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Reviewer 3: Can the bending deformations/moments in a beam become prohibitively large? Please, explain the answer.

Authors 3:

In the case of softening behavior, with both mode I and mode II activated, this should not affect much the results because the only stiffness remaining is bending. However, due to connection of bending and shear in equilibrium equations, with shear resistance reduced to zero due to activation of mode II, also reduces the bending moment.

Reviewer 3: How is performed the update of back stress? Authors 3: We added equations on update of back stress for clarification (pages 12-13, marked blue).

Reviewer 3:

There is only one parameter governing softening in tension and compression. Does this represent problem for loading/unloading where the axial force changes sign? What is the physical explanation of the negative crack opening in mode I when the "crack" happens in compression? Please, comment.

Authors 3:

Yes, this is an issue if the load reversal occurs while the beam is in the softening part of the response. Our focus in on the problems with the loading, which remains predominantly of the same sign (as typical of soils). However, if we would to model the macroscale response of the structure subjected to cyclic loading, we would have to modify the proposed model to accommodate this problem. The way to correct this is to appeal to Saint-Venant constitutive model, as given in:

(1) Ibrahimbegovic, A., J. B. Colliat, and L. Davenne. "Thermomechanical coupling in folded plates and non-smooth shells." Computer methods in applied mechanics and engineering 194. 21-24 (2005): 2686-2707.

We agree that the choice of "crack width" is unfortunate and can be misleading, for the case of failure in compression. Because of this, we changed throughout the text, in the numerical results part, the expression "crack width" with expression "displacement jump", and expression "crack" with "broken cohesive link" (marked blue).

Reviewer 3: Is the acoustic wave theory, adopted in the work for describe motion of the fluid, appropriate for describing sloshing? Sloshing appears e.g. in small closed reservoirs at earthquake.

Authors 3:

The sloshing phenomena can be incorporated within the framework of acoustic wave theory. Some of the works dealing with this phenomena are given in references [START_REF] Mitra | 2d simulation of fluid-structure interaction using finite element method[END_REF][START_REF] Mandal | 2d finite element analysis of rectangular water tank with separator wall using direct coupling[END_REF] of our paper. In this work, our main focus was the structure built of saturated porous media, whereas the outside fluid is a source of external loading and pores or cracks saturation. Hence, we did not seek to implement all possible model refinements for outside fluid, such as sloshing or even cavitation phenomena, as indicated in revised version of our concluding remarks (page 30, marked blue).

Reviewer 3: Why are the elastic moduli for beam and continuum (i.e. Plaxis) models different? Is the elastic moduli mesh-dependent? Are there any other peculiarities with material parameters data for the presented beam model? If yes, the authors should explain this in detail.

Authors 3:

The relation between Young's modulus of continuum model and lattice Young's modulus depends on the type of discrete model. Namely, it depends whether the discrete model is with regular or irregular lattice geometry, and if the discrete model is based on spring lattice network or beam lattice network. We have added comment on this matter and added appropriate references (page 5, references 48-52 marked blue), where details on relations between the linear elastic parameters of lattice (spring and Euler-Bernoulli beam) and continuum model are given.

For our case of Timoshenko beam finite element, the lattice and continuum moduli are not the same. Nevertheless, the lattice Young's modulus can be identified from numerical tests shown in Figure 2a , by imposing condition that the macro-scale response of continuum model and discrete model are the same. The elastic moduli is not mesh dependent, which is shown by computations for different mesh densities. From the results of our numerical simulations, we can say that the ratio between the Young's modulus of a single lattice and continuum model is about 17 %.

Other lattice parameters, such as yield and fracture limits, fracture energies, hardening moduli have to be identified through more elaborate identification procedures such as the probability based ones. The references to these procedures are given in the manuscript [START_REF] Kucerova | Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures: Part ii: identification from tests under heterogeneous stress field[END_REF][START_REF] Rosić | Parameter identification in a probabilistic setting[END_REF][START_REF] Sarfaraz | Stochastic upscaling via linear bayesian updating[END_REF], page 21.

Reviewer 3:

What was the other data in computed poro-elastic problems (i.e. b and components of M), for lattice and continuous (i.e Plaxis) models? Were they the same for both models? Please, provide numbers.

Introduction

The fluid-structure interaction problems are frequently encountered in engineering practice. These problems range from one extreme where the fluid is in large overall motion, to other extreme where fluid displacements can be regarded as very small and the fluid behavior can be described with the acoustic wave theory. In the latter group of acoustic fluid-structure interaction problems fall engineering structures like dams, reservoirs, containers or storage tanks. Concrete, or soil (for earth dams) are typically used for constructing many such structures. Both concrete, and especially soil are porous materials in which the presence of the pore fluid influences the final response. In fluid-structure interaction problems, outside fluid acts as a source of loading on the structure and also as a source of saturation, keeping the material of the structure fully saturated in every time step. In already damage structure, fluid flow can also occur through cracks which have formed in the structure subjected to extreme loading. In this case, to fully describe the structure part in the acoustic fluid-structure interaction problems, we ought to have a better numerical formulation of the structure response in terms of saturated porous media. In other words, we ought to account for the interaction between the solid phase and pore (internal) fluid.

The pioneering works in solid phase-pore fluid interaction are Terzgahi's theory of one-dimensional consolidation [START_REF] Terzaghi | Theoretical soil mechanics[END_REF], and Biot's porous media theory [START_REF] Biot | General theory of three-dimensional consolidation[END_REF]. Biot's porous media theory has been extensively used as one of the main ingredients in numerical modeling of response, fracturing and localized failure in saturated and partially saturated porous media. The successful numerical implementations can be found in works which exploit Extended Finite Element Method (XFEM) [START_REF] Réthoré | A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks[END_REF][START_REF] Mohammadnejad | Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method[END_REF][START_REF] Cao | Interaction between crack tip advancement and fluid flow in fracturing saturated porous media[END_REF][START_REF] Remij | An investigation of the step-wise propagation of a mode-ii fracture in a poroelastic medium[END_REF][START_REF] Vahab | X-fem modeling of multizone hydraulic fracturing treatments within saturated porous media[END_REF], Partition-of-Unity Finite Element Method (PUFEM) [START_REF] Borst | A numerical approach for arbitrary cracks in a fluid-saturated medium[END_REF][START_REF] Kraaijeveld | Two-dimensional mode i crack propagation in saturated ionized porous media using partition of unity finite elements[END_REF], Embedded Discontinuity Finite Element Method (EDFEM) [START_REF] Armero | An analysis of strong discontinuities in a saturated poro-plastic solid[END_REF][START_REF] Callari | Finite element methods for the analysis of strong discontinuities in coupled poro-plastic media[END_REF][START_REF] Callari | Analysis and numerical simulation of strong discontinuities in finite strain poroplasticity[END_REF][START_REF] Callari | Strong discontinuities in partially saturated poroplastic solids[END_REF][START_REF] Nguyen | Modelling hydraulic fractures in porous media using flow cohesive interface elements[END_REF], Finite element methods with adaptive remeshing techniques [START_REF] Schrefler | On adaptive refinement techniques in multi-field problems including cohesive fracture[END_REF][START_REF] Secchi | Mesh adaptation and transfer schemes for discrete fracture propagation in porous materials[END_REF][START_REF] Secchi | A method for 3-d hydraulic fracturing simulation[END_REF][START_REF] Cao | Interaction between crack tip advancement and fluid flow in fracturing saturated porous media[END_REF][START_REF] Cao | Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations[END_REF], Central force lattice model [START_REF] Cao | Interaction between crack tip advancement and fluid flow in fracturing saturated porous media[END_REF][START_REF] Milanese | Avalanches in dry and saturated disordered media at fracture[END_REF][START_REF] Milanese | Avalanches in dry and saturated disordered media at fracture in shear and mixed mode scenarios[END_REF], Phase field model [START_REF] Wheeler | An augmented-lagrangian method for the phase-field approach for pressurized fractures[END_REF][START_REF] Mikelic | A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium[END_REF][START_REF] Mikelić | Phase-field modeling of a fluid-driven fracture in a poroelastic medium[END_REF][START_REF] Lee | Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model[END_REF] or Discrete lattice model [START_REF] Bolander | Simulation of shrinkage induced cracking in cement composite overlays[END_REF][START_REF] Grassl | A lattice approach to model flow in cracked concrete[END_REF][START_REF] Šavija | Lattice modeling of chloride diffusion in sound and cracked concrete[END_REF][START_REF] Šavija | Lattice modeling of rapid chloride migration in concrete[END_REF][START_REF] Nikolic | Discrete element model for the analysis of fluid-saturated fractured poroplastic medium based on sharp crack representation with embedded strong discontinuities[END_REF].

For modeling the behavior of acoustic fluids [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF][START_REF] Fahy | Sound and Structural Vibration: Radiation, Transmission and Response[END_REF], different types of formulations can be used. The simplest one is the pressure based formulation [START_REF] Zienkiewicz | Fluid-structure dynamic interaction and wave forces. an introduction to numerical treatment[END_REF][START_REF] Mitra | 2d simulation of fluid-structure interaction using finite element method[END_REF][START_REF] Mandal | 2d finite element analysis of rectangular water tank with separator wall using direct coupling[END_REF]. In this formulation, the only unknown variables are pressures, which makes this formulation very simple to implement numerically. The purely displacement based formulation for small motion of fluid is also frequently used, where the unknown variables are nodal values of displacements. The advantage of this formulation is in its finite element implementation, because fluid finite elements share the same degrees of freedom as the standard finite elements commonly used in the numerical modeling of the structure [START_REF] Hamdi | A displacement method for the analysis of vibrations of coupled fluid-structure systems[END_REF][START_REF] Olson | A study of displacement-based fluid finite elements for calculating frequencies of fluid and fluid-structure systems[END_REF][START_REF] Chen | Vibration analysis of fluid-solid systems using a finite element displacement formulation[END_REF][START_REF] Bermúdez | Finite element computation of the vibration modes of a fluid-solid system[END_REF][START_REF] Bermudez | Finite element solution of incompressible fluid-structure vibration problems[END_REF]. The most general type is the mixed displacement/pressure based formulation [START_REF] Bathe | A mixed displacement-based finite element formulation for acoustic fluid-structure interaction[END_REF][START_REF] Wang | Displacement/pressure based mixed finite element formulations for acoustic fluid-structure interaction problems[END_REF][START_REF] Wang | On mixed elements for acoustic fluid-structure interactions[END_REF]. In this formulation, unknown variables are nodal values of displacements and pressure. The pressure degree of freedom can be statically condensed on the element level, so that on the global level the only remaining unknowns are displacements.

This work is also motivated by the practical considerations of the fluid-structure interaction problems under extreme dynamic loading that can be the threat to structure integrity. Due to the seismic ground movement, additional hydrodynamic pressures and forces are exerted on the upstream face of the structure. Their values and distribution have to be quantified in order to provide the sound design of the structure.

The problem of evaluating the hydrodynamic pressures exerted on the structure was first studied by Westergaard who provided a solution for the case of a rigid dam with vertical upstream face subjected to horizontal harmonic ground motion [START_REF] Westergaard | Water pressures on dams during earthquakes[END_REF], followed by von Kármán who provided the solution very close to Westergard's [START_REF] Kármán | Discussion of water pressures on dams during earthquakes[END_REF]. For the general case of the upstream face with a slope, Chwang and Housner proposed an analytical solution derived from the momentum method [START_REF] Chwang | Hydrodynamic pressures on sloping dams during earthquakes. part 1. momentum method[END_REF]. In second part of his work, Chwang proposed an analytical solution derived from the exact theory [START_REF] Chwang | Hydrodynamic pressures on sloping dams during earthquakes. part 2. exact theory[END_REF]. In addition to the sloped upstream face of the dam, Liu proposed an analytical solution for the sloped reservoir base [START_REF] Liu | Hydrodynamic pressures on rigid dams during earthquakes[END_REF].

A simplified approach in the design of the structure is based on the assumed analytical distribution of the hydrodynamic pressure on the upstream face of the structure. This simplified approach is very practical from the aspect of everyday engineering practice. However, it does not take into account the interaction between the structure and the outside fluid, where the motion of one part of the system influences the response of the other. With the present resources of powerful computers and efficient numerical methods, such as the finite element method, this approach can be considered as outdated and can serve only as a way of inspecting the preliminary design.

In this paper, we propose a novel approach for numerical modeling of acoustic fluid-structure interaction nonlinear problems. The main original aspects are the proposed approach capabilities to carry on with computations of outside fluid interacting with structure undergoing localized failure with cracks, and to represent internal fluid (pore) pressure influence on ultimate failure modes with fully saturated cracks. Namely, we generalize the development of the coupled discrete beam lattice model presented in [START_REF] Nikolic | Discrete element model for the analysis of fluid-saturated fractured poroplastic medium based on sharp crack representation with embedded strong discontinuities[END_REF], which is based on Voronoi cell representation of the domain with inelastic Timoshenko beam finite elements enhanced with additional kinematics as cohesive links, extending its ability to deal with fluid-structure interaction with the emphasis on the numerical representation of the structure response in terms of saturated porous media. The coupling between the solid phase and the pore fluid in the model is introduced through Biot's porous media theory, and Darcy's law for internal fluid flow, resulting in an additional pressure-type of degree of freedom placed at each node of Timoshenko beam finite element. We limit ourselves to fluid-structure problems under conditions that enable the modeling of the outside fluid with the acoustic wave theory. For numerical representation of the outside fluid motion we choose the mixed displacement/pressure based finite element formulation. The coupled discrete beam lattice model for the structure built of saturated porous media in combination with the mixed displacement/pressure based formulation for the outside fluid, allows for the structure and fluid finite elements to share both the displacement and pressure degrees of freedom at the fluid-structure interface. This permits for the elements to be connected directly at the common nodes without any special numerical treatment of the fluid-structure interface. As a result, the exchange of both the motion and the pressure at the fluid-structure interface is ensured, and the computations can be performed in a fully monolithic manner. The main benefit of the proposed model is its ability to provide better representation of the saturated structure in interaction with confined fluids. In previous attempts to model the fluid-structure interaction problems of this kind, the use of pressure degree of freedom at the fluid-structure interface led to a cumbersome exchange of information in terms of added mass. Here, the numerical model of the structure contains pore pressure as an additional degree of freedom per node, which enables direct exchange of the pressures at the fluid-structure interface. With such numerical model of the structure, we are able to simulate the full saturation of the material of the structure at every time step, with the fluid acting as the source of pore saturation. In addition, we are able to take into account the inelastic behavior, predict the crack formation and propagation in saturated materials and quantify overall safety of pore-saturated structures subjected to the extreme loading, in both quasi-static and dynamic setting.

The outline of the paper is as follows: In Section 2, we briefly describe Biot's porous media theory. In Section 3, we describe coupled discrete beam lattice model used in this paper for numerical modeling of the response and localized failure in pore-saturated structures, together with the finite element formulation. In Section 4, we describe governing equations and mixed displacement/pressure based finite element formulation of the outside fluid motion. In Section 5, we present results of several numerical simulations, for both quasistatic and dynamic case. In Section 6, we state our concluding remarks.

Biot's porous media theory

In Biot's porous media theory, the equations governing the coupled problem are derived by combining equilibrium and continuity equations [START_REF] Biot | General theory of three-dimensional consolidation[END_REF]. In dynamic setting, we consider the equations of motion instead of equilibrium equations. In deriving the strong form of the equations of motion, we use the d'Alembert principle. The main idea behind the d'Alembert principle is that a motion of a solid body in each time step can be described by the equilibrium equations, which include an additional external load in terms of the inertia force. Thus, the strong form of equations of motion is written as

∇ • σ + b -ρa = 0 (1)
where σ is the total stress tensor, b are the body forces vector, ρ is the mass density of the mixture assumed to be constant, and a is the solid phase acceleration vector.

In the formulation of the coupled problem, Biot's theory exploits Terzaghi's principle of effective stresses, which states that the total normal stress is equal to the sum of the effective stress carried by the solid phase, and the pore pressure carried by the fluid in pores

σ = σ -Ibp ( 2 
)
where σ is the effective stress tensor, I is the second order identity tensor, p is the pore pressure assumed positive in compression, and b is Biot's constant defined as b = 1 -K t /K s , with K t and K s as the bulk moduli of the porous skeleton and the solid phase, respectively. The continuity equation for fluid flow through the porous body is written as

ζ + ∇ • q = 0 ( 3 
)
where ζ is the variation of fluid content, and q is the fluid flux. The variation of the fluid content ζ is written as

ζ = 1 M p + b∇ • u ( 4 
)
where u is the displacement of the solid phase, and M is the Biot modulus, defined as 1/M = (b -n)/K s + n/K f , with n as the porosity and K f as the bulk modulus of the pore fluid. According to Darcy's law, the fluid flux q is equal to

q = - k γ f ∇p ( 5 
)
where k is the coefficient of permeability of isotropic porous media, and γ f is the specific weight of the fluid. By combining Equations [START_REF] Réthoré | A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks[END_REF][START_REF] Mohammadnejad | Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method[END_REF][START_REF] Cao | Interaction between crack tip advancement and fluid flow in fracturing saturated porous media[END_REF], a new form of continuity equation can be written as

1 M ṗ + b∇ • u -∇ • k γ f ∇p = 0 (6)
3. Discrete model of structure built of saturated poro-plastic media

For the numerical representation of structure response, we use discrete lattice model based on Voronoi cell representation of the domain. Here, the domain is divided into a set of regions or Voronoi cells, with the property that all points in one Voronoi cell are closest to the center of that cell than to center of any other cell. From the aspect of structural modeling, each Voronoi cell can be identified as a part of the material held together with the adjacent parts by cohesive links. Thus, in discrete lattice models the macro-scale response of the structure is obtained on the mesh of cohesive links, whose behavior we model with 1D finite elements.

Voronoi diagram integration point

Delaunay triangulation The construction of the discrete lattice model is carried out in a very efficient manner by exploiting the duality property between Voronoi diagram and Delaunay triangulation. The end results of the Delaunay triangulation performed on a given domain is a mesh of triangles. Every edge of triangle connects the centers of two adjacent Voronoi cells, and is perpendicular to the edge shared between these two cells (Figure 1a). Thus, we place along each edge of triangle a cohesive link, whose behavior we model with the 1D finite element. The cross sectional height of each finite element is then equal to the length of the edge shared between two adjacent Voronoi cells. What needs to be emphasized is that the center of each finite element is located at the edge shared between two adjacent Voronoi cells. This is a very convenient property for simulating crack propagation in materials. Namely, failure in a cohesive link actually means a formation of a crack in the structure. If we identify Voronoi cells as parts of the material held together by cohesive links, then cracks can occur only at their interconnection.

h e u 1 ,v 1 ,θ 1 u 2 ,v 2 ,θ 2
The first advantage of the discrete lattice model based on Voronoi cell representation of the domain with irregular lattice geometry is in its ability to reproduce the linear elastic response of an equivalent continuum model. Thus, linear elastic parameters of the discrete lattice model (lattice Young's modulus and Poisson's ratio) can be easily identified from standard experimental tests in combination with numerical tests, shown in Figures 2a and2b. The established relations between linear elastic parameters of a single lattice and a continuum model depend whether the discrete model is with regular or irregular lattice geometry, and whether it is based on spring or beam lattice network. More details can be found in works [START_REF] Nikolić | Lattice element models and their peculiarities[END_REF][START_REF] Schlangen | Fracture simulations of concrete using lattice models: computational aspects[END_REF][START_REF] Karihaloo | Lattice modelling of the failure of particle composites[END_REF][START_REF] Bolander | Irregular lattice model for quasistatic crack propagation[END_REF][START_REF] Berton | Crack band model of fracture in irregular lattices[END_REF]. The successful application of discrete lattice models in numerical modeling of inelastic response and localized failure in materials rests on the idea of multi-scale modeling. Namely, by appropriate numerical modeling of the micro-scale represented by cohesive links, we are able to obtain the true macro-scale response of the structure. The discrete lattice models with geometrically exact shear deformable beams acting as cohesive links have been used for modeling dynamic fracture of structures built of brittle material [START_REF] Ibrahimbegovic | Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle material[END_REF]. The discrete lattice models with truss bar elements capable of representing the response of a two-phase material [START_REF] Ibrahimbegovic | Embedded discontinuity finite element method for modeling of localized failure in heterogeneous materials with structured mesh: an alternative to extended finite element method[END_REF], have been used in numerical modeling of the response and fracturing in concrete [START_REF] Benkemoun | Failure of heterogeneous materials: 3d meso-scale fe models with embedded discontinuities[END_REF][START_REF] Benkemoun | Anisotropic constitutive model of plasticity capable of accounting for details of meso-structure of two-phase composite material[END_REF]. The truss bar elements enhanced with additional kinematics in terms of embedded strong discontinuity were able to model the crack formation and propagation in mode I, that relates to crack opening. Beside mode I, crack can also propagate in mode II that relates to crack sliding. To be able to capture both mode I and mode II of failure, Timoshenko beam finite elements with embedded strong discontinuity in both axial and transverse direction have been proposed instead of truss bar elements. The discrete lattice models with Timoshenko beam finite elements have been successfully used to describe the response and fracturing in rocks and concrete, both in 2D and 3D setting [START_REF] Nikolic | Brittle and ductile failure of rocks: embedded discontinuity approach for representing mode i and mode ii failure mechanisms[END_REF][START_REF] Nikolic | Rock mechanics model capable of representing initial heterogeneities and full set of 3d failure mechanisms[END_REF][START_REF] Cvitanović | Influence of specimen shape deviations on uniaxial compressive strength of limestone and similar rocks[END_REF][START_REF] Karavelić | Concrete meso-scale model with full set of 3d failure modes with random distribution of aggregate and cement phase. part i: Formulation and numerical implementation[END_REF]. Our final goal in this paper is to tackle the acoustic fluid-structure interaction problems. In the acoustic fluid-structure interaction problems on hand, the outside fluid acts both as a source of the loading on the structure, and also as a source of the pore saturation. For a better numerical description of the underlying phenomena, we ought to model the structure as a saturated porous medium. In this paper, for the numerical representation of pore-saturated structures, we use coupled discrete beam lattice model presented in [START_REF] Nikolic | Discrete element model for the analysis of fluid-saturated fractured poroplastic medium based on sharp crack representation with embedded strong discontinuities[END_REF] with cohesive links as nonlinear Timoshenko beam finite elements with enhanced kinematics in terms of embedded strong discontinuities in axial and transverse directions capable of modeling crack formation and propagation in both mode I and mode II [START_REF] Nikolic | Brittle and ductile failure of rocks: embedded discontinuity approach for representing mode i and mode ii failure mechanisms[END_REF][START_REF] Nikolic | Rock mechanics model capable of representing initial heterogeneities and full set of 3d failure mechanisms[END_REF]. The coupling between the solid phase and the pore fluid is introduced in the model through Terzgahi's principle of effective stresses, Biot's porous media theory and Darcy's law governing the fluid flow. The fluid flow is spread across the mesh of triangles that coincides with the mesh of triangles obtained by Delaunay triangulation (Figure 1b). Hammer quadrature rule [START_REF] Hammer | Numerical integration over simplexes and cones[END_REF] for numerical integration, allows for simplification of the numerical implementation of the coupling. Namely, Hammer quadrature rule positions the integration points at the center of each edge of triangle. The positions of these integration points coincide with the positions of the integration points for Timoshenko beam finite elements used for representing the mechanical response. For the numerical integration, single Gauss point placed at the center of the Timoshenko beam finite element is used. This allows us to simplify the data exchange. The data base management is also kept simple by treating the pressure degree of freedom as an additional degree of freedom per node of a Timoshenko beam finite element (Figure 3). This point of view is also in agreement with discretization of continuum problem by Hrennikoff framework method using beam along element edges [START_REF] Hrennikoff | Solution of problems of elasticity by the framework method[END_REF], which is the same as our cohesive links, in the elastic regime. It is important to note that such a point of view (although more sound) does not change anything in our implementation, since we use Hammer integration points at the mid-point of each element edge for a 3-node CST triangle. The choice of this kind eliminates the contribution of the third node, and leaves the contribution of two nodes that correspond to the Timoshenko beam finite element.

Next, we give an overview of the finite element formulation of coupled discrete beam lattice model.

Kinematics

We consider a straight Timoshenko beam finite element of length L e and cross section A e . The element has two nodes, and three degrees of freedom per node: axial displacement, transverse displacement and rotation of cross section. The pore pressure field is approximated with CST (Constant Strain Triangle) finite elements.

For modeling crack formation in mode I and mode II, i.e., the softening behavior, localization limiter based on embedded strong discontinuity is employed [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF] [START_REF] Jukić | Embedded discontinuity finite element formulation for failure analysis of planar reinforced concrete beams and frames[END_REF][START_REF] Jukić | Failure analysis of reinforced concrete frames by beam finite element that combines damage, plasticity and embedded discontinuity[END_REF]. Namely, strong discontinuities are introduced in displacement fields in axial and transverse directions, which are now represented as a sum of a regular part and the discontinuous part. The discontinuous part is represented as a product of an interpolation function M (x) and parameter α, which represents the displacement jump located at the center of the element. The finite element approximations for enhanced displacement and pore pressure fields are written as

u = N s u ū + Mα; p = N s p p (7) 
where

u T = u, v, θ ; ūT = u 1 , v 1 , θ 1 , u 2 , v 2 , θ 2 ; α T = α u , α v , 0 ; pT = p 1 , p 2 , p 3 N s u =   N 1 0 0 N 2 0 0 0 N 1 0 0 N 2 0 0 0 N 1 0 0 N 2   ; N 1 , N 2 = 1 -x L e , x L e M =   M 0 0 0 M 0 0 0 0   ; M (x) = -N 2 (x), x ∈ [0, x] H x -N 2 (x), x ∈ [x, L e ] ; H x = 0, x ≤ x 1, x > x pT = p 1 , p 2 , p 3 N s p = N p 1 , N p 2 , N p 3 ; N p 1 = 1 2A (x 2 y 3 -x 3 y 2 ) + (y 2 -y 3 )x + (x 3 -x 2 )y] N p 2 = 1 2A (x 3 y 1 -x 1 y 3 ) + (y 3 -x 1 )x + (x 1 -x 3 )y] N p 3 = 1 2A (x 1 y 2 -x 2 y 1 ) + (y 1 -x 2 )x + (x 2 -y 1 )y] ( 8 
)
where A is the area of triangular element, x,y, are global coordinates and x i , y i are nodal coordinates of CST element. For simplicity, we considered the shape functions for a Timoshenko beam placed along x axis, which can be easily adapted to any arbitrary element orientation by using local element frame. The enhanced strain fields and pore pressure gradient are obtained as the space derivatives of displacement and pore pressure fields, written as

= B s u ū + Gα; ∇p = ∇N s p p (9) 
where

T = , γ, κ ; B s u =   B 1 0 0 B 2 0 0 0 B 1 -N 1 0 B 2 -N 2 0 0 B 1 0 0 B 2   ; B 1 , B 2 = dN1 dx , dN2 dx = -1 L e , 1 L e ; G =   G 0 0 0 G 0 0 0 0   ; G(x) = dM (x) dx = Ḡ, x ∈ [0, x) ∪ x ∈ (x, L e ] Ḡ + δ x, x = x ( 10 
)
Here Ḡ = -1 L e , and δ x is the Dirac function

δ x = 0, x ∈ [0, x) ∪ x ∈ (x, L e ] ∞, x = x (11) 
The time derivatives of displacement and pore pressure fields are written as

u = N s u u; ṗ = N s p ṗ ü = N s u ü; p = N s p p (12) 
3.2. Biot's coupled problem

Continuity equation

The coupling of the mechanics and the internal fluid flow occurs through axial direction of Timoshenko beam finite element. The continuity equation for internal fluid flow is written as

1 M ṗ + b∇ • u - k γ f ∇ • (∇p) = 0 (13) 
The weak from of the continuity equation is obtained through the principle of virtual works, written as

Ω e CST δp 1 M ṗ - k γ f ∇ • (∇p) dΩ + L e 0 δp b∇ • u dx = 0 ( 14 
)
where δp is the virtual pore pressure field interpolated in the same manner as the real pore pressure field

δp = N s p δ p; δp T = δp 1 , δp 2 , δp 3 p = N s up p ; N s up = N 1 , N 2 ; p T = p 1 , p 2 δp = N s up δ p ; δ p T = δp 1 , δp 2 (15) 

Equations of motion

The weak form of equations of motion for Timoshenko beam finite element are derived from the d'Alembert principle which is dynamic analogue to the principle of virtual work in the quasi-static setting [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF]. The d'Alembert principle states that the virtual work of internal forces is equal to the virtual work of external forces, which include the inertia force. The virtual displacement fields and virtual pore pressure field refer to a particular deformed configuration, and thus are not time-dependent. The finite element approximations for virtual displacement and strain fields are written as

δu = N s u δ ū + Mδα; δ = B s u δ ū + Gδα (16) 
where

δu T = δu, δv, δθ ; δū T = δu 1 , δv 1 , δθ 1 , δu 2 , δv 2 , δθ 2 δα T = δα u , δα v , 0 ; δ T = δ , δγ, δκ (17) 
The virtual work of external forces is computed as

G ext,e = δ ūT f ext,e - L e 0 δuρA e ü + δvρA e v + δθρI e θ dx (18) 
G ext,e = δ ūT f ext,e -δ ūT f acc,e (19) 
where

f acc,e = L e 0 N s,T u σdx; σT = ρA e ü, ρA e v, ρI e θ (20) 
The virtual work of internal forces for Timoshenko finite beam finite element is equal to

G int,e = L e 0 B s u δ ū T σdx + L e 0 Gδα T σ u dx (21) 
where

σ T = N, V, M = N -bp A e , V , M ; σ T u = N , V , M ; σ T p = bp A e , 0, 0 (22) 
The virtual work of internal forces consists of two parts. The first is the virtual work of internal forces in the bulk part of the element (part of the element outside the discontinuity), and the second is the virtual work of internal forces acting at the discontinuity, written as

G int,e = δ ūT f int,e + δα T h e (23) 
where f int,e is the internal force vector, and h e is the residual vector due to discontinuity, computed as

f int,e = L e 0 B s,T u σdx = f int,e (σ u ) -f int,e (σ p ) h e = L e 0 G T σ u dx = L e 0 ḠT σ u dx + t; Ḡ =   Ḡ 0 0 0 Ḡ 0 0 0 0   ; t =    t u t v 0    =   1 0 0 0 1 0 0 0 0   σ u (24) 
Here, t is the internal force vector acting at the discontinuity. By exploiting the principle of virtual work we obtain

0 = G int,e -G ext,e = δ ūT (f int,e -f ext,e + f acc,e ) + δα T h e ( 25 
)
Previous equation is satisfied if

f acc,e + f int,e -f ext,e = 0 h e = 0 (26) 
The first equation in [START_REF] Grassl | A lattice approach to model flow in cracked concrete[END_REF] relates to the bulk part of the element, and the second relates to the discontinuity.

Constitutive model

The pre-peak response of the Timoshenko beam finite element in axial and transverse direction is described with the elasto-viscoplastic constitutive model with implemented linear isotropic hardening [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF], and Fredrick-Armstrong nonlinear kinematic hardening law [START_REF] Armstrong | A mathematical representation of the multiaxial bauschinger effect[END_REF]. The post-peak response of the element is described with exponential softening. The behavior of the element in bending is purely linear elastic.

Plasticity model

The proposed model of plasticity is described with [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF] 1. Additive decomposition of the total deformation into elastic and viscoplastic part, with only the elastic part influencing the value of the stresses

= e + vp ; γ = γ e + γ vp ; κ = κ e (27) 
2. Strain energy function in terms of strains and internal variables, plastic deformations vp , γ vp and strain-like hardening variables ξu , ξv

ψu , vp , ξu = 1 2 -vp EA e -vp + 1 2 ξu H u is ξu ψv γ, γ vp , ξv = 1 2 γ -γ vp GA e γ -γ vp + 1 2 ξv H v is ξv ( 28 
)
where

E is Young's modulus, G = E 2(1+ν)
is the shear modulus with ν as Poisson's ratio, and H u is , H v is are the isotropic hardening moduli.

3. Yield function in terms of stresses (or stress resultants), stress-like hardening variables qu , qv , and back-stress variables χu , χv

φu N , χu , qu = |N -χu A e | -N y -qu A e ≤ 0 φv V , χv , qv = |V -χv A e | -V y -qv A e ≤ 0 ( 29 
)
where N y , V y are the elastic limits. The effective stress resultants values N , V and M are computed from the elastic part of total deformation, as

N = EA e -vp ; V = k c GA e γ -γ vp ; M = EI e κ; (30) 
where k c is the shear correction factor. For rectangular cross sections shear correction factor is equal to k c = 5/6. The area A e and second moment of inertia I e for rectangular cross sections with cross sectional width equal to one and cross sectional height equal to h e are A e = h e , I e = (h e ) 3 /12.

The stress-like hardening variables qu , qv handle the plasticity threshold evolution as a result of accumulated plastic deformations. For linear isotropic hardening, the stress-like hardening variables are given as

qu = -H u is ξu ; qv = -H v is ξv ; (31) 
In experiments with cyclic loading it has been observed that in a typical cycle with a load reversal the plasticity threshold limit is reduced from the previous value. This phenomenon is called the Bauschinger effect. To track the change in the value of the plasticity threshold limit with respect to the previous plastic state, back-stress variable χ is introduced. We employ Fredrick-Armstrong nonlinear kinematic hardening law [START_REF] Armstrong | A mathematical representation of the multiaxial bauschinger effect[END_REF], which we can write as

χu = H u ln ˙ vp -H u nln ξu χu χv = H v ln γvp -H v nln ξv χv (32) 
where H u ln , H v ln are the kinematic hardening moduli, and H u nln , H v nln are the non-dimensional material parameters that characterize the nonlinear kinematic hardening behavior.

3. The evolution equations for internal variables vp , γ vp and ξu , ξv along with the loading/unloading conditions obtained through the principle of maximum plastic dissipation and Kuhn-Tucker optimality conditions ˙ vp = γu sign(N ); ξu = γu ; γu ≥ 0; φu ≤ 0; γu φu = 0 γvp = γv sign(V ); ξv = γv ; γv ≥ 0; φv ≤ 0; γv φv = 0 [START_REF] Mitra | 2d simulation of fluid-structure interaction using finite element method[END_REF] where γu , γv are the plastic multipliers whose values are equal to γu = φu (N , χu , qu )

η u ; γv = φv (V , χv , qv ) η v (34) 
where η u , η v are the viscosity parameters.

Exponential softening

Once the element enters the softening phase, the jump in displacement is activated. All plastic deformation from that point on remains localized at the discontinuity, whereas the bulk part of the element elastically unloads. The exponential softening is described with [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF] 1. The yield function defined in terms of stresses (or stress resultants), and dual variables qu , qv

φu t u , qu = |t u | -N f -qu A e ≤ 0 φv t v , qv = |t v | -V f -qv A e ≤ 0 ( 35 
)
where N f , V f are the fracture limits, and qu , qv are the stress-like softening variables that for exponential softening take the following form

qu = N f A e 1 -exp -ξu (N f /A e ) G u f qv = V f A e 1 -exp -ξv (V f /A e ) G v f ( 36 
)
where G u f , G v f are the fracture energies, and ξu , ξv are the strain-like softening variables. The effective stress resultants values in the bulk part of an element in the softening phase, which determine the value of internal forces at the discontinuity t u , t v are computed as

N = EA e -vp + Ḡα u ; V = k c GA e γ -γ vp + Ḡα v (37) 
2. The evolution equations for internal variables α u , α v and ξu , ξv with the loading/unloading conditions obtained through the principle of maximum plastic dissipation and Kuhn-Tucker optimality conditions αu = γu sign(t u ); ξu = γu ; γu ≥ 0; φu ≤ 0; γu φu = 0 αv = γv sign(t v ); ξv = γv ; γv ≥ 0; φv ≤ 0; γv φv = 0 [START_REF] Bermúdez | Finite element computation of the vibration modes of a fluid-solid system[END_REF] where γu , γv are the plastic multipliers whose values are obtained from the consistency conditions: γu φu = 0, γv φv = 0.

Computational procedure

The end result of the finite element discretization procedure is two set of equations. The first are the first order differential evolution equations for internal variables defined locally (on the element level) at Gauss quadrature point, and the second are the second order differential equations in time governing the coupled problem defined globally. The solution of these equations is computed at discrete time points t 1 , t 2 , ..., t n by using the operator split solution procedure [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF]. Here, the solution procedure is divided into the local and the global phase, which are treated separately. In the local phase, the solution of evolution equations is computed by using implicit backward Euler time integration scheme. The unknown values of displacement jumps are statically condensed on the element level from the condition that the residual at the discontinuity is equal to zero. In the global phase, the solution in terms of the unknown nodal displacements and pore pressures is computed in monolithic manner using the Newmark time-integration scheme and the Newton's iterative method.

Following the standard finite element discretization procedure, for a typical finite element the global system of equations governing the coupled problem to be solved, in matrix notation is written as

M e ü + f int,e (σ u ) -Q e p = f ext,e (39) 
Q e,T u + S e ṗ + H e p = q ext,e

where M e is the mass matrix, f int,e (σ u ) is the internal load vector resulting from displacements (i.e. effective stresses), Q e is the coupling matrix, S e is the compressibility matrix, H e is the permeability matrix, and f e,ext and q e,ext are the load vectors

Q e = L e 0 B s,T up bN s up dx; B s up = B 1 0 0 B 2 0 0 S e = Ω e CST N s,T p 1 M N s p dΩ; H e = Ω e CST (∇N s p ) T k γ f ∇N s p dΩ (41) 
The Timoshenko beam finite element mass matrix M e in Equation ( 39) is obtained by distributing the total mass of an element to nodes (Figure 4), resulting in a diagonally lumped mass matrix, written as [START_REF] Ibrahimbegovic | Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle material[END_REF] M e = 1 2 ρ diag A tot , A tot , I e , A tot , A tot , I e (42) The solution in terms of unknown nodal displacements and pore pressures is obtained at discrete time points t 1 , t 2 , ..., t n using Newmark time-integration scheme, which solves the second-order transient problem in the following manner [START_REF] Zienkiewicz | The Finite Element Method[END_REF] 

A tot = A e •L e •0.5 h e L e
R n+1 = F n+1 -P u n+1 , un+1 , ün+1 = 0 ( 43 
)
where

u n+1 = u n + ∆t un + ∆t 2 (0.5 -β)ü n + β ün+1 un+1 = un + ∆t (1 -γ)ü n + γ ün+1 (44) 
in which β and γ are parameters controlling stability and numerical dissipation, and ∆t is the time increment. For a time step t n+1 and iteration i, the global system of equations to be solved is written as

n A e=1 1 β∆t 2 M + K -Q γ β∆t Q γ β∆t S + H e,(i) n+1 ∆ū ∆p e,(i) n+1 = r u r p e,(i) n+1 ( 45 
)
where Ke is the element tangent stiffness matrix, and r e,(i) u,n+1 and r e,(i) p,n+1 are residuals pertaining to the solid and the pore fluid part. After solving the global system of equations, the new iterative values of unknown fields are updated as

ū(i+1) n+1 = ū(i) n+1 + ∆ū (i) n+1 p(i+1) n+1 = p(i) n+1 + ∆p (i) n+1 (46) 
The element tangent stiffness matrix Ke depends whether the element is in the elasto-viscoplastic or softening part of the response. If the element is elasto-viscoplastic, the tangent stiffness matrix is defined as Ke,(i)

n+1 = K e,(i) n+1 = L e 0 B s,T u C ep,(i) n+1 B s u dx (47) 
Elasto-plastic tangent matrix is written as

C ep,(i) n+1 =   C ep,u n+1 A e 0 0 0 k c C ep,v n+1 A e 0 0 0 EI e   (48) 
where C ep,u n+1 and C ep,v n+1 are elasto-plastic tangent moduli for axial and transverse direction. Local phase of computational procedure for proposed plasticity model is as follows: > 0 the current step in axial direction is plastic, and the values of internal variables needs to be updated in order to ensure the plastic admissibility of stress. The values of internal variables at time step t n+1 are

N trial n+1 = EA e (i) n+1 -vp n ; qu,trial n+1 = -H u is ξu n ; χu,trial n+1 = H u ln vp n -H u nln ξu n χu n V trial n+1 = k c GA e γ (i) n+1 -γ vp n ; qv,trial n+1 = -H v is ξv n ; χv,trial n+1 = H v ln γ vp n -H v nln ξv n χv n • Calculate trial values of yield functions φu,trial n+1 = N trial n+1 -χu,trial n+1 A e -N y -qu,trial n+1 A e φv,trial n+1 = V trial n+1 -χv,trial n+1 A e -V y -qv,trial n+1 A e → if
γu n+1 = φu,trial n+1 A e E + H u is + H u ln -H u nln χu n + η u ∆t ⇒          vp n+1 = vp n + γu n+1 sign N trial n+1 ξu n+1 = ξu n + γu n+1 χu n+1 = χu n + H u ln γu n+1 sign N trial n+1 -H u nln γu n+1 χu n
The value of elasto-plastic tangent modulus C ep,u at time step t n+1 is:

C ep,u n+1 = E H u is + H u ln -H u nln χu n+1 + η u ∆t E + H u is + H u ln -H u nln χu n+1 + η u ∆t → if φv,trial n+1 
≤ 0 the current step in transverse direction is indeed elastic, and the values of internal variables at time step t n+1 are

γv n+1 = 0 ⇒ γ vp n+1 = γ vp n ; ξv n+1 = ξv n ; χv n+1 = χv n
The value of elasto-plastic tangent modulus C ep,v at time step t n+1 is:

C ep,v n+1 = G if φv,trial n+1 
> 0 the current step in transverse direction is plastic, and the values of internal variables at time step t n+1 are

γv n+1 = φv,trial n+1 A e G + H v is + H v ln -H v nln χv n + η v ∆t ⇒          γ vp n+1 = γ vp n + γv n+1 sign V trial n+1 ξv n+1 = ξv n + γv n+1 χv n+1 = χv n + H v ln γv n+1 sign V trial n+1 -H v nln γv n+1 χv n
The value of elasto-plastic tangent modulus C ep,v at time step t n+1 is:

C ep,v n+1 = G H v is + H v ln -H v nln χv n+1 + η v ∆t G + H v is + H v ln -H v nln χv n+1 + η v ∆t
If the element is in the softening, the element tangent stiffness matrix is obtained by performing static condensation procedure in which the unknown values of displacement jumps are eliminated from the condition that the residual at the discontinuity is equal to zero. The statically condensed element tangent stiffness matrix is written as Ke,(i)

n+1 = Ke,(i) n+1 = K e,(i) n+1 -F e,(i) n+1 W e,(i) n+1 + K α -1 F e,(i),T n+1 + K d ( 49 
)
where

K e,(i) n+1 = L e 0 B s,T u C ep,(i) n+1 B s u dx; F e,(i) n+1 = L e 0 B s,T u C ep,(i) n+1 Ḡdx; W e,(i) n+1 = L e 0 ḠT C ep,(i) n+1 Ḡdx (50) 
The matrices K d and K α depend on the current step in softening being elastic or plastic.

Local phase of computational procedure for exponential softening is as follows:

Start with the best iterative values of nodal displacements, then = EA e (i) where

•
n+1 -vp + Ḡα u n ; qu,trial n+1 = N f A e 1 -exp -ξu n (N f /A e ) G u f t v,trial n+1 = k c GA e γ (i) n+1 -γ vp + Ḡα v n ; qv,trial n+1 = V f A e 1 -exp -ξv n (V f /A e ) G v f • Calculate trial values of yield functions φu,trial n+1 = t u,trial n+1 -N f -qu,trial n+1 A e φv,trial n+1 = t v,trial n+1 -V f -qv,trial n+1 A e → if φu,trial
K u,(j) α = - (N f /A e ) 2 G u f exp -ξu,(j) (N f /A e ) G u f → if φv,trial n+1 
≤ 0 the current step in transverse direction is indeed elastic, and the values of internal variables at time step t n+1 are

γv n+1 = 0 ⇒ α v n+1 = α v n ; ξv n+1 = ξv n if φv,trial n+1 
> 0 the current step in transverse direction is plastic, and the values of internal variables at time step t n+1 are computed iteratively from the condition φv n+1 ≤ tol 14

The values of internal variables at time step t n+1 and iteration (j) are ∆ γv,(j) n+1 = φv,(j)

n+1 A e -ḠG + K v,(j) α ⇒      α v,(j+1) n+1 = α v,(j) n+1 + ∆ γv,(j) n+1 sign t v,trial n+1 ξv, (j+1) n+1 
= ξv,(j) n+1 + ∆ γv,(j)

n+1
where

K v,(j) α = - (V f /A e ) 2 G v f exp -ξv,(j) (V f /A e ) G v f
If the current step in the softening is elastic, then

K d = C * B s u ; K α = 0; C * =   EA e 0 0 0 k c GA e 0 0 0 0   (51) 
Else, if the current step in the softening is plastic, then

K d = 0; K α =   K u α A e 0 0 0 K v α A e 0 0 0 0   (52) 
Remark 1: When computing the element tangent stiffness matrix all different combinations that can occur have to be taken into account. For example, in axial direction softening can occur while in transverse direction element is elasto-viscoplastic. After the appropriate tangent stiffness matrix for every element is constructed, an assembly procedure to take into account the contribution of every element to global equilibrium is performed.

Remark 2: We note that the equal order of finite element interpolation (linear interpolation) is used for both the displacement and pore pressure fields. If the undrained limit state is considered, with permeability and compressibility matrix equal to zero, then this kind of approximation (unless stabilization techniques are implemented [START_REF] Pastor | Stabilized low-order finite elements for failure and localization problems in undrained soils and foundations[END_REF]) can cause stability issues and finite elements which satisfy Babuska-Brezzi condition [START_REF] Babuška | The finite element method with lagrangian multipliers[END_REF][START_REF] Brezzi | On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers[END_REF], or Zienkiewicz-Taylor mixed patch test [START_REF] Zienkiewicz | The patch test for mixed formulations[END_REF] should be used (e.g. see [START_REF] Sanavia | A formulation for an unsaturated porous medium undergoing large inelastic strains[END_REF]). However, if undrained limit state is not considered (as is in our case) than equal order of interpolation for unknown fields is justified [START_REF] Lewis | The finite element method in the static and dynamic deformation and consolidation of porous media[END_REF][START_REF] Zienkiewicz | Static and dynamic behaviour of soils: a rational approach to quantitative solutions. i. fully saturated problems[END_REF].

Remark 3: In quasi-static setting, with inertial effects being negligible, the resulting set of equations on the global level are the first order differential equations in time. The global phase of computation under quasi-static assumptions is solved using Newton's iterative method and backward Euler scheme which solves the first order transient problem in the following manner [START_REF] Zienkiewicz | The Finite Element Method[END_REF] 

R n+1 = F n+1 -P u n+1 , un+1 = 0 ( 53 
)
where un+1 = 1 ∆t u n+1 -u n (54) 
For a time step t n+1 and iteration i, the global system of equations to be solved under quasi-static assumption is written as

n A e=1 K -Q 1 ∆t Q 1 ∆t S + H e,(i) n+1 ∆ū ∆p e,(i) n+1 = r u r p e,(i) n+1 (55) 
4. Outside fluid model in mixed Lagrangian formulation

Assumptions and governing equations

The motion of the fluid is, in a general case, described with Navier-Stokes equations [START_REF] Zienkiewicz | The Finite Element Method[END_REF]. However, the small motion of the fluid in contained conditions, such as reservoirs, water containers or storage tanks, can be described by the Lagrangian formulation. Small motion hypothesis allows us also to derive the equations governing the fluid motion from the acoustic wave theory. Namely, we assume that the fluid is inviscid, isentropic and homogeneous with constant density. The fluid motion starts from the rest, the fluid velocities remain small, and the fluid flow is considered to be irrotational. The governing momentum and continuity equations derived from acoustic wave theory are written as

ρ v + ∇p = 0 (56) ∇ • v + ṗ β = 0 ( 57 
)
where v is the velocity vector, p is the pressure, ρ is the mass density, and β is the bulk modulus. For irrotational flows, the vorticity is equal to zero

∇ × v = 0 (58)

Mixed displacement/pressure based finite element formulation

Mixed displacement/pressure based finite element formulation for acoustic fluids is based on the analogy with the mixed formulations for nearly incompressible solids [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF][START_REF] Zienkiewicz | The Finite Element Method[END_REF][START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]. Here, we assume that the fluid motion starts from the rest with the fluid displacements remaining small. Moreover, we follow [START_REF] Hamdi | A displacement method for the analysis of vibrations of coupled fluid-structure systems[END_REF][START_REF] Wilson | Finite elements for the dynamic analysis of fluid-solid systems[END_REF] by assuming that the fluid motion remains irrotational. However, contrary to the penalty-type approach for enforcing irrotational constraint, here we use the mixed variational formulation to achieve the same goal. The main advantage of such an approach is in resulting set of degrees of freedom, featuring both fluid displacements and pressure, and providing seamless connection to the poro-plasticity formulation described in Section 3. The resulting variational formulation is equivalent to [START_REF] Bathe | A mixed displacement-based finite element formulation for acoustic fluid-structure interaction[END_REF][START_REF] Wang | Displacement/pressure based mixed finite element formulations for acoustic fluid-structure interaction problems[END_REF][START_REF] Wang | On mixed elements for acoustic fluid-structure interactions[END_REF], and can be written as

Π e f = Ω e f - p 2 2β -p ∇ • u - Λ • Λ 2ϑ + Λ • ∇ × u -u • f b dΩ ( 59 
)
where p is the pressure, u is the displacement vector, and Λ is the 'vorticity moment' or Lagrangian multiplier enforcing zero vorticity in terms of perturbed Lagrangian with ϑ as the penalty parameter. The parameter β is the bulk modulus, and f b is the external load vector that next to the body forces also includes inertia force -ρü.

The corresponding weak form is obtained from the first variation of Equation ( 59), and is written as

Ω e f δp - 1 β p -∇ • u + -p ∇ • δu + Λ ∇ × δu -δu • f b + δΛ - 1 ϑ Λ + ∇ × Λ dΩ = 0 (60)
We further ought to introduce the finite element approximations for the displacements, pressure and 'vorticity moment'. For a typical finite element we have

u = N f u ū; p = N f p p; Λ = N f λ λ ü = N f u ü; p = N f p p; Λ = N f λ λ ∇ • u = (∇ • N f u ) ū = V f ū ∇ × u = (∇ × N f u ) ū = D f ū (61)
where N f u , N f p , and N f λ are interpolation matrices, ū is the vector of unknown nodal displacements, p is the vector of unknown nodal pressures, and λ is the vector of unknown nodal 'vorticity moments'.

Following the standard finite element discretization procedure and introducing finite element approximations for unknown fields, we obtain the following system of equations governing the discrete problem in dynamic setting

n A e=1            A uu 0 0 0 0 0 0 0 0     e        ü p λ       e +     0 L up L uλ L pu L pp 0 L λu 0 L λλ     e        ū p λ       e =        f f 0 0        e        (62) 
where

A e uu = Ω e f ρN f,T u N f u dΩ; L e up = - Ω e f V f,T N f p dΩ; L e uλ = Ω e f D f,T N f λ dΩ L e pp = - Ω e f 1 β N f,T p N f p dΩ; L e λλ = - Ω e f 1 ϑ N f,T λ N f λ dΩ (63) 
The 'vorticity moment' degree of freedom can be statically condensed on the element level, so that the only unknown variables remaining on the global level are displacements and pressures. The strong form of the governing equations follows from Equation ( 60)

∇p + ∇ × Λ -f b = 0 (64) 
∇ • u + p β = 0 (65) ∇ × u - Λ ϑ = 0 (66) 
Based on previously made assumptions, we note that Equations [START_REF] Jukić | Embedded discontinuity finite element formulation for failure analysis of planar reinforced concrete beams and frames[END_REF][START_REF] Jukić | Failure analysis of reinforced concrete frames by beam finite element that combines damage, plasticity and embedded discontinuity[END_REF][START_REF] Armstrong | A mathematical representation of the multiaxial bauschinger effect[END_REF] are penalized version of the strong form described in (56-58).

Finite element approximation post-processing

Mixed displacement/pressure based finite element formulation, in combination with the proper choice of finite elements that satisfy inf-sup condition, has shown to be a very efficient tool when dealing with nearly incompressible behavior of acoustic fluids in the frequency or dynamic analysis. The range of elements satisfying the inf-sup condition can be found in literature [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF][START_REF] Bathe | Finite Element Procedures[END_REF][START_REF] Chapelle | The inf-sup test[END_REF][START_REF] Bathe | The inf-sup condition and its evaluation for mixed finite element methods[END_REF].

In our numerical simulations of fluid-structure interaction in the dynamic setting for the outside fluid domain we choose linear finite element approximations for the displacements, with constant approximations for the pressure and the 'vorticity moment'. In other words, for the discretization of the outside fluid domain we use the Q4-P1-Λ1 finite element. For the purpose of solving the global system of equations, we can statically condense (e.g. [START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF]) the pressure and the 'vorticity moment' unknowns at the element level. We can then obtain the values of the pressures and the 'vorticity moments' from the computed values of displacements. However, our goal is to directly connect the outside fluid finite elements with structure finite elements at the common nodes in order to ensure the direct exchange of both the motion and the pressure at the fluid-structure interface. This is achieved by reconstructing the pressure field for the outside fluid finite elements, by extrapolating the pressure calculated inside an element to the nodes of a Q4 finite element used for the displacement approximation. In particular, the pressure at each node is evaluated as an average value of the pressures calculated in the finite elements that share that node, as shown in Figure 5. For the mesh of regular elements, the error in the value of the pressure computed in this manner is only to the finite elements located at the bottom (and/or top, depending on the boundary conditions) of the mesh. The error in the computed pressure increases if the size of the finite elements varies along the ycoordinate. However, by increasing the density of the mesh, the error can be decreased to better control the accuracy. The proposed approach enables us to calculate the displacements, pressure and 'vorticity moment' on a Q4-P1-Λ1 finite element by performing the static condensation process. With such a post-processing procedure we obtain the 'Q4-P4' finite element, which we can then use for direct transfer at fluid-structure interface.

In our numerical simulations of fluid-structure interaction in the quasi-static setting (negligible inertial effects) for the outside fluid domain we will use a finite element with the same order of interpolation for the displacement, pore pressures and 'vorticity moment'. More precisely, we choose Q4-P4-Λ4 finite element. For our problem of interest, where we consider the outside fluid as a source of the saturation and the loading on the structure, this is the most practical choice. Namely, by statically condensing 'vorticity moment' on the element level, we directly obtain 'Q4-P4' finite element, without any post-processing procedures needed. The finite element approximation of this kind is predictive enough for delivering the solution in terms of proper treatment of the fluid-structure interface, as it will be shown in the numerical simulations. We note that practically same results for the quasi-static dam-reservoir interaction presented in this paper can be obtained by using Q4-P1-Λ1 instead of Q4-P4-Λ4 finite elements. However, in this case, a small mass has to be added in the outside fluid model.

Numerical results

In this section we present results of several numerical simulations in order to demonstrate capabilities of the proposed approach for dealing with acoustic fluid-structure interaction nonlinear problems in both quasi-static and dynamic setting. All numerical computations are performed with a research version of the computer code FEAP, developed by R. L. Taylor [START_REF] Zienkiewicz | The Finite Element Method[END_REF]. In all numerical simulations, the meshing of the structure domain is carried out in GMSH using Delaunay triangulation [START_REF] Geuzaine | Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities[END_REF].

Quasi-static case

Structure built of saturated porous media

In this section, we aim to validate the coupled discrete beam lattice model of structure built of saturated porous media. We compare our results against those computed with a continuum model using commercial software PLAXIS [START_REF] Brinkgreve | PLAXIS 2D Manuals[END_REF]. In PLAXIS, the coupling between the solid phase and the pore fluid is governed by Biot's porous media theory, and the equal order of interpolation for both the displacement and pressure fields is available. For such comparison, we choose 15 node triangular elements with fourth-order polynomial interpolations.

First, we observe a saturated poro-elastic column and we perform a numerical simulation of onedimensional plain-strain consolidation test. The stress state in this example can be regarded as homogeneous. Second, we observe a saturated soil subjected to footing load, which results in a heterogeneous stress state. In both examples, the corresponding linear elastic parameters of the continuum model are identified by exploiting the property that the discrete beam lattice model based on Voronoi cell representation of the domain can reproduce the linear elastic response of an equivalent continuum model.

Saturated poro-elastic column

The geometry and the boundary conditions of the saturated poro-elastic column, and the loading program are shown in Figure 6a. The linear elastic parameters of the Timoshenko beam finite element are: Young's modulus E = 40 MPa and Poisson's ratio ν = 0. The identified corresponding Young's modulus of a continuum model is E = 33.91 MPa. Because we observe a problem of one-dimensional consolidation, Poisson's ratio in a continuum model is taken as ν = 0. The coefficient of permeability is k = 10 -2 m/s, the specific weight of the water is γ w = 10 kN/m 3 , Biot's constant is b = 1 and Biot's modulus is M = 1.7 GPa, for both discrete and continuum model. With the aim of inspecting the possible mesh dependency of the results, we perform a computation with discrete model for two different mesh densities: coarse with 336 Timoshenko beam finite elements (Figure 6b), and fine with 1281 Timoshenko beam finite elements (Figure 6c). The time step is set to ∆t = 0.01 s. The computation in a continuum model is performed on a mesh of 1190 triangular elements.

The computed time evolution of vertical displacement of the column top and the pore pressure at the bottom of the column are shown in Figures 7a and7b. We can conclude that the results obtained with discrete model show an excellent agreement with the results obtained with a continuum model. The computed results are practically mesh independent. What is important to emphasize is that the coefficient of permeability of a coupled discrete beam lattice model matches the one of an equivalent continuum model. Hence, it can be easily identified from standard experimental tests. As in the previous example, we perform computation for two different mesh densities: coarse with 401 Timoshenko beam finite elements, and fine with 1570 Timoshenko beam finite elements (Figure 8b). The time step is set to ∆t = 0.1 day. The computation in a continuum model is performed for 1126 triangular elements. The computed time evolution of vertical displacements at points A(0,8) and B [START_REF] Remij | An investigation of the step-wise propagation of a mode-ii fracture in a poroelastic medium[END_REF][START_REF] Borst | A numerical approach for arbitrary cracks in a fluid-saturated medium[END_REF], and pore pressures at points C(0,4) and D(0,6) are shown in Figures 9a-9c. We can observe a good match between the results obtained with discrete and continuum model, with the results being practically mesh independent. 

Footing on a soil stratum
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Next, we introduce the nonlinearities in the discrete and continuum model in order to investigate the influence of the nonlinear behavior on the computed displacement and pore pressure fields. We perform the computation in the continuum model for a Mohr-Coulomb constitutive law, with strength parameters: cohesion c = 15 kPa, and angle of internal friction φ = 20 • . Contrary to the linear elastic parameters of discrete lattice model, other lattice parameters such as the yield and fracture limits have to be identified through more elaborate parameter identification procedures, such as the probability based ones [START_REF] Kucerova | Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures: Part ii: identification from tests under heterogeneous stress field[END_REF][START_REF] Rosić | Parameter identification in a probabilistic setting[END_REF][START_REF] Sarfaraz | Stochastic upscaling via linear bayesian updating[END_REF]. Here, we follow simpler approach. Namely, we identify the nonlinear parameters of the Timoshenko beam finite element by simply matching the curves (vertical reaction-vertical displacement at point A), computed with the discrete and continuum model for the case of dry material. The identified yield and fracture limits in tension, compression and shear are: σ y,t = 4.7 kPa; σ y,c = 47 kPa; σ y,s = 40 kPa; σ f,t = 4.8 kPa; σ f,c = 48 kPa; σ f,s = 42 kPa. The fracture energies in tension, compression and shear are: G f,t = 0.1 MN/m; G f,c = 10 MN/m; G f,s = 1 MN/m. The identified linear isotropic hardening modulus is H is = 1100 kPa. The computed time evolution of vertical displacements at points A and B, and pore pressures at points C and D are shown in Figures 10a-10c. We observe a good match between the results computed with the discrete and continuum model, with the results being practically mesh independent. We can conclude that nonlinear behavior results in an increase in the values of computed vertical displacements and pore pressures, as previously observed in [START_REF] Lewis | The finite element method in the static and dynamic deformation and consolidation of porous media[END_REF][START_REF] Siriwardane | Two numerical schemes for nonlinear consolidation[END_REF]. The pore pressure fields at t = 5 days computed with the continuum and discrete model are shown in Figures 11a-11c. In this numerical example we observe a small-sized dam subjected to the self-weight, and the hydrostatic loading, shown in Figure 12a. The loading program is shown in Figure 12b. The specific weight of the dam material is γ s = 20 kN/m 3 , and the specific weight of the water is γ w = 10 kN/m 3 . We first apply an increase of the self-weight, followed by the hydrostatic loading. In the final part of this analysis we would like to illustrate the capability of proposed approach to represent the localized failure, where the cracks coalescence results with the ultimate failure mode. In this manner, we seek to investigate the safety factor of the complete dam structure, which (contrary to usual factors for different materials) ought to be defined for particular load pattern. This is done by computing the maximum overload that can be applied on top of (already) acting self-weight and hydrostatic pressure of external reservoir. The computation is carried out by imposed displacements, bringing the dam structure each time to the ultimate state of localized failure. We present both results computed for either horizontal or vertical overload, quantifying the localized failure brought by increasing horizontal or vertical load, respectively.

We start by assuming that the behavior of the dam remains linear elastic, and we apply first the selfweight and then the hydrostatic loading. Here, we analyze in detail the results of the fluid-structure interaction obtained with the mixed displacement/pressure based outside fluid finite element formulation. Next, we assume that the behavior of the dam is inelastic. We introduce yield and fracture limits for Timoshenko beam finite elements to take into account the possibility of plastic zones and cracks formation as a result of combined body and hydrostatic loading. Finally, we determine the admissible horizontal and vertical overloads of the dam by imposing corresponding displacements at the top base of the dam until ultimate failure. In the first two computation phases, application of the self-weight and hydrostatic loading, the time step is set to ∆t = 0.1 day. In the final stage of localized failure the time step is set to ∆t = 1 s.

Linear elastic behavior

Young's modulus and Poisson's ratio of the Timoshenko beam finite element are E = 10000 MPa and ν = 0. The coefficient of permeability is k = 10 -7 m/s, Biot's constant is b = 1 and Biot's modulus is M = 10 6 MPa. The bulk modulus of the outside water is β = 1000 MPa. We compare the results obtained with the mixed displacement/pressure based finite element formulation of fluid motion against analytical values.

Figure 13a show the contours for the computed pressure field in the reservoir and in porous media from which the dam is built, by using numerical model of acoustic fluid-structure interaction. The results are practically identical with the analytical solution for the hydrostatic pressure distribution (Figure 13b). From the computed pore pressure distribution inside the dam, we can conclude that the water in the dam reservoir can keep the porous material from which the dam is built fully saturated in every time step, which is confirmed by the results in Figure 14a showing the time evolution of total pore pressure at the bottom of the dam with respect to applied loading.

Next, we inspect other aspects of fluid-structure interaction, such as the values of total vertical and horizontal reactions, and displacements of the dam. In Figures 14b and14c, the total vertical and horizontal reaction at the bottom of the dam are shown. In mixed displacement/pressure formulation, where common nodes share both displacements and pressures, we have the transfer of both forces and pressures which gives the total value of horizontal reaction equal to the resultant force of the hydrostatic pressures. Total vertical reaction is equal to the total weight of the dam. Here, we have an additional vertical reaction from the hydrostatic loading as a result of common nodes. This additional value changes, and approaches zero as the size of the fluid finite element approaches zero. The horizontal displacement of the tip of the dam (point A) gives an additional insight into the results of fluid-structure interaction. From Figure 15a, we can see that the total horizontal displacement of the tip of the dam, after hydrostatic loading has been applied is a sum of displacements due to self-weight, hydrostatic forces and hydrostatic pressures. We can verify this if we perform the uncoupled computation of the structure response (Biot's constant b = 0) for the hydrostatic loading case. This way, we are able to obtain the displacements of the dam only from hydrostatic forces exerted on the structure. To validate our results, we perform an uncoupled computation on a model of a dam alone, where we apply hydrostatic loading in terms of equivalent nodal horizontal forces. We can conclude that the value of horizontal displacement for the uncoupled fluid-structure interaction case, and the case of the dam alone are practically the same (Figure 15b). Next, we subtract the value of displacements for the coupled and uncoupled case (Figure 15c). The resulting values of displacements are due to the coupling between the solid and fluid phase (see Equations 39 and 40).

To summarize, the proposed numerical model of acoustic-fluid structure interaction results in a full fluid-structure interaction problem, where both the influence of the hydrostatic forces and the hydrostatic pressures on the response of the dam are included. We note once again that the proposed numerical model of acoustic fluid-structure interaction allows for all computations to be performed in a fully monolithic manner.

Inelastic behavior

In this case, we admit that due to the self-weight and the hydrostatic loading, plastic zones and cracks can form in the dam. Thus, we introduce yield and fracture limits for the Timoshenko beam finite element in tension, compression and shear: σ y,t = 0.015 MPa; σ y,c = 0.20 MPa; σ y,s = 0.015 MPa; σ f,t = 0.02 MPa; σ f,c = 0.30 MPa; σ f,s = 0.02 MPa. The fracture energies in tension, compression and shear are: G f,t = 0.01 GN/m; G f,c = 0.1 GN/m; G f,s = 0.01 GN/m. The linear isotropic hardening modulus is H is = 1000 MPa. We perform the computations for the loading program shown in Figure 12b.

Elements in which plasticity has occurred are shown in Figure 16a, where we can see that a large area of the domain has become plastic. In Figures 16b and16c, broken cohesive links in the dam at the end of loading program are shown. These broken cohesive links (marked red) represent beam elements that had entered softening phase of the response in mode I, and mode II. The plastic zones, and broken cohesive links result in the less stiff response of the dam. This leads to an increase in the value of horizontal displacement of the tip of the dam, compared to the linear elastic case (Figure 16d). 

Localized failure analysis of dam structure for either horizontal or vertical overload

The self-weight and the hydrostatic loading are considered as the fundamental load cases acting upon the dam, which must be used for the structure design. During the dam life cycle, one can imagine occasional extreme loads that can threaten structure integrity and lead to localized failure. Here, we want to quantify the remaining resistance to possible overload (on top of dam dead-load and reservoir pressure) that can be applied on the dam leading to the complete failure. The overload of this kind can be interpreted as the structure safety factor, which has to be properly taken into account in the design process. In particular, we carry on such a safety factor computation by computing the final failure mode for either applied horizontal or vertical overloads.

First, we compute the value of the admissible horizontal overload by imposing horizontal displacements with a constant rate of 1 • 10 -3 mm/s at the top base of the dam, applied after the loading program shown in Figure 12b. The computed value of horizontal overload that dam can withstand until the complete failure is 8.3810 kN (see Figure 17a). It is important to note fairly low safety, since the self-weight and hydrostatic loading resulted in the total horizontal reaction equal to 130.05 kN (Figure 14c). Namely, for this particular geometry and the mechanical properties of the dam, we can state that the factor of safety of the dam against failure is 1.06. In other words, an increase in the value of the horizontal load in the amount of 6% will result in the failure of the dam. The pore pressure at point B(0.7272, 0.2247)[m] is shown in Figure 17b. The increase in a value of displacement jump in a broken cohesive link with nodes B(0.7272, 0.2247)[m] and C(0.4370, 0.3152)[m] is shown in Figure 17c. The deformed configuration of the dam, and the broken cohesive links in increasing softening at the end of loading program are shown in Figures 18a-18c. After the horizontal overload level is reached, one large macro-crack starts to form and propagate resulting in the decrease in the load carrying capacity of the dam (Figures 18d and18e). 19a). The total vertical reaction resulting from the self-weight and hydrostatic loading is 252.7516 kN (Figure 14b). Thus, we can state that the factor of safety of the dam against failure is 1. In this example, we perform a validation computation of the proposed discrete model of saturated porous media in dynamic setting, where we compare the computed results against the reference values provided in [START_REF] De Boer | One-dimensional transient wave propagation in fluid-saturated incompressible porous media[END_REF]. We observe a saturated poro-elastic column subjected to step and sinusoidal loading (Figure 21a), defined with following expressions

F = 3 [kN/m 2 ] F = 3[1 -cos(ωt)] [kN/m 2 ]; ω = 75 s -1
The computation in a continuum model is performed for Lame's parameters λ L = 5.5833 MPa, and µ L = 8.3750 MPa, which correspond to Young's modulus E = 20.10 MPa, and Poisson's ratio ν = 0.2. By exploiting the property that discrete lattice model based on Voronoi cell representation of domain with irregular lattice geometry can reproduce the linear elastic response of an equivalent continuum model, we identify the Timoshenko beam linear elastic parameters to be: Young's modulus E = 23.71 MPa, and Poisson's ratio ν = 0. The specific weight of water is γ w = 10 kN/m 3 , the mass density of mixture is ρ = 1670 kg/m 3 , the coefficient of permeability is k = 10 -2 m/s, Biot's constant is b = 1 and Biot's modulus is 1/M → 0, for both continuum and discrete model. The time step is set to ∆t = 0.001 s.

With the aim of inspecting the possible mesh dependency of the results, we perform a computation with discrete model for two mesh densities: coarse with 336 Timoshenko beam finite elements (Figure 21b), and fine with 1281 Timoshenko beam finite elements (Figure 21c).

The computed results in terms of time evolution of vertical displacement of the column top, and pore pressures are shown in Figures 22a-22c. We can conclude that a good match between the computed results and reference values is obtained, with the results being practically mesh independent. 

Dam-reservoir system

In this example we observe a small-size gravity dam, shown in Figure 23a. The length of the reservoir is chosen as L = 20.4 m in order to eliminate the influence of the boundary effects. First, we assume that the response of dam remains linear elastic, and we subject the dam-reservoir system to horizontal ground acceleration. The horizontal ground movement is modeled in terms of equivalent horizontal forces acting on the system with fixed base [START_REF] Chopra | Dynamics of Structures: Theory and Applications to Earthquake Engineering[END_REF]. We compare computed results against analytical solutions provided by Chwang [START_REF] Chwang | Hydrodynamic pressures on sloping dams during earthquakes. part 2. exact theory[END_REF].

Next, we aim to determine the horizontal overload dam can withstand until ultimate failure. Here, we perform a nonlinear dynamic analysis following the loading program shown in Figure 23b. First, we apply self-weight followed by the hydrostatic loading of external reservoir. Finally, we subject the dam-reservoir system to the linear increasing horizontal ground acceleration with a constant rate 0.2g/1s, until the ultimate state of localized failure. The specific weight of the dam material is γ s = 20 kN/m 3 , and the specific weight of the water is γ w = 10 kN/m 3 . In the first two computation phases, application of the self-weight and hydrostatic loading, the time step is set to ∆t = 0.1 day. In the final stage of localized failure the initial time step is set to ∆t = 0.001 s. Prior to reaching the ultimate value of horizontal overload, the time step is reduced to ∆t = 0.0001 s. 

Linear elastic behavior

Young's modulus and Poisson's ratio of the Timoshenko beam finite element are E = 10000 MPa and ν = 0. The coefficient of permeability is k = 10 -7 m/s, Biot's constant is b = 1 and Biot's modulus is M = 10 6 MPa. The bulk modulus of outside water is β = 1000 MPa. We subject the dam-reservoir system to horizontal ground acceleration reaching its maximum value of a = 0.1g at t = 1 s, which is then kept constant. The time step is set to ∆t = 0.01 s. We compare the computed values of hydrodynamic pressure and hydrodynamic force exerted on the wall against analytical solutions provided by Chwang [START_REF] Chwang | Hydrodynamic pressures on sloping dams during earthquakes. part 2. exact theory[END_REF], with the aim to validate the proposed numerical model of acoustic fluid-structure interaction in dynamic setting. We present the results in terms of the pressure coefficient C p . The pressure p is then equal to p = C p ρaH, where ρ is the mass density of outside fluid, a is the horizontal acceleration, and H is the height of the reservoir. The computed results for the vertical upstream face are shown in Figures 24a and24b. We can conclude that a good match between computed hydrodynamic pressures and hydrodynamic forces, and analytical values is obtained. The hydrodynamic pressure distribution in the reservoir, and pore pressure distribution in the body of the dam at t = 2 s are shown in Figure 25a, and at t = 10 s in Figure 25b. We can conclude that outside fluid acts as a source of pore saturation keeping the material of the structure fully saturated at each time step. We also perform the computation for the upstream face of the dam inclined with a constant slope Θ = 75 • . The computed hydrodynamic pressure distribution is shown in Figure 24a, and the computed horizontal and vertical hydrodynamic force exerted on the upstream face of the dam are shown in Figure 24c. We can conclude that computed results closely match analytical solutions. We present our results with respect to computed horizontal displacement of the tip of the dam (point A). The computed ultimate value of horizontal overload that results with the localized failure of dam structure is 92.8187 kN (Figure 26a). The self-weight and hydrostatic loading resulted in the total horizontal reaction equal to 130.05 kN. We can conclude that for this particular geometry and mechanical properties, the computed factor of safety of the dam against failure is 1. 

Concluding remarks

In this paper, we presented an efficient approach to numerical modeling of the acoustic fluid-structure interaction nonlinear problems, for both quasi-static and dynamic case. The structure is represented as a saturated porous medium, whose response is modeled with coupled discrete beam lattice model, which is based on Voronoi cell representation with inelastic Timoshenko beam finite elements enhanced with additional kinematics as cohesive links. The internal coupling is handled with Biot's porous media theory. The motion of the outside fluid in interaction with the structure is described with Lagrangian formulation and mixed displacement/pressure based finite element approximation. The main advantage of the proposed numerical model for acoustic fluid-structure interaction is in the resulting set of degrees of freedom per node of structure and outside fluid finite elements, which permits for the elements to be connected directly at the common nodes without any need for special numerical consideration of the fluid-structure interface. This ensures direct exchange of both motion and the pressure at the common boundary, and allows for all unknown fields to be computed in a fully monolithic manner.

Numerical simulations presented in this paper show that the proposed numerical model is capable of predicting both the hydrostatic and hydrodynamic pressure distribution in close agreement with analytical solutions. We have confirmed through numerical simulations that the proposed coupled discrete beam lattice model in combination with mixed displacement/pressure based outside fluid finite element formulation can describe a full interaction problem where we have both the transfer of the pressure and the forces to the structure. Thus, we are able to take into account the influence of the fluid acting both as a source of additional forces and additional pressures on the structure.

Finally, we have illustrated the proposed model ability to represent localized failure modes, and thus quantify the overall safety of the dam structure to potential overload with respect to the fundamental load cases. The computation of this kind in quasi-static setting is performed by imposing either horizontal or vertical displacement upon the dam deformed configuration, which is obtained under the dead-load and reservoir pressure. In dynamic setting, the localized failure of dam structure is brought by subjecting the dam-reservoir system to the linear increasing horizontal ground acceleration. The ability of the proposed formulation to quantify the overall structure safety for a particular loading program is very important from the standpoint of engineering practice dealing with issues of the structure design, both in terms of the structural integrity and structure durability.

The proposed model for outside fluid can further be enhanced to account for sloshing and cavitation phenomena. However, the focus in this paper was on numerical modeling of the structure built of saturated porous media, whereas the external fluid was considered mainly as a source of external loading and pores or cracks saturation.

Even when the proposed model is pushed to extreme while computing the final phase of localized failure, it still exhibits an excellent performance in terms of fast convergence rates and efficient computational time. In Tables 1 and2, we give the residual and energy convergence rates for a typical time step per each computation phase of localized failure analysis of dam structure under horizontal overload in quasi-static setting. 
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 6 Figure 6: Saturated poro-elastic column
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 7 Figure 7: Saturated poro-elastic column: computed results

  The geometry and the boundary conditions of the observed problem, and the loading program are shown in Figure8a. The linear elastic parameters of the Timoshenko beam finite element are: Young's modulus E = 40 MPa, and Poisson's ratio ν = 0. The identified Young's modulus of a continuum model is E = 33.91 MPa, and Poisson's ratio ν = 0.188. The coefficient of permeability is k = 10 -3 m/day, the specific weight of the water is γ w = 10 kN/m 3 , Biot's constant is b = 1 and Biot's modulus is M = 1.3 GPa, for both discrete and continuum model.
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  55. The pore pressure at point D(2.5629, 4.5381)[m] is shown in Figure 19b. The increase in a value of displacement jump in a broken cohesive link with nodes D(2.5629, 4.5381)[m] and E(2.2843, 4.6145)[m] is shown in Figure 19c. The deformed configuration of the dam, and the broken cohesive links in increasing softening at the end of loading program are shown in Figures 20a-20c. The values of displacement jumps in the broken cohesive links are shown in Figures 20d and 20e
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 24 Figure 24: Dam-reservoir system, linear elastic behavior: computed results
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 71 The pore pressure at point B(1.0175, 0.2776)[m] is shown in Figure 26b. The increase in a value of displacement jump in a broken cohesive link with nodes B(1.0175, 0.2776)[m] and C(0.7194, 0.4826)[m] is shown in Figure 26c. The deformed configuration of the dam, and the broken cohesive links in increasing softening at the end of loading program are shown in
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  Figures 27a-27c. The values of displacement jumps in the broken cohesive links are shown in Figures 27d and 27e.

  Figures 27a-27c. The values of displacement jumps in the broken cohesive links are shown in Figures 27d and 27e.
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 27 Figure 27: Failure mode for horizontal overload

  φu,trial n+1 ≤ 0 the current step in axial direction is indeed elastic, and the values of internal variables at time step t n+1 remain the same as at time step t n
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The value of elasto-plastic tangent modulus C ep,u at time step t n+1 is:

C ep,u n+1 = E if φu,trial

n+1

Table 1 :

 1 Convergence rates: residual norm for selected time steps

	Iteration	Self-weight phase Hydrostatic loading phase Localized failure Time step: 50 Time step: 180 Time step: 1610
	1	2.4177 • 10 -04	3.4008 • 10 -04	1.2834 • 10 -02
	2	5.4542 • 10 -04	4.6168 • 10 -04	8.8185 • 10 -04
	3	2.0887 • 10 -05	1.7170 • 10 -05	4.4117 • 10 -04
	4	8.7336 • 10 -16	1.6796 • 10 -13	1.3242 • 10 -04
	5			2.5074 • 10 -05
	6			1.0504 • 10 -04
	7			3.9459 • 10 -07
	8			2.0083 • 10 -13

Table 2 :

 2 Convergence rates: energy norm for selected time steps

	Iteration	Self-weight phase Hydrostatic loading phase Localized failure Time step: 50 Time step: 180 Time step: 1610
	1	9.7579 • 10 -10	8.2718 • 10 -09	2.6056 • 10 -08
	2	7.6616 • 10 -11	9.7831 • 10 -11	5.8175 • 10 -10
	3	8.2985 • 10 -14	2.7183 • 10 -14	1.4944 • -10
	4	3.5316 • 10 -35	1.0109 • 10 -29	5.8688 • 10 -12
	5			7.2201 • 10 -13
	6			6.4927 • 10 -13
	7			2.3475 • 10 -17
	8			6.3199 • 10 -29
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