
HAL Id: hal-03486888
https://hal.science/hal-03486888

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A numerical model for multiphase liquid–vapor–gas
flows with interfaces and cavitation

Marica Pelanti, Keh-Ming Shyue

To cite this version:
Marica Pelanti, Keh-Ming Shyue. A numerical model for multiphase liquid–vapor–gas flows with
interfaces and cavitation. International Journal of Multiphase Flow, 2019, 113, pp.208 - 230.
�10.1016/j.ijmultiphaseflow.2019.01.010�. �hal-03486888�

https://hal.science/hal-03486888
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


A numerical model for multiphase liquid-vapor-gas flows with
interfaces and cavitation

Marica Pelanti∗,a, Keh-Ming Shyueb

aInstitute of Mechanical Sciences and Industrial Applications, UMR 9219 ENSTA ParisTech - EDF - CNRS - CEA,
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Abstract

We are interested in multiphase flows involving the liquid and vapor phases of one species and a
third inert gaseous phase. We describe these flows by a hyperbolic single-velocity multiphase
flow model composed of the phasic mass and total energy equations, the volume fraction
equations, and the mixture momentum equation. The model includes stiff mechanical and
thermal relaxation source terms for all the phases, and chemical relaxation terms to describe mass
transfer between the liquid and vapor phases of the species that may undergo transition. First,
we present an analysis of the characteristic wave speeds associated to the hierarchy of relaxed
multiphase models corresponding to different levels of activation of infinitely fast relaxation
processes, showing that sub-characteristic conditions hold. We then propose a mixture-energy-
consistent finite volume method for the numerical solution of the multiphase model system. The
homogeneous portion of the equations is solved numerically via a second-order wave propagation
scheme based on robust HLLC-type Riemann solvers. Stiff relaxation source terms are treated by
efficient numerical procedures that exploit algebraic equilibrium conditions for the relaxed states.
We present numerical results for several three-phase flow problems, including two-dimensional
simulations of liquid-vapor-gas flows with interfaces and cavitation phenomena.

Key words: Multiphase compressible flows, relaxation processes, liquid-vapor phase transition,
finite volume schemes, Riemann solvers.
2000 MSC: 65M08, 76T10

1. Introduction

Liquid-vapor flows are found in a large variety of industrial and technological processes and
natural phenomena. Often these flows involve one or more additional inert gas phases. For
instance, in some processes the dynamics of a liquid-vapor mixture is coupled to the dynamics
of defined regions of a third non-condensable gaseous component. An example is given by
underwater explosion phenomena, where a high pressure bubble of combustion gases triggers
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cavitation phenomena in water [11, 24]. In other cases liquid-vapor mixtures may contain a
diluted inert gas component, which may affect the flow features, such as in fuel injectors [6].
We are interested here in the simulation of this type of multiphase flows involving the liquid and
vapor phases of one species and one or more additional non-condensable gaseous phases. We
describe these multiphase flows by a hyperbolic single-velocity compressible flow model with
infinite-rate mechanical relaxation, which extends the two-phase model that we have studied in
previous work [45]. This model is composed of the phasic mass and total energy equations, the
volume fraction equations, and the mixture momentum equation. The model includes thermal
relaxation terms to account for heat transfer processes between all the phases, and chemical
relaxation terms to describe mass transfer between the liquid and vapor phases of the species that
may undergo transition. Similar hyperbolic multiphase flow models with instantaneous pressure
relaxation have been previously presented for instance in [48, 27, 64]. A first contribution
of our work is a rigorous derivation of the reduced pressure-relaxed model resulting from the
parent non-equilibrium multiphase flow model with heat and mass transfer terms in the limit
of instantaneous mechanical relaxation. This is done by following the asymptotic analysis
technique employed by Murrone and Guillard [41] for the two-phase case with no heat and mass
transfer. Moreover, we present an original analysis of the characteristic wave speeds associated
to the hierarchy of relaxed multiphase models corresponding to different levels of activation of
infinitely fast mechanical and thermo-chemical relaxation processes. Similar to results shown
in the literature for the two-phase case [18, 36, 32], we demonstrate that sub-characteristic
conditions hold, namely the speed of sound of the multiphase mixture is reduced whenever an
additional equilibrium assumption is introduced. Then, we present a finite volume method for the
numerical solution of the multiphase model system based on a classical fractional step procedure.
The homogeneous hyperbolic portion of the equations is solved numerically via a second-order
accurate wave propagation scheme, which employs a HLLC-type Riemann solver. In particular,
we present here a new generalized HLLC-solver based on the idea of the Suliciu relaxation solver
of [8], extending the solver that we have recently proposed in [15] for the two-phase case. This
HLLC/Suliciu-type solver allows us to guarantee positivity preservation with a suitable choice
of the wave speeds. Stiff relaxation source terms are treated by efficient numerical procedures
that exploit algebraic equilibrium conditions for the relaxed states, following the ideas of our
work [45]. Similar approaches have been previously presented in the literature for instance in
[27]. One important property of our numerical method is mixture-energy-consistency in the
sense defined in [45], that is the method guarantees conservation of the mixture total energy
at the discrete level, and it guarantees consistency by construction of the values of the relaxed
states with the mixture pressure law. This property is ensured thanks to the total-energy-based
formulation of the model system. We present several numerical results for three-phase flow
problems, including problems involving liquid-vapor-gas flows with interfaces and cavitation
phenomena, such as underwater explosion tests.

This article is organized as follows. In Section 2 we present the multiphase flow model under
study. In Section 3 we derive the limit pressure-equilibrium model associated to the considered
multiphase flow model, and we analyze the characteristic speeds of the relaxed models in the
hierarchy stemming from the parent relaxation model. In Section 4 we illustrate the numerical
method that we have developed to solve the multiphase flow equations. Several one-dimensional
and two-dimensional numerical experiments are finally presented in Section 5.
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2. Single-velocity multiphase compressible flow model

We consider an inviscid compressible flow composed of N phases that we assume in
kinematic equilibrium with velocity ~u. In this work we are mainly interested in three-phase
flows, N = 3, nonetheless we shall present here a general multiphase flow formulation. The
volume fraction, density, internal energy per unit volume, and pressure of each phase will be
denoted by αk , ρk , Ek , pk , k = 1, . . . ,N, respectively. We will denote the total energy for the
kth phase with Ek = Ek + ρk

|~u|2

2 . The saturation condition is
∑N

k=1 αk = 1. The mixture density
is ρ =

∑N
k=1 αkρk , the mixture internal energy is E =

∑N
k=1 αkEk , and the mixture total energy

is E =
∑N

k=1 αkEk = E + ρ |~u|
2

2 . Moreover, we will denote the kth specific internal energy with
εk = Ek/ρk . Mechanical and thermal transfer processes are considered in general for all the
phases. We assume that one species in the mixture can undergo phase transition, so that it can
exist as a vapor or a liquid phase, and mass transfer terms are accounted for this species only.
We will use the subscripts 1 and 2 to denote the liquid and vapor phases of this species. We
describe the N-phase flow under consideration by a compressible flow model that extends the
six-equation two-phase flow system that we studied in [45]. The model system is composed of
the volume fraction equations for N − 1 phases, the mass and total energy equations for all the N
phases, and d mixture momentum equations, where d denotes the spatial dimension:

∂tαk + ~u · ∇αk =
∑N

j=1 Pk j , k = 1, 3, . . . ,N, (1a)

∂t(α1ρ1) + ∇ · (α1ρ1~u) =M , (1b)

∂t(α2ρ2) + ∇ · (α2ρ2~u) = −M , (1c)

∂t(αkρk) + ∇ · (αkρk~u) = 0 , k = 3, . . . ,N , (1d)

∂t(ρ~u) + ∇ ·
[
ρ~u ⊗ ~u +

(∑N
k=1 αk pk

)
I
]

= 0 , (1e)

∂t(α1E1) + ∇ · (α1(E1 + p1)~u) + Υ1 = −
∑N

j=1 pI1 jP1 j +
∑N

j=1 Q1 j +
(
gI +

|~u|2

2

)
M , (1f)

∂t(α2E2) + ∇ · (α2(E2 + p2)~u) + Υ2 = −
∑N

j=1 pI2 jP2 j +
∑N

j=1 Q2 j −
(
gI +

|~u|2

2

)
M , (1g)

∂t(αkEk) + ∇ · (αk(Ek + pk)~u) + Υk = −
∑N

j=1 pIk jPk j +
∑N

j=1 Qk j , k = 3, . . . ,N . (1h)

The non-conservative terms Υk appearing in the phasic total energy equations (1f)–(1h) are given
by

Υk = ~u ·
[
Yk∇

(∑N
j=1 α j p j

)
− ∇(αk pk)

]
, k = 1, . . . ,N , (1i)

where Yk =
αkρk
ρ

denotes the mass fraction of phase k. In the system above Pk j and Qk j

represent the volume transfer and the heat transfer, respectively, between the phases k and j,
k, j = 1, . . . ,N. The term M indicates the mass transfer between the liquid and vapor phases
indexed with 1 and 2. The transfer terms are defined as relaxation terms:

Pk j = µk j(pk − p j) , Qk j = ϑk j(T j − Tk) , M = ν(g2 − g1) , (2)

where Tk denotes the phasic temperature, gk the phasic chemical potential, and where we
have introduced the mechanical, thermal and chemical relaxation parameters µk j = µ jk ≥ 0,
ϑk j = ϑ jk ≥ 0, and ν = ν12 = ν21 ≥ 0, respectively. Note that Pk j = −P jk and Qk j = −Q jk.
The quantities pIk j = pI jk are interface pressures and gI is an interface chemical potential. We
shall assume that all mechanical relaxation processes are infinitely fast, µk j = µ jk ≡ µ→ +∞, so
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that mechanical equilibrium is attained instantaneously between all the phases. Indeed here,
following the same idea of [51, 52, 45], the parent non-equilibrium multiphase flow model
with instantaneous pressure relaxation is used to approximate solutions to the limiting pressure-
equilibrium flow model, which is the physical flow model of interest. Concerning thermal and
chemical relaxation, following the simple approach of [51], we consider in this work that these
processes are either inactive, ϑk j = 0, ν = 0, or they act infinitely fast, ϑk j → +∞, ν→ +∞. Heat
and mass transfer may be activated at selected locations, for instance at interfaces for a phase pair
(k, j), identified by min(αk, α j) > ε, where ε is a tolerance.

The closure of the system (1) is obtained through the specification of an equation of state
(EOS) for each phase pk = pk(Ek, ρk), Tk = Tk(pk, ρk). For the numerical model here we will
adopt the widely used stiffened gas (SG) equation of state [39]:

pk(Ek, ρk) = (γk − 1)Ek − γk$k − (γk − 1)ηkρk , (3a)

Tk(pk, ρk) =
pk +$k

κvkρk(γk − 1)
, (3b)

where γk, $k, ηk and κvk are constant material-dependent parameters. In particular, κvk represents
the specific heat at constant volume. The corresponding expression for the phasic entropy is

sk = κvk log(T γk
k (pk +$k)−(γk−1)) + η′k , (3c)

where η′k = constant, and gk = hk − Tk sk, with hk denoting the phasic specific enthalpy. The
parameters for the SG EOS for the liquid and vapor phases of the species that may undergo
transition are determined so that the theoretical saturation curve defined by g1 = g2 matches the
experimental one for the considered material [26]. The mixture pressure law for the model with
instantaneous pressure relaxation is determined by the mixture energy relation

E =

N∑
k=1

αkEk(p, ρk), (4)

where we have used the mechanical equilibrium conditions pk = p, for all k = 1, . . . ,N, in
the phasic energy laws Ek(pk, ρk). Note that for the particular case of the SG EOS, an explicit
expression of the mixture pressure can be obtained from (4).

Since here we will consider relaxation parameters either = 0 or → +∞, a specification
of the expression for the interface quantities pIk j , gI is not needed. Nevertheless, let us
remark that the definition of these interface quantities must be consistent with the second law
of thermodynamics, which requires a non-negative entropy production for the mixture. The
equation for the mixture total entropy S = ρs , s =

∑N
k=1 Yk sk , is found as:

∂tS + ∇ · (S~u) = HP +HQ +HM , (5a)

where

HP =

N∑
k=1

N∑
j=1

pk − pIk j

Tk
Pk j , HQ =

N∑
k=1

N∑
j=1

1
Tk
Qk j , HM =

(
gI − g1

T1
−

gI − g2

T2

)
M. (5b)

For consistency of the multiphase model (1) with the second law of thermodynamics we need
HP +HQ +HM ≥ 0. By following the arguments in [18], one can infer the following sufficient
consistency conditions on the interface quantities:

pIk j ∈ [min(pk, p j),max(pk, p j)] and gI ∈ [min(g1, g2),max(g1, g2)]. (6)
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The model (1) is hyperbolic and the associated speed of sound cf (non-equilibrium or frozen
sound speed) is defined by

c2
f =

(
∂pm

∂ρ

)
sk ,Yk , αk , k=1,...,N

, (7)

where we have introduced the mixture pressure

pm(ρ, s1, . . . , sN ,Y1, . . . ,YN−1, α1, . . . , αN−1) =

N∑
k=1

αk pk

(
sk, ρ

Yk

αk

)
. (8)

From this definition, by noticing that(
∂pk

∂ρ

)
sk ,Yk , αk

=

(
∂pk

∂ρk

)
sk ,Yk , αk

(
∂ρk

∂ρ

)
sk ,Yk , αk

= c2
k

Yk

αk
, (9)

we obtain the expression:

cf =

√√√ N∑
k=1

Ykc2
k , (10)

where ck =
√(

∂pk
∂ρk

)
sk

is the speed of sound of the phase k, which can be expressed as ck =√
Γkhk + χk , where Γk = (∂pk/∂Ek)ρk (Grüneisen coefficient), and χk = (∂pk/∂ρk)Ek .

3. Hierarchy of multiphase relaxed models and speed of sound

By considering different levels of activation of instantaneous relaxation processes we can
establish from the model (1) a hierarchy of hyperbolic multiphase flow models. Here in particular
we derive the expression of the speed of sound for the relaxed models in this hierarchy, similar
to [18, 19].

3.1. p-relaxed model

In the considered limit of instantaneous mechanical relaxation µk j ≡ µ → +∞, the
model system (1) reduces to a hyperbolic single-velocity single-pressure model, which is a
generalization of the five-equation two-phase flow model of Kapila et al. [23]. The reduced
pressure equilibrium model, which we shall also call p-relaxed model, can be derived by means
of asymptotic analysis techniques, cf. in particular [41]. We show the derivation for the one-
dimensional case in Appendix A. Denoting with p the equilibrium pressure, we obtain the
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following relaxed system, composed of 2N + d equations:

∂tα1 + ~u · ∇α1 = K1∇ · ~u + Γ1
ρ1c2

1

∑N
j=2 Q1 j − α1

ρc2
p

ρ1c2
1

∑N
j,i=1
i> j
Q ji

(
Γ j

ρ jc2
j
−

Γi

ρic2
i

)
+

ρc2
p

ρ1c2
1

(
(Γ1(gI − h1) + c2

1)
∑N

j=2
α j

ρ jc2
j

+ (Γ2(gI − h2) + c2
2) α1
ρ2c2

2

)
M , (11a)

∂tαk + ~u · ∇αk = Kk∇ · ~u + Γk

ρkc2
k

∑N
j=1
j,k
Qk j − αk

ρc2
p

ρkc2
k

∑N
j,i=1
i> j
Q ji

(
Γ j

ρ jc2
j
−

Γi

ρic2
i

)
+ρc2

p
αk

ρkc2
k

(
Γ2(gI−h2)+c2

2
ρ2c2

2
−

Γ1(gI−h1)+c2
1

ρ1c2
1

)
M , k = 3, . . . ,N , (11b)

∂t(α1ρ1) + ∇ · (α1ρ1~u) =M , (11c)

∂t(α2ρ2) + ∇ · (α2ρ2~u) = −M , (11d)

∂t(αkρk) + ∇ · (αkρk~u) = 0 , k = 3, . . . ,N , (11e)

∂t(ρ~u) + ∇ · (ρ~u ⊗ ~u + pI) = 0 , (11f)

∂tE + ∇ · ((E + p)~u) = 0 , (11g)

where
Kk = ρc2

pαk
∑N

j=1
j,k
α j

(
1

ρkc2
k
− 1

ρ jc2
j

)
= αk

(
ρc2

p

ρkc2
k
− 1

)
. (12)

In the relations above we have introduced the pressure equilibrium speed of sound cp (a
generalization of Wood’s sound speed), defined by

c2
p =

(
∂p
∂ρ

)
s1,...,sN ,Y1,...,YN

, (13)

from which we obtain the expression:

cp =

ρ N∑
k=1

αk

ρkc2
k

−
1
2

. (14)

As we mentioned above, the pressure equilibrium model (1) is indeed the physical flow model
of interest. Similar to the two-phase case [52, 63, 45], the non-equilibrium model (11) with
instantaneous mechanical relaxation is convenient to approximate numerically solutions to the
p-relaxed model.

Remark 1. For the two-phase case N = 2 the p-relaxed model (11) has a form analogous to the
pressure-equilibrium model presented by Saurel et al. in [51], nonetheless we remark a difference
in the expression of mass transfer term appearing in the volume fraction equation. The equation
for α1 obtained from (11) for N = 2 can be written as:

∂tα1 + ~u · ∇α1 = K1∇ · ~u + ζ

(
Γ1

α1
+
Γ2

α2

)
Q + ζ

Γ1(gI − h1) + c2
1

α1
+
Γ2(gI − h2) + c2

2

α2

M , (15)

where K1 = ζ(ρ2c2
2 − ρ1c2

1) and ζ = α1α2
α2ρ1c2

1+α1ρ2c2
2

. The equation for the volume fraction α1 of the
relaxed pressure-equilibrium model reported in [51] is:

∂tα1 + ~u · ∇α1 = K1∇ · ~u + ζ

(
Γ1

α1
+
Γ2

α2

)
Q + ζ

 c2
1

α1
+

c2
2

α2

M . (16)
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We observe that the two formulations are equivalent only with the following definition of the
interface chemical potential gI :

gI =
α2Γ1h1 + α1Γ2h2

α2Γ1 + α1Γ2
. (17)

This definition in general does not satisfy the sufficient condition for entropy consistency (6).
Nevertheless, let us note that the numerical model in [51] considers either no mass transfer or
infinite-rate mass transfer, so that the factor multiplying M in (16) has no influence in these
specific circumstances.

Remark 2. In our previous work [45] an additional term of the form M/ρI was written in the
volume fraction equation of the six-equation two-phase flow model corresponding to (1) for
N = 2, with ρI representing an interface density. Similar to [18], this term is not included in
the present multiphase model (1). The purpose of the term M/ρI in [45] was to indicate the
influence of the mass transfer process on the evolution of the volume fraction. Nonetheless,
the rigorous derivation of the pressure-relaxed model (11) from the system (1) reveals that
indeed mass transfer terms affect αk via the pressure relaxation process, as we observe from
the contribution of M appearing in (11a), (11b) (and (15) for the case N = 2). Note that
neglecting the term M/ρI in the six-equation two-phase model of [45] does not affect the
numerical model and the numerical results presented there, since ν = 0 or ν → +∞, and the
numerical procedure for treating instantaneous chemical relaxation consists in imposing directly
algebraic thermodynamic equilibrium conditions.

3.2. pT-relaxed models
Assuming instantaneous mechanical equilibrium µ jk ≡ µ → +∞ for all the phases and

thermal equilibrium ϑk j ≡ ϑ → +∞ for M phases, 2 ≤ M ≤ N, we obtain a hyperbolic relaxed
system of 2N − M + 1 + d equations characterized by the speed of sound cpT,M , defined by

1
cpT,M

2 =

(
∂p
∂ρ

)
∑M

k=1 Yk sk ,sM+1,...,sN ,Y1,...,YN

, (18)

From this definition we obtain the expression:

1
cpT,M

2 =
1

cp
2 +

ρT∑M
k=1 Cpk

M−1∑
k=1

Cpk

M∑
j=k+1

Cp j

 Γ j

ρ jc2
j

−
Γk

ρkc2
k

2

, (19)

where T denotes the equilibrium temperature, Cpk = αkρkκpk, κpk = (∂hk/∂Tk)pk (specific heat
at constant pressure), and we recall Γk = (∂pk/∂Ek)ρk . Let us note that in the particular case of
thermal equilibrium for all the phases, M = N, the reduced single-pressure single-temperature
pT -relaxed multiphase model has the conservative form:

∂t(α1ρ1) + ∇ · (α1ρ1~u) =M , (20)

∂t(α2ρ2) + ∇ · (α2ρ2~u) = −M , (21)

∂t(αkρk) + ∇ · (αkρk~u) = 0 , k = 3, . . . ,N , (22)

∂t(ρ~u) + ∇ · (ρ~u ⊗ ~u + pI) = 0 , (23)

∂tE + ∇ · ((E + p)~u) = 0 . (24)
7



The two-phase (N = 2) version of this model was considered for instance in [37], and more
recently in [49].

3.3. pTg-relaxed models

We now assume instantaneous mechanical equilibrium µ jk ≡ µ → +∞ for all the phases,
thermal equilibrium ϑk j ≡ ϑ → +∞ for M phases, 2 ≤ M ≤ N, and, additionally, we consider
instantaneous chemical relaxation between the liquid and vapor phases 1 and 2, ν → +∞. We
consider that at least the liquid-vapor phase pair is in thermal equilibrium. With these hypotheses
we obtain a hyperbolic relaxed system of 2(N − M + 1) + d equations characterized by a speed
of sound cpTg,M , defined by

cpTg,M
2 =

(
∂p
∂ρ

)
∑M

k=1 Yk sk ,sM+1,...,sN ,Y3,...,YN

, (25)

from which we obtain

1
cpTg,M

2 =
1

cpT,M
2 +

ρT∑M
k=1 Cpk

 M∑
k=1

ΓkCpk

ρkc2
k

−
1
T

(
dT
dp

)
sat

M∑
k=1

Cpk

2

, (26)

where we have introduced the derivatives (dT/dp)sat evaluated on the liquid-vapor saturation
curve. As expected (cf. e.g. [53]), analogously to the two-phase case [18], it is easy to observe
from (14), (19), and (26) that sub-characteristic conditions hold, namely the speed of sound of
the N-phase mixture is reduced whenever an additional equilibrium assumption is introduced:

cpTg ≡ cpTg,N ≤ cpTg,M , cpT ≡ cpT,N ≤ cpT,M , and cpTg < cpT < cp < cf . (27)

Let us note that in the particular case of thermal equilibrium for all the phases, M = N,
the reduced pTg-relaxed multiphase model corresponds to the well known Homogeneous
Equilibrium Model (HEM) [53], composed of the conservation laws for the mixture density ρ, the
mixture momentum ρ~u, and the mixture total energy E. The derivation of the expression of the
speed of sound for the considered hierarchy of multiphase flow models is detailed in Appendix B.
We conclude this section by showing in Figure 1 the behavior of the sound speed for different
levels of activation of instantaneous mechanical, thermal and chemical relaxation for a three-
phase mixture made of liquid water, water vapor and air (non-condensable gas). Here we plot the
speed of sound versus the volume fraction of the total gaseous component αgv = αv+αg for a fixed
ratio αg/αv = 0.5, where here αv is the vapor volume fraction, and αg is the non-condensable
gas volume fraction. The reference pressure is p = 105 Pa, and the reference temperature is
the corresponding saturation temperature. The parameters used for the equations of state of the
phases are the same as those of the cavitation tube experiment in Section 5.2 (Experiment 5.2.1).

4. Numerical method

We focus now on the numerical approximation of the multiphase system (1), which we can
write in compact vectorial form denoting with q ∈ R3N−1+d the vector of the unknowns:

∂tq + ∇ · F (q) + ς(q,∇q) = ψµ(q) + ψϑ(q) + ψν(q) , (28a)
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Figure 1: Speed of sound for a three-phase mixture made of liquid water, water vapor and air versus the total gaseous
volume fraction αvg = αv + αg. We use the subscripts l,v,g to indicate the liquid phase, the vapor phase and the
non-condensable gas phase, respectively. cf , cpT = cpT,3, cpT ( jk) = cpT,2, cpTg = cpTg,3, cpT ( jk)g = cpTg,2 are the
speeds defined in (10), (14), (19), (26). Here the notation T ( jk), j, k = l, v, g, specifies the two phases for which
thermal equilibrium is assumed (for instance cpT (lv) denotes the speed of sound for a mixture characterized by pressure
equilibrium for all the phases and thermal equilibrium for the liquid and vapor pair only).

q =



α1
α3
...
αN

α1ρ1
α2ρ2
...

αNρN

ρ~u
α1E1
α2E2
...

αN EN



, F (q) =



0
0
...
0

α1ρ1~u
α2ρ2~u
...

αNρN~u
ρ~u ⊗ ~u +

(∑N
k=1 αk pk

)
I

α1 (E1 + p1)~u
α2 (E2 + p2)~u

...
αN (EN + pN)~u



, ς (q,∇q) =



~u · ∇α1
~u · ∇α3

...
~u · ∇αN

0
0
...
0
0
Υ1
Υ2
...
ΥN



, (28b)
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ψµ(q) =



∑N
j=1 P1 j∑N
j=1 P3 j
...∑N

j=1 PN j

0
0
...
0
0

−
∑N

j=1 pI1 jP1 j

−
∑N

j=1 pI2 jP2 j
...

−
∑N

j=1 pIN jPN j



, ψθ(q) =



0
0
...
0
0
0
...
0
0∑N

j=1 Q1 j∑N
j=1 Q2 j
...∑N

j=1 QN j



, ψν(q) =



0
0
...
0
M

−M

...
0
0(

gI +
|~u|2

2

)
M

−
(
gI +

|~u|2

2

)
M

...
0



, (28c)

with Υk(q,∇q) defined in (1i). Above we have put into evidence the conservative portion of
the spatial derivative contributions in the system as ∇ · F (q), and we have indicated the non-
conservative term as ς(q,∇q). The source terms ψµ(q), ψθ(q), ψν(q) contain mechanical, thermal
and chemical relaxation terms, respectively, as expressed in (2).

To numerically solve the system (28) we use the same techniques that we have developed
for the two-phase model in [45]. A fractional step method is employed, where we alternate
between the solution of the homogeneous system ∂tq + ∇ · F (q) + ς(q,∇q) = 0 and the solution
of a sequence of systems of ordinary differential equations (ODEs) that take into account the
relaxation source terms ψµ, ψϑ, and ψν . As in [45], the resulting method is mixture-energy-
consistent, in the sense that (i) it guarantees conservation at the discrete level of the mixture total
energy; (ii) it guarantees consistency by construction of the values of the relaxed states with the
mixture pressure law. The method has been implemented by using the libraries of the clawpack
software [28].

4.1. Solution of the homogeneous system
To solve the hyperbolic homogeneous portion of (28) we employ the wave-propagation

algorithms of [30, 29], which are a class of Godunov-type finite volume methods to approximate
hyperbolic systems of partial differential equations. We shall consider here for simplicity the one-
dimensional case in the x direction (d = 1), and we refer the reader to [30] for a comprehensive
presentation of these numerical schemes. Hence we consider here the solution of the one
dimensional system ∂tq + ∂x f (q) + ς(q, ∂xq) = 0, q ∈ R3N (as obtained by setting ~u = u and
∇ = ∂x in (28)). We assume a grid with cells of uniform size ∆x, and we denote with Qn

i the
approximate solution of the system at the ith cell and at time tn, i ∈ Z, n ∈ N. The second-order
wave propagation algorithm has the form

Qn+1
i = Qn

i −
∆t
∆x

(A+∆Qi−1/2 +A−∆Qi+1/2) −
∆t
∆x

(Fh
i+1/2 − Fh

i−1/2) . (29)

Here A∓∆Qi+1/2 are the so-called fluctuations arising from Riemann problems at cell interfaces
(i + 1/2) between adjacent cells i and (i + 1), and Fh

i+1/2 are correction terms for (formal) second-
order accuracy. To define the fluctuations, a Riemann solver (cf. [20, 55, 30]) must be provided.
The solution structure defined by a given solver for a Riemann problem with left and right data
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q` and qr can be expressed in general by a set of M waves Wl and corresponding speeds sl,
M R 3N. For example, for the HLLC-type solver described below M = 3. The sum of the
waves must be equal to the initial jump in the vector q of the system variables:

∆q ≡ qr − q` =

M∑
l=1

Wl. (30)

Moreover, for any variable of the model system governed by a conservative equation the initial
jump in the associated flux function must be recovered by the sum of waves multiplied by the
corresponding speeds. In the considered model the conserved quantities are αkρk, k = 1, . . . ,N,
and ρu, therefore in order to guarantee conservation we need:

∆ f (ξ) ≡ f (ξ)(qr) − f (ξ)(q`) =

M∑
l=1

slWl(ξ) (31)

for ξ = N, . . . , 2N, where f (ξ) is the ξth component of the flux vector f , and Wl(ξ) denotes
the ξth component of the lth wave, l = 1, . . . ,M . It is clear that conservation of the partial
densities ensures conservation of the mixture density ρ =

∑N
k=1 αkρk. In addition, we must ensure

conservation of the mixture total energy,

∆ fE ≡ fE(qr) − fE(q`) =

M∑
l=1

sl
N∑

k=1

Wl(2N+k), (32)

where fE = u(E +
∑N

k=1 αk pk) is the flux function associated to the mixture total energy E.
Once the Riemann solution structure {Wl

i+1/2, s
l
i+1/2}l=1,...,M arising at each cell edge xi+1/2 is

defined through a Riemann solver, the fluctuations A∓∆Qi+1/2 and the higher-order (second-
order) correction fluxes Fh

i+1/2 in (29) are computed as

A±∆Qi+1/2 =

M∑
l=1

(sl
i+1/2

)±Wl
i+1/2 , (33)

where we have used the notation s+ = max(s, 0), s− = min(s, 0), and

Fh
i+1/2 =

1
2

M∑
l=1

∣∣∣sl
i+1/2

∣∣∣ (1 − ∆t
∆x

∣∣∣sl
i+1/2

∣∣∣)Wl h
i+1/2 , (34)

whereWl h
i+1/2 are a modified version ofWl

i+1/2 obtained by applying toWl
i+1/2 a limiter function

(cf. [30]).
One difficulty in the solution of the homogeneous portion of the multiphase system (28)

is the presence of the non-conservative products Υk in the phasic energy equations. Although
a discussion of the treatment of non-conservative terms is not the main focus of the present
work, it is important to recall the associated issues and challenges. It is well known that a first
difficulty of non-conservative hyperbolic systems is the lack of a notion of weak solution in the
distributional framework for problems involving shocks. The theory of Dal Maso–LeFloch–
Murat [12] has marked an advance by offering a possible definition of weak solution, based
on the concept of non-conservative products as a Borel measure associated to a choice of a
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family of paths. Even with this rigorous theoretical framework and the assumption of a known
correct shock wave solution, further difficulties arise in the design of numerical methods able to
correctly approximate non-conservative systems. The path-conservative schemes introduced in
the seminal article by Parés [42] are formally consistent with the definition of non-conservative
products of [12], once a family of paths has been selected. Nonetheless, this approach has still
some known shortcomings as for instance discussed in [9, 1].

Concerning more specifically the multiphase flow model under study with stiff mechanical
relaxation, difficulties related to the non-conservative products in the energy equations arise
for problems involving shocks in genuine multiphase mixtures (flow conditions not close to
nearly single-phase fluids). The shock jump relations for two-phase mixtures in kinetic and
mechanical equilibrium derived by Saurel et al. in [50] are commonly accepted as the correct
shock conditions for the non-conservative pressure equilibrium model (11) (for N = 2), since
they have been validated over a large set of experimental data (cf. also e.g. [46]). These relations
allow the construction of an (assumed) exact solution to the pressure equilibrium model in
the presence of shocks [47], and hence a solution to the parent multiphase model (1) with
instantaneous mechanical relaxation. Even with the knowledge of shock conditions, the design of
efficient shock-capturing diffuse-interface numerical methods able to correctly compute shocks
in multiphase mixtures is still an open challenge, cf. for instance the methods in [47, 52, 2].

In the present work for the approximation of the non-conservative equations (28) we propose
HLLC-type Riemann solvers that are extensions to the multiphase case of the the simple HLLC-
type solver illustrated in [45] and of the Suliciu-type solver developed in [15] for the two-phase
case. The simple HLLC-type solver of [45] omits the discretization of the non-conservative
terms Υk in the phasic energy equations. The Suliciu-type solver proposed in [15] can be
considered as a generalized HLLC-type method that accounts for the discretization of these non-
conservative products. This solver also includes the simple solver of [45] for a special choice
of the relaxation parameters. For the two-phase case we have numerically investigated different
solvers with different treatments of the non-conservative terms, including the Suliciu-type solver,
a Roe-type solver [45, 44, 43], and several path-conservative solvers [15], following in particular
the methods in [16, 17]. Typically no relevant differences are observed between results of the
various solvers, and results are found to agree with the exact solution of the pressure equilibrium
model as constructed in [47], except, as expected, for the case of very strong shocks in genuine
multiphase mixture regions, a type of problem which will not be considered in the present work.
We refer the reader in particular to [15] for a discussion on this topic.

To conclude this subsection, let us remark that HLLC-type Riemann solvers have gained
increased interest in the last decade for applications to multiphase compressible flow models,
thanks in particular to the their ability to ensure positivity preservation and entropy conditions,
in addition to the advantage of the inherent representation of the intermediate contact wave.
A first HLLC-type method for the non-conservative two-phase Baer–Nunziato equations [4]
was proposed in [54]. HLLC-type solvers for two-phase flows were also adopted for instance
in [52, 63]. Still within the class of extended HLL solvers able to represent intermediate
waves, let us finally mention the HLLEM Riemann solver for general conservative and non-
conservative hyperbolic systems introduced in [16]. This solver includes the discretization
of non-conservative products in the framework of path-conservative HLL schemes and it was
applied in [16] to several non-conservative systems, including the Baer–Nunziato equations.

12



4.1.1. A simple HLLC-type solver
We present in this subsection an extension to the multiphase system (1) of the HLLC-type

solver illustrated in [45] for the two-phase case. This solver is obtained by applying the standard
HLLC method [56, 55] to the conservative portion of the multiphase system, neglecting the non-
conservative terms Υk in the phasic energy equations. In the next subsection we will present a
generalized HLLC-type solver that takes into account the non-conservative products.

The simple HLLC-type solver consists of three wavesWl, l = 1, 2, 3, moving at speeds

s1 = S ` , s2 = S ? , and s3 = S r , (35)

which separate four constant states q`, q?`, q?r and qr. In the following we will indicate with (·)`
and (·)r quantities corresponding to the states q` and qr, respectively. Moreover, we will indicate
with (·)?` and (·)?r quantities corresponding to the states q?` and q?r adjacent, respectively on
the left and on the right, to the middle wave propagating at speed S ?. With this notation, the
waves of the HLLC solver are

W1 = q?` − q`, W2 = q?r − q?`, and W3 = qr − q?r. (36)

The middle states q?`, q?r are defined so as to satisfy the following Rankine–Hugoniot
conditions, based on the conservative portion of the system:

f (ξ)(q?r) − f (ξ)(qr) = S r(q?r(ξ) − q(ξ)
r ), (37a)

f (ξ)(q`) − f (ξ)(q?`) = S `(q
(ξ)
`
− q?`(ξ)), (37b)

f (ξ)(q?r)(ξ) − f (ξ)(q?`) = S ?(q?r(ξ) − q?`(ξ)), (37c)

ξ = N, . . . , 3N. The solution structure for the advected volume fractions αk simply consists of
single jumps αk,r − αk,` across the 2-wave moving at speed S ?. Invariance of the equilibrium
pressure p and of the normal velocity u is assumed across the 2-wave, in analogy with the exact
Riemann solution. Then the speed S ? is determined as [55]

S ? =
pr − p` + ρ`u`(S ` − u`) − ρrur(S r − ur)

ρ`(S ` − u`) − ρr(S r − ur)
. (38)

A definition for the wave speeds must be provided, see e.g. [55, 5]. For the numerical experiments
presented in this article we have adopted the following classical simple definition proposed by
Davis [14]:

S ` = min(u` − c` , ur − cr) and S r = max(u` + c` , ur + cr). (39)
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The middle states are obtained as

q?ι =



α1,ι
α3,ι
...

αN,ι

(α1ρ1)ι S ι−uι
S ι−S ?

(α2ρ2)ι S ι−uι
S ι−S ?

...

(αNρN)ι S ι−uι
S ι−S ?

ρι
S ι−uι
S ι−S ? S ?

(α1ρ1)ι S ι−uι
S ι−S ?

( E1,ι

ρ1,ι
+ (S ? − uι)

(
S ? +

p1,ι

ρ1,ι(S ι−uι)

))
(α2ρ2)ι S ι−uι

S ι−S ?

( E2,ι

ρ2,ι
+ (S ? − uι)

(
S ? +

p2,ι

ρ2,ι(S ι−uι)

))
...

(αNρN)ι S ι−uι
S ι−S ?

( EN,ι

ρN,ι
+ (S ? − uι)

(
S ? +

pN,ι

ρN,ι(S ι−uι)

))



, (40)

ι = `, r. Note that in the above formulas pk,ι = pι, for all k = 1, . . . ,N, since initial Riemann
states satisfy pressure equilibrium conditions.

4.1.2. A Suliciu-type solver
We present in this section a Suliciu-type Riemann solver for the multiphase flow model

by extending the solver that we have introduced in [15] for the two-phase case. This solver
is based on the Suliciu relaxation Riemann solver presented in [8] for the Euler equations.
Analogously to the case of the Euler equations, this Suliciu-type solver results to be equivalent to
the classical HLLC solver for the discretization of the conservative equations and of the volume
fraction equations of the multiphase system. We will show indeed that this solver defines a
class of HLLC-type methods that differ for the definition of some constant parameters, which
affect the discretization of the non-conservative terms. A particular choice of these parameters
gives a Riemann solver exactly equivalent to the simple HLLC-type method described above
that neglects nonconservative terms. The Suliciu solver [8] belongs to the class of relaxation
Riemann solvers [31], which are based on the idea of approximating the solution of the original
system by the solution of an extended system called relaxation system, which is easier to
solve. The latter system is assumed to relax to the original one, whose variables define the
Maxwellian equilibrium. We refer to [8, 22, 31] for details, and we just present the structure
of the relaxation system associated to (1). Let us introduce N auxiliary relaxation variables
Πk, k = 1, . . . ,N, which are meant to relax toward the partial pressures, thus at equilibrium
Πk = αk pk, k = 1, . . . ,N. The equations governing the partial pressures,

∂t(αk pk) + u ∂x(αk pk) + Ykc2
kρ ∂xu = 0 , (41)

suggest the form of the equations for new variables Πk, which are independent variables of the
relaxation system. We introduce the constant parameters Ck, k = 1, . . . ,N, and we replace in the
above equations (41) the terms Ykc2

kρ
2 by C2

k , and (αk pk) by Πk , k = 1, . . . ,N. In order to be
able to specify different constant Ck for the left and right wave structure of the Riemann problem
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solution, we also introduce advection equations for Ck. The Suliciu relaxation system associated
to the homogeneous portion of the system (1) in one spatial dimension is:

∂tαk + u∂xαk = 0, k = 1, 3, . . . ,N, (42a)
∂t(αkρk) + ∂x(αkρku) = 0, k = 1, . . . ,N, (42b)
∂t(ρu) + ∂x

(
ρu2 +

∑N
k=1 Πk

)
= 0, (42c)

∂t(αkρkEk) + ∂x(αkρkEku + Πku) + u(Yk∂x

(∑N
j=1 Π j

)
− ∂xΠk) = 0, k = 1, . . . ,N, (42d)

∂xΠk + u∂xΠk + C2
k/ρ ∂xu = 0, k = 1, . . . ,N, (42e)

∂xCk + u∂xCk = 0, k = 1, . . . ,N. (42f)

The eigenvalues of this system are:

λ̃1,5N = u ∓ c̃m , c̃m =
Cm

ρ
, Cm =

√∑N
k=1 C2

k , λ̃2 = . . . λ̃5N−1 = u . (43)

All the characteristic fields are linearly degenerate, hence we can easily find the exact solution of
the relaxation system through the Riemann invariants. The Suliciu Riemann solver uses this exact
solution to approximate the Riemann solution of the original system. The solution structure is
analogous to the one of the HLLC solver and it consists of three waves separating four constant
states, the left and right states and two middle states adjacent to a discontinuity moving with
speed u?. We will denote quantities corresponding to these middle states with (·)?` adding a
subscript (·)?`Sul if needed to make a distinction with the previous HLLC-type solver.

Riemann invariants. Across the contact discontinuity associated to the eigenvalue u:

u = const., Πm = const., (44)

where we have defined Πm =
∑N

k=1 Πk. Across fields associated to the eigenvalues u ∓ c̃m:

αk,Yk = const., k = 1, . . . ,N, (45a)
1
ρ

+
Πk

C2
k

= const., k = 1, . . . ,N, (45b)

u ∓ c̃m = const., (45c)
C2

kΠ j −C2
jΠk = const., k, j = 1, . . . ,N, (45d)

Ykεk −
Π2

k

2C2
k

= const., k = 1, . . . ,N, (45e)

Ck = const., k = 1, . . . ,N. (45f)

By using (45b) and (45c) we also deduce:

Πk ±
C2

k

Cm
u = const., k = 1, . . . ,N, (46)

and by using (45d) and (45b):
1
ρ

+
Πm

C2
m

= const.. (47)
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Then, by using (46), we infer:
Πm ±Cmu = const. . (48)

Let us note first that (Πk)`,r = (αk pk)`,r , and (Πm)`,r = (pm)`,r , where pm =
∑N

k=1 αk pk .
Moreover, since initial Riemann states are characterized by pressure equilibrium, we can write
pm` = p` and pmr = pr . The relations (44) and (48) determine the quantities u?`Sul = u?r

Sul ≡ u?

and (Πm)?` = (Πm)?r ≡ Π?
m :

u? =
ρ`c̃m`u` + ρrc̃mrur + p` − pr

ρ`c̃m` + ρrc̃mr
, Π?

m =
ρ`c̃m`p` + ρrc̃mr pr − c̃m`c̃mr(ur − u`)

ρ`c̃m` + ρrc̃mr
. (49)

The expression (47) determines ρ?`,rSul :

ρ?`,rSul =

(
1
ρ`,r

+
cr,`(ur − u`) ∓ (pr − p`)

c`,r(c` + cr)

)−1

, (50)

and through (45a) we can determine (ρk)?`,rSul = (Yk)`,r ρ?`,rSul /(αk)`,r . Then we can find
through (46):

(Πk)?`,r = (Πk)`,r +
(Ck)2

`,r

(C2
m)`,r

(Π?
m − p`,r), k = 1, . . . ,N. (51)

Finally (45e) determines the specific phasic internal energies (εk)?`,rSul . Then the intermediate
states for the partial phasic energies per unit volume can be expressed as:

(αkρkεk)?`,rSul = (αkρk)?`,rSul (εk)`,r + ρ?`,rSul

 (C2
k )`,r

2((C2
m)`,r)2

(Π?
m − p`,r)2 +

(Πk)`,r
(C2

m)`,r
(Π?

m − p`,r)
 , (52)

and the corresponding total energies are (αkEk)?`,rSul = (αkρkεk)?`,rSul +(αkρk)?`,rSul
u?2

2 . Let us also note
that by using (45d) and (45e) we obtain for the mixture specific internal energy ε =

∑N
k=1 Ykεk

the invariant:

ε −
Π2

m

2C2
m

= const. . (53)

Having now the intermediate states, the waves of the Suliciu-type solver are obtained as:

W1 = q?`Sul − q` , W2 = q?r
Sul − q?`Sul , and W3 = qr − q?r

Sul . (54)

and the corresponding speeds are:

s1 = u` − c̃m` , s2 = u? , and s3 = ur + c̃mr . (55)

We observe that the expressions of the invariants (44), (47), (48) and (53) are identical to those
of the Suliciu solver for the Euler equations with now Πm and Cm playing the role of the
relaxation variable associated to the pressure p and the constant C = ρc of the single-phase case,
respectively. Therefore the solution for the intermediate states (·)?`,r of the mixture quantities of
the multiphase solver has the same form of the solution for the intermediate states of the standard
single-phase Suliciu solver (see formulas in Bouchut’s book [8]). It follows that u? = S ? and
the intermediate states for αk and the conserved quantities (partial densities, mixture momentum,
mixture total energy) are identical to those of the simple HLLC solver presented in the previous
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subsection, q?`,r(ξ)
Sul = q?`,r(ξ), with q?`,r given in (40), for the components ξ = 1, . . . , 2N, as long

as
S ` = u` − c̃m` and S r = ur + c̃mr . (56)

Note that the intermediate states for the conserved quantities depend merely on the sum
C2

m =
∑N

k=1 C2
k , and only the intermediate states for the phasic energies depend on the individual

parameters Ck. The choice of Ck , k = 1, . . . ,N, for a given definition of Cm defines the partition
of the phasic energies within the mixture, based on the invariant (45d).

Choice of parameters. The parameters Ck need to be chosen so that Liu’s subcharacteristic
condition [35] holds:

c̃m =

√∑N
k=1 C2

k

ρ
≥ cf , (57)

where cf is the frozen speed of sound defined in (10). Hence the simplest less dissipative
definition for the parameters of the local right and left states would be (C2

k )`,r = (Ykc2
kρ

2)`,r ,
which implies (c̃m)`,r = (cf)`,r . However, this definition is not suitable when shocks are involved
in the solution structure. The idea here is to consider well known robust definitions of the wave
speeds used for the HLLC solver to define first c̃m and then Ck. To begin with, let us propose a
definition corresponding to the Davis’ wave speeds in (39). We set:

c̃m` = max(cf` , (cfr + u` − ur)) , c̃mr = max(cfr , (cf` + u` − ur)) , (58)

and we define Ck as:
(C2

k )`,r = (Yk c̃2
k ρ

2)`,r, k = 1, . . . ,N, (59a)

where

(c̃k)2
`,r =

 (ck)2
`,r if (cf)`,r ≥ (cf)r,` + u` − ur ,

(ck)2
r,` + 2(u` − ur)(cf)r,` + (u` − ur)2 otherwise.

(59b)

Another possible definition of the wave speeds is the one proposed by Bouchut for the single-
phase Suliciu solver [8]. We define:

(c̃m)`,r = (cf)`,r + X`,r , (60a)

where

if pr − p` ≥ 0 :

 X` = β
(

pr−p`
ρrcfr

+ u` − ur

)+

Xr = β
(

p`−pr
ρ` c̃m`

+ u` − ur

)+ , if pr − p` ≤ 0 :

 Xr = β
(

p`−pr
ρ`cf`

+ u` − ur

)+

X` = β
(

pr−p`
ρr c̃mr

+ u` − ur

)+ .

(60b)
Then we set:

(C2
k )`,r = (Yk)`,r((c2

k)`,r + X2
`,r + 2X`,r(cf)`,r)ρ2

`,r . (61)

This choice of the wave speeds allows us to rigorously guarantee positivity preservation for the
partial densities and the mixture internal energy, as long as the constant β ≥ 1 satisfies [8]:

∂

∂ρ

ρ
√
∂pm(ρ, sk, sN , αk,Yk)k=1,...,N−1

∂ρ

 ≤ β
√
∂pm(ρ, sk, sN , αk,Yk)k=1,...,N−1

∂ρ
. (62)

17



Assuming a stiffened gas equation of state for each phase, we can satisfy the condition above by
defining β =

maxk γk+1
2 . Let us recall that αk, as well as Yk, are governed by advection equations,

hence positivity is preserved also for these variables. Moreover, since, as we have noted above,
only the intermediate states of the phasic energies depend on the individual parameters Ck, if
negative phasic energies are found for the intermediate states (see (45e)), we can always redefine
(Ck)`,r in order to preserve positivity, still keeping the same values (Cm)`,r . Let us finally remark
that, given a definition of Cm , if we define

(C2
k )`,r = (YkC2

m)`,r (63)

then the resulting Suliciu-type solver is entirely equivalent to the simple HLLC-type solver
described in the previous subsection, which neglects the discretization of the nonconservative
terms in the phasic energy equations of the system (1). We can also estimate the difference of
the wave components for the phasic energies for the case of the new Suliciu/HLLC-type solver
based on a given definition of Ck and the previous simple HLLC-type solver based on (63):

(αkρkEk)?`,rSul = (αkρkEk)?`,rHLLC + ∆(αkρkEk)?`,r, (64)

with

∆(αkρkEk)?`,r =
ρ?`,r

2(C2
m)`,r

(Π? − p`,r)2
 (C2

k )`,r
(C2

m)`,r
− (Yk)`,r

 . (65)

4.2. Relaxation steps
After solving the homogeneous system, we solve a sequence of ordinary differential

equations accounting for the relaxation source terms of (1). Here we assume that the
characteristic time for mechanical relaxation is much smaller than the characteristic time scales
for heat and mass transfer (cf. for instance [23]), and we consider that thermal and chemical
relaxation occur under pressure equilibrium. The steps are the following, using here the vector
notation in (28):

1. Mechanical relaxation. We solve in the limit µk j ≡ µ→ +∞ the system of ODEs:

∂tq = ψµ(q). (66)

This step drives instantaneously the flow to pressure equilibrium, pk = p, for all k.

2. Thermal relaxation. We solve in the limit µ→ +∞, ϑk j → +∞:

∂tq = ψµ(q) + ψϑ(q). (67)

This step drives the chosen phase pairs (k, j) to thermal equilibrium, while maintaining
pressure equilibrium.

3. Chemical relaxation. We solve in the limit µ→ +∞, ϑk j → +∞, and ν→ +∞:

∂tq = ψµ(q) + ψϑ(q) + ψν(q). (68)

In the steps 2-3 thermal relaxation can be activated for a subset of phase pairs (k, j), however it
is always activated for the phases of the species that may undergo phase transition if chemical
relaxation (step 3) is also activated. Thermal and chemical relaxation processes are typically
activated at interfaces only. Similar to [27, 45], the numerical relaxation procedures to handle
infinitely fast transfer processes are based on the idea of imposing directly equilibrium conditions
to obtain a simple system of algebraic equations to be solved in each relaxation step, as we detail
below.
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4.2.1. Mechanical Relaxation
We consider the solution of the system (66) in the limit µ → +∞. We denote with

superscript 0 the quantities at initial time, which come from the solution of the homogeneous
system, and with superscript ∗ the quantities at final time, which are the quantities at mechanical
equilibrium. First, we easily see that the exact solution of the system of ODEs gives (αkρk)∗ =

(αkρk)0, k = 1, . . . ,N, and (ρ~u)∗ = (ρ~u)0, E∗ = E0, hence ~u∗ = ~u0 and E∗ = E0. We then integrate
the equations for the phasic total energies by approximating the interface pressures pIk j with their
values at equilibrium p∗Ik j = p∗. We then obtain N equations of the form

(αkEk)∗ − (αkEk)0 = (αkEk)∗ − (αkEk)0 = −p∗(α∗k − α
0
k) (69)

for k = 1, 2, . . . ,N. Imposing the pressure equilibrium conditions pk = p∗, for all k = 1, . . . ,N, at
final time the phasic internal energies are then expressed as E∗k = Ek(p∗, (αkρk)0/α∗k). With these
relations the system (69) and the constraint

∑N
k=1 αk = 1 give N + 1 equations for the unknowns

α∗k, k = 1, . . . ,N, and p∗. For the particular case of the SG EOS (3) the problem can be reduced
to the solution of a polynomial equation of degree N for the equilibrium pressure p∗. In general
an iterative solution procedure is needed to solve this equation. Let us remark that for the most
part of the three-phase (N = 3) flow numerical tests considered in this work we have two gaseous
phases governed by a SG EOS with $k = 0. In this particular case the polynomial equation of
degree 3 for p∗ reduces to a quadratic equation, whose physically admissible solution is easily
found.

4.2.2. Thermal Relaxation
If thermal relaxation terms are also activated, then we consider the solution of the sys-

tem (67), with µk j ≡ µ → +∞ for all phase pairs, and ϑk j ≡ ϑ → +∞ for some desired pairs
(k, j). Let us assume instantaneous thermal equilibrium for M phases, 2 ≤ M ≤ N, in addition
to mechanical equilibrium for all phases. We will denote equilibrium values with the superscript
∗∗. Then, analogously to the case of pressure relaxation, we can write (αkρk)∗∗ = (αkρk)0,
k = 1, . . . ,N, (ρ~u)∗∗ = (ρ~u)0, E∗∗ = E0, and E∗∗ = E0. Moreover, we write N − M equations
of the form (69) with (·)0 replaced by (·)∗ and (·)∗ replaced by (·)∗∗, the mechanical equilibrium
conditions p∗∗k = p∗∗, for all k = 1, . . . ,N, and the thermal equilibrium conditions T ∗∗k = T ∗∗

for M phases. All these relations give a system of algebraic equations to be solved for the
equilibrium values α∗∗k , p∗∗. As for the mechanical relaxation step, the solution of this system
of algebraic equations can be reduced to the solution of a polynomial equation of degree N for
the pressure p∗∗ when the SG EOS is adopted. The problem reduces further to the solution of a
quadratic equation for the case N = 3 with two gaseous phases governed by SG pressure laws
with $k = 0.

4.2.3. Thermo-Chemical Relaxation
If thermo-chemical relaxation is activated for the species that may undergo liquid/vapor

transition, then we solve the system of ODEs (68) with µk j ≡ µ → +∞ for all phase pairs,
ϑk j ≡ ϑ → +∞ for some phase pairs (k, j), and ν → +∞ for the phase pair (1, 2). Let us
assume instantaneous thermal equilibrium for M phases, including at least the phases 1 and 2.
We denote the quantities at thermodynamic equilibrium with the superscript ⊕. First, we can
write ρ⊕ = ρ0, (ρ~u)⊕ = (ρ~u)0, E⊕ = E0, and E⊕ = E0. Moreover, we write N − M equations
of the form (69) with (·)0 replaced by (·)∗∗ and (·)∗ replaced by (·)⊕, the mechanical equilibrium
conditions p⊕k = p⊕, for all k = 1, . . . ,N, the thermal equilibrium conditions T⊕k = T⊕ for M
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phases, and the chemical equilibrium condition g⊕1 = g⊕2 . This set of algebraic equations can be
solved for the values of the equilibrium pressure p⊕, the equilibrium volume fractions α⊕k and
the equilibrium densities ρ⊕k . For the case of three-phase flow with SG EOS considered here we
use a solution procedure similar to the two-phase case [45]. First we reduce the set of algebraic
conditions excluding the chemical equilibrium relation to the solution of a quadratic equation for
the temperature as a function of the equilibrium pressure, T⊕ = T⊕(p⊕). Then the expression
of T⊕(p⊕) is introduced into the equilibrium condition g⊕1 = g⊕2 . This gives an equation for p⊕,
which is solved by Newton’s iterative method. Let us remark that a physically admissible solution
of system (68) might not exist. In such a case we use the same technique that we have proposed
in [45] (p. 356): we consider that the species that may undergo transition consists almost entirely
of the phase (liquid or vapor) that has higher entropy, hence we fix the volume fraction of the
negligible phase to a small tolerance (for instance = 10−8), and this new equation for one volume
fraction replaces the equation g⊕1 = g⊕2 in the algebraic system that we have defined with pressure
and temperature equilibrium conditions. Among the admissible solutions of this new system we
select the solution that maximizes the total entropy. Note that again the problem reduces further
to the solution of a quadratic equation for the case N = 3 with two gaseous phases governed by
SG pressure laws with $k = 0, as in the experiments with phase transition considered here.

5. Numerical experiments

We present in this section numerical results for test problems involving three-phase flows
(N = 3). All the computations have been performed with the second-order wave propagation
algorithm with the simple HLLC-type solver described in Section 4.1.1. We report results
obtained with the generalized HLLC-type Riemann solver described in Section 4.1.2 based on
the Suliciu relaxation system only for the first two one-dimensional experiments since for the set
of tests considered in this work no relevant differences are observed between the two solvers.

5.1. Test problems with no phase transition

To begin with, we consider test problems without mass transfer processes (no chemical
relaxation step).

Experiment 5.1.1. Our first numerical example concerns a three-phase flow problem
simulated by Billaud Friess and Kokh [7] by an extended multicomponent formulation of the two-
phase transport five-equation model presented previously in [3]. Our aim here is to verify that
our computed solution is an accurate approximation of the exact solution of the multiphase flow
model with instantaneous pressure relaxation. This test involves three fluid phases in mechanical
equilibrium in a one-dimensional domain [0, 1] m. The phases are all modeled by the ideal
polytropic gas law with the ratio of the specific heats defined by γ1 = 1.6, γ2 = 2.4, and γ3 = 1.4.
Initially, the velocity is zero, and the phasic densities are ρ1 = 1 kg/m3, ρ2 = 0.125 kg/m3, and
ρ3 = 0.1 kg/m3 in the entire domain. There are two initial discontinuities located at x = 0.4 m
and x = 0.6 m that separate the domain into three parts with the remaining state variables in each
region set as

(p, α1, α2) =


(
1 Pa, 1 − 2 · 10−6, 10−6

)
if x ∈ [0, 0.4) m,(

0.1 Pa, 10−6, 1 − 2 · 10−6
)

if x ∈ [0.4, 0.6) m,(
0.1 Pa, 10−6, 10−6

)
if x ∈ [0.6, 1] m.
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Table 1: Equation of state parameters employed in the Experiment 5.1.2.
k (phase) γ $ [MPa] η [kJ/kg] η′ [kJ/(Kg · K)] κv [J/(kg · K)]
1 (carbon dioxide) 1.03 13.47 0 0 3764
2 (water) 2.85 833.02 0 0 1458
3 (methane) 1.23 10.94 0 0 2382

Figure 2 shows the density contours of the exact solution of the three-phase pressure
equilibrium model for this problem in the x-t plane up to time t = 0.14 s. This exact solution has
been computed based on the algorithm described in [47]. From the graph, it is easy to see that the
initial discontinuity at x = 0.4 m originates a leftward-going rarefaction wave, a rightward-going
contact discontinuity, and a shock wave. As time progresses, the shock wave moves toward the
material interface at x = 0.6 m, and then collides, yielding a new set of waves from the collision.
Further collisions then occur. We compute the numerical solution for this test by employing both
the simple HLLC-type solver described in Section 4.1.1, and the Suliciu-type solver (generalized
HLLC-type solver) presented in Section 4.1.2. We use 1000 grid cells, Courant number = 0.5,
and we apply second-order corrections with the minmod limiter. Numerical results are displayed
in Fig. 3, together with the exact solution for this problem. We observe that results obtained by
the HLLC-type solver and by the Suliciu-type solver are not distinguishable, and they both agree
well with the exact solution. Let us also remark that for this test problems, and more generally
for multifluid problems involving defined interfaces between nearly pure inert phases, solutions
to the multiphase pressure-equilibrium model (11) are similar to solutions to the multicomponent
extended five-equation model of [7]. Hence our results here are similar to those in [7]. Let us
remark however that the five-equation model of [7] cannot describe cavitation processes. We
refer the reader to [41] for some comparison between the five-equation transport model [3] and
the five-equation pressure-equilibrium Kapila et al. [23] model.

Experiment 5.1.2. We now consider a three-phase (CO2-water-methane) flow problem
simulated by Morin et al. [40], where an extended four-equation model is used for the numerical
approximation. Here the three fluid components are assumed to be both in mechanical and
thermal equilibrium. Hence this test gives us an example to verify our algorithm with the
activation of both the mechanical and the thermal relaxation procedure. Initially, the temperature
is uniform and equal to T = 310 K throughout the domain, corresponding to the interval [0, 1] m.
We set the pressure p = 1.5 MPa and the velocity u = 12 m/s in a region where x ∈ [0, 0.5] m,
and p = 0.9 MPa, u = 0 m/s in a region where x ∈ [0.5, 1] m. With these data the phasic density
ρk, k = 1, 2, 3, can be written as a function of p and T in each region, by using (3b) with the
material-dependent parameters shown in Table 1. Here a uniform composition of the media is
used with volume fractions α1 = 0.9, α2 = 0.04, and α3 = 0.06 in each portion of the domain.

Second-order numerical results obtained by using the HLLC-type solver and the Suliciu-type
solver with 1000 grid cells and Courant number = 0.5 are shown in Fig. 4 at time t = 1.6 ms.
The exact solution of this problem is also displayed for comparison. It is easy to observe that our
computed solutions are in good agreement with the exact solution, composed of a leftward-going
rarefaction wave, a rightward-going contact discontinuity and a rightward-going shock wave.
Again, results obtained with the HLLC-type scheme and with the Suliciu-type scheme overlap.
We note that the exact solution computed here is based on the algorithm proposed in [47] for a
mechanical equilibrium flow with a modification to include the thermal equilibrium condition in
the iterative step of the method.
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Figure 2: Exact solution for a mechanical equilibrium three-phase shock tube problem; the density contour plot in the x-t
plane is shown. The horizontal red dashed line plotted in the graph corresponds to the time t = 0.12 s of the snapshots of
the solution shown in Fig. 3.
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Figure 3: Second-order results for the three-phase shock tube problem (Experiment 5.1.1). From left to right and from
top to bottom: mixture density, velocity, pressure and volume fraction α2 at time t = 0.12 s obtained with the HLLC-type
solver (solid blue line) and the Suliciu-type solver (dashed green line). Results computed with the two solvers overlap.
The thin solid red line indicates the exact solution.
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Figure 4: Second-order results for the three-phase CO2-water-methane Riemann problem (Experiment 5.1.2). From left
to right and from top to bottom: mixture density, velocity, pressure and volume fraction at time t = 0.16 ms obtained
with the HLLC-type solver (solid blue line) and the Suliciu-type solver (dashed green line). Results computed with the
two solvers overlap. The thin solid red line indicates the exact solution.
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Experiment 5.1.3. As a first test problem in two dimensions, we are interested in a three-
phase (air-R22-He) shock-bubble interaction problem studied numerically by Billaud Friess and
Kokh [7]. The domain is a closed tube [0, 445]× [0, 89] mm2, and solid wall boundary conditions
are imposed on all the four sides. We set a leftward-going planar Mach 1.22 shock wave in air
initially located at x = 275 mm, traveling toward a stationary cylindrical Helium bubble with
a R22 shell surrounding it. Here the radius of the Helium bubble is r0 = 15 mm, centered
at (x0, y0) = (225, 0) mm, and the thickness of the R22 cylindrical shell is H0 = 10 mm.
We assume that all the fluid phases, i.e., air, R22 (Chlorodifluoromethane), and Helium, are
modeled by the ideal polytropic gas law and we set (γ, ρ0)1 = (1.4, 1.225 kg/m3), (γ, ρ0)2 =

(1.249, 3.863 kg/m3), and (γ, ρ0)3 = (1.6, 0.138 kg/m3), respectively. The state variables in
the region ahead of the shock wave are assumed to correspond to atmospheric condition with
pressure p0 = 1.01325×105 Pa, and inside the R22-Helium bubble with r2 = (x− x0)2 + (y− y0)2

and r1 = r0 + H0, we set

(ρ1, ρ2, ρ3, p, α1, α2) =


(
ρ01, ρ02, ρ03, p0, 10−8, 10−8

)
if r < r0,(

ρ01, ρ02, ρ03, p0, 10−8, 1 − 2 · 10−8
)

if r0 ≤ r < r1,

while outside the bubble we have

(ρ1, ρ2, ρ3, p, α1, α2) =
(
ρ01, ρ02, ρ03, p0, 1 − 2 · 10−8, 10−8

)
.

Behind the shock, we set

(ρ1, ρ2, ρ3, u, v, p, α1, α2)

=
(
1.686 kg/m3, ρ02, ρ03,−113.5 m/s, 0, 1.59 × 105 Pa, 1 − 2 · 10−8, 10−8

)
.

Figure 5 shows pseudo-color plots of the density at six different times t = 0, 120, 480,
780, 1020 µs obtained by using the second-order HLLC-type wave propagation method with
instantaneous pressure relaxation on a 1250 × 250 mesh. Comparing our numerical solution
results with those reported in [7] (cf. Fig. 20 in particular), we observe qualitatively good
agreement on the geometric structure of the R22-Helium bubble at times up to t = 480 µs.
At the other times t = 780 and 1020 µs noticeable differences can be seen on the outer ring
of the Helium bubble, which consists mostly of the phase of R22. We expect that these visible
differences in the results are not related to the differences in the underlying flow models, as
we mentioned above. To verify our solution, we have performed the same test by employing
a numerical model based on the multicomponent extended five-equation model (cf. [7]) in the
simulation. Numerical results of this run are presented in Fig. 6 at three different times t = 480,
780, and 1020 µs. Agreement of the these numerical results with those shown in Fig. 5 can be
easily observed.

5.2. Test problems with phase transition

We now present several numerical experiments involving phase transition. For these tests we
activate chemical relaxation.

Experiment 5.2.1. We perform a test that is similar to the two-phase cavitation tube
experiment presented in [51, 45]. We consider a tube filled initially with liquid water with a
uniformly distributed small amount of water vapor with volume fraction αwv = 10−2, and a small
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Figure 5: Results for a Mach 1.22 shock wave in air interacting with a Helium bubble with a R22 shell surrounding it
(Experiment 5.1.3). Pseudo-color plots of the density at six different times t = 0, 120, 480, 780, and 1020 µs obtained
with the numerical multiphase flow model with instantaneous pressure relaxation (1250 × 250 mesh).
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Figure 6: Results obtained using an extended transport five-equation model for the test problem considered in Fig. 5.
Pseudo-color plots of the density are shown at three different times t = 480, 780, and 1020 µs (1250 × 250 mesh).

amount of air (non-condensable gas) with volume fraction αg = 10−1. Air is modeled as an
ideal gas, see Table 2 for the material-dependent parameters of the equations of state employed
in this test. The initial pressure is p0 = 105 Pa, and the initial densities correspond to the
temperature T0 = 354 K. A velocity discontinuity is set at initial time at the middle of the tube,
with u0 = −20 m/s on the left and u0 = 20 m/s on the right. We use 3000 grid cells over the
interval [0, 1] m, and Courant number = 0.5. We perform the simulation with different levels of
activation of instantaneous relaxation processes:

(i) only mechanical relaxation (p-relaxation);
(ii) mechanical relaxation for all the three phases and thermal relaxation for the liquid-vapor

pair only (pT (lv)-relaxation);
(iii) mechanical and thermal relaxation for all the phases (pT -relaxation);
(iv) mechanical relaxation for all the phases and thermal and chemical relaxation for the liquid-

vapor pair (pT (lv)g-relaxation);
(v) mechanical and thermal relaxation for all the phases and chemical relaxation for the liquid-

vapor pair (pTg-relaxation).

For the two cases (iv) and (v) of this cavitation tube test thermo-chemical relaxation is activated
if the liquid temperature is greater than the saturation temperature at the local pressure, Tliquid >
Tsat(p). Second-order results are displayed at time t = 6 ms in Figure 7 for the pressure,
the velocity, the total gaseous volume fraction αwv + αg , and the vapor mass fraction. In the
same Figure 7 we also show the phasic temperatures for the two cases of p-relaxation and pTg-
relaxation. In all the cases we observe two rarefactions propagating in opposite directions that
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Table 2: Equation of state parameters employed in Section 5.2
k (phase) γ $ [Pa] η [kJ/kg] η′ [kJ/(Kg · K)] κv [J/(Kg · K)]
1 (vapor) 1.43 0 2030 −23.4 1040
2 (liquid) 2.35 109 −1167 0 1816
3 (gas) 1.4 0 0 0 718

produce a pressure decrease in the middle region of the tube, and, correspondingly, an increase
of the total gaseous component. For the cases with activation of mass transfer, i.e., pT (lv)g- and
pTg-relaxation, two evaporation waves develop, causing an increase of the vapor mass fraction
in the middle region. Note that in these cases the pressure decreases in the cavitation zone until
the saturation value is reached, whereas the pressure reaches much lower values here if mass
transfer is not activated. By inspecting the results we observe that the speed of the leading
edges of the two rarefactions decreases for any additional instantaneous thermal equilibrium
process that we activate in the computation, consistently with the sub-characteristic property
demonstrated theoretically for the hierarchy of relaxed models in Section 3. Let us note that
chemical relaxation is not active here around the rarefaction fronts since, as indicated above,
mass transfer in this test is activated only in regions where Tliquid > Tsat(p).

Experiment 5.2.2. We now perform a two-dimensional experiment. In this test we simulate a
cylindrical underwater explosion (UNDEX) close to a rigid surface. Following [60], we consider
an initial bubble of highly pressurized gas (combustion products) surrounded by liquid water
and located near an upper flat wall. Three fluid components are involved in this problem: liquid
water, water vapor, and combustion gases. We use a grid of 481 × 280 cells over the domain
[−0.6, 0.6] × [−0.7, 0] m2. The bubble initially is located at (xb, yb) = (0,−0.22) m, and it has
radius rb = 0.05 m. Inside the bubble we set initially a pressure p = 8290× 105 Pa, a gas density
ρg = 1400 kg/m3, and volume fractions αwl = αwv = 10−8 for the water phases. Outside the
bubble we set p = 105 Pa, T = 303 K, and the volume fractions αwv = 10−4 and αg = 10−7,
for water vapor and gas, respectively. The EOS parameters for water are those in Table 2. An
ideal gas law is used for the combustion gases, with γg = 2. In this test we activate thermal
and chemical relaxation for the liquid-vapor water pair. For comparison, we have also run a
simulation with no thermo-chemical relaxation, this allowing us to highlight the effect of mass
transfer processes. This explosion problem is characterized by a complex pattern of shocks and
rarefaction waves [60], and the likely occurrence of creation and collapse of vapor cavities in the
liquid region close to the wall, due to the strong rarefactions and subsequent recompression. We
show in Figure 8 pseudo-color plots of the pressure at four different times obtained by activating
thermo-chemical relaxation. At t = 0.075 ms (upper left plot) we can observe the circular shock
created by the explosion. At t = 0.2 ms (upper right plot) this shock has reflected from the wall,
at time t = 0.35 ms (lower left plot) a low pressure cavitation region has begun to develop close
to the rigid surface, and this region is more extended at t = 0.5 ms (lower right plot). The thick
solid circle line indicates the water/bubble interface. In Figure 9 we display the history in time of
the pressure, the water vapor volume fraction and the water vapor mass fraction at the point (0, 0)
at the center of the wall. In these plots we also show the results of the computation done with
no activation of mass transfer, in which case cavitation is a mechanical process only, and mass
fractions do not vary. For the two computations, with and without mass transfer, we observe
some common features: a pressure peak of the same magnitude corresponding to the instant
at which the circular shock hits the wall, the drop of the pressure and consequent growth of a
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Figure 7: Numerical results for the three-phase cavitation tube test (Experiment 5.2.1). First and second row: results
for the pressure, velocity, total gas volume fraction, and vapor mass fraction for the various relaxation cases. Third row:
temperature of the three phases (liquid, vapor, air) for the p-relaxation case (left), and for the pTg-relaxation case (right).
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gaseous region in this zone, which then disappears due to the subsequent recompression. Later,
further weaker processes of cavitation formation and collapse are observed. The behavior of the
vapor volume fraction is also qualitatively and quantitatively analogous in the two cases, with
or without liquid-vapor transition. However, similar to what observed for the one-dimensional
cavitation tube experiment (Experiment 5.2.1), the minimum pressure in the cavitation region has
very different order of magnitude for the two computations, as we can observe from the zoom
of the pressure history in time in Figure 9 (upper right plot). In fact, the pressure continues
to decrease until very low values if no phase transition is activated, whereas it decreases until
the saturation value otherwise. For instance, at the time t = 0.529 ms corresponding to the
maximum value at the wall of the vapor volume fraction, we obtain a pressure p = 28 Pa
with no mass transfer and p = 4417 Pa with mass transfer. In the literature these type of
UNDEX problems are typically simulated by simpler single-fluid models [33, 60, 65, 58], or
by two-phase flow models [13, 38, 21] that are only able to describe mechanical cavitation
processes, that is growth/collapse of gas cavities due to pressure variations, with no liquid-
vapor transition. In contrast, our three-phase flow model allows a more accurate description
of the thermodynamics of cavitation processes, which involve liquid-vapor phase change. We
notice that this is critical for an accurate prediction of the pressure field on the wall adjacent to
cavitation regions. We have to remark however an important limit of our current numerical model
in relation to the use of the simple stiffened gas EOS. This equation of state can be considered
a linearized version of the Mie–Grüneisen EOS around a reference thermodynamic state [39].
While numerically convenient, this simple EOS is not suited for accurate predictions of flow
conditions with significant variations of the thermodynamic variables, as we have in the UNDEX
problems simulated here. The current numerical model with the SG EOS is nonetheless able to
qualitatively describe the relevant physical phenomena and it allows us to better understand the
effect of the activation of mass transfer processes.

Experiment 5.2.3. We finally simulate an underwater explosion problem similar to the
previous one, but here we set a free surface instead of an upper rigid solid surface. Many
authors in the literature have simulated numerically this type of problem, e.g. [34, 61, 62, 13, 21].
However, as for the previous test, simulations presented in the literature are typically based on
simple single-fluid models or two-phase models that do not account for liquid-vapor transition.
The setup of this problem has been chosen in order to be able to make qualitative comparisons
with the laboratory underwater explosion test of Kleine et al. [25] (simulated also for instance
in [13]). As before, we consider an initial bubble of highly pressurized gas surrounded by liquid
water. Here the bubble is located near an air/water interface. Four fluid components are involved
in this problem: liquid water, water vapor, combustion gases (the bubble), and air (region above
the free surface). Since here we focus on phase transition phenomena triggered by the explosion,
we make the simplifying assumption that the bubble consists of air at high pressure, so that we
need to consider three phases only instead of four. Note that other authors choose to model the
bubble by a high pressure liquid region [13]. We use a grid of 669 × 600 cells over the domain
[−0.09, 0.09]×[−0.12, 0.042] m2. The bubble initially is located at (xb, yb) = (0,−0.034) m, and it
has radius rb = 0.0035 m. The free surface is located at y = 0 m. Inside the bubble we set initially
a pressure p = 8290 × 105 Pa, a gas density ρg = 1400 kg/m3, and volume fractions αwl = 10−8

and αwv = 10−7 for the liquid and vapor phases of water. Outside the bubble, both below and
above the free surface, we set p = 105 Pa and T = 298 K. In the air region above the free surface
we set water volume fractions αwl = 10−8 (liquid) and αwv = 10−7 (vapor), while below the free
surface we take αwv = 10−4 and αg = 10−7, for water vapor and air (inert gas), respectively.
The EOS parameters for water are again those in Table 2. An ideal gas law is used for air
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Figure 8: Numerical results for the UNDEX experiment near a rigid surface (Experiment 5.2.2). Pressure field at times
t = 0.075, 0.2, 0.325, 0.5 ms computed by the HLLC-type scheme with activation of thermo-chemical relaxation for the
liquid-vapor pair. The thick solid line (magenta color) indicates the water/bubble interface.

with γg = 1.4. Heat and mass transfer processes are activated in this test. The characteristic
features of this explosive event near a free surface are similar to those of an event close to a
wall: a circular blast wave is produced by the highly pressurized gas bubble, and it interacts with
the air/water interface, leading to a reflected expansion wave. Due to the consequent pressure
decrease, a cavitation region is formed just below the free surface. Our numerical model allows
us to describe the liquid-vapor transition processes occurring in this region. We show in Figure 10
pseudo-color plots of the pressure and the vapor mass fraction at three different times, chosen to
have snapshots comparable to the three frames of the Schlieren visualization of the experiment
of Kleine et al. [25] (also reported in [13]). Moreover, in Figure 11 we also display the mixture
density and the velocity field at final time. The latter plot in particular allows us to observe the
transmitted shock wave in air, which is too weak to be seen in the plots of the pressure field.
Despite the several simplifications in the model our simulation is able to reproduce qualitatively
the main physical processes observed experimentally [25].

6. Conclusions

We have presented a numerical model for multiphase compressible flows involving the liquid
and vapor phases of one species and one or more inert gaseous phases, extending the two-
phase flow model that we have introduced in [45]. The model includes mechanical, thermal
and chemical relaxation processes. We have also rigorously derived the associated pressure-
relaxed model by asymptotic techniques, and carried an analysis of the characteristic speeds
of the hierarchy of relaxed models associated to the parent model. The multiphase equations
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Figure 9: Numerical results for the UNDEX experiment near a rigid surface (Experiment 5.2.2). History in time at the
point (0, 0) at the center of the wall (solid line: with mass transfer, dashed line: no mass transfer). Top plots: Pressure,
with a zoom in the cavitation region shown in the right plot. Bottom plots: vapor mass fraction (left) and vapor volume
fraction (right).
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Figure 10: Numerical results for the UNDEX experiment near a free surface (Experiment 5.2.3). Pressure field (left
column) and water vapor mass fraction (right column) at times t = 14, 28, 42 µs computed by the HLLC-type scheme
with activation of thermo-chemical relaxation. The thick solid lines (magenta color) indicate the free surface and the
water/bubble interface.
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Figure 11: Numerical results for the UNDEX experiment near a free surface (Experiment 5.2.3). Results for the mixture
density (left) and the velocity field (right) at t = 42 µs. The thick solid lines (magenta color) indicate the free surface and
the water/bubble interface.

are solved by a mixture-energy-consistent finite volume wave propagation scheme based on an
original HLLC/Suliciu-type Riemann solver, combined with simple and robust procedures for
the stiff relaxation terms. Sample one-dimensional tests show the agreement of the computed
numerical solution with the exact solution for three-phase Riemann problems with mechanical
and thermal equilibrium. A cavitation tube experiment also allows us to show that the behaviour
of the wave speed predicted numerically is consistent with our theoretical findings on the sub-
characteristic interlacing of the characteristic speeds for the hierarchy of relaxed models. The
numerical results, finally, show the efficiency of the numerical method in modelling complex
wave patterns, shocks and interfaces in problems with thermal and mass transfer processes
where the dynamical appearance of vapor cavities and evaporation fronts in a liquid is coupled
to the dynamics of a third non-condensable gaseous component governed by its own equation of
state. An example of application illustrated in the present work is the simulation of underwater
explosions close to a rigid wall or a free surface. In these problems a highly pressurized gas
bubble triggers cavitation processes in a liquid. Another application example is the simulation
of high speed cavitating underwater systems, considered for instance in [48]. Some limits of the
numerical model presented in this work are the choice of a simple stiffened gas equation of state
and the assumption of instantaneous heat and mass transfer. Future work will be dedicated to
the extension of the model to more complex and general equations of state, such as the IAPWS
Industrial Formulation for Water and Steam [57], and to finite-rate thermo-chemical relaxation
processes.
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A. Derivation of the relaxed pressure-equilibrium model

In this section we derive the p-relaxed model in (11) from the multiphase model in (1).
For simplicity, we shall consider the one-dimensional case d = 1. We follow in particular
the technique of Murrone–Guillard [41] (see also [10]). First, we write the system (1) in one
dimension in terms of the vector of primitive variables w ∈ R3N as:

∂tw + A(w)∂xw =
1
τ
Ψ (w) +Φ(w), (70a)

where τ ≡ 1/µ, and

w =


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, A =



u 0 . . . 0 0 0 . . . 0 0 0 0 . . . 0
0 u . . . 0 0 0 . . . 0 0 0 0 . . . 0
...

...
. . .

...
...

...
...

...
...

...
...

...
...

0 0 0 u 0 0 . . . 0 0 0 0 . . . 0
0 0 . . . 0 u 0 . . . 0 ρ1 0 0 . . . 0
0 0 . . . 0 0 u . . . 0 ρ2 0 0 . . . 0
...

...
...

...
...

...
. . .

...
...

...
...

...
...

0 0 . . . 0 0 0 . . . u ρN 0 0 . . . 0
p1−p2
ρ

p3−p2
ρ

. . . pN−p2
ρ

0 0 . . . 0 u α1
ρ

α2
ρ

. . . αN
ρ

0 0 . . . 0 0 0 . . . 0 ρ1c2
1 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0 ρ2c2
2 0 u . . . 0

...
...

...
...

...
...

...
...

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 0 ρNc2

N 0 0 . . . u



,

(70b)

Ψ =
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, Φ =



0
0
...
0
M

α1

−M
α2
...
0
0

Γ1
α1

∑N
j=1 Q1 j + (Γ1gI + χ1) M

α1
Γ2
α2

∑N
j=1 Q2 j − (Γ2gI + χ2) M

α2
...

ΓN
αN

∑N
j=1 QN j



.

(70c)
We are interested in the behavior of the solutions of (70) in the limit τ → 0+ (µ = 1

τ
→ +∞).

We expect that these solutions are close to the set U = {w ∈ R3N ;Ψ (w) = 0}. We assume that the
set of equations Ψ (w) = 0 defines a smooth manifold of dimension L and that for any w ∈ U we
know a parameterization Ξ (the Maxwellian) from an open subset Ω of RL on a neighborhood of
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w in U. For any v ∈ Ω ⊂ RL the Jacobian matrix dΞv is a full rank matrix, moreover, the column
vectors of dΞv form a basis of ker(Ψ ′(Ξ(v))) [41]. Now let us define the matrix C ∈ R3N×3N :

C = [dΞ1
v . . . dΞ

L
v V1 . . .V3N−L] (71)

where dΞ1
v , . . . , dΞ

L
v are the column vectors of dΞv and {V1, . . . ,V3N−L} is a basis of the range of

Ψ ′(Ξ(v)). Based on the observations above, the matrix C is invertible. Let us now denote with P
the L × 3N matrix composed of the first L rows of the inverse C−1. We have also the following
results (see [41]):

P dΞv = IL and PΨ ′(Ξ(v)) = 0, (72)

where IL denotes the L× L identity matrix. Now to obtain a reduced pressure equilibrium model
we look for solutions in the form w = Ξ(v) + τz, where z is a small perturbation around the
equilibrium state Ξ(v). Using this into the system (70) we obtain

∂t(Ξ(v)) + A(Ξ(v))∂x(Ξ(v)) − Ψ ′(Ξ(v)) z = Φ(Ξ(v)) + O(τ). (73)

Multiplying the above equation by P, by using (72), and by neglecting terms of order τ, we obtain
the reduced model system:

∂tv + PA(Ξ(v))dΞv∂xv = PΦ(Ξ(v)). (74)

In the limit of instantaneous pressure relaxation we have pk = p, ∀k = 1, . . . ,N, hence the vector
of the variables of the reduced pressure-relaxed model is

v = [α1, α3, . . . , αN , ρ1, ρ2, . . . , ρN , u, p]T ∈ R2N+1. (75)

Note that here L = 2N + 1. The equilibrium state Ξ(v) is defined by:

Ξ : v→ Ξ(v) = [α1, α3, . . . , αN , ρ1, ρ2, . . . , ρN , u, p, p, . . . , p]T ∈ R3N . (76)

The Jacobian dΞv ∈ R3N×2N+1 of the Maxwellian is:

dΞv =



I2N

0
...
0

0 . . . 0 1
. . .

...
0 . . . 0 1


. (77)
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A basis {V1, . . . ,VN−1}, Vk ∈ R3N , k = 1, . . . ,N − 1, for the range of Ψ ′(Ξ(v)) is found as

V1 =



(N − 1)
−1
−1
...
−1

−(N − 1) ρ1
α1

ρ2
α2
ρ3
α3
...
ρN
αN

0
−(N − 1) ρ1

α1
c2

1
ρ2
α2

c2
2

ρ3
α3

c2
3

...
ρN
αN

c2
N



, V2 =



−1
(N − 1)
−1
...
−1
ρ1
α1
ρ2
α2

−(N − 1) ρ3
α3

...
ρN
αN

0
ρ1
α1

c2
1

ρ2
α2

c2
2

−(N − 1) ρ3
α3

c2
3

...
ρN
αN

c2
N



, . . . ,VN−1 =



−1
−1
−1
...

(N − 1)
ρ1
α1
ρ2
α2
ρ3
α3
...

−(N − 1) ρN
αN

0
ρ1
α1

c2
1

ρ2
α2

c2
2

ρ3
α3

c2
3

...
−(N − 1) ρN

αN
c2

N



. (78)

Note that this structure is associated to the choice of the independent variables in w (where in
particular we have chosen αk, k , 2). Hence we can construct the matrix C ∈ R3N×3N (71),
compute the inverse C−1, and finally obtain the matrix P ∈ R2N+1×3N by taking the first 2N + 1
rows of C−1. We find:

P =



I2N

α1
ρ1c2

1
ρc2

p
∑N

j=2
α j

ρ jc2
j

−
α1α2

ρ1c2
1ρ2c2

2
ρc2

p −
α1α3

ρ1c2
1ρ3c2

3
ρc2

p . . . −
α1αN

ρ1c2
1ρN c2

N
ρc2

p

−
α1α3

ρ1c2
1ρ3c2

3
ρc2

p −
α2α3

ρ2c2
2ρ3c2

3
ρc2

p
α3

ρ3c2
3
ρc2

p
∑N

j=1
j,3

α j

ρ jc2
j

. . . −
α3αN

ρ3c2
3ρN c2

N
ρc2

p

...
...

...
...

...

−
α1αN

ρ1c2
1ρN c2

N
ρc2

p −
α2αN

ρ2c2
2ρN c2

N
ρc2

p −
α3αN

ρ3c2
3ρN c2

N
ρc2

p . . . αN

ρN c2
N
ρc2

p
∑N−1

j=1
α j

ρ jc2
j

− 1
c2

1
ρc2

p
∑N

j=2
α j

ρ jc2
j

α2
c2

1ρ2c2
2
ρc2

p
α3

c2
1ρ3c2

3
ρc2

p . . . αN

c2
1ρN c2

N
ρc2

p
α1

ρ1c2
1c2

2
ρc2

p − 1
c2

2
ρc2

p
∑N

j=1
j,2

α j

ρ jc2
j

α3

c2
2ρ3c2

3
ρc2

p . . . αN

c2
2ρN c2

N
ρc2

p

...
...

...
...

...
α1

ρ1c2
1c2

N
ρc2

p
α2

ρ2c2
2c2

N
ρc2

p
α3

ρ3c2
3c2

N
ρc2

p . . . − 1
c2

N
ρc2

p
∑N−1

j=1
α j

ρ jc2
j

0 0 0 . . . 0

0 . . . 0 ρc2
p
α1
ρ1c2

1
ρc2

p
α2
ρ2c2

2
ρc2

p
α3

ρ3c2
3

. . . ρc2
p
αN

ρN c2
N



,

(79)
where cp is the speed of sound of the pressure-equilibrium model in (14). Finally, the reduced
p-relaxed multiphase flow model in (11) is obtained from (74) by using the above expression of
the matrix P and by evaluating the matrix A and the source term Φ in the equilibrium state Ξ(v)
in (76). Let us also note that we use the relations χk = c2

k − Γkhk in the entries of Φ in (70c).
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B. Speed of sound for the hierarchy of multiphase flow models

In this section we show the derivation of the expressions of the sound speed in (14), (19),
and (26), following in particular the work in [19]. For the two-phase case, these formulas have
been derived by various authors, see especially [59, 53, 18]. For flow models with N ≥ 2 phases,
the expression of the speed of sound have been studied in [19] for the case of instantaneous
mechanical equilibrium and the case of both mechanical and thermal equilibrium for all the
phases. The novelty here is the derivation of (26) for the flow model with chemical potential
equilibrium and the generalization of (19) to the situation where only 2 ≤ M < N phase are
in thermal equilibrium. We begin by recalling some definitions and by writing some useful
equalities:

c2
k =

(
∂pk

∂ρk

)
sk

, Γk =

(
∂pk

∂Ek

)
ρk

=
ρk

Tk

(
∂Tk

∂ρk

)
sk

, κpk =

(
∂hk

∂Tk

)
pk

= Tk

(
∂sk

∂Tk

)
pk

, (80a)

(
∂Tk

∂pk

)
sk

=
TkΓk

ρkc2
k

,

(
∂ρk

∂sk

)
pk

= −
TkΓkρk

c2
k

. (80b)

Here a common pressure will be always assumed, pk = p, ∀k = 1, . . . ,N. Now, by recalling
ρ =

∑N
k=1 αkρk and

∑N
k=1 αk = 1, we can write:

N∑
k=1

d(αkρk)
ρk

=

N∑
k=1

αk

ρk
dρk = ρ

N∑
k=1

1
ρk

dYk +
1
ρ

dρ . (81)

Hence:
1
ρ

dρ =

N∑
k=1

αk

ρk
dρk − ρ

N∑
k=1

1
ρk

dYk . (82)

Then we can write, by considering ρk = ρk(p, sk):

dρk =

(
∂ρk

∂p

)
sk

dp +

(
∂ρk

∂sk

)
p

dsk =
1
c2

k

dp −
TkΓkρk

c2
k

dsk . (83)

Hence we obtain:

dρ = ρ

 N∑
k=1

αk

ρkc2
k

 dp −
N∑

k=1

αk
TkΓk

c2
k

dsk − ρ

N∑
k=1

1
ρk

dYk

 . (84)

B.1. p-relaxation

Let us consider the pressure equilibrium model (11) (p-relaxed model). The speed of sound
is defined in (13). Since in this definition we consider dsk = 0 and dYk = 0, k = 1, . . . ,N, from
(84) we obtain the expression of the speed of sound cp in (14).

B.2. pT-relaxation

We now consider pressure equilibrium for all the N phases, and, in addition, we assume that
M phases, 2 ≤ M ≤ N, are in thermal equilibrium at a common temperature T , Tk = T for
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k = 1, . . . ,M. Recalling the expression of the mixture specific total entropy s =
∑N

k=1 Yk sk, we
can write

M∑
k=1

Ykdsk = ds −
N∑

k=1

skdYk −

N∑
k=M+1

Ykdsk . (85)

By considering T = T (p, sk), then we can write

dT =

(
∂T
∂p

)
sk

dp +

(
∂T
∂sk

)
p

dsk =
TΓk

ρkc2
k

dp +
T
κpk

dsk, k = 1, . . . ,M. (86)

Hence we obtain M − 1 equations:

1
κpk

dsk −
1

κpk+1
dsk+1 =

 Γk+1

ρk+1c2
k+1

−
Γk

ρkc2
k

 , k = 1, . . . ,M − 1. (87)

These M − 1 equations together with the equation (85) form a system of M equations for the
unknowns dsk, k = 1, . . . ,M (the phasic entropy differentials for the M phases in both mechanical
and thermal equilibrium). The solution of this system gives, after some manipulations:

dsk =
1

αkρk
∑M

j=1 Cp j

Cpkρ

ds −
N∑

j=1

s jdY j −

N∑
j=M+1

Y jds j

 + Cpk

M∑
j=1

 Γ j

ρ jc2
j

−
Γk

ρkc2
k

Cp jdp

 ,
(88)

for k = 1, . . . ,M. Here we recall that Cpk = αkρkκpk (heat capacities). By introducing (88) in
(84) we then obtain

dρ = ρ


 N∑

k=1

αk

ρkc2
k

 dp + T
1∑M

k=1 Cpk

M−1∑
k=1

Cpk

M∑
j=k+1

Cp j

 Γ j

ρ jc2
j

−
Γk

ρkc2
k

2

dp

−ρ

M∑
k=1

Γk

ρkc2
k

Cpk

ds −
N∑

k=1

skdYk −

N∑
k=M+1

Ykdsk

 − N∑
k=M+1

αk
TkΓk

c2
k

dsk − ρ

N∑
k=1

1
ρk

dYk

 .
(89)

The speed of sound CpT,M of the model with pressure equilibrium for all the phases and
temperature equilibrium for M ≤ N phases is defined in (18). Since in this definition we consider
ds = 0, dsk = 0 for k = M + 1, . . . ,N, and dYk = 0, for k = 1, . . . ,N, from (89) we obtain the
expression of the speed of sound cpT,M in (19), by using also (14).

B.3. pTg-relaxation
We now consider pressure equilibrium for all the N phases, thermal equilibrium at temper-

ature T for M ≤ N phases, Tk = T , for k = 1, . . . ,M, and chemical potential equilibrium for
the liquid and vapor phase pair (1, 2), g1 = g2 (note that this pair is also considered in thermal
equilibrium). The speed of sound is defined in (25). Since in this definition we consider ds = 0,
dsk = 0 for k = M + 1, . . . ,N, and dYk = 0, for k = 3, . . . ,N, we can write from (89):

dρ = ρ


 N∑

k=1

αk

ρkc2
k

 dp + T
1∑M

k=1 Cpk

M−1∑
k=1

Cpk

M∑
j=k+1

Cp j

 Γ j

ρ jc2
j

−
Γk

ρkc2
k

2

dp

−ρ

M∑
k=1

Γk

ρkc2
k

Cpk(s2 − s1)dY1

 −ρ (
1
ρ1
−

1
ρ2

)
dY1

}
,

(90)

38



where we have used dY2 = −dY1. Now we use the condition d(g1 − g2) = 0 to find a suitable
expression for dY1 in (90) as a function of dp. By recalling that gk = εk +

p
ρk
−T sk and by noticing

that dgk = 1
ρk

dp − skdT , k = 1, 2, we can write:

d(g2 − g1) =

(
1
ρ2
−

1
ρ1

)
dp − (s2 − s1)dT. (91)

We observe that dT can be expressed as:

dT =
TΓ1

ρ1c2
1

dp +
T
κp1

ds1 . (92)

By using here the expression for ds1 given in (88) (with ds = 0, dsk = 0 for k = M + 1, . . . ,N,
dYk = 0, for k = 3, . . . ,N, dY1 = −dY2), we then obtain:

dT =
ρT∑M

k=1 Cpk

(s2 − s1)dY1 +
1
ρ

M∑
k=1

CpkΓk

ρkc2
k

dp

 . (93)

Now we use this expression for dT in (91) and we solve d(g2 − g1) = 0 for the unknown dY1,
obtaining:

dY1 =
1
ρ

( 1
ρ2
−

1
ρ1

)
1

T (s2 − s1)2

M∑
k=1

Cpk −
1

s2 − s1

M∑
k=1

CpkΓk

ρkc2
k

 dp. (94)

By introducing this equation in (90) and after some manipulations we obtain:

dρ = ρ


 N∑

k=1

αk

ρkc2
k

 dp + T
1∑M

k=1 Cpk

M−1∑
k=1

Cpk

M∑
j=k+1

Cp j

 Γ j

ρ jc2
j

−
Γk

ρkc2
k

2

dp

+

 M∑
k=1

ΓkCpk

ρkc2
k

−

(
1
ρ2
−

1
ρ1

)
1

T (s2 − s1)

M∑
k=1

Cpk

2

dp


 .

(95)

With this result, we finally obtain the expression of the speed of sound cpTg,M in (26) by using
the Clausius–Clapeyron equation(

dp
dT

)
sat

= (s2 − s1)
(

1
ρ2
−

1
ρ1

)−1

. (96)
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[46] O. E. Petel and F. X. Jetté. Comparison of methods for calculating the shock Hugoniot of mixtures. Shock Waves,
20:73–83, 2010.

[47] F. Petitpas, E. Franquet, R. Saurel, and O. Le Métayer. A relaxation-projection method for compressible flows.
Part II: Artificial heat exchanges for multiphase shocks. J. Comput. Phys., 225(2):2214–2248, 2007.

[48] F. Petitpas, J. Massoni, R. Saurel, E. Lapebie, and L. Munier. Diffuse interface models for high speed cavitating
underwater systems. Int. Journal Multiphase Flows, 35(8):747–759, 2009.

[49] R. Saurel, P. Boivin, and O. LeMétayer. A general formulation for cavitating, boiling and evaporating flows.
Computers and Fluids, 128:53–64, 2016.

[50] R. Saurel, O. Le Métayer, J. Massoni, and S. Gavrilyuk. Shock jump relations for multiphase mixtures with stiff
mechanical relaxation. Shock Waves, 16:209–232, 2007.

[51] R. Saurel, F. Petitpas, and R. Abgrall. Modelling phase transition in metastable liquids: application to cavitating
and flashing flows. J. Fluid Mech., 607:313–350, 2008.

[52] R. Saurel, F. Petitpas, and R. A. Berry. Simple and efficient relaxation methods for interfaces separating
compressible fluids, cavitating flows and shocks in multiphase mixture. J. Comput. Phys., 228:1678–1712, 2009.

[53] H. B. Stewart and B. Wendroff. Two-phase flow: models and methods. J. Comput. Phys., 56:363–409, 1984.
[54] S. A. Tokareva and E. F. Toro. HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-

phase flow. J. Comput. Phys., 229:3573–3604, 2010.
[55] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, Berlin, Heidelberg,

1997.
[56] E. F. Toro, M. Spruce, and W. Speares. Restoration of the contact surface in the HLL Riemann solver. Shock Waves,

4:25–34, 1994.
[57] W. Wagner, J. R. Cooper, A. Dittmann, J. Kijima, H.-J. Kretzschmar, A. Kruse, R. Mareš, K. Oguchi, H. Sato,
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Formulation 1997 for the Thermodynamic Properties of Water and Steam. Transactions of the ASME, 122:150–182,
2000.

[58] G. Wang, S. Zhang, M. Yu, H. Li, and Y. Kong. Investigation of the shock wave propagation characteristicsand
cavitation effects of underwater explosion near boundaries. Appl. Ocean Res., 46:40–53, 2014.

[59] A. B. Wood. A textbook of sound. G. Bell and Sons Ltd., London, 1930.
[60] W. F. Xie, T. G. Liu, and B. C. Khoo. Application of a one-fluid model for large scale homogeneous unsteady

cavitation: The modified Schmidt model. Computers and Fluids, 35:1177–1192, 2006.
[61] W. F. Xie, T. G. Liu, and B. C. Khoo. The simulation of cavitating flows induced by underwater shock and free

surface interaction. Appl. Numer. Math., 57:734–745, 2007.
[62] G.-S. Yeom. Numerical study of underwater explosion near a free surface and a structural object on unstructured

grid. J. Mech. Sci. Technol., 29(10):4213–4222, 2015.
[63] A. Zein, M. Hantke, and G. Warnecke. Modeling phase transition for compressible two-phase flows applied to

metastable liquids. J. Comput. Phys., 229:2964–2998, 2010.
[64] A. Zein, M. Hantke, and G. Warnecke. On the modeling and simulation of a laser-induced cavitation bubble. Int.

J. Numer. Meth. Fluids, 73(2):172–203, 2013.
[65] J. Zhu, T. Liu, J. Qiu, and B. C. Khoo. RKDG methods with WENO limiters for unsteady cavitating flow.

Computers and Fluids, 57:52–65, 2012.

41




