation SBP models

8.2. Evaluation

In order to validate our framework, we present in this
section two evaluation scenarios: the first one focuses on
simulating the use of a strategy on publicly available SBPs
using the same elasticity model, while the second one con-
sists in two use cases for two different elasticity models
using a SBP model for molecular evolution construction
in which different elasticity strategies are evaluated and
compared. Thereafter, we describe the preliminary results.

8.2.1. 1st Evaluation Scenario

In this evaluation scenario, we choose to evaluate the
elasticity of a set of publicly available process models se-
lected from the SAP reference model [36], using an elastic-
ity model described according to the elasticity controller
used in [37]. The SAP reference model has been widely
used in many research papers [38]. It contains 205 busi-
ness process models. A node in a process model can be a
function/service, an event or a gateway. In order to use
the available process models in SAP reference model, we
transformed the models to SBP models by eliminating the
events and their connections and focusing on services/-
functions. From the transformed models, we selected a set
of 5 exemplary SBP models which feature different com-
plexity degrees in terms of business process patterns. Ta-
ble 1 shows the characteristics of each selected SBP mod-
els in terms of number of services in the SBP, number of
AND-blocks and number of XOR-blocks. Fig. 6 illustrates
two SBP models from the selected set of SBPs. The first
model, named SBP No. 3, contains 4 services and one
AND-block. The second model, named SBP No. 5 con-
tains 8 services and one XOR-block in which one branch
leads to an AND-block.

For each service in the SBP models, we associate a ca-
pacity value randomly generated that indicates the maxi-
mum number of requests that can be handled by the ser-
vice. So, in order to evaluate the elasticity of the SBP
models, we choose to describe an elasticity model for the
elasticity controller proposed in [37] which has been pro-
posed for stateless SBP models and performs the follow-
ing elasticity actions: (1) a Routing action which con-
trols the way a load of a service is routed over the set
of its copies, (2) a Duplicate action which creates a new
exact copy of an overloaded service in order to meet its
workload increase and (3) a Consolidate action which re-
leases an unnecessary copy of a service in order to meet its

(a)

(b)

Figure 6: BPMN models of (a) the SBP No. 3 (top) and (b) the
SBP No. 5

workload decrease. Along with these actions, we specify a
’capacityUtilization’ metric that provides the number of
requests in a given service. In this evaluation scenario, we
choose to define elasticity strategies for our SBP models
that share the same set of rules while changing the defined
threshold sets which have been specified according to the
generated capacity values.

The strategy is defined to scale up or down the number
of copies according to the threshold of each service. So, the
duplication action for a specific service s is triggered when
its workload (determined by the ’capacityUtilization’
metric) as well as the workload of all its copies reached its
QoS threshold in the set max represented by the metric
’capacityUtilization’. Otherwise, in case a service copy cp
doesn’t contain any request and the workload of the service
s is below its minimum threshold defined in the set min,
a consolidation action is triggered by releasing the service
copy cp from the set of copies of s. The Routing action is
defined to route a request if the router t does not exceed
the capacity of its post-services. It is triggered when nei-
ther of the previous actions are allowed. Fig. 7 shows the
described elasticity model and the used elasticity strategy.
We use in this experiment the Poisson distribution for dy-
namically generating the sequence of requests arrival. We
set the mean of Poisson distribution to 2;

By this scenario, we show how the same elasticity model
and strategy can be reused for different SBP models with-
out making any changes as long as the logic and the re-
quirements are the same. The only change made in the
strategy is the values in the defined sets which depend on
the services in the managed process.

8.2.2. 2nd Evaluation Scenario

Using StratFram interface, we create two projects
where in each one we create an elasticity model using
StratModel editor, a SBP model using SBP editor, three
elasticity strategies using Strat editor, and a simulator
script using StratSim editor. In both projects, we pro-

17

Figure 7: Elasticity model and strategy of the 1st Evaluation Scenario

vide the SBP model for molecular evolution reconstruction
(MER) described in Fig. 2 which is composed of eight ser-
vices and six service out of eight are defined as elastic. We
assume that each elastic service engine is provided with
a maximum response time thresholds (execution time) de-
pending on request groups as their required QoS given with
the elasticity strategies. Above the maximum threshold,
the QoS would no longer be guaranteed. We used the fol-
lowing QoS requirement in each elasticity strategy defined
in the projects:

• Max t = {S1:{c1=12,c2=102,c3=202},
S2:{c1=10,c2=500,c3=1995},
S5:{c1=4,c2=255,c3=1005},
S6.1:{c1=4,c2=130,c3=1005},
S6.2:{c1=4,c2=130,c3=1005},
S7:{c1=100,c2=1005,c3=2005}}

1. Evaluation project 1: Along with the SBP model,
this project is composed of the following elements :

(a) The elasticity model on which SPEEDL language
[20] is based is composed of four main actions:
(1) Request scheduling that represents the map-
ping of a request to the next service engine in the
process, (2) Request migration which re-maps an
already existing request to another service engine
copy, (3) scale-up that adds a new service engine
copy, and (4) scale-down that remove unused ser-
vice engine copy. With the set of actions, we
define in this elasticity model ’executionT ime’
metric that provides the age (execution time) of

a given request. Fig. 8 illustrates the elastic-
ity model script and its generated controller and
actions implementation.

(b) A strategy named StrategyResponseTime that
defines rules for scaling-up, scaling-down, and
scheduling of request. In this strategy, the condi-
tions of elasticity actions do not consider the dis-
tinguishing between services requests and their
different QoS requirements. So, we define a fixed
maximum response time threshold for each elas-
tic service engine regardless of request groups as
an elasticity indicator. The scale-up action is
triggered when the response time of at least one
service request in each service engine copy has
reached the maximum response time threshold.
Otherwise, if the consumed capacity of a service
engine copy is equal to 0 and the response time
of the service is below its minimum threshold,
a scale-down action is triggered by releasing the
service engine copy.

(c) A strategy named StrategyWithMigration

that defines rules for scaling-up, scaling-down,
scheduling of requests, and migrating of requests.
In this strategy as well, the conditions of elas-
ticity actions do not consider the distinguish-
ing between services requests and their different
QoS requirements. So, we use the same defined
fixed maximum response time threshold. This
strategies provides a rule for migration action
in addition to the rules defined in the strategy
StrategyResponseTime.

18

Figure 8: SPEEDL elasticity model and its generated controller and actions

Figure 9: Elasticity strategies and simulation script for Evaluating project 1

19

Figure 10: Jrad et al. elasticity model and its generated controller and actions

Figure 11: Elasticity strategies and simulation script for Evaluating project 2

20

(d) A strategy named StrategyWithMigrationGP

that defines rules for scaling-up, scaling-down,
scheduling of requests, and migrating of requests.
Contrary to the previous strategies, this strat-
egy uses the provided QoS requirement as an
elasticity indicator to scale-up the service en-
gine while uses the same rules as in the strategy
StrategyWithMigration for the other actions.

(e) A simulation script that specifies that the three
provided strategies should be evaluated and com-
pared on the SBP model using the elasticity
controller generated from the SPEEDL elasticity
model and the usage behavior. Fig. 9 illustrates
the defined strategies and the simulation script.
We use the Poisson distribution for dynamically
generating the sequence of requests arrival. We
set the mean of Poisson distribution to 4;

2. Evaluation project 2: Along with the SBP model,
this project is composed of the following elements:

(a) The elasticity model used in our previous work
[29] that performs hybrid scaling. It is composed
of three main actions: (1) duplication action that
adds a new copy of service engine with differ-
ent configuration (2) consolidation action that
removes unused service engine copy, (3) rout-
ing action which transfers request from a ser-
vice engine to the next service engine in the
process. With the set of actions, we define in
this elasticity model ’executionT ime’ metric and
’waitingT ime’ metric that provide respectively
the age (execution time) and the waiting time of
a given request. Also, we specify two properties
as re-configurable namely the property ’groups’
and the property ’capacity’. Fig. 10 illustrates
the elasticity model script and its generated con-
troller and actions implementation.

(b) A strategy named RTWithCategories that de-
fines rules for duplicate action, consolidate ac-
tion, routing action. It uses the provided QoS
requirement as an elasticity indicator to dupli-
cate the service engine and the minimum re-
sponse time thresholds an indicator to consoli-
date a service engine copy. So, the duplication
action for a specific service engine s is triggered
when the maximum response time threshold has
been reached for at least one of request groups
and the same applied for all its copies. Other-
wise, if the consumed capacity of a service engine
copy is equal to 0 and the response time of the
service is below its minimum threshold, a consol-
idate action is triggered by releasing the service
engine copy.

(c) A strategy named StrategyRTWithHybrid that
defines rules for hybrid scaling that allows to add

a new service engine copy with specific configura-
tion whenever needed. So, the duplication action
for a specific service engine is triggered depend-
ing on the request groups. It creates a new copy
of a service engine for requests under a specific
group if at least one of requests of that group ex-
ceeds the maximum response time threshold and
the same applied to all its copies. The consoli-
dation and routing rules are the same for all the
strategies defined in this project.

(d) A strategy named StrategyWTWithHybrid that
defines rules for hybrid scaling that allows to add
a new service engine copy with specific configura-
tion whenever needed based on the waiting time
of requests. So, the duplication action creates a
new copy of a service engine for requests under a
specific group if at least one of waiting requests
of that group exceeds the maximum waiting time
threshold and the same applied to all its copies.

(e) A simulation script that specifies that the three
provided strategies should be evaluated and com-
pared on the SBP model using the elasticity con-
troller generated from our elasticity model. Fig.
11 illustrates the defined strategies and the simu-
lation script. We use the Poisson distribution for
dynamically generating the sequence of requests
arrival. We set the mean of Poisson distribution
to 4;

8.2.3. Evaluation results

In order to evaluate elasticity strategies, we have defined
some evaluation indicators that can be obtained from mon-
itoring a given SBP model. In Fig. 12 and Fig. 13, we
compare the amount of used capacity to the total provided
capacity over time for a given service engine. The used ca-
pacity is computed by summing up the consumed capacity
in each copy of the service engine. The provided capac-
ity is computed by summing up the provided capacity for
each service engine copy per strategy. The histogram in
Fig. 14 illustrates the rate of QoS violation for each strat-
egy in the 2nd evaluation scenario. We compute at each
monitoring cycle the number of requests violated the QoS
requirement. Then, we compute the violation rate by di-
viding the number of violations by the total number of
process requests. The resulted plots for the first evalua-
tion scenario show how the same strategy logic can behave
differently for different process models even when it is used
for the same workload. We can see the perfect adjustment
of capacity for services in the SBP No. 3 and the SBP
No. 4 while for other processes the plots shows more un-
used capacity which may indicate the necessity to adapt
the strategy logic to the specificity of the process by, for
example, changing thresholds or adding some conditions.
On the other hand, the resulted plots for the second eval-
uation scenario show how each strategy is performed for

21

(a) SBP No. 1 (b) SBP No. 2 (c) SBP No. 3

(d) SBP No.4 (e) SBP No. 5

Figure 12: The evolution of capacity of a service in each SBP Models in the 1st Evaluation Scenario

(a) Service S1 using StrategyResponse-
Time with SPEEDL elasticity model

(b) Service S1 using StrategyWithMi-
gration with SPEEDL elasticity model

(c) Service S1 using StrategyWith-
MigrationGP with SPEEDL elasticity
model

(d) Service S1 using RTWithCategories
with Jrad et al. elasticity model

(e) Service S1 using StrategyRTWith-
Hybrid with Jrad et al. elasticity model

(f) Service S1 using StrategyWTWith-
Hybrid with Jrad et al. elasticity model

Figure 13: The evolution of capacity of SBP Model in the 2nd Evaluation Scenario

22

(a) (b)

Figure 14: (a) Violation rate (%) in each elastic service engine and process using different strategies of evaluation project 1 (b) Violation rate
(%) in each elastic service engine and process using different strategies of evaluation project 2

both elasticity models which allows SBP holders to not
only compare strategies but also elasticity models provid-
ing them with insight on which one of elasticity models
(or actions) is more suitable for their process and their
QoS requirements. The SBP holders can observe the elas-
ticity behavior of their processes by analyzing the differ-
ence between the allocated and the consumed capacity and
the violation rate of each strategy for different elasticity
model. This analyses allows to make decision on adjusting
the defined thresholds or changing some conditions in the
elasticity strategy.

9. Conclusion

In this paper, we presented a framework for describing
and evaluating elasticity strategies for service-based busi-
ness processes, called StratFram. StratFram enables
SBP holders through a set of editors for different DSLs
to define their proper elastic systems by providing their
proper elasticity model along with their SBP models and
strategies. It provides SBP holders with a set of languages
that facilitate the description and the evaluation of elas-
ticity strategies that can be based on different elasticity
models. It has been designed in a way to separate the de-
scription part from the functional part of the framework.
The description part which represented by StratFram
languages is designed to conceal the complexity and the
type of underlying techniques and systems used for the
evaluation which makes the framework extensible to other
techniques and systems without affecting the users interac-
tion with the framework and the previously defined scripts.

As future, we aim to extend StratFram by providing
other implementations for the functional part in order to
SBP holders to evaluation their strategies not only using
formal method such as petri nets but to simulate and an-
alyze their performance using a business process engine
such as Activiti3 or evaluating them in real cloud envi-

3https://www.activiti.org/

ronments as well using Open Cloud Computing Interface
(OCCI) [39]. Moreover, we aim to provide our framework
with a domain-specific model checker that considers the
specificity of elastic SBPs.

References

[1] P. M. Mell, T. Grance, The nist definition of cloud comput-
ing, Tech. rep., National Institute of Standards & Technology,
Gaithersburg, MD, United States (2011).

[2] IDG, Idg enterprise cloud computing study 2014,
http://www.idgenterprise.com/report/idg-enterprise-cloud-
computing-study-2014 (2014).

[3] N. R. Herbst, S. Kounev, R. Reussner, Elasticity in cloud com-
puting: What it is, and what it is not, in: ICAC, 2013, pp.
23–27.

[4] G. Copil, D. Trihinas, H. L. Truong, D. Moldovan, G. Pallis,
S. Dustdar, M. D. Dikaiakos, ADVISE - A framework for eval-
uating cloud service elasticity behavior, in: ICSOC, 2014, pp.
275–290.

[5] S. Islam, K. Lee, A. Fekete, A. Liu, How a consumer can
measure elasticity for cloud platforms, in: Proceedings of the
3rd ACM/SPEC International Conference on Performance En-
gineering, ICPE’2012, Boston, Massachusetts, USA, 2012, pp.
85–96.

[6] Z. Zhou, W. Xu, D. Pham, C. Ji, Qos modeling and analysis for
manufacturing networks: A service framework, in: Proceedings
of the 7th IEEE International Conference on Industrial Infor-
matics, INDIN’2009, Cardiff, Wales, UK, 2009, pp. 825–830.

[7] W. Xu, Z. Zhou, D. Pham, Q. Liu, C. Ji, W. Meng, Quality of
service in manufacturing networks: a service framework and its
implementation, The International Journal of Advanced Manu-
facturing Technology 63 (9-12) (2012) 1227–1237.

[8] J. W. Kenagy, D. M. Berwick, M. F. Shore, Service quality in
health care, The Journal of the American Medical Association
(JAMA) 281 (7) (1999) 661–665.

[9] P. Ray, G. Weerakkody, Quality of service management in
health care organizations: a case study, in: Proceedings of the
12th IEEE Symposium on Computer-Based Medical Systems,
CBMS’99, Stamford, CT, USA, 1999, pp. 80–85.

[10] A. Aktas, S. Cebi, I. Temiz, A new evaluation model for service
quality of health care systems based on ahp and information
axiom, Journal of Intelligent and Fuzzy Systems 28 (3) (2015)
1009–1021.

[11] K., Q. Wang, J. Hur, K.-J. Park, L. Sha, Medical-grade qual-
ity of service for real-time mobile healthcare, Computer 48 (2)
(2015) 41–49.

23

[12] L. Liu, C. PU, K. Schwan, J. Walpole, Infofilter: Supporting
quality of service for fresh information delivery, New Generation
Computing.

[13] T. Smith, Quality of service requirements for system wide infor-
mation management (swim), in: Proceedings of the 24th Digital
Avionics Systems Conference, Vol. 1 of DASC’2005, Hyatt Re-
gency Crystal City, Washington, D.C., 2005, pp. 1–8.

[14] A. Garcia-Recuero, S. Esteves, L. Veiga, Towards quality-of-
service driven consistency for big data management, Interna-
tional Journal of Big Data Intelligence 1 (1-2) (2014) 74–88.

[15] R. Sandhu, S. K. Sood, Scheduling of big data applications on
distributed cloud based on qos parameters, Cluster Computing
18 (2) (2015) 817–828.

[16] B. Suleiman, S. Venugopal, Modeling performance of elasticity
rules for cloud-based applications, in: EDOC, 2013, pp. 201–
206.

[17] A. Naskos, E. Stachtiari, P. Katsaros, A. Gounaris, Probabilis-
tic model checking at runtime for the provisioning of cloud re-
sources, in: RV, 2015, pp. 275–280.

[18] G. Copil, D. Moldovan, T. Hong-Linh, S. Dustdar, Sybl: An ex-
tensible language for controlling elasticity in cloud applications,
in: CCGRID, 2013, pp. 112–119.

[19] K. Kritikos, J. Domaschka, A. Rossini, SRL: A scalability rule
language for multi-cloud environments, in: Proceedings of the
IEEE 6th International Conference on Cloud Computing Tech-
nology and Science, CloudCom’2014, Singapore, 2014, pp. 1–9.

[20] R. Zabolotnyi, P. Leitner, S. Schulte, S. Dustdar, Speedl - a
declarative event-based language for cloud scaling definition, in:
IEEEServices, 2015.

[21] A. Ali-Eldin, J. Tordsson, E. Elmroth, An adaptive hybrid elas-
ticity controller for cloud infrastructures, in: NOMS, 2012, pp.
204–21.

[22] Y. Liu, D. Gureya, A. Al-Shishtawy, V. Vlassov, Onlineelast-
man: Self-trained proactive elasticity manager for cloud-based
storage services, in: ICCAC, 2016.

[23] S. Farokhi, P. Jamshidi, E. B. Lakew, I. Brandic, E. Elmroth, A
hybrid cloud controller for vertical memory elasticity: A control-
theoretic approach, Future Generation Computer Systems 65
(2016) 57–72.

[24] G. Molt, M. Caballer, C. de Alfonso, Automatic memory-based
vertical elasticity and oversubscription on cloud platforms, Fu-
ture Generation Computer Systems 56 (2016) 1–10.

[25] A. B. Jrad, S. Bhiri, S. Tata, Stratmodel: Elasticity model de-
scription language for evaluating elasticity strategies for busi-
ness processes, in: On the Move to Meaningful Internet Sys-
tems. OTM 2017 Conferences: Confederated International Con-
ferences: CoopIS, C&TC, and ODBASE, Rhodes, Greece, 2017,
pp. 448–466.

[26] A. B. Jrad, S. Bhiri, S. Tata, Description and evaluation of
elasticity strategies for business processes in the cloud, in: SCC,
2016, pp. 203–210.

[27] S. Yangui, M. Mohamed, S. Tata, S. Moalla, Scalable service
containers, in: CloudCom, 2011, pp. 348–356.

[28] D. Merkel, Docker: Lightweight linux containers for consistent
development and deployment, Linux Journal 2014 (239).

[29] A. B. Jrad, S. Bhiri, S. Tata, Data-aware modeling of elastic
processes for elasticity strategies evaluation, in: CLOUD, 2017.

[30] K. Jensen, G. Rozenberg, High-level Petri Nets: Theory and
Application, Springer-Verlag, 1991.

[31] A. Cypher (Ed.), Watch What I Do – Programming by Demon-
stration, MIT Press, Cambridge, MA, USA, 1993.

[32] M. M. Zloof, Query by example, in: Proceedings of National
Compute Conference, AFIPS Press, 1975, pp. 431–438.

[33] H. Lieberman (Ed.), Your Wish is My Command: Programming
by Example, organ Kaufmann Publishers Inc., 2001.

[34] B. Jacob, R. Lanyon-Hogg, D. K. Nadgir, A. F. Yassin, A Prac-
tical Guide to the IBM Autonomic Computing Toolkit, IBM
redbooks, IBM Corporation, International Technical Support
Organization, 2004.

[35] F. Pommereau, SNAKES: A flexible high-level petri nets library
(tool paper), in: Proceedings of the 36th International Confer-

ence on Application and Theory of Petri Nets and Concurrency,
Brussels, Belgium, 2015, pp. 254–265.

[36] SAP R/3 Business Blueprint: Understanding the Business Pro-
cess Reference Model, Inc. Prentice-Hall, 1998.

[37] M. Amziani, T. Melliti, S. Tata, Formal modeling and evalua-
tion of stateful service-based business process elasticity in the
cloud, in: CoopIS, 2013, pp. 21–38.

[38] J. Mendling, H. Verbeek, B. van Dongen, W. van der Aalst,
G. Neumann, Detection and prediction of errors in epcs of the
sap reference model, Data & Knowledge Engineering 64 (1)
(2008) 312–329.

[39] R. Nyren, A. Edmonds, A. Papaspyrou, , T. Metsch, Open cloud
computing interface - core, Technical report, Open Grid Forum
(OGF) (2011).

24

