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Locally self-avoiding eulerian tours

Tien-Nam Le∗

Laboratoire d’Informatique du Parallélisme
École Normale Supérieure de Lyon

69364 Lyon Cedex 07, France

Abstract

It was independently conjectured by Häggkvist in 1989 and Kriesell in 2011 that

given a positive integer `, every simple eulerian graph with high minimum degree

(depending on `) admits an eulerian tour such that every segment of length at

most ` of the tour is a path. Bensmail, Harutyunyan, Le and Thomassé recently

verified the conjecture for 4-edge-connected eulerian graphs. Building on that

proof, we prove here the full statement of the conjecture. This implies a variant

of the path case of Barát-Thomassen conjecture that any simple eulerian graph

with high minimum degree can be decomposed into paths of fixed length and

possibly an additional shorter path.

Keywords: eulerian graphs, path-decomposition, Barát–Thomassen conjecture

1. Introduction

Unless stated otherwise, graphs considered here are simple and undirected,

while multigraphs may contain multiple edges and loops, where each loop con-

tributes two to the degree of the incident vertex.

Given a multigraph G, a walk of G is a sequence of alternating vertices and5

edges v0, e1, v1, ..., v`−1, e`, v` of G where each edge ei = {vi−1vi}. If v0 = v`,

the walk is called a tour. A tour of G is Eulerian if every edge of G appears in

the tour exactly once. Given an Eulerian tour E of G, for every positive integer
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`, a walk v0, e1, v1, ..., v`−1, e`, v` where any ei, ei+1 are consecutive edges of E

is called a segment of length ` of E . We say that E is `-step self-avoiding if10

every segment of length at most ` of E is a path, which is equivalent to that E

“contains” no cycle of length at most `.

Häggkvist ([7], Problem 3.3) and Kriesell [9] independently conjectured that

high minimum degree is a sufficient condition for the existence of an `-step

self-avoiding Eulerian tour.15

Conjecture 1.1 ([7, 9]). For every positive integer `, there is an integer d`

such that every Eulerian graph G with minimum degree at least d` admits an

`-step self-avoiding Eulerian tour.

Häggkvist also asked to identify the minimum of d` if it exists. For the case

` = 3, i.e. triangle-free Eulerian tours, Adelgren [1] characterized all graphs with20

maximum degree at most 4 which admit a triangle-free Eulerian tour before

Oksimets [12] proved Conjecture 1.1 for ` = 3 with a sharp bound d3 = 6.

Bensmail, Harutyunyan, Le and Thomassé recently verified Conjecture 1.1 for

4-edge-connected Eulerian graphs.

Theorem 1.2 ([4], Theorem 5.1). For every positive integer `, there is an25

integer d′` such that every 4-edge-connected Eulerian graph G with minimum

degree at least d′` admits an `-step self-avoiding Eulerian tour.

In this paper we verify Conjecture 1.1.

Theorem 1.3. For every positive integer `, there is an integer d` such that

every Eulerian graph G with minimum degree at least d` admits an `-step self-30

avoiding Eulerian tour.

Theorem 1.3 gives an immediate corollary on edge-decomposition of graphs.

An edge-decomposition of a graph G consists of edge-disjoint subgraphs whose

union is G. Barát and Thomassen in 2006 considered edge-decompositions of

graphs into copies of a given tree and conjectured that, together with the nec-35

essary condition that |E(H)| divides |E(G)|, large edge-connectivity may be an

additional sufficient condition.
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Conjecture 1.4 (Barát–Thomassen conjecture, [2]). For any fixed tree T , there

is an integer cT such that every cT -edge-connected graph with number of edges

divisible by |E(T )| can be decomposed into subgraphs isomorphic to T .40

Conjecture 1.4 was recently solved by Bensmail, Harutyunyan, Le, Merker and

Thomassé in [3]. For a summary of the progress towards the conjecture, we

hence refer the interested reader to that paper. Before that, the path case of

the conjecture was verified by Botler, Mota, Oshiro and Wakabayashi in [5], and

then was improved by Bensmail, Harutyunyan, Le, and Thomassé [4] that, for45

path-decompositions, high minimum degree is a sufficient condition provided

the graph is 24-edge-connected. Very recently, Klimošová and Thomassé [8]

reduced the edge-connectivity condition from 24 to 3, which is known to be

sharp (see [4]).

Returning to `-step self-avoiding Eulerian tours, by cutting the tour found50

by Theorem 1.3 into paths of length `, we obtain the following variant of the

path case of Barát–Thomassen conjecture.

Corollary 1.5. For every integer ` ≥ 2, there is an integer d` such that every

Eulerian graph with minimum degree at least d` can be decomposed into paths

of length ` and possibly an additional path of length less than `.55

Clearly, the theorems above cannot be extended to multigraphs; a multi-

graph consisting of two vertices linked by many edges is a counterexample.

However, the main tool to prove Theorem 1.3 is indeed a weak extension of

Theorem 1.2 to multigraphs. Roughly speaking, we only require the Eulerian

tour to behave well on a given simple subgraph, not necessary on the whole60

multigraph.

Theorem 1.6. For every integer `, there is an integer d` such that for every

4-edge-connected Eulerian multigraph G with minimum degree at least d` and

every simple subgraph G′ of G, the multigraph G admits an Eulerian tour in

which every segment of length at most ` and consisting of only edges of G′ is a65

path.
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This paper is organized as follows. We start by recalling some preliminary

results in Section 2. Then we use Theorem 1.6 as a black box to prove Theorem

1.3 in Section 3 before proving Theorem 1.6 in the last section.

2. Preliminaries70

In this section we present all the auxiliary results necessary for our proof of

Theorem 1.3. Given a multigraph G, let V (G) and E(G) denote its vertex and

edge sets, respectively. For any subset X of V (G), let G[X] denote the subgraph

of G induced by X. Given a vertex v of G, we denote by dG(v) the degree of v

in G. Given a subgraph H = (V, F ) of a multigraph G = (V,E), we denote by75

G\H the multigraph (V,E\F ).

We start by recalling the definition of cactus graphs. A connected loopless

multigraph G is a cactus if every edge belongs to at most one cycle. The

singleton graph is a cactus by convention. Clearly, if a cactus is Eulerian then

every edge belongs to exactly one cycle. The following is a well-known property80

of cactus graphs.

Proposition 2.1. There are at most two edge-disjoint paths between any two

distinct vertices of a cactus.

We also recall three classical results. All of them are originally stated only

for loopless multigraphs, but can be trivially generalized to multigraphs. Here85

we state their multigraph version. The first result due to de Werra (cf. [13],

Theorem 8.7), asserting that every multigraph has a balanced improper edge-

coloring.

Proposition 2.2. Let G be a multigraph and k ≥ 2 be an integer. There is an

improper edge-coloring of G with k colors such that for every vertex v and every90

pair of colors i 6= j, we have |di(v) − dj(v)| ≤ 4, where di(v) is the number of

edges of color i incident with v.

The second is a result by Nash-Williams [11] implying that every multi-

graph with high edge-connectivity admits a balanced orientation with high arc-
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connectivity. In the following, a directed multigraph D is k-arc-strong if the95

removal of any set of at most k−1 arcs leaves D strongly-connected, and d+D(v)

and d−D(v) denote the outdegree and indegree of v in D, respectively.

Proposition 2.3. Every 2k-edge-connected multigraph has an orientation D

such that D is k-arc-strong and |d−D(v)− d+D(v)| ≤ 1 for every vertex v.

The third result by Edmonds [6] expresses a condition for a directed multi-100

graph to admit many arc-disjoint rooted arborescences. In the statement, an

out-arborescence of a directed multigraph D refers to a rooted spanning tree T

of D whose arcs are oriented in such a way that the root has indegree 0, and

every other vertex has indegree 1.

Proposition 2.4. A directed multigraph D has k arc-disjoint out-arborescences105

rooted at a given vertex v if and only if for any vertex u 6= v, there are k arc-

disjoint paths from v to u.

We close this section with a result by Jackson (cf. [10], Theorem 6.3). Given

a loopless multigraph G, for every vertex v, let Ev be the set of edges incident

with v. A generalized transition system S of G is a set of functions {Sv}v∈V (G)110

with Sv : Ev → 2Ev such that e2 ∈ Sv(e1) whenever e1 ∈ Sv(e2). We say that

an Eulerian tour E is compatible with S if for any two edges e1 and e2 such that

e1 ∈ Sv(e2) for some v, then e1 and e2 are not consecutive edges of E .

Proposition 2.5. Let S be a generalized transition system of a loopless Eulerian

multigraph G such that |Sv(e)| = 0 if d(v) = 2 and |Sv(e)| ≤ d(v)/2 − 2 if115

d(v) ≥ 4 for any vertex v and any edge e incident with v. Then G admits an

Eulerian tour compatible with S.

3. Proof of Theorem 1.3

The main idea of the proof of Theorem 1.3 is as follows. We first partition

the original graph G into 4-edge-connected Eulerian “induced subgraphs”; these120

subgraphs are structurally linked by a big cactus. We then apply Theorem 1.6
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to obtain a well-behaved Eulerian tour of each subgraph, and finally connect

these tours by the cactus to get an Eulerian tour of G.

Given a multigraph G = (V,E), to contract a set of vertices X ⊂ V , we

remove all edges inside X, and then merge the vertices of X to a new vertex125

x, and each edge incident to x corresponds to an edge incident to some v ∈ X.

Note that if the sum of degrees of vertices of X is even, then the degree of x is

even.

Let G = (V,E) be an Eulerian multigraph and X be a partition of V into

non-empty sets X1, X2, ..., Xk for some positive integer k. Let MX be the loop-130

less multigraph obtained from G by contracting each Xi to a new vertex xi.

Clearly, the degree of each xi of MX is even. If k ≥ 2, we have that MX is

connected since G is connected, and hence MX is Eulerian.

Let us suppose for the moment that MX is a cactus. Thus an edge e of MX

belongs to exactly one cycle in MX . Let e′ be an edge of the same cycle and135

incident with e. We say that {e, e′} is a pair at xi, where xi is some endpoint

shared by e and e′. Note that every edge belongs to exactly one pair at each of its

endpoints, and hence belongs to exactly two pairs in total. Since each edge e of

MX corresponds to an edge of G, we may use e to denote both interchangeably.

For every pair {e, e′} at some xi, each edge has a unique endpoint in Xi, say140

u and u′ respectively. We create a new dummy edge f = uu′ associated with

the pair {e, e′} (note that f may be a loop). For every 1 ≤ i ≤ k, let Fi be

the edge set of G[Xi] and F i be the set of all dummy edges on Xi, and let

Gi = (Xi, Fi ∪ F i). We say that the multigraphs G1, ..., Gk are inherited from

X . Clearly, dGi
(v) = dG(v) for every v ∈ Xi. The following lemma asserts that145

there is a partition such that the inherited multigraphs are 4-edge-connected

and Eulerian, which are essential conditions to employ Theorem 1.6. For the

sake of clarity, we do not consider edge-connectivity of multigraphs on a single

vertex.

Lemma 3.1. Given an Eulerian multigraph G = (V,E), there exists a partition150

X of V such that MX is a cactus, and every Gi inherited from X is either a
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single vertex with loops or a 4-edge-connected Eulerian multigraph.

Proof. The proof is by induction on |V |. For the case |V | = 2, let V = {u, v}.

If G has only two edges between u and v, then X = {{u}, {v}}; otherwise,

X = {{u, v}}. The lemma holds for |V | = 2.155

For the case |V | > 2, if G is 4-edge-connected, then X = {V (G)}. Otherwise,

G contains an edge-cut of size 2, i.e. an edge-cut consisting of two edges.

Consider an edge-cut partitioning V into X1 and V ′ such that |X1| is minimum

among all possible edge-cuts of size 2. Let’s call the two edges of the cut u1v1 and

u2v2, where u1, u2 ∈ X1 and v1, v2 ∈ V ′. We create two dummy edges f = u1u2160

and f ′ = v1v2. Let F 1 = {f}, and F1 = E(G[X1]). Let G1 = (X1, F1 ∪ F 1)

and G′ = (V ′, E(G[V ′])∪{f ′}). There are at least two edge-disjoint paths in G

between any two distinct vertices of X1. If both paths contains vertices of V ′,

then the edge-cut must has size at least 4, a contradiction. Therefore there is a

path in G[X1] between any two distinct vertices of X1. Thus if |X1| > 1 then165

G1 is connected, and hence is Eulerian since the degree of every vertex of G1 is

even. Similarly, G′ is Eulerian.

Suppose that G1 contains an edge-cut of size 2 partitioning X1 into X ′1 and

X ′′1 . If u1 and u2 are in the same partition, say X ′1, then that edge-cut is also

an edge-cut of G partitioning V into X ′′1 and V ′ ∪ X ′1, which contradicts the170

minimality of |X1|. If u1 ∈ X ′1 and u2 ∈ X ′′1 then that edge-cut consists of f

and another edge, say e. Then {e, u1v1} is an edge-cut of G partitioning V into

X ′1 and V ′ ∪X ′′1 , a contradiction again. It follows that G1 contains no edge-cut

of size 2, and so is 4-edge-connected.

Applying induction hypothesis to the Eulerian multigraph G′ gives a parti-175

tion of V ′ into X ′ = {X2, ..., Xk} such that MX ′ and G2, ..., Gk inherited from

X ′ satisfy Lemma 3.1. Let xi ∈MX ′ corresponds to Xi for every 2 ≤ i ≤ k. Set

X = X ′ ∪ {X1} and construct MX as follows:

(a) If v1, v2 ∈ Gi for some i, then MX is obtained from MX ′ by adding x1

and two parallel edges x1xi, corresponding to edges u1v1 and u2v2 of G.180

Hence there is only one pair at x1: {u1v1, u2v2}, and f is its associated
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dummy edge. There is one more pair at xi in MX comparing with xi in

MX ′ : {v1u1, v2u2}, and f ′ is its associated dummy edge.

(b) Otherwise, v1 ∈ Gi and v2 ∈ Gj for some i 6= j. There must be an edge

xixj in MX ′ corresponding to f ′ in G′. We obtain MX from MX ′ by adding185

vertex x1, edge x1xi corresponding to u1v1 and edge x1xj corresponding

to u2v2 together with deleting the edge xixj corresponding to f ′. There

is only one pair at x1: {u1v1, u2v2}, and f is its associated dummy edge.

The set of pairs at xi (res. xj) of MX are identical to the set of pairs at

xi (res. xj) of MX ′ , except that v1u1 (res. v2u2) replaces f ′ in some pair190

at xi (res. at xj).

The multigraphs G2, ..., Gk inherited from X in this construction are iden-

tical to the multigraphs G2, ..., Gk inherited from X ′. By induction hypothesis,

for every i ≥ 2, if Gi has more than one vertex then it is 4-edge-connected and

Eulerian. Note that x1 has degree 2, and MX ′ is a cactus, then so is MX . This195

proves the lemma.

Given an Eulerian tour E of G and a subset X of V , a segment v1v2...vr (r ≥

3) of E is an X-boomerang if v1, vr ∈ X and v2, ..., vr−1 /∈ X. A projection of E

on X is an Eulerian tour EX obtained from E by replacing every X-boomerang,

say v1v2...vr, by a dummy edge (possibly a loop) between v1 and vr. If EX is a200

projection of E , we say E and EX are compatible.

Let G be an Eulerian multigraph and X be a partition of G together with

MX and inherited G1, ..., Gk given by Lemma 3.1. For every i, let Ei be an

arbitrary Eulerian tour of Gi.

Claim 3.2. There exists an Eulerian tour E of G compatible with all Ei. Fur-205

thermore, for every pair {e, e′} at some xi, there is an Xi-boomerang of E start-

ing and ending by e and e′.

Proof. We reuse all notations in the proof of Lemma 3.1 and proceed by in-

duction on k. The claim clearly holds for k = 1. For k > 1, recall that by

the algorithm in the proof of Lemma 3.1, the Eulerian multigraph G′ has k− 1210
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inherited multigraphs identical to G2, ..., Gk of G. Hence, by the induction hy-

pothesis applied on G′, there exists an Eulerian tour E ′ of G′ compatible with all

Ei, i ≥ 2, and for every pair {e, e′} at some xi, i ≥ 2, there is an Xi-boomerang

of E ′ starting and ending by e and e′. Note that in cases (a) and (b) of the proof

of Lemma 3.1, the only pair at x1 is {u1v1, u2v2} associated with f . Let W1 be215

the walk obtained from E1 by removing f , and E be the Eulerian tour on G ob-

tained from E ′ by replacing f ′ by the segment v1u1W1u2v2. It is straightforward

that, in both cases (a) and (b), the tour E satisfies Claim 3.2.

Let {e, e′} be a pair at some xi, and W be the Xi-boomerang of E starting

and ending by e and e′. Let W be the segment obtained from E by removing220

W .

Claim 3.3. If W visits a vertex v /∈ Xi, then W does not visit v.

Proof. Suppose that the claim was false. Let v ∈ Xj for some j 6= i. Contracting

every Xi to xi naturally yields from W and W two edge-disjoint walks WX and

WX in MX , respectively. By following WX from xi to xj and return to xi, and225

then following WX to xj , we obtain three edge-disjoint walks between xi and

xj , contrary to Proposition 2.1.

Claim 3.4. If G has minimum degree d, then whenever E leaves Xi, it takes at

least d steps to return to Xi.

Proof. The claim is equivalent to that every Xi-boomerang W has length at230

least d. Suppose that W visits vertex v /∈ Xi. By Claim 3.3, W must contains

all edges incident with v, and hence has length at least d.

We are ready to prove the main theorem.

Proof of Theorem 1.3. Let G be an Eulerian graph with minimum degree at

least d`, the constant of Theorem 1.6. There is a partition X = {X1, ..., Xk} of235

V (G) together with inherited multigraphs G1, ..., Gk satisfying Lemma 3.1.
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If Gi consists of only one vertex and some loops, let Ei be an arbitrary

Eulerian tour of Gi. Otherwise, Lemma 3.1 asserts that Gi is Eulerian, 4-edge-

connected, and dGi
(v) = dG(v) ≥ d` for any v ∈ Xi. Also note that G[Xi] is a

simple subgraph of Gi. We thus get, by Theorem 1.6, an Eulerian tour Ei of Gi240

of which every segment of length at most ` and containing only edges of G[Xi]

is a path. Claim 3.2 gives an Eulerian tour E of G compatible with all Ei.

The proof is completed by showing that every segment W of length at most `

of E is a path. Suppose that W = W1e1W2e2...et−1Wt, where each Ws (possibly

of length 0) contains only vertices of some Xis , and es is an edge between two245

distinct sets Xis and Xis+1
. By Claim 3.4, whenever E leaves some Xis , it takes

at least d` > ` steps to return to Xis , while the length of W is at most `.

Therefore Xis 6= Xir for every s 6= r. Because E is compatible with Eis , and

Ws contains only vertices of Xis , we have that Ws is a segment of Eis . Since

Ws ⊆ G[Xis ] and has length at most `, it is a path by Theorem 1.6. This means250

that W is a path, and the proof is complete.

4. Proof of Theorem 1.6

4.1. Path-collections

We first recall some notions and results in [4]. Let G = (V,E) be a loopless

multigraph. A path-collection P on G is a set of edge-disjoint paths of G. We255

denote by UP = (V,E′) the multigraph where E′ is the set of edges of paths in

P. If UP = G then P is said to be a path-decomposition of G. For convenience,

from now on, we say collection for path-collection and decomposition for path-

decomposition.

Let us denote by HP = (V,E′′) the multigraph where each edge uv ∈ E′′260

corresponds to a path between u and v in P (if P contains several paths from u

to v, we have as many edges uv ∈ E′′). The degree of a vertex v in P, denoted

dP(v), is the degree (with multiplicity) of v in HP , which is also the number of

paths in P with endpoint v.
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Two edge-disjoint paths of G sharing an endpoint v are conflicting if they

also intersect at some vertex different from v. Equivalently, we say that two

paths of P issued from the same vertex are conflicting if the corresponding

paths in UP are conflicting. In general, the paths of a collection can pairwise

intersect, and hence we would like to measure how much. For every vertex

v ∈ V , let P(v) be the set of paths in P containing v as an endpoint. The

conflict ratio of v is

confP(v) :=
maxw 6=v

∣∣{P ∈ P(v) : w ∈ P}
∣∣

dP(v)
.

We denote the conflict ratio of P by conf(P) := maxv confP(v). We always have265

conf(P) ≤ 1 since |P(v)| = dP(v).

Suppose that we have a decomposition P of an Eulerian graph G with all

paths of length at least `. Then just by concatenating the paths arbitrarily, we

obtain a decomposition of G into several circuits since G is Eulerian. If every

two consecutive paths (i.e., they are concatenated) are non-conflicting, then all270

circuits are `-step self-avoiding. Theorem 4.1 provides a low conflicting decom-

position for this purpose. In order to obtain an `-step self-avoiding Eulerian

tour, it is necessary that the process of concatenating returns a single circuit;

this is taken care by Lemma 4.2.

Theorem 4.1 ([4], Theorem 3.4). Let ` be a positive integer, and ε > 0 suffi-275

ciently small. There is an integer L`,ε such that for every graph G with minimum

degree at least L`,ε, there is a decomposition P of G satisfying:

• The length of every path of P is either ` or ` + 1.

• conf(P) ≤ 1/4(` + 10).

• (1− ε)dG(v) ≤ `dP(v) ≤ (1 + ε)dG(v) for every vertex v.280

Lemma 4.2 ([4], Lemma 4.1). Every 2-edge-connected loopless multigraph G

has a collection P such that the length of every path in P is either 1 or 2, and

HP is a subcubic tree spanning V (G).
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4.2. F -path-collections

The proof of Theorem 1.6 is partly similar to the proof in [4] of Theorem 1.2285

but more involved. The main difficulty here is that certain arguments on simple

graphs in the proof of Theorem 1.2 could not be extended to multigraphs. To

overcome these difficulties, we introduce the notions of F -paths and F -path-

collections.

Given a multigraph G = (V,E) and a subgraph G′ = (V, F ) satisfying the290

hypotheses of Theorem 1.6, the goal is to find an Eulerian tour E of G such that

every segment of E of length at most ` and consisting of only edges of F is a

path. To this end, we introduce a relaxation of path, called F -path, to depict

the characteristics of segments of the tour. Let G = (V,E) be a multigraph and

F be a subset of E. A walk W in G is called an F -path if every subwalk of W295

containing only edges of F is a path. An F -path W is covered if all edges of W

belong to F , and is uncovered otherwise. It is immediate that a covered F -path

is a path.

An F -collection P on G is a set of edge-disjoint F -paths of G. We denote

by UP = (V,E′) the multigraph where E′ is the set of edges of F -paths in P. If300

UP = G, then P is called an F -decomposition of G. We denote by HP = (V,E′′)

the multigraph where each edge (possibly a loop) uv ∈ E′′ corresponds to an

F -path between u and v in P. The degree of a vertex v in P, denoted dP(v), is

the degree (with multiplicity, and a loop contributes two) of v in HP .

Given an F -path P = ve1v1...etvt, the ray of P from v, denoted by Pv|F , is305

the longest subwalk ve1v1...esvs (possibly of length 0) of P such that e1, ..., es ∈

F . There are several remarks. First, every ray is a path. Second, each F -path

P has exactly two rays; these rays are identical to P if P is covered, and are

edge-disjoint if P is uncovered. Third, if P is a closed (obviously uncovered)

F -path from v to v, then both of its rays are from v.310

We now would like to measure the conflict between two rays. First, two rays

of the same F -path are defined as non-conflicting, even if they may intersect at

some vertex. Second, two rays Pv|F and P ′v|F (with P 6= P ′) issued from some

vertex v are conflicting if Pv|F and P ′v|F also intersect at some vertex different
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from v. For every v ∈ V , let P(v) be the set of F -paths in P containing v as an

endpoint, and P(v|F ) be the set of rays from v of F -paths in P, where a closed

F -path with endpoint v contributes two rays. We define the conflict ratio of v

in P as

confP(v|F ) :=
maxw 6=v

∣∣{Pv|F ∈ P(v|F ) : w ∈ Pv|F }
∣∣

dP(v)
.

We denote the conflict ratio of P by conf(P|F ) := maxv confP(v|F ). We always

have conf(P|F ) ≤ 1 since
∣∣P(v|F )

∣∣ = dP(v). Note that, when P is a collection,

the definitions of P(v) and conflict ratio coincide with the definitions given in

the beginning of Section 4.1.

Let us first prove an extension of Theorem 4.1 to F -decompositions. By315

saying a ray of P, we mean a ray of some F -path of P.

Lemma 4.3. Let ` be a positive integer, and ε > 0 sufficiently small. There is

an integer L′`,ε such that for every multigraph G with minimum degree at least

L′`,ε and every simple subgraph (V, F ) of G, there is an F -decomposition P of

G satisfying:320

• Every ray of P has length at most ` + 1.

• Every covered F -path of P has length at least `.

• conf(P|F ) ≤ 1/4(` + 9).

• (1− ε)dG(v) ≤ `dP(v) ≤ (1 + 2ε)dG(v) for every vertex v.

Proof. Set L′`,ε = max(L`,ε, 2`/ε), where L`,ε is the constant of Theorem 4.1.325

We call all edges of F = E\F dummy (note that a dummy edge may be a

loop). The main idea is to replace every dummy edge by a pair of edges linking

endpoints of the dummy edge to a big clique in order to obtain a simple graph

to apply Theorem 4.1. For every dummy edge e = ve,1ve,2, we create a set of

L`,ε + 1 new vertices Xe = {xe,1, ..., xe,L`,ε+1}. Let Ee = {xe,ixe,j : i 6= j} ∪330

{ve,1xe,1, ve,2xe,2}. Let G′ be the multigraph with vertex set
⋃

e∈F Xe ∪ V and

edge set E′ =
⋃

e∈F Ee∪F . It is immediate that G′ is simple and dG(v) = dG′(v)
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for every v ∈ V , and so G′ has minimum degree at least L. Therefore G′ admits

a decomposition P ′ satisfying Theorem 4.1.

For every dummy edge e and every i = 1, 2, let P ′e,i be the path of P ′335

containing ve,ixe,i. We denote by Pi,j the longest possible subwalk of P ′e,i such

that P ′e,i = ...xe,ive,iPe,i... and all vertices of Pe,i belong to V . If Pe,i reach the

end of P ′e,i, we call Pe,i an end-segment ; otherwise, we call it a middle-segment.

The reader may see here the similarity between end-segments and rays. Clearly,

if Pe,i is a middle-segment, then P ′e,i = ...xe,ive,iPe,ive′,jxe′,j ... for some dummy340

edge e′ and j ∈ {1, 2} since P ′e,i leaves V right after finishing Pe,i. Note also

that the lengths of end-segments and middle-segments are at most ` + 1 and

possibly 0.

For every dummy edge e and every i = 1, 2, we remove Xe and Ee, and

concatenate Pe,i with e at ve,i. After this process, we obtain a family of walks,345

in which each walk lies in one of the following types:

(1) An uncovered F -path P = P1e1P2...et−1Pt with dummy edges e1, ..., et−1,

end-segments P1 and Pt, and middle-segments P2, ..., Pt−1. Note that the

two end-segments are the rays of this uncovered F -path.

(2) A circuit without endpoint, consisting of middle-segments alternate with350

dummy edges but no end-segments.

Let P1 be the set of all the walks of Type (1) together with all paths of P ′

containing only vertices of V , and P2 be the set of all circuits of Type (2). Note

that P1 is an F -collection of G, and every edge of G belongs to exactly one

F -path P1 or one circuit of P2. The method of concatenating ensures that for355

every v ∈ V , the number of rays from v in P1 is equal to number of paths with

endpoint v in P ′. This gives dP1
(v) = dP′(v). Besides, each ray of P1 is the

end-segment of some path of P ′. Therefore two rays of P1 are conflicting only

if their corresponding paths in P ′ are conflicting. Thus all of the following hold

true:360

• Every ray of P1 has length at most ` + 1, since it is either a path or an
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end-segment of some path of P ′.

• Every covered F -path of P1 has length at least `, since it is a path of P ′.

• confP1
(v|F ) ≤ confP′(v) ≤ 1/4(` + 10) for every vertex v.

• (1− ε)dG(v) ≤ `dP1
(v) ≤ (1 + ε)dG(v) for every v since dP1

(v) = dP′(v).365

We now turn our attention to P2. Every circuit C ∈ P2 contains at least one

dummy edge. We associate C with some vertex v such that v is the endpoint

of some dummy edge of C. For every v ∈ V , let C1, ..., Ct be the circuits (if

any) associated with v, where every Cs = vesWsv with dummy edge es. Let

P̂v = ve1W1ve2W2...vetWtv be the walk starting and ending at v obtained370

by concatenating all Cs in that fashion. Clearly, P̂v is an uncovered F -path,

of which one ray is v (length 0) and another ray is Wt, a middle-segment of

length at most ` + 1. Note that for every v, we have at most one such P̂v. Let

P̂2 = {P̂v : v ∈ V }. Then P̂2 is an F -collection of G and UP1
∪UP̂2

= G. Hence

P = P1 ∪ P̂2 is an F -decomposition of G. Then every ray of P has length at375

most ` + 1, and every covered F -path of P has length at least `.

For every v, the number of rays from v of P is at most the number of rays

from v of P1 plus two (two rays of P̂v if it exists). Hence dP1
(v) ≤ dP(v) ≤

dP1
(v) + 2, and so by definition of conflict ratio, we have

confP(v|F ) ≤ dP1(v)confP1(v|F ) + 2

dP(v)

≤ confP1
(v|F ) +

2

dP(v)

≤ 1

4(` + 10)
+

2

dP(v)

≤ 1

4(` + 9)
.

Finally, we have (1 − ε)dG(v) ≤ `dP1
(v) ≤ `dP(v). And since L′`,ε ≥ 2`/ε,

we have `dP(v) ≤ `(dP(v) + 2) ≤ (1 + 2ε)dG(v). The proof is complete.

Lemma 4.3 gives us a good F -decomposition P of G. We wish to concate-

nate the F -paths of P to an Eulerian tour. If HP has an Eulerian tour, we380
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naturally obtain an Eulerian tour of G by replacing each edge of HP by its

corresponding F -path of P. Hence the goal is achieving the connectivity of HP ,

which immediately yields Eulerianity thank to the fact that every vertex of HP

has even degree.

Lemma 4.4. Given a positive integer `, there is an integer L′` such that for385

every 4-edge-connected Eulerian multigraph G with minimum degree at least

100L′` and every simple subgraph (V, F ) of G, there is an F -decomposition P of

G satisfying:

• Every ray of P has length at most ` + 3.

• Every covered F -path of P has length at least `.390

• conf(P|F ) ≤ 1/2(` + 9).

• HP is Eulerian and spans V (G).

Proof. Let us first outline the proof. We wish to obtain connectivity of P. To

this end, we decompose G into a collection P0 satisfying Lemma 4.2 and two

F -collections P1 and P2 satisfying Lemma 4.3. Then we use P0, which contains395

only paths of short length, to extend F -paths of P1 obtaining a new F -collection

P ′1 such that HP′1 is connected. Finally, we merge P1 with P2 to obtain P, which

inherits connectivity from P1 and low conflict ratio from P2.

Because G is 4-edge-connected, by Proposition 2.3, there is an orientation D

of G such that D is 2-arc-strong and |d+D(v)− d−D(v)| ≤ 1 for every v. Applying400

Proposition 2.4 to D with an arbitrary vertex z gives us two arc-disjoint out-

arborescences, T1, T2, rooted at z. Each vertex v has indegree at most 1 in

each Ti (z has indegree 0). This gives dT1∪T2(v) ≤ d+D(v) + 2 ≤ dG(v)/2 + 3

for every vertex v since |d+D(v) − d−D(v)| ≤ 1. Because T1 ∪ T2 is loopless and

2-edge-connected, we obtain a collection P0 on T1 ∪ T2 satisfying Lemma 4.2.405

Let G′ = G\UP0
. Then dUP0

(v) ≤ dT1∪T2
(v) ≤ dG(v)/2 + 3, and so G′ has

minimum degree at least 100`L′`/2− 3 ≥ 48`L′`. By Proposition 2.2, G′ has an

improper coloring by 45` colors such that |di(v)− dj(v)| ≤ 4 for every vertex v
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and every pair of colors i 6= j. Let G1 be the subgraph of G′ with edge set of

the first color, and G2 = G′\G1. Thus

dG1(v) ≤ 1

45`− 1
dG2(v) + 4 ≤ dG2

(v)

40`
.

The minimum degrees of both G1 and G2 are at least 48`L′`/45` − 4 ≥ L′`.

Therefore there are F -decompositions P1 of G1 and P2 of G2, both satisfying

Lemma 4.3. Hence

dP1
(v) ≤ 1 + 2ε

`
dG1

(v) ≤ 1 + 2ε

40`2
dG2

(v) ≤ 1 + 2ε

40`(1− ε)
dP2

(v),

for every vertex v, with an arbitrary small parameter ε. Set ε small enough (i.e.

set L′` high enough) such that for every v,

dP1(v) ≤ 1

4(` + 9)
dP2(v)− 3. (1)

We now turn our attention to the collection P0 and the subcubic spanning

tree HP0 . Let us consider HP0 as a tree rooted at an arbitrary vertex z. In the

following claim, we collect two private F -paths in P1 for each path in P0 for the410

process of concatenating later on.

Claim 4.5. For every path P ∈ P0 with endpoints say u, v where v is the parent

of u in HP0
, there are two F -paths of P1(v), named g1(P ) and g2(P ), such that

their rays from v do not conflict with P (if gi(P ) is closed, one of its rays

satisfying that condition is sufficient). Furthermore, gi(P ) 6= gj(P
′) for any415

(i, P ) 6= (j, P ′).

Proof. We first apply Proposition 2.3 to have an orientation D of HP1 such that

|d−D(v) − d+D(v)| ≤ 1. This orientation yields a natural orientation of F -paths

of P1. We denote by P+
1 (v|F ) the set of rays of P leaving v with respect to D.

Note that each closed F -path at v contributes with exactly one ray to P+
1 (v|F ).420

This gives |P+
1 (v|F )| ≥ dP1(v)/2− 1.

Since HP0
is subcubic, there are at most 3 paths of P0 with endpoint v, say Ps

for 1 ≤ s ≤ 3. Note that each Ps has length at most 2, and so they are incident
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with at most 6 vertices except v in total. Recall that confP1(v|F ) ≤ 1/4(`+ 9).

For each vertex w among these 6 possible vertices, we have∣∣∣{Pv|F ∈ P1(v|F ) : w ∈ Pv|F }
∣∣∣ ≤ dP1

(v)

4(` + 9)
≤ 2|P+

1 (v|F )|+ 2

4(` + 9)
≤ |P

+
1 (v|F )|

12
.

Hence in total there are at most |P+
1 (v|F )|/2 rays of P+

1 (v|F ) conflicting with

some Ps. This guarantees that there are at least half of rays in P+
1 (v) non-

conflicting with all Ps. We just pick 6 rays among them, and name the F -paths

of these rays gi(Ps) arbitrarily (these F -paths are clearly pairwise distinct).425

Note also that P+
1 (v) ∩ P+

1 (v′) = ∅ for any v 6= v′, so gi(P ) 6= gj(P
′) for any

(i, P ) 6= (j, P ′).

We can now obtain the connectivity of H1 by concatenating each P of P0 to

either g1(P ) or g2(P ). Let us call T a rooted tree on vertex set {Y1, Y2, ..., Yt},

where {Y1, Y2, ..., Yt} is some partition of V with the following properties:430

(A) For every edge YiYj of T , there is a corresponding path vi...vj ∈ P0, where

vi ∈ Yi and vj ∈ Yj .

(B) For every Yi, there is an F -collection Ri such that HRi is connected and

spans Yi, and each F -path in Ri is either g1(P ) or the concatenation of

P and g1(P ) for some P ∈ P0 (if Yi contains a single vertex then Ri is435

empty).

Such structured-tree T clearly exists by choosing T equal to HP0
rooted

at z, in which each Yi contains a single vertex, and each Ri is empty. Our

goal is to repeatedly merge vertices of T until T is the singleton graph, which

completes the process of concatenating. We consider a leaf Yi of T with parent440

Yj , corresponding to path P = vi...vj of P0 with vi ∈ Yi and vj ∈ Yj . Suppose

that g1(P ) = vj ...y and g2(P ) = vj ...z.

• If y ∈ Yk for some k 6= i, we concatenate P and g1(P ) at vj and get a

F -path P ∗. Then we merge Yi into Yk to form new set Yik (inheriting the

position of Yk in tree T ). Let Rik = Ri ∪ Rk ∪ {P ∗}. Since P ∗ connects445

two vertices of Ri and Rk, we have that HRik
is connected and spans Yik.
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• If y ∈ Yi, we merge Yi to Yj to form new set Yij (inheriting the position

of Yj in tree T ). Set Rij = Ri ∪ Rj ∪ {g1(P )}. Since g1(P ) connects

two vertices of Ri and Rj , we have that HRij
is connected and spans Yij .

We also concatenate P with g2(P ) at vj to get another F -path and put it450

back into P1.

The number of vertices of T is reduced by 1 after each step, while T still

satisfies both properties. Once the process is complete, we end up with a sin-

gleton T and an F -collection R such that HR is connected and spans V . Note

that P0 is empty at the end of the process, since exactly one path of P0 is used455

at each step. We merge R with P1 to obtain a new collection P ′1. Consequently,

HP′1 is connected.

Let P = P ′1∪P2. Note that UP = UP′1∪UP2
= G, so P is an F -decomposition

of G and HP is connected. The degrees of all vertices of G are even, then so

are the degrees of vertices of HP , and hence HP is Eulerian. The process of460

concatenating also ensures that every ray of P has length at most `+3 and that

every covered F -path of P has length at least `.

It remains to prove that conf(P|F ) ≤ 1/2(` + 9). In the following, by

saying P0 or P1, we mean the collection before the process of concatenating.

Recall that HP0
is subcubic, so for every vertex v, the number of F -paths with

endpoint v in P ′1 is at most the number F -paths with endpoint v in P1 plus 3.

Combining with (1) yields dP′1(v) ≤ dP1(v) + 3 ≤ dP2(v)/4(` + 9). Recall that

confP′1(v|F ) ≤ 1 and confP2(v|F ) ≤ 1/4(` + 9). Hence for every vertex v, by

definition of conflict ratio we have

confP(v|F ) ≤
dP2

(v)confP2
(v|F ) + dP′1(v)confP′1(v|F )

dP2
(v) + dP1

(v)

< confP2
(v|F ) +

dP′1(v)confP′1(v|F )

dP2
(v)

≤ 1

4(` + 9)
+

1

4(` + 9)

≤ 1

2(` + 9)
.

This implies conf(P|F ) ≤ 1/2(` + 9), and the lemma follows.
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The final step is concatenating F -paths of P to obtain a well-behaved Eule-

rian tour of G, which can be done thank to Proposition 2.5.465

Proof of Theorem 1.6. Let d` = 100`L′`,ε and G′ = (V, F ). We first obtain an F -

decomposition P of G satisfying Lemma 4.4. For every ray Pv|F of P, each vertex

w ∈ Pv|F is a conflict point between Pv|F and at most dP(v)/2(`+9) other rays.

Hence the number of rays conflicting with Pv|F is at most (`+3)dP(v)/2(`+9) ≤

dP(v)/2− 2 since Pv|F has length at most ` + 3.470

We wish to apply Proposition 2.5 to HP . Therefore the task now is to

eliminate all loops of HP . Let H∗P be the loopless multigraph obtained from

HP by subdividing every loop e = vv into vxe and xev by a new vertex xe. We

associate each vxe and xev with a ray of P , where P ∈ P(v) is the corresponding

F -path of e.475

For every pair of incident vertex-edge (v, e) of H∗P , let Sv(e) be the set of all

edges of H∗P corresponding to rays conflicting with Pv|F , where Pv|F is ray of

P corresponding to e. Since two rays of the same F -path are non-conflicting,

we have |Sxe
(e)| = 0 for every loop e of H∗P . Hence |Sv(e)| ≤ dH∗P (v)/2 − 2 if

dH∗P (v) ≥ 4 and |Sv(e)| = 0 if dH∗P (v) = 2 for every pair of incident vertex-edge480

(v, e) of H∗P .

Let S = {Sv}v∈V , then S is a generalized transition system of H∗P . Propo-

sition 2.5 asserts that H∗P admits an Eulerian tour EH∗P compatible with S, i.e.,

the corresponding rays of any two consecutive edges of EH∗P are non-conflicting.

Clearly, vxe and xev are two consecutive edges of EH∗P since xe has degree 2.485

We therefore naturally obtain from EH∗P an Eulerian tour EHP of HP by replac-

ing e to the segment vxev for every loop e = vv of HP . Hence we naturally

obtain from EHP an Eulerian tour E of G by replacing every edge of EHP by its

corresponding F -path of P. Note that every two consecutive (with respect to

E) rays of P are non-conflicting.490

Let W be a segment of E of length at most ` and consisting of only edges

of F . It remains to prove that W is a path. Let P1, P2..., Pr be consecutive

(with respect to E) F -paths of P such that W is a subwalk of P1P2...Pr and

20



W ∩P1,W ∩Pr 6= ∅. If r ≥ 3 then W must contain entirely P2. All edges of W

belong to F , then so does P2. Hence P2 is a covered F -path of length at most495

`− 2, contrary to the fact that every covered F -path of P has length at least `.

If r = 2, note that the rays from v of P1 and P2 are non-conflicting, and W is

a subwalk of the concatenation of these two rays. Hence W is a path. If r = 1

then clearly W is a path, the desired conclusion.
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