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Introduction

Electric interactions between charged and dipole components of the system play an important role in many physicochemical and electrochemical phenomena because of their high intensity. These forces are frequently modified essentially owing to the presence of a polar medium (e.g. solvent). Within the framework of a detailed ("microscopic") description of such systems this medium has to be considered on the same level as dissolved species, e.g. with the use of molecular dynamic methods applied to all these components. Difficulties on the way to achieve an adequate description of a polar liquid, especially in the case of such highly complicated object as water (even in the absence of solute species) originate both from the long-range character of electric interactions and the lack of a reliable information on interactions between molecules of the liquid since in the condensed state one cannot reduce these interactions to purely binary forces, i.e. one has to take into account their many-body components. These features result in enormous complication for the use of statistical-mechanical theories for description of electric phenomena in pure polar liquids, speaking nothing for ionic solutions in such media.

These mathematical difficulties resulted in intermediate-level phenomenological approaches where electric properties of solute species are modified due to the presence of the polar medium owing to its dielectric properties. In particular, in the case of ions the solvent polarization affects strongly such ionic characteristics as solvation energies of individual ions, binary interactions between ions and collective properties of ionic ensembles. If the relaxation time of the polar medium is shorter than the characteristic time of displacements of ions one may consider the problem as an electrostatic one where both sources of electric fields (ions) and the solvent response to these fields may be considered as time-independent.

The simplest and widely used variant of this description is based on consideration of the solvent as a local and uniform dielectric medium which occupies the whole space outside the solute species and which is characterized by its (static) dielectric constant, ε s . It means that the electric field, E(r), in a spatial point, r, is proportional to its displacement, D(r), in the same point:

D(r) = ε s E(r) ( 1 
)
Such description is quite justified for fields which change weakly at the molecular scale. However, this condition is often violated in ionic solutions, e.g. for fields around a small-size ion [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF], extended molecular objects [START_REF] Kornyshev | Non-Local Screening Effects in the Long-Range Interionic Interaction in a Polar Solvent[END_REF] or in the vicinity of a charged surface of the solvent (including electrochemical interfaces, metal/electrolyte solution [START_REF] Vorotyntsev | Physical Significance of an Effective Dielectric Constant That Depends on the Distance from the Electrode[END_REF][START_REF] Vorotyntsev | Possible Mechanisms of "Controlling" Ionic Interaction at the Electrode-Solution Interface[END_REF][START_REF] Vorotyntsev | Electrostatic Interaction on a Metal-Insulator Interface[END_REF][START_REF] Kornyshev | Nonlocal Electrostatic Approach to the Double Layer and Adsorption at the Electrode / Electrolyte Interface[END_REF][START_REF] Kornyshev | The Effect of Spatial Dispersion of the Dielectric Permittivity on the Capacitance of Thin Insulating Films: Non-Linear Dependence of the Inverse Capacitance on Film Thickness[END_REF][START_REF] Kornyshev | Non-Local Dielectric Response of the Electrode/Solvent Interface in the Double Layer Problem[END_REF][START_REF] Kornyshev | Nonlocal Electrostatic Approach to the Problem of a Double Layer at a Metal / Electrolyte Interface[END_REF][START_REF] Vorotyntsev | Differential Capacitance of the Electric Double Layer in Dilute Solutions of Surface-Inactive Electrolytes and upon the Specific Adsorption of Ions. Nonlocal and Nonlinear Effects[END_REF][START_REF] Vorotyntsev | Models to Describe Collective Properties of the Metal / Solvent Interface in Electric Double-Layer Theory[END_REF][START_REF] Vorotyntsev | Image Forces at the Metal/Electrolyte Solution Interface: Their Dependence on Electrode Charge and Electrolyte Concentration[END_REF]. This problem originates from a complicated nature of the dielectric response of the medium where its local polarization, P(r), is determined by both the electronic polarizability of solvent molecules and field-driven rotation of their dipole molecules while in structured liquids (first of all in water) orientations of neighboring molecules are strongly correlated due to short-range interactions, e.g. hydrogen or/and donor-acceptor bonds. It is the reason why the medium polarization, P, in a point, r 1 , is determined by the electric field, E, not only in the same point, r 1 , but also in its surrounding, which means that the relation between the spatial distributions of P and E is nonlocal:

α 1 αβ 1 2 β 2 2 ( ) = ( , ) ( ) d χ ∫ P E r r r r r (2) 
where χ αβ (r 1 ,r 2 ) is nonlocal tensor (dielectric) susceptibility of the medium which is nonzero only if the distance between its arguments, r 1 and r 2 , does not exceed its (maximal) correlation length, Λ [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF]. Summation over repeating indices, e.g. over β in Eq [START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF], from 1 to 3 is assumed in Eq [START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF] and other relations below. Use of the identity, D(r) = E(r) + 4π Р(r), leads to a nonlocal expression for the displacement via the electric field distribution:

α 1 1 2 β 2 2 ( ) = ( , ) ( ) d αβ ε ∫ D E r
r r r r [START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF] where nonlocal (tensor) dielectric function of the medium, ε αβ (r 1 ,r 2 ), is given by Eq (4):

ε αβ (r 1 ,r 2 ) = δ αβ δ(r 1 -r 2 ) + 4π χ αβ (r 1 ,r 2 ) (4) 
Eq [START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF] is supplemented by conventional electrostatic equations: div D(r) = 4π ρ(r), E(r) = -grad ϕ(r)

where ρ(r) is density of external (with respect to the medium) charges, ϕ(r) is electric potential.

All these distributions are unambiguously determined if both the charge density distribution, ρ(r), and the dielectric function of the system, ε αβ (r 1 ,r 2 ), are given within the whole space.

If an uniform and isotropic dielectric medium occupies the whole space while the external charges are distributed inside the medium without disturbing its properties, in particular without forming interfacial boundaries, then the solution for the electric potential and other electric variables can be written down in an analytical form for any dielectric function of the medium [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Holub | Comment on the solvent structure in thermodynamics of electrolytes -anomalous behavior of activity coefficients at low concentrations[END_REF][START_REF] Kornyshev | Non-local dielectric response of a polar-solvent and Debye-screening in ionic solution[END_REF][START_REF] Kornyshev | Nonlocal electrostatics of solvation[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF][START_REF] Rubashkin | Nonlocal electrostatic theory of ion solvation: A combination of the overscreening effect in the dielectric response of the medium with a smeared ion charge distributionm[END_REF][START_REF] Rubashkin | Electrostatic contribution to the ion solvation energy: Overscreening effect in the nonlocal dielectric response of the polar medium[END_REF]. Such calculation of the potential becomes a much more mathematically complicated problem if the nonlocal polar medium only occupies a certain restricted spatial region, V, while the dielectric properties outside V, i.e. inside the external region, V ext , are essentially different from those inside V.

Two quite different approximate procedures have been proposed so far for determination of electric characteristics of such heterogeneous systems.

The first approach [1-3,15-21] (which may be called "unrestricted medium approximation", UMA) disregards the existence of this "external" spatial region, V ext , by assuming that the whole space (V + V ext ) is occupied by the same polar medium while the electric field is induced by "external charges" which are distributed inside the medium, without affecting its nonlocal dielectric properties.

The second approach [START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: 1[END_REF][START_REF] Vorotyntsev | Model nonlocal electrostatics: II. Spherical interface[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: 3. Cylindrical interface[END_REF][START_REF] Basilevsky | An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity[END_REF][START_REF] Basilevsky | Nonlocal continuum solvation model with exponential susceptibility kernels[END_REF][START_REF] Hildebrandt | Novel formulation of nonlocal electrostatics[END_REF][START_REF] Rubinstein | Influence of the Solvent Structure on the Electrostatic Interactions in Proteins[END_REF][START_REF] Rubinstein | Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach[END_REF][START_REF] Rubinstein | Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach[END_REF][START_REF] Bardhan | Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins[END_REF][START_REF] Paillusson | Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics[END_REF][START_REF] Rubashkin | The role of spatial dispersion of the dielectric constant of spherical water cavity in the lowering of the free energy of ion transfer to the cavity[END_REF][START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF] (which originates from the electrodynamics of plasma where it was called "dielectric approximation", DA) takes into account the essential difference of the dielectric properties inside these spatial region, V and V ext .

Namely, the external region is described by the local electrostatic relation, Eq [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF] with its own dielectric constant. Principal basis of the DA approach is the assumption that the dielectric function of the medium occupied region V, ε αβ (r 1 ,r 2 ), is equal to its bulk medium form for all points, r 1 and r 2 , inside region V, even in the vicinity of its boundary with the external region, V ext , see Eq (12DA) below. Then, the electric potential distribution may be expressed via the inverse dielectric function of the medium in region V, ε -1 αβ (r 1 ,r 2 ). However, the latter can only be found via complicated solution of an integral equation, see below.

Our actual study is aimed to propose the third approach (which may be called "inverse dielectric approximation", IDA) based on a different phenomenological assumption, namely that the inverse dielectric function of the medium in region V, ε -1 αβ (r 1 ,r 2 ), is equal to its form for this medium in the unrestricted space, see Eq [START_REF] Vorotyntsev | Differential Capacitance of the Electric Double Layer in Dilute Solutions of Surface-Inactive Electrolytes and upon the Specific Adsorption of Ions. Nonlocal and Nonlinear Effects[END_REF] and discussion below for more detail. As a result, the potential distribution for systems of several important types can be expressed immediately via the dielectric function of the bulk medium, with no need of solving integral or differential-integral equations. Therefore, the IDA procedure allows one to carry out easily such calculations for any form of the bulk-medium dielectric function, contrary to the case of the DA procedure.

One should emphasize that the DA and IDA approaches are based on different assumptions. Thus, their solutions for the same system are different. At the same time we demonstrate below they may be close to one another numerically. These features of the novel IDA procedure represent its obvious important merit, compared to the UMA and DA ones.

All the results based on the nonlocal dielectric function of the medium around ion require the validity of the theory of the linear response to the field of the ion. One should expect that this restriction excludes its application for description of ion solvation of small-size multi-charge ions. As for the single-charge ions, the available conclusions on this point (see e.g. [START_REF] Bardhan | Affine-response model of molecular solvation of ions: accurate predictions of asymmetric charging free energies[END_REF]) are based on molecular-level modeling of the ion-solvent system, which is sensitive to the particular choice of system's parameters.

Alternative method for calculation of the solvation energies with taking into account the existence of the solvent-free cavity has been proposed in recent publications [START_REF] Duignan | A continuum model of solvation energies including electrostatic,dispersion, and cavity contributions[END_REF][START_REF] Duignan | Collins's rule, Hofmeister effects and ionic dispersion interactions[END_REF]. Contributions due to the electrostatic energy described by the Born theory and the dispersion interactions related to dynamic polarizabilities have been combined in order to calculate the energies of the ion solvation as well as of the ion-solvent boundary and ion-ion interactions. In particular, theoretical predictions for ion solvation energies turned out to be in agreement with experimental data. The dielectric response of the medium around the ion was described with the use of the local model. Since the direct molecular-model calculations for water demonstrate pronounced nonlocal effects in its dielectric response it will be of interest to combine the model of Refs [START_REF] Duignan | A continuum model of solvation energies including electrostatic,dispersion, and cavity contributions[END_REF][START_REF] Duignan | Collins's rule, Hofmeister effects and ionic dispersion interactions[END_REF] with this factor in the future.

It has been shown in Ref. [START_REF] Sandberg | Nonlinear response effects in continuum models of the hydration of ions[END_REF] that nonlinear response effects may be integrated into the continuum model of the ion hydration, but these effects for monovalent ions being less than 2% of their hydration energies. This result justifies the use of nonlocal-electrostatics theory to calculate the solvation energy of such single-charge ions.

One should keep in mind that the nonlocal dielectric-response theory only deals with the electrostatic contribution to the ion solvation energy while there are also other contributions, e.g. due to the energy of the cavity creation inside the solvent [START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF] as well as due to a preferential orientation of the first coordination sphere solvent molecules around ions resulting in the charge hydration asymmetry [START_REF] Rajamani | Size dependent ion hydration, its asymmetry, and convergence to macroscopicbehavior[END_REF][START_REF] Mukhopadhyay | Charge hydration asymmetry: the basic principle and how touse it to test and improve water models[END_REF].

Nonlocal electrostatics approach requires significantly less computation time, compared to methods of molecular dynamics, so it is useful for primary estimations of e.g. electrostatic potentials for proteins in water [START_REF] Rubinstein | Influence of the Solvent Structure on the Electrostatic Interactions in Proteins[END_REF][START_REF] Rubinstein | Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach[END_REF][START_REF] Rubinstein | Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach[END_REF][START_REF] Hildebrandt | Electrostatic potentials of proteins in water: a structured continuum approach[END_REF]. In particular, it was shown that the use of the nonlocal electrostatics for calculation of the solvation energy for an ion located inside a water-filled ion channel allowed one to explain observations of the ion penetration into such channels [START_REF] Bardhan | Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins[END_REF][START_REF] Rubashkin | The role of spatial dispersion of the dielectric constant of spherical water cavity in the lowering of the free energy of ion transfer to the cavity[END_REF].

The principal goal of this paper is to propose a novel approximate (IDA) approach towards calculation of electric fields in systems containing a spatially restricted nonlocal polar medium (which is assumed to be uniform inside its region, V). This procedure may be applied for any functional form of the nonlocal dielectric function of the bulk medium, ε(k), as well as for various distributions of the ionic charge, ρ(r) (including its penetration into the adjacent layer of the polar medium in contact with the "external region"). In particular, such calculations may be performed in a numerical form.

Application of the IDA approach for determination of the potential and electric field distributions is illustrated below for the spherically symmetrical system where an ion occupying a cavity is surrounded by a nonlocal polar medium. It is demonstrated that simple analytical expressions for them as well as for the ion solvation energy can be derived via ε(k) and ρ(r) for any functional form of these characteristics.

Comparison of these results with those provided by two alternative approaches (UMA and DA) is given on the basis of the analytical and graphical analyses with the use of two simple model approximations for the dielectric function of the bulk polar medium (singleand three-mode functions). Since in real systems the ionic charge is generally distributed both inside the ion cavity and (partially) outside of it while the induced potential represents a superposition of contributions of all these charges, we have considered in detail the generalization of the Born model (uniform charge distribution over a sphere) for three positions of these sphere: inside or outside the cavity or at its surface, in order to compare predictions of all approaches (UMA, DA and IDA) for the induced potential as well as for the solvation energy. As it is shown there this comparison has demonstrated advantageous features of the newly IDA procedure compared to both competitive approaches. These results open the prospect of its application for calculations electric properties of real systems with the use of more substantiated expressions for ε(k) and ρ(r).

General relations

Relation (3) may be considered as an integral equation for the electric field distribution, E(r). Its solution is given by the formula:

1 α 1 αβ 1 2 β 2 2 ( ) = ( , ) ( ) d - ε ∫ E D r
r r r r [START_REF] Vorotyntsev | Possible Mechanisms of "Controlling" Ionic Interaction at the Electrode-Solution Interface[END_REF] where the tensor inverse dielectric function, ε -1 αβ (r 1 ,r 2 ), satisfies to the relation:

1 αβ 1 2 β 2 3 2 α 1 3 ( , ) ( , ) d ( -) - γ γ ε ε = δ δ
∫ r r r r r r r [START_REF] Vorotyntsev | Electrostatic Interaction on a Metal-Insulator Interface[END_REF] Since P(r) = [D(r) -E(r)] / 4π Eq (6) provides an expression for the polarization via the displacement distribution:

(D) α 1 αβ 1 2 β 2 2 ( ) = ( , ) ( ) d χ ∫ P D r
r r r r [START_REF] Kornyshev | Nonlocal Electrostatic Approach to the Double Layer and Adsorption at the Electrode / Electrolyte Interface[END_REF] where

χ (D) αβ (r 1 ,r 2 ) = (4π) -1 [δ αβ δ(r 1 -r 2 ) -ε -1 αβ (r 1 ,r 2 )] (9) 
Novel approximate (IDA) procedure for calculation of potential distribution

Under certain conditions established in Ref [START_REF] Yu | Electrostatic Models in the Theory of Solutions[END_REF] (see also Appendix 2 in book [START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF]) the displacement distribution, D(r), is identical to that of the field, G(r), induced by the same system of external charges, ρ(r), in vacuum: D(r) ≡ G(r), in particular:

1. If the medium represents a uniform local dielectric phase the surfaces of all non-conducting cavities must be equipotential surfaces of the vacuum field, G;

2. If the system consists of one or several non-uniform local dielectric phases, i = 1,2...n (each of them occupies its own spatial region, V i ) and ε(r) changes stepwise at each border of two neighboring phases, then the condition in point 1 is to be satisfied (surfaces of all non-conducting boundaries are to be equipotential surface of the vacuum field, G) and G(r) ǁǁ grad ε(r) inside each region, V ; .

3. If the system includes a nonlocal dielectric phase, then both ε αβ (r,r)׳ and the interfaces must possess the same symmetry as the vacuum field, G, i.e. the external charge distribution, ρ(r).

In particular, the latter variant takes place in the systems: 1) uniform and isotropic nonlocal medium occupying the whole space; 2) plane interface, z = 0, separating two media possessing either local response(s), Eq (1), or nonlocal dielectric function(s) which are uniform and isotropic along the interface; 3) spherically symmetrical boundary (or several spherically symmetrical boundaries having the same center), r = a, separating two media possessing either local response(s), Eq (1), or nonlocal dielectric function(s) possessing the same spherical symmetry, where the external charge density is also spherically symmetrical, i.e. it only depends on r; 4) analogous system possessing a cylindrical symmetry.

For the systems described in points 2, 3 and 4 it is usually assumed that there is no correlation between the polarization fluctuations in any pair of spatial points belonging to different spatial regions. It means that for such values of the coordinates, r 1 and r 2 , the dielectric function in Eq (3) is equal to zero, and the same property is valid for Eqs (2), ( 6) and [START_REF] Kornyshev | Nonlocal Electrostatic Approach to the Double Layer and Adsorption at the Electrode / Electrolyte Interface[END_REF].

Ultimate solution for the electric field distribution inside the region, V, occupied by the medium possessing the inverse dielectric function, ε -1 αβ (r 1 ,r 2 ), is given by Eq (10):

1 α 1 αβ 1 2 β 2 2 V ( ) = ( , ) ( ) d - ε ∫ E G r
r r r r [START_REF] Kornyshev | Non-Local Dielectric Response of the Electrode/Solvent Interface in the Double Layer Problem[END_REF] where the vacuum field, G(r), for such systems can be written down in the analytical form as integral of the external charge one, ρ(r), and it does not depend on either the parameters of the interface or the dielectric properties of the media in contact. Then, the electric potential, ϕ(r), is related to the field via Eq (5), i.e. it can be found by its integration.

Analogous Eq (8) may be used to derive an expression for the polarization distribution inside the same spatial region, V:

(D) α 1 αβ 1 2 β 2 2 V ( ) = ( , ) ( ) d χ ∫ P G r
r r r r [START_REF] Kornyshev | Nonlocal Electrostatic Approach to the Problem of a Double Layer at a Metal / Electrolyte Interface[END_REF] One may note that for any functional form of the G(r) distribution (for the system satisfying to the symmetry conditions) there exists a corresponding distribution of the external charge: ρ(r) = -(4π) -1 ∆G(r). Therefore, Eq (11) may be considered as the linear response of the dielectric medium to the arbitrary external field. Then, the fluctuation-dissipation theorem expresses the kernel in Eq [START_REF] Kornyshev | Nonlocal Electrostatic Approach to the Problem of a Double Layer at a Metal / Electrolyte Interface[END_REF],

χ (D) αβ (r 1 ,r 2 )
. via the correlator of polarization fluctuations in the absence of external fields, <P α (r 1 ,t 1 ) P β (r 2 ,t 2 )>, which reflects the spatial-temporal structure of the polar medium [START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Zubarev | Nonequilibrium Statistical Thermodynamics[END_REF].

If the structure of the bulk medium and its fluctuation properties remain unmodified up to its boundary, then its susceptibility, χ (D) αβ (r 1 ,r 2 ), which is uniform and isotropic far from the boundary retains its form inside the whole spatial region, V, occupied by the medium, i.e. it only depends of the distance between the spatial arguments of this function:

χ (D) αβ (|r 1 -r 2 |).
According to Eq (9) the inverse dielectric function, ε -1 αβ (r 1 ,r 2 ), possesses the same property inside region V while this function for the bulk medium, i.e. for the medium occupying the whole space, δ αβ ε -1 (|r 1 -r 2 |), is directly related to the Fourier transform of its dielectric function, ε(k) [START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF]. As a result, the inverse dielectric function, ε -1 αβ (r 1 ,r 2 ), in Eq [START_REF] Kornyshev | Non-Local Dielectric Response of the Electrode/Solvent Interface in the Double Layer Problem[END_REF] is expressed immediately via the bulk-medium dielectric function, i.e. for all points, r 1 and r 2 , inside region V:

1 1 1 3 1 1 2 1 2 1 2 1 2 IDA 2 1 1 1 2 1 2 0 ( , ) ( , ) ( -) (2 ) [ ( )] exp[ ( -)]d (2 -) [ ( )] sin[ -]d k i k k k k - - - - - αβ αβ αβ αβ ∞ - - αβ   ε ≈ ε ≡ δ ε = δ π ε =   = δ π ε ∫ ∫ r r r r r r k r r k r r r r (12)
Thus, the distribution of the electric field in the presence of a dielectric medium, Е(r), may be found with the use of Eqs ( 10) and ( 12) on the basis of known properties of the system: its geometry (in particular, spatial region, V, occupied by the polar medium); dielectric function of the unrestricted medium in the k-space, ε(k); electric field induced by external charges in vacuum, G(r).

This calculation procedure is applicable to systems composed of two or more spatial regions possessing different dielectric properties. Any of these regions, or all regions, may possess nonlocal dielectric properties. Calculations of the field inside regions where the medium may be described by the local relation, Eq (1), are routine. Distributions of the electric potential in neighboring regions should be matched to ensure the continuity condition. Potential value at the infinite distance is usually taken as zero.

One should keep in mind that the so-called "dielectric approximation" (DA) [START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: 1[END_REF][START_REF] Vorotyntsev | Model nonlocal electrostatics: II. Spherical interface[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: 3. Cylindrical interface[END_REF][START_REF] Basilevsky | An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity[END_REF][START_REF] Basilevsky | Nonlocal continuum solvation model with exponential susceptibility kernels[END_REF][START_REF] Hildebrandt | Novel formulation of nonlocal electrostatics[END_REF][START_REF] Rubinstein | Influence of the Solvent Structure on the Electrostatic Interactions in Proteins[END_REF][START_REF] Rubinstein | Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach[END_REF][START_REF] Rubinstein | Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach[END_REF][START_REF] Bardhan | Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins[END_REF][START_REF] Paillusson | Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics[END_REF][START_REF] Rubashkin | The role of spatial dispersion of the dielectric constant of spherical water cavity in the lowering of the free energy of ion transfer to the cavity[END_REF][START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF] is based on a similar approximation for the nonlocal dielectric function of the same spatially restricted medium, ε αβ (r 1 ,r 2 ), in Eq (3), i.e. for all points, r 1 and r 2 , inside region V:

3 1 2 1 2 1 2 1 2 DA 2 1 1 2 1 2 0 ( , ) ( , ) ( -) (2 ) ( ) exp[ ( -)]d (2 -) ( ) sin[ -]d k i k k k k - αβ αβ αβ αβ ∞ - αβ   ε ≈ ε ≡ δ ε = δ π ε =   = δ π ε ∫ ∫ r r r r r r k r r k r r r r (12DA)
The DA and IDA approaches are not equivalent mathematically. Namely, if the dielectric function of the restricted polar medium, ε αβ (r 1 ,r 2 ), within the DA approach is given by Eq (12DA), i.e. it only depends on the difference of its arguments, r 1 -r 2 , then the corresponding inverse dielectric function of the medium, ε -1 αβ (r 1 ,r 2 ), does depend on both spatial arguments, r 1 and r 2 , separately. On the contrary, within the framework of the novel IDA procedure, i.e. on the basis of Eq [START_REF] Vorotyntsev | Differential Capacitance of the Electric Double Layer in Dilute Solutions of Surface-Inactive Electrolytes and upon the Specific Adsorption of Ions. Nonlocal and Nonlinear Effects[END_REF] for the inverse dielectric function of the medium, ε -1 αβ (r 1 ,r 2 ), dependent on r 1 -r 2 , its dielectric function within region V, ε αβ (r 1 ,r 2 ), must be determined from integral equation [START_REF] Vorotyntsev | Electrostatic Interaction on a Metal-Insulator Interface[END_REF] and it depends on both spatial arguments, r 1 and r 2 , separately. In other words, the dielectric function, [ε αβ (r 1 ,r 2 )] DA , and the inverse dielectric function, [ε -1 αβ (r 1 ,r 2 )] IDA , of the same restricted polar medium defined by Eq (12DA) and Eq [START_REF] Vorotyntsev | Differential Capacitance of the Electric Double Layer in Dilute Solutions of Surface-Inactive Electrolytes and upon the Specific Adsorption of Ions. Nonlocal and Nonlinear Effects[END_REF], respectively, do not satisfy relation [START_REF] Vorotyntsev | Electrostatic Interaction on a Metal-Insulator Interface[END_REF] since the integration in Eq ( 7) is carried out over a spatially restricted region, V. Because of this nonequivalence of the DA and IDA procedures the results for any electric characteristic provided by them for the same system must be different. This point is specially discussed in section "Effect of various ionic charge localization" below.

In practical terms, for the above listed systems where the displacement, D(r), is identical to the field in vacuum, G(r), in the whole space, the solution within the framework of the IDA procedure is reduced to single integration over the corresponding variable. Therefore, this calculation can easily be performed numerically for any functional form of the nonlocal dielectric function, i.e. for any ε(k). This peculiar feature of the IDA approach provides it with enormous advantages, compared to the widely used alternative DA method [START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: 1[END_REF][START_REF] Vorotyntsev | Model nonlocal electrostatics: II. Spherical interface[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: 3. Cylindrical interface[END_REF][START_REF] Basilevsky | An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity[END_REF][START_REF] Basilevsky | Nonlocal continuum solvation model with exponential susceptibility kernels[END_REF][START_REF] Hildebrandt | Novel formulation of nonlocal electrostatics[END_REF][START_REF] Rubinstein | Influence of the Solvent Structure on the Electrostatic Interactions in Proteins[END_REF][START_REF] Rubinstein | Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach[END_REF][START_REF] Rubinstein | Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach[END_REF][START_REF] Bardhan | Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins[END_REF][START_REF] Paillusson | Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics[END_REF][START_REF] Rubashkin | The role of spatial dispersion of the dielectric constant of spherical water cavity in the lowering of the free energy of ion transfer to the cavity[END_REF][START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF] since the latter leads to necessity of solving integral equation [START_REF] Vorotyntsev | Electrostatic Interaction on a Metal-Insulator Interface[END_REF] for determination of the inverse dielectric function, ε -1 αβ (r 1 ,r 2 ), inside a spatially restricted region, V, with the use of the dielectric function, ε αβ (r 1 ,r 2 ), defined by Eq (12DA), while its expression [START_REF] Vorotyntsev | Differential Capacitance of the Electric Double Layer in Dilute Solutions of Surface-Inactive Electrolytes and upon the Specific Adsorption of Ions. Nonlocal and Nonlinear Effects[END_REF] is inapplicable within the framework of the DA approach.

The proposed IDA approach also possesses obvious advantages with respect to the UMA theory which assumes that the polar medium occupies the whole space while the "external charges", ρ(r), are distributed inside the medium without forming cavities [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Holub | Comment on the solvent structure in thermodynamics of electrolytes -anomalous behavior of activity coefficients at low concentrations[END_REF][START_REF] Kornyshev | Non-local dielectric response of a polar-solvent and Debye-screening in ionic solution[END_REF][START_REF] Kornyshev | Nonlocal electrostatics of solvation[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF][START_REF] Rubashkin | Nonlocal electrostatic theory of ion solvation: A combination of the overscreening effect in the dielectric response of the medium with a smeared ion charge distributionm[END_REF][START_REF] Rubashkin | Electrostatic contribution to the ion solvation energy: Overscreening effect in the nonlocal dielectric response of the polar medium[END_REF].

Within the framework of the IDA procedure based on Eqs [START_REF] Kornyshev | Non-Local Dielectric Response of the Electrode/Solvent Interface in the Double Layer Problem[END_REF] and ( 12) the presence of the polar medium only within a spatially restricted region, V, is taken into account automatically, owing to integration in Eq [START_REF] Kornyshev | Non-Local Dielectric Response of the Electrode/Solvent Interface in the Double Layer Problem[END_REF] over the V region only. Thus, one can take into account the presence of the medium inside a semi-space (if it forms a plane boundary with another phase, e.g. with metal or local dielectric), or the existence of a cavity (or cavities) inside the V region, e.g. a spherical (occupied by ion) or cylindrical (occupied by a solute molecule) one, etc.

One should pay attention to an importance consequence of this difference between the models. Within the framework of both the DA and novel IDA approaches, the electric field distribution, E(r), inside the region, V, occupied by the medium, depends of the form of the G(r) function only inside this region whereas for the UMA model of "the spatially unrestricted polar medium" [1-3, 15-21] the field, E(r), in all spatial points, r, depends on the form of G(r) within the whole space. Therefore, within the DA and IDA approaches the same property is also valid for the work of the test charge transfer between any points located with the V region if it is calculated with the use of the Guntelberg charging procedure, i.e. this work does not depend on the particular distribution of the external charge density outside the V region if it does not affect the form of the G(r) field inside the V region. This distinction between the models results in an essential difference in their predictions, see below.

Charged spherical cavity inside nonlocal dielectric medium. Electric field and potential distributions

Applicability of the newly proposed procedure is illustrated for the model of the system: ion inside polar solvent where a spherical cavity of a radius, r i , is surrounded by a nonlocal uniform and isotropic dielectric medium occupying the V region, r > r i , its dielectric properties satisfying to conditions of Eq [START_REF] Vorotyntsev | Differential Capacitance of the Electric Double Layer in Dilute Solutions of Surface-Inactive Electrolytes and upon the Specific Adsorption of Ions. Nonlocal and Nonlinear Effects[END_REF]. The charge density distribution of the ion, ρ (which is "external" for the medium), depends on the radial coordinate, r, but not on the angular ones: ρ(r).
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where q(r) is the ionic charge which is located inside the sphere of the radius, r. Outside the region where this charge density, ρ(r), is nonzero the charge, q(r), tends to the total charge of the ion, e. This expression for G(r) may be inserted into Eq [START_REF] Kornyshev | Non-Local Dielectric Response of the Electrode/Solvent Interface in the Double Layer Problem[END_REF] for the distribution of the electric field, E(r), inside the polar medium (for r > r i ) where the integration is carried out outside the cavity.

This result for the electric field may be further simplified depending on the form of the ionic charge density distribution, ρ(r).

Its simplest form is given by the Born model [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF][START_REF] Born | Volumen und Hydratationswärme der Ionen[END_REF] where the total ionic charge, e, is uniformly distributed over the surface of the cavity:

2 2 i i i
( ) = ( / 4 ) ( -), so that ( ) , ( ) / for ρ π δ = = > r e r r r q r e G r e r r r (13b)

i.e. within the whole region occupied by the polar medium while q(r) and G(r) are equal to 0 at r < r i .

More recently [START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF][START_REF] Rubashkin | Nonlocal electrostatic theory of ion solvation: A combination of the overscreening effect in the dielectric response of the medium with a smeared ion charge distributionm[END_REF][START_REF] Rubashkin | Electrostatic contribution to the ion solvation energy: Overscreening effect in the nonlocal dielectric response of the polar medium[END_REF] "Smeared Born model" has been proposed where the ionic charge is distributed along the radius, r. One may distinguish two different cases.

First, the whole charge is located inside the cavity or at its surface [START_REF] Rubashkin | Nonlocal electrostatic theory of ion solvation: A combination of the overscreening effect in the dielectric response of the medium with a smeared ion charge distributionm[END_REF][START_REF] Rubashkin | Electrostatic contribution to the ion solvation energy: Overscreening effect in the nonlocal dielectric response of the polar medium[END_REF] (in this context the Born model represents a particular example of such a distribution):

ρ(r) = 0 for all values of the radius outside the cavity, r > r i (13c)

Then, expressions (13b) for q(r) and G(r) are valid again for the whole region occupied by the polar medium. On the contrary. their form inside the cavity depends on the particular distribution of the ionic charge density, ρ(r), inside the cavity, in conformity with Eq (13a).

In a more complicated situation the ionic charge density, ρ(r), can penetrate into the region occupied by the solvent, r > r i , so that a spherical layer is formed around the cavity where ρ(r) is still nonzero while the dielectric properties are already determined by the nonlocal medium [START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF][START_REF] Rubashkin | Nonlocal electrostatic theory of ion solvation: A combination of the overscreening effect in the dielectric response of the medium with a smeared ion charge distributionm[END_REF][START_REF] Rubashkin | Electrostatic contribution to the ion solvation energy: Overscreening effect in the nonlocal dielectric response of the polar medium[END_REF].

Then, inside the whole region, r > r i , occupied by the medium Eq (13a) gives expressions for the q(r) and G(r) distributions:

q(r) = q int + q ext (r), G(r) = [q int + q ext (r)] / r 2 for r > r i , (13d) 
where q int is the total ionic charge inside the cavity (including its external boundary) while q ext (r) is only related to ionic charge density outside the cavity: Total charge if the ion, e, is generally composed of these two contributions: e = q int + q ext (∞).

In the particular case where the ionic charge density vanishes outside the cavity, r > r i , q ext (r) is equal to zero, q int = e, Eq (13d) is reduced to Eq (13b).

Amplitude of the electric field, E(r), inside the spatial region occupied by the nonlocal dielectric medium, r > r i , is given by Eq [START_REF] Kornyshev | Non-Local Dielectric Response of the Electrode/Solvent Interface in the Double Layer Problem[END_REF] (where the integration is performed over the external region, r > r i ) after insertion of expression (13b) or (13d) for the vacuum field, G(r), for any form of the inverse dielectric function of the medium, ε -1 αβ (r 1 ,r 2 ). Then, the distribution of the electric potential, ϕ(r), in the outer region, r > r i , may be found immediately by single integration of the electric field profile.

In conformity with the general result for spherically symmetrical systems without correlations of fluctuations between the cavity and the external region [START_REF] Vorotyntsev | Model nonlocal electrostatics: II. Spherical interface[END_REF][START_REF] Basilevsky | Nonlocal continuum solvation model with exponential susceptibility kernels[END_REF][START_REF] Hildebrandt | Novel formulation of nonlocal electrostatics[END_REF][START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF] both functions, E(r) and ϕ(r), at r > r i do not depend on the particular form of the ionic charge density distribution inside the cavity (including its boundary with the solvent), i.e. only the total charge in this region, q int , Eq [START_REF] Vorotyntsev | Image Forces at the Metal/Electrolyte Solution Interface: Their Dependence on Electrode Charge and Electrolyte Concentration[END_REF], affects E(r) and ϕ(r) at r > r i according to Eq (13d).

This important general property is not fulfilled for the UMA model where the nonlocal dielectric medium occupies the whole space including the region where the ionic charge is distributed [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Holub | Comment on the solvent structure in thermodynamics of electrolytes -anomalous behavior of activity coefficients at low concentrations[END_REF][START_REF] Kornyshev | Non-local dielectric response of a polar-solvent and Debye-screening in ionic solution[END_REF][START_REF] Kornyshev | Nonlocal electrostatics of solvation[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF][START_REF] Rubashkin | Nonlocal electrostatic theory of ion solvation: A combination of the overscreening effect in the dielectric response of the medium with a smeared ion charge distributionm[END_REF][START_REF] Rubashkin | Electrostatic contribution to the ion solvation energy: Overscreening effect in the nonlocal dielectric response of the polar medium[END_REF]. As a result the E(r) and ϕ(r) distributions at r > r i are modified depending on the form of ρ(r) in the internal region, r ≤ r i .

As for the E(r) distribution inside the cavity, r < r i , within the framework of the newly proposed procedure it is only dependent on the ionic charge density, ρ(r), at r < r i and the dielectric properties inside the cavity while it is independent of the dielectric properties of the polar medium located outside the cavity. It means that both E(r) and its potential (with respect to the potential of the boundary), ϕ(r) -ϕ(r i ), remain unchanged if the medium is replaced e.g. by vacuum (assuming that the ionic charge density, ρ(r), is not modified).

Owing to the spherical symmetry of the system Eq (10) can be simplified with the use of transformations proposed in Ref [START_REF] Vorotyntsev | Model nonlocal electrostatics: II. Spherical interface[END_REF]. In view of the uniform and isotropic properties of the inverse dielectric function of the medium outside the cavity it can be represented in the form of an expansion over products of spherical harmonics:

( ) ( ) [START_REF] Holub | Comment on the solvent structure in thermodynamics of electrolytes -anomalous behavior of activity coefficients at low concentrations[END_REF] where the expansion coefficients may be found via integration of the dielectric function, ε -1 (|r 1 -r 2 |):
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Since E α (r) = E(r) r α / r and G β (r) = G(r) r β / r, substitution of expansion [START_REF] Holub | Comment on the solvent structure in thermodynamics of electrolytes -anomalous behavior of activity coefficients at low concentrations[END_REF] into Eq [START_REF] Kornyshev | Non-Local Dielectric Response of the Electrode/Solvent Interface in the Double Layer Problem[END_REF] results in expression [START_REF] Kornyshev | Nonlocal electrostatics of solvation[END_REF] for the electric field and its potential inside the polar medium, i.e. outside the cavity:
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Thus, for calculation of the electric field and then of its potential outside the cavity it is sufficient to find the component of expansion [START_REF] Holub | Comment on the solvent structure in thermodynamics of electrolytes -anomalous behavior of activity coefficients at low concentrations[END_REF] for l = 1 with the use of Eq [START_REF] Kornyshev | Non-local dielectric response of a polar-solvent and Debye-screening in ionic solution[END_REF] for the inverse dielectric function of the medium, ε -1 (|r 1r 2 |).

If the dielectric function of the medium is known in the form of its Fourier transform, ε(k), one can use it first for determination of the inverse dielectric function via Eq [START_REF] Vorotyntsev | Differential Capacitance of the Electric Double Layer in Dilute Solutions of Surface-Inactive Electrolytes and upon the Specific Adsorption of Ions. Nonlocal and Nonlinear Effects[END_REF], to insert it then into Eq [START_REF] Kornyshev | Non-local dielectric response of a polar-solvent and Debye-screening in ionic solution[END_REF], with the further use of Eq [START_REF] Kornyshev | Nonlocal electrostatics of solvation[END_REF]. However, it is possible to derive much simpler expressions for both expansion coefficients [START_REF] Holub | Comment on the solvent structure in thermodynamics of electrolytes -anomalous behavior of activity coefficients at low concentrations[END_REF] and the electric field via the dielectric function, ε(k). For its derivation one should apply Eq (34.

3) of monograph [START_REF] Landau | Quantum Mechanics. Non-relativistic Theory[END_REF]:
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After substitution of this expression for exp(ikr 1 ) and exp(-ikr 1 ) = [exp(ikr 2 )]* Eq [START_REF] Vorotyntsev | Differential Capacitance of the Electric Double Layer in Dilute Solutions of Surface-Inactive Electrolytes and upon the Specific Adsorption of Ions. Nonlocal and Nonlinear Effects[END_REF] and integration over Ω k , with taking into account the orthogonality property of spherical functions: ∫ Y lm *(Ω k ) Y l'm' (Ω k ) dΩ k = δ ll' δ mm' , one arrives at an expression for the inverse dielectric function, ε -1 (|r 1 -r 2 |), over spherical functions expressed via ε(k):
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Comparison of Eqs ( 19) and ( 15) gives an expression for expansion coefficients [START_REF] Holub | Comment on the solvent structure in thermodynamics of electrolytes -anomalous behavior of activity coefficients at low concentrations[END_REF] for any integer value of l:
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All spherical Bessel functions, j l (х), in this formula can be written down via elementary functions, in particular j 1 (x) = x -1 (cos x -x -1 sin x) for l = 1 so that Expression under the integral sign in Eqs ( 20) and ( 21) does not have singularities at k = 0 and it is an even function of k. Therefore, it is equal to a half of the integral over the whole real axis, e.g.:
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Such a presentation enables one to calculate this integral analytically if ε(k) is a rational function, i.e. a ratio of two polynomials, see examples below.

The further analysis is different depending on whether the ionic charge density, ρ(r), is localized only inside the cavity, Eq (13c), or it is extended outside the cavity, Eq [START_REF] Vorotyntsev | Image Forces at the Metal/Electrolyte Solution Interface: Their Dependence on Electrode Charge and Electrolyte Concentration[END_REF].

If ρ(r) is nonzero only inside the cavity including its boundary (Born model is a particular case), r ≤ r i , Eq (13c), then the vacuum field, G(r), inside the external region is given by Eq (13b).

Combining Eqs [START_REF] Kornyshev | Nonlocal electrostatics of solvation[END_REF] and [START_REF] Rubashkin | Electrostatic contribution to the ion solvation energy: Overscreening effect in the nonlocal dielectric response of the polar medium[END_REF] with the relation:
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one can derive expressions for the electric field and potential distributions inside the polar medium [46]:
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The derived distribution of the electric potential inside the region occupied by the polar medium, r > r i , coincides for any dielectric function, ε(k), with the solution for the "unrestricted medium approximation" (UMA) [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF] where the medium occupies the whole space without a cavity while the ionic charges are distributed uniformly over the Born sphere surface, r = r i .

At the same time the electric potential and field distributions are quite different in these approaches inside the ion region, r < r i . Novel IDA calculation procedure takes into account specific dielectric properties inside this cavity, e.g. if the local dielectric response is assumed there, then E(r) = G(r) / ε int where ε int is the dielectric constant of the space inside the cavity. On the contrary the "unrestricted medium approximation" (UMA) [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF] assumes the dielectric response inside the ion as being identical to that of the polar medium so that the field and potential distributions cannot reflect dielectric properties inside the ionic cavity.

This difference leads to important consequences.

As for the external region occupied by the solvent, r > r i , in conformity with the general result [START_REF] Vorotyntsev | Model nonlocal electrostatics: II. Spherical interface[END_REF][START_REF] Basilevsky | Nonlocal continuum solvation model with exponential susceptibility kernels[END_REF][START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF] the electric field and potential profiles given by Eqs (23a) and (24a) do not depend on the particular form of the ionic charge distribution inside the cavity, ρ(r) at r ≤ r i (they are only dependent on the total charge in this region, e).

In the UMA model which does not take into account the existence of the cavity [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF]] the E(r) and ϕ(r) distributions are given by a universal expression for any ionic charge distribution, ρ(r) [START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF]:
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where ρ(k) is the Fourier-transform of ρ(r):
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Let us assume again (similar to Eqs (23a) and (24a)) that the ionic distribution, ρ(r), is nonzero only inside the internal region, i.e. at r ≤ r i , Eq (13c). Then, both ρ(k) and ϕ(r) in Eq (24UMA) depend on the particular form of the ionic charge distribution inside this region, in particular ϕ(r) inside the polar medium, i.e. at r > r i . This result is at variance with the general conclusion [START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF] that this form cannot affect this potential distribution. The above conclusion on the identity of predictions by Eqs (24a) and (24UMA) is only valid for the Born model for the ionic charge distribution, Eq (13b), where ρ(k) = e sin kr i / kr i .

The predictions are also quite different for the internal region, r ≤ r i . Both the electric field, E(r), and the difference, ϕ(r) -ϕ( r i ), are independent of the external dielectric properties (owing to the spherical symmetry of the system and the absence of correlations between fluctuations across the boundary). In particular, they are unaffected by the ion transfer between vacuum and polar solvent surroundings. On the contrary, according to the UMA model [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF] such a change of the surrounding medium results in a radical modification of the electric field and potential distributions inside the cavity which is again in disagreement with general principles.

It is shown below that these distinct features of the models manifest themselves seriously also in their predictions for the ionic solvation energy.

Let us analyze now the electric field and potential profiles in the more general case where the ionic charge distribution, ρ(r), is extended partially outside the cavity, Eq [START_REF] Vorotyntsev | Image Forces at the Metal/Electrolyte Solution Interface: Their Dependence on Electrode Charge and Electrolyte Concentration[END_REF]. The difference compared to the previous case is in a more complicated expression for the vacuum field, G(r), given by Eq (13d). As a result, one has to transform the integral over r:
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Here, q int is the total ionic charge in the cavity and its boundary, r ≤ a, Eq (14) while the integral contains the ionic charge density, ρ(r), outside the cavity, r > a. As a result, Eqs (23a) and (24a) are modified to Eqs (23b) and (24b):
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The first term in the brackets reflects the contribution of the ionic charges in the internal region (cavity and its boundary) while the second one is related to ionic charges penetrating into the polar medium. In conformity with the general principle (see e.g. Eq (3-13) in [START_REF] Vorotyntsev | Model nonlocal electrostatics: II. Spherical interface[END_REF] and Eq [START_REF] Vorotyntsev | Image Forces at the Metal/Electrolyte Solution Interface: Their Dependence on Electrode Charge and Electrolyte Concentration[END_REF] in [START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF]) the former one only depends on the total internal charge, q int , while the latter is influenced by a particular form of the ρ(r) distribution outside the cavity. If the ionic charge density, ρ(r), is zero in the external region, r > r i , the integral terms in Eqs (23b) and (24b) vanishes, q int = e, and these expressions are reduced to Eqs (23a) and (24a).

Potential distribution, ϕ(r), within the framework of the UMA model (where no cavity is excluded from the region occupied by the polar solvent) [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF], Eq (24UMA), gives different predictions, compared to Eq (24b), if the ionic charge density is nonzero (at least somewhere) inside the cavity region, ρ(r) ≠ 0 at r < r i .

On the contrary, if ρ(r) ≡ 0 at r < r i while the ionic charge density is distributed generally at the cavity surface (total charge, q int , at r = r i ) and outside the cavity (at r > r i ), then the UMA potential profile, ϕ(r), Eq (24UMA), inside the polar medium coincides with predictions of the novel IDA approach, Eq (24b). At the same time, even for this ionic charge distribution the UMA result for ϕ(r), Eq (24UMA), inside the cavity (at r < r i ) is different from the one given by the IDA approach where it is determined by the dielectric properties inside the cavity.

The above general expression for the potential distribution within the framework of the IDA approach, Eq (24b), may be simplified for two particular forms of the ionic charge distribution outside the cavity.

First, the whole ionic charge is located at the sphere, r = r e , outside the cavity: r e > r i : ρ(r) = (e / 4πr e 2 ) δ(r -r e ), so that q(r) = 0, G(r) = 0 for r < r e and q(r) = e, G(r) = e / r 2 for r > r e (25a) This expression has got the same functional form as Eq (24a) for the Born model of the ionic charge distribution, with substitution of the cavity radius, r i , by the radius of the charge localization, r e .

If the ionic charge density outside the cavity may be approximated by an exponential functions (see e.g. [START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF]):

ρ(r) = ρ o (4π η) -1 exp [ -(r -r i ) / η], ρ o = q ext (r i 2 + 2 i η + 2 η 2 ) -1 (25b) then 1 2 1 int i i 0 ( ) (2 / ) [ ( )] sin [ sin ( )] ∞ - - - ϕ = π ε + ∫ r r k k kr dk q r k r F k (24d) F(k) = ρ o (1 + k 2 η 2 ) -2 [k η (r i + 2η + r i k 2 η 2 ) cos k r i + (r i + η + r i k 2 η 2 -k 2 η 3 ) sin k r i ].

Electrostatic contribution to the ion solvation energy

According to the Born procedure for calculation of the electrostatic contribution to the ionic solvation energy, W, one should calculate the difference in the energies of transfer of the total ionic charge, e, from the infinity into the ion either in vacuum or via the dielectric surrounding of the ion. It is assumed that both the ionic charge distribution, ρ(r), and the dielectric properties inside the cavity are the same for both configurations of the system. Then, the electric field, E(r), and the difference, ϕ(r) -ϕ(r i ), are not affected by the change of the dielectric properties outside the cavity. It means that the work to transfer a charge between the boundary of the cavity and any point inside the cavity is identical for the vacuum and dielectric surroundings. As a result, this contribution to the solvation energy is cancelled, and it is sufficient to calculate the work of transfer of ionic charges between the infinity and the cavity surface, r = r i , or r i point outside the cavity (if the ionic charge is extended beyond this boundary).

Thus, the electrostatic contribution, W, is given by the formula based on the Guntelberg charging procedure:

i 1 2 i int i int int 0 ( ;{ ( )}) [ ( ; ,{ ( ) }) 4 ' ( ') ( '; ,{ ( ) }) '] ∞ ρ = δϕ ρ + π ρ δϕ ρ ∫ ∫ r W r r q r q x r x r r r q x r x dr dx (26) δϕ(r; q int x, {ρ(r') x}) ≡ ϕ vac (r) -ϕ(r)
for the specified values of ionic charges where x is the fraction of the already transferred total ionic charge, e dx is the small charge under transfer which is to be distributed proportionally between the total charge in the internal region, q int dx, and the fractions of the ionic charge outside this region located near the r point, 4π r ρ(r) dr x. The difference between the potential distributions for the vacuum and dielectric surroundings, δϕ(r; q int x, {ρ(r') x}), may be obtained immediately from Eq (24b) since ε(k) ≡ 1 for vacuum in the outside region:

i 1 2 1 int int i i 0 ( '; ,{ ( ) }) (2 / ') {1 [ ( )] } sin ' [ sin 4 '' ( '') sin '' ''] ∞ ∞ - - - δϕ ρ = π -ε + π ρ ∫ ∫ r r q x r x x r k k kr dk q r k r r r k r dr (24e)
Since the potential values in both points, r i and r, are proportional to x, Eq (24e), the whole function under the integral sign is proportional to x and its integration gives the expression for W :

i 2 i int i int int ( ;{ ( )}) (1/ 2)[ ( ; ,{ ( )}) 4 ' ( ') ( '; ,{ ( )}) '] ∞ ρ = δϕ ρ + π ρ δϕ ρ ∫ r W r r q r q r r r r q r dr (27a)
where expression (24f) for the potential difference, δϕ(r; q int , {ρ(r')}), should be inserted:

i 1 2 1 int int i i 0 ( '; ,{ ( )}) (2 / ') {1 [ ( )] } sin ' [ sin 4 '' ( '') sin '' ''] ∞ ∞ - - - δϕ ρ = π -ε + π ρ ∫ ∫ r r q r r k k kr dk q r k r r r k r dr (24f)
If the ionic charge is located entirely inside the internal region, r ≤ r i , Eq (13c), then the integral terms in Eqs (24b), (24f) and (27a) are absent. Then, one may use Eq (24a) for the potential distribution inside the outer region, r ≥ r i , and Eq (27b) for W:

2 2 1 2 2 i i i i i 0 ( ;{ ( )}) ( / 2)[ / ( )] ( / ) {1 [ ( )] } sin ∞ - - ρ = -ϕ = π -ε ∫ W r r e e r r e r k k kr dk (27b) 
In conformity with the general principle (see e.g. Eq [START_REF] Basilevsky | An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity[END_REF] in [START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF]) the value of W does not depend on the particular distribution of the ionic charge density inside the cavity and its dielectric properties, it is only determined by the cavity radius, a, and the total charge inside the cavity (including its surface), Eqs (27a) and (27b).

Therefore, for any distribution of the total ionic charge, e, inside or on the surface (but without penetration into the polar medium, Eq (13c)) the electrostatic contribution to the solvation energy, W(r i ; ρ(r)) is identical to that for the Born model of the ion where the whole ionic charge is located at the external surface of the cavity, W B (r i ) [START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF]:

W(r i ; {ρ(r)}) = W B (r i ) (28) 
As it has already been indicated above, within the framework of the Born model for the ionic charge distribution the electric potential profile outside the cavity, Eq (24a), coincides with the result of the UMA model where the polar medium occupies the whole space, with embedded ionic charges [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF] for any form of its dielectric function, ε(k). In view of Eq (27b) these two procedures also result in identical predictions for the contribution to the solvation energy, W B (r i ).

At the same time their results are different for other ionic charge distributions, e.g. if ρ(r) is smeared inside the ion. There are two different origins of this difference. First, as it has been discussed above the distributions of the electric field and its potential inside the cavity in the novel procedure are determined not only by the form of ρ(r) but also by particular dielectric properties inside the cavity.

The existence of such region is completely disregarded in the UMA model [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF] so that the potential distribution changes automatically compared to that for the Born model automatically while such a change is at variance with the result of the most general theory. Second, the novel IDA approach assumes that the work for the charge transfer from its outer boundary, r = r i , to a point inside the ion is not affected by dielectric properties of the external medium, on whether it is vacuum or polar solvent. As a result, these terms are cancelled in the course of the solvation energy calculation. On the contrary, the "continuous model" has to change the dielectric properties of vacuum to those of the medium everywhere, i.e. not only outside the ion but also inside its internal region.

Effect of various ionic charge localization

As the illustrative example of applications of the novel IDA procedure it is used below to show the effect of various positions of the ionic charge on the solvation energy, W, both inside and outside the cavity. To retain the spherical symmetry of the system the total ionic charge, e, is uniformly distribution over a sphere of the radius, r e , Eq (25a), where it may be equal to the cavity radius (Born model), r e = r i , or less than it (charge inside the cavity) , r e < r i , or larger than it (ion charge outside the cavity), r e > r i .

In the former two cases the potential outside the cavity is given by Eq (24a) while the energy contribution, W, corresponds to Eqs (27b), [START_REF] Rubinstein | Influence of the Solvent Structure on the Electrostatic Interactions in Proteins[END_REF] for the Born model for the ion charge, Eq (13b), since the redistribution of the ionic charge inside the cavity (including its external surface) does not change these characteristics, in conformity with the most general theory (see e.g. Eqs ( 14) and ( 25) in [START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF]).

If the charged sphere, r = r e , Eq (25a), is located outside the cavity, r e > r i , then Eqs (27a) and (24f) should be used: The derived expression has got the same functional form as that in Eq (27b), in particular the one for the Born model of the ionic charge distribution.

If the predictions of the IDA calculation procedure, Eqs (27b) and (27c), are compared with the corresponding results of the unrestricted medium approximation (UMA) [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF] for the same charge distributions one can see that they are identical if the charged sphere, r = r e , coincides with the surface of the cavity (Born model), r e = r i , or located outside the cavity, r e > r i . At the same time predictions of these approaches are different from one another for the ionic charges located inside the cavity.

For graphical illustration of these results let us employ two approximations for the nonlocal dielectric response of the polar medium. One of them proposed for the first time by Dogonadze and Kornyshev [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF][START_REF] Basilevsky | An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity[END_REF] may be called "three mode dielectric function":

∑ = - - + - = 3 1 1 2 i i 1 3M ] ) λ ( 1 [ 1 )] ( [ε i k c k (29a)
where the three terms reflect contributions of the electronic, vibrational and (orientational) long-range structure components of the polar solvent, λ i are the corresponding correlation lengths: λ 1 ≅ 0.5 Å for the electronic mode, λ 2 ≅ 1 Å for the vibrational mode, λ 3 ≡ Λ ≅ 3 Å for the orientational mode. Coefficients, C i , can be expressed via effective dielectric constants of this medium:

C 1 = 1 -1 / ε 1 = 0.444, C 2 = 1 / ε 1 -1 / ε 2 = 0.352, C 3 = 1 / ε 2 -1 / ε 3 = 0.191; ε 1 = 1.
8, ε 2 = 4.9, ε 3 ≡ ε S = 78.5 (ε S is the static dielectric constant of water) [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF][START_REF] Basilevsky | An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity[END_REF].

Integration over k in Eqs (27b) and (27c) of the IDA approach may be carried out in the analytical form for this dielectric function, Eq (29a) (similar to UMA formulas in [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF]). It results in explicit expressions for W: 

2 3M i e i 1 i 1 2 i 2 3 i ( , ) ( / 2 )[ (2 / ) (2 / ) (2 / )] = λ + λ + Λ W r r e r C f r C f r C f r for r e ≤ r i , (30a) 
where f(y) = 1 -y -1 [1 -exp (-y)], and the lower index, 3M, shows that Eqs (30a) and (30b) are based on the "three mode dielectric function", Eq (29a).

These results may be compared with those given by the UMA approach [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF] which assumes that the dielectric properties of the polar medium are valid for the whole space, i.e. it disregards the existence of a cavity occupied by the ion and having different dielectric properties. Then, the expression for W within this model (denoted below as W 3M UMA for the "three mode dielectric function", Eq (29a)) for the ionic charge distribution over the sphere, r = r e , Eq (25a) is only dependent on its radius, r e , independent of whether this charged sphere is located inside or outside the ionic cavity: 

= + + Λ W r e r C f r C f r C f r r (30UMA)
For a particular case of the Born model for the ionic charge distribution, Eq (13b), this formula, Eq (30UMA), was derived in [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF] with the use of the UMA procedure.

Comparison of Eqs (30a),(30b) with Eq (30UMA) shows the identity of these predictions by two approaches if the ionic charge is located at the boundary of the cavity (Born model) or outside the cavity, r e ≥ r i . At the same time, if the ionic charge is located inside the cavity, r e < r i , Eq (30a) predicts that W is independent of the particular position of the ionic charge, i.e. of r e , in conformity with the general principle [START_REF] Vorotyntsev | Model nonlocal electrostatics: II. Spherical interface[END_REF][START_REF] Basilevsky | Nonlocal continuum solvation model with exponential susceptibility kernels[END_REF][START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF]. On the contrary, Eq (30UMA) demonstrates an explicit dependence of W 3M UMA on r e , see Fig. 1, at variance with the general principle.

The situation is illustrated in Fig. 1 where the graphs for these approaches are overlapping for r e ≥ r i while "the continuous model" (squares 2) deviates strongly from the behavior proven by the most general theory: independence of W from the position of the charged sphere inside the cavity, while the latter is correctly reproduced by the novel IDA approach (line 1).

Another useful illustration is provided by the "single-mode" dielectric function which has been used in numerous publications [START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | Non-Local Screening Effects in the Long-Range Interionic Interaction in a Polar Solvent[END_REF][START_REF] Vorotyntsev | Physical Significance of an Effective Dielectric Constant That Depends on the Distance from the Electrode[END_REF][START_REF] Vorotyntsev | Possible Mechanisms of "Controlling" Ionic Interaction at the Electrode-Solution Interface[END_REF][START_REF] Vorotyntsev | Electrostatic Interaction on a Metal-Insulator Interface[END_REF][START_REF] Kornyshev | Nonlocal Electrostatic Approach to the Double Layer and Adsorption at the Electrode / Electrolyte Interface[END_REF][START_REF] Kornyshev | The Effect of Spatial Dispersion of the Dielectric Permittivity on the Capacitance of Thin Insulating Films: Non-Linear Dependence of the Inverse Capacitance on Film Thickness[END_REF][START_REF] Kornyshev | Non-Local Dielectric Response of the Electrode/Solvent Interface in the Double Layer Problem[END_REF][START_REF] Kornyshev | Nonlocal Electrostatic Approach to the Problem of a Double Layer at a Metal / Electrolyte Interface[END_REF][START_REF] Vorotyntsev | Differential Capacitance of the Electric Double Layer in Dilute Solutions of Surface-Inactive Electrolytes and upon the Specific Adsorption of Ions. Nonlocal and Nonlinear Effects[END_REF][START_REF] Vorotyntsev | Models to Describe Collective Properties of the Metal / Solvent Interface in Electric Double-Layer Theory[END_REF][START_REF] Vorotyntsev | Image Forces at the Metal/Electrolyte Solution Interface: Their Dependence on Electrode Charge and Electrolyte Concentration[END_REF][START_REF] Holub | Comment on the solvent structure in thermodynamics of electrolytes -anomalous behavior of activity coefficients at low concentrations[END_REF][START_REF] Kornyshev | Non-local dielectric response of a polar-solvent and Debye-screening in ionic solution[END_REF][START_REF] Kornyshev | Nonlocal electrostatics of solvation[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: 1[END_REF][START_REF] Vorotyntsev | Model nonlocal electrostatics: II. Spherical interface[END_REF][START_REF] Kornyshev | Model nonlocal electrostatics: 3. Cylindrical interface[END_REF][START_REF] Basilevsky | An advanced continuum medium model for treating solvation effects: Nonlocal electrostatics with a cavity[END_REF][START_REF] Basilevsky | Nonlocal continuum solvation model with exponential susceptibility kernels[END_REF][START_REF] Hildebrandt | Novel formulation of nonlocal electrostatics[END_REF][START_REF] Rubinstein | Influence of the Solvent Structure on the Electrostatic Interactions in Proteins[END_REF][START_REF] Bardhan | Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins[END_REF][START_REF] Paillusson | Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics[END_REF][START_REF] Rubashkin | The role of spatial dispersion of the dielectric constant of spherical water cavity in the lowering of the free energy of ion transfer to the cavity[END_REF][START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF] based on either UMA or DA approximations:
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It represents particular cases of the more general "three mode approximation", Eq (29a), if λ 1 = λ 2 = 0, ε min = ε 2 . or if λ 1 = 0, λ 2 = Λ, ε min = ε 1 , etc. Special notation, ε min , is used in this expression to cover all these variants.

Expressions for W for various radii, r e , for the novel approach may be deduced from Eqs (30a) and (30b), or directly from Eqs (27b) and (27c): . Comparison of results of the IDA approach, Eqs (31a),(31b) (line 1), with those for the UMA one, W 1M DK in Eq (31UMA) (squares 2) and with those for the "dielectric approximation" (DA) [START_REF] Vorotyntsev | Model nonlocal electrostatics: II. Spherical interface[END_REF][START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF], Eqs (31c),(31d) (empty triangles 3). ε min = 1.8 (a) or 4.9 (b), other parameters are given for the 3M dielectric function, Eq (29a); r i = 1.17 Å.

As previously, the unrestricted medium approximation (UMA) [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF] results in a universal functional form of W for any position of the charged sphere, inside or outside the cavity (since the existence of the cavity is neglected by this model) This formula was derived in [START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF] for the case where the ionic charge is located over the surface of the ion, r e = r i (Born model). Similar to the above observation for the 3M dielectric function of the medium, Eq (29a), Eq (31UMA) coincides with the result of the novel IDA approach for r e ≥ r i , Eq (31b), while it gives incorrect predictions if the ionic charge is located inside the cavity, see Eq (31a), as one can see from Figs. 2a,b (square points 2).

Besides the approaches discussed above, expression for W for the "single-mode dielectric function" was also derived [START_REF] Basilevsky | Nonlocal continuum solvation model with exponential susceptibility kernels[END_REF][START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF] within the framework of the "dielectric approximation" (DA) [START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Vorotyntsev | Model nonlocal electrostatics: II. Spherical interface[END_REF] based on an assumption concerning the form of the nonlocal dielectric function in Eq (3). This third approach gives for any distribution of the ionic charge density inside the cavity (including its external boundary):
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Result for the same DA approach for the charged sphere located outside the cavity may be derived from the combination of Eqs ( 22) and [START_REF] Rubashkin | Nonlocal electrostatic theory of ion solvation: A combination of the overscreening effect in the dielectric response of the medium with a smeared ion charge distributionm[END_REF] in Ref [START_REF] Vorotyntsev | Electrostatic contribution to the ion solvation energy: cavity effects[END_REF]:
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Results of calculations with the use of the expressions for all three approaches are compared in Figs. 2a,b for two different values of the smaller dielectric constant: ε min = ε 1 = 1.8 and ε min = ε 2 = 4.9.

Even though the functional forms of the dependence, W vs. r e , are different for the novel IDA procedure and the one based on "the dielectric approximation" (DA), Eqs (31a) vs. Eq (31c) or Eqs (31b) vs. (31d), quantitatively they are very close to one another (Figs. 2a,b). Moreover, for the case where the charged sphere is located on the surface of the cavity (Born model) or outside the cavity, all three approaches provide practically identical predictions. Therefore, one may expect that they all might be considered as trustful under these conditions.

At the same time one can observe again a drastic deviation of the result for the unrestricted medium approximation (UMA) (a strong increase of W for lower values of r e , squares 2 in Figs. 2a,b) from predictions of two approaches (IDA and DA) which take in account the absence of the polar medium inside the cavity (lines 1 and empty triangles 3, respectively). Since the latter are in a perfect conformity with the most general principle (no dependence of W on the particular ionic charge distribution inside the cavity) the result of the UMA approach has to be considered as non-justified for systems where the ionic charge is present inside the cavity, at r < r i .

Conclusions

This paper proposes a novel IDA method for calculation of electrostatic field and its potential distributions in systems where the polar medium possessing a nonlocal dielectric response occupies a part of the whole space while the dielectric properties inside the rest of the space are quite different (they may be local or even nonlocal). For certain geometries of the system (in particular, having a plane, or a spherical, or a cylindrical symmetry) the result for these characteristics may be written down in the form of integrals, with no need to solve integral or integral-differential equations, as one has to do with the use of the procedure based on the "dielectric approximation" (DA) [START_REF] Kornyshev | Model nonlocal electrostatics: 1[END_REF][START_REF] Vorotyntsev | Model nonlocal electrostatics: II. Spherical interface[END_REF]. Unlike the well-known unrestricted medium approximation (UMA) [START_REF] Dogonadze | Polar solvent structure in the theory of ionic salvation[END_REF][START_REF] Kornyshev | Nonlocal screening of ions in a structurized polar liquid -new aspects of solvent description in electrolyte theory[END_REF][START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF][START_REF] Holub | Comment on the solvent structure in thermodynamics of electrolytes -anomalous behavior of activity coefficients at low concentrations[END_REF][START_REF] Kornyshev | Non-local dielectric response of a polar-solvent and Debye-screening in ionic solution[END_REF][START_REF] Kornyshev | Nonlocal electrostatics of solvation[END_REF][START_REF] Vorotyntsev | Electrostatics of Media with Spatial Dispersion[END_REF][START_REF] Kornyshev | The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: A comparative study[END_REF][START_REF] Rubashkin | Nonlocal electrostatic theory of ion solvation: A combination of the overscreening effect in the dielectric response of the medium with a smeared ion charge distributionm[END_REF][START_REF] Rubashkin | Electrostatic contribution to the ion solvation energy: Overscreening effect in the nonlocal dielectric response of the polar medium[END_REF] where the dielectric response of the polar medium is formally extended for the whole space, i.e. without taking into account the existence of spatial regions having quite different dielectric properties, the proposed IDA approach describes these properties of both spatial regions in a substantiated manner.

Important advantages of the IDA calculation procedure have been illustrated for the system simulating a spherical ion inside a polar solvent possessing nonlocal dielectric properties. It has been demonstrated that for any distribution of the ionic charge density, ρ(r), the expressions for the electric field and its potential inside the polar solvent, i.e. outside the spherical cavity, are given by single integrals over k variable containing the inverse dielectric function of the medium, ε(k). If the ionic charge density, ρ(r), is nonzero only inside the cavity (including its external surface), then both the electric potential distribution outside the cavity, ϕ(r), and the electrostatic contribution to the ion solvation energy, W, are independent of the particular form of ρ(r) , i.e. they are determined by the total ionic charge and may be found with the use of the Born model for the ionic charge distribution (the whole charge is located on the spherical boundary of the cavity).

It turns out that for the Born model of the ionic charge distribution these characteristics, ϕ(r) outside the cavity and W, coincides with predictions of the unrestricted medium approximation (UMA).

At the same time the latter gives obviously incorrect expressions for the potential distribution, ϕ(r), inside the cavity region while the IDA approach relates it to local dielectric properties inside the cavity. This difference in predictions results in a drastic deviation of results for W within the framework of the UMA approach from that for the most general treatment (with no use of any model assumptions) where the value of W must be independent of the form of ρ(r), the latter being in conformity with predictions of the IDA approach.

If comparing expressions for the potential, ϕ(r), and solvation energy, W, provided by two approaches which take into account particular dielectric properties inside the ionic cavity, i.e. the IDA and DA procedures, their functional forms are quite different, in formity with the general prediction in section "Novel approximate (IDA) procedure...": However, numerical estimations for the single-mode dielectric function of the polar medium (Figs. 2a,b) show their close proximity within the whole range of parameters of the system.

This result (in combination with the identity of the electric characteristics outside the cavity for the IDA method and for the unrestricted medium approximation, UMA) may be considered as a strong evidence in favor of at least semi-quantitative validity of the newly proposed IDA calculation procedure. Besides, the IDA method may be applied easily for calculations of various electric properties for any form of the nonlocal dielectric function of the medium (given either analytically or numerically), with no need to perform a complicated task of solving an integral equation, as it is necessary in most case for the approach based on the "dielectric approximation" (DA).
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 12 Fig.1. Dependence of the ion solvation energy W(r i , r e ) (divided by kT = 0.025 eV) on the radius of the charged sphere, r = r e , for the three mode dielectric function of the polar medium, Eq (29a) (values of its parameters are given in the text). Comparison of results of the novel IDA approach, Eqs (30a),(30b) (line 1), with those for the unrestricted medium approximation (UMA), W 3M DK in Eq (30UMA) (squares 2); r i = 1.17 Å.

from those of this medium in the unrestricted space.

  

It implies automatically the absence of correlations between polarization fluctuations in regions V and V ext which means that the nonlocal dielectric function, ε αβ (r 1 ,r 2 ) in Eq

[START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF]

, is zero if spatial points, r 1 and r 2 , belong to different regions. As a result, integral relation

[START_REF] Kornyshev | On the evaluation of standard Gibbs energies of ion transfer between 2 solvents[END_REF] 

between D(r) and E(r) only takes place inside the region, V, occupied by the nonlocal medium, i.e. both r 1 and r 2 belong to region V while the nonlocal dielectric function, ε αβ (r 1 ,r 2 ), in this relation characterizes dielectric properties of the polar medium inside this restricted region, i.e. it is generally different

Then, in view of the spherical symmetry of the system all vector variables, G, D and E, in any spatial point, r, are oriented along the radius-vector, r, their absolute values (G, d and E) and the scalar variables (in particular, electric potential, ϕ) are functions of r.According to Eq (5) the identical G and D distributions are given by the expression:
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