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Abstract

The characterisation of parameters of building energy models based on in-situ sensor

information is generally performed after the measurement period, using all data in a single

batch. Alternatively, on-line parameter estimation proposes updating a model every time a

new data point is available: this establishes a direct link between external events, such as the

weather, and the identifiability of parameters. The present study uses the Sequential Monte

Carlo method to train a lumped building energy model (RC model), and thus estimate a

Heat Loss Coefficient, and other parameters, sequentially. Results show the direct impact of

solicitations (solar irradiance and indoor heat input) on this estimation, in real time. The

method is validated by comparing its results with the Metropolis-Hastings algorithm for

off-line parameter estimation.
Keywords: Bayesian calibration, on-line, Sequential Monte Carlo, building energy

simulation

1. Introduction1

The characterisation of parameters of simplified building energy models using in-situ2

measurements is now a widespread research topic (1) and is commonly performed for two3

general types of applications. The first is parameter estimation, where the aim is to identify4

quantities that can be directly interpreted. This includes the characterisation of intrinsic5
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building performance by energy signature models (2; 3), co-heating tests (4) or other dynamic6

methods (5; 6; 7; 8). The second use of in-situ measurements is the calibration of a model for7

predictive purposes (9; 10; 11), for instance in the aim of model predictive control (12; 13; 14)8

or building energy management. The aim is to build a model that correctly reproduces the9

energy dynamics of buildings, regardless of the physical meaning of its parameters. Although10

grey-box models may be suitable for this purpose, black-box models with no consideration11

of physics may also be appropriate: the former are less reliant on data availability but the12

latter are more flexible.13

State-space models, which include the simplified resistor-capacitor (RC) model structures,14

are a popular choice for both of these applications. When written as a set of Stochastic15

Differential Equations, they allow accounting for modelling approximations (15; 16; 17; 18)16

and offer a more reproducible parameter estimation than deterministic models that overlook17

modelling errors (19).18

Parameter estimation is typically performed off-line: measurements of indoor and out-19

door conditions are first carried in a test building, and data is processed after the experiment20

in a single batch. An interesting challenge is to carry parameter estimation on-line, during21

the observation period: starting from an initial guess for parameter values, these estimates22

are updated sequentially, every time a new observation becomes available.23

There are several motivations for this: first, it would allow using the measurement period24

for computations, thus reducing the total time of the procedure (20). It would also be a25

way to make use of the emerging wireless energy monitoring technology: smart meters,26

wireless sensor networks, etc. With frequent data collection and remote transfer, either27

off-line and on-line analysis can be performed non-intrusively during the monitoring period.28

The off-line alternative however requires restarting calculations from the beginning of the29

measurement period, which can become problematic if a frequent update on parameter30

estimates is expected. A second, more important advantage of on-line estimation lies in the31

amount of information gained from the experiment. Parameter estimates are to be updated32

after every new observation: this will allow directly observing which phenomena “bring33
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information” to the parameters, by correlating the reduction in their estimation uncertainty34

with observed events. Such a thorough diagnosis can be useful for fault detection as well,35

particularly when the necessary length of the measurement period is not known a priori.36

Bayesian inference offers the possibility of on-line estimation with Sequential Monte-Carlo37

(SMC) methods (21). Originally developed for the sequential estimation of states (22), SMC38

was later adapted to state and parameter estimation (23; 24). Building physics applications39

are scarce and very recent (20), but may become more common due to the motivations listed40

above.41

The present paper applies SMC for the on-line estimation of the heat loss coefficient42

(HLC) of a test cell. Starting from a highly uncertain prior knowledge of HLC, the target43

is to dynamically observe what leads its estimation to narrow down to a more precise value.44

The identifiability of HLC regarding available data is then discussed. Sec. 2 presents the test45

cell and Sec. 3 the RC model chosen to simulate it. Sec. 4 shortly describes the Metropolis-46

Hastings and SMC algorithms for off-line and on-line Bayesian parameter estimation. Results47

are then showed and discussed on Sec. 5.48

2. Case study49

The present study uses measurements that were carried in the Round Robin Test Box50

(RRTB), within the framework of the IEA EBC Annex 58 (25). This experimental test cell,51

shown by Fig. 1 has a cubic form, with exterior dimensions of 120x120x120 cm3. The floor,52

roof and wall components of the box are all identical and have a thickness of 12 cm, resulting53

in an inner volume of 96x96x96cm3. One wall contains an operable wooden window with54

overall dimensions of 71x71 cm2 and a glazed part of 52x52 cm2. The double glazing has a U-55

value of 1.1 W/m2K and g-value of 0.63. Numerical simulation (25) has estimated the overall56

HLC of the box to a target value of 4.08 W/K, assuming constant standard surface heat57

transfer coefficients. This value presents an uncertainty in the range 3.49-4.14 W/K due to58

variations produced by the presence of a thin air or glue layer between the different material59

layers, or approximations in the estimation of surface heat transfer coefficients depending on60
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Thermophysical parameters and time series State-space representation

R1, R2, R3 Heat resistance x Vector of states

C1, C2 Heat capacitance P State variance

k1, k2 Solar aperture coefficient y Observations

Ti Indoor temperature w Process noise

Te Envelope temperature v Measurement noise

Ta Ambient (outdoor) temperature A State matrix (continuous)

q Indoor heating power B Input matrix (continuous)

Isol Solar irradiance C Observation matrix (continuous)

HLC Heat loss coefficient Fθ State matrix (discrete)

Filtering and estimation Gθ Input matrix (discrete)

ε Prediction error mean Hθ Observation matrix (discrete)

Σ Prediction error covariance Q Model error covariance matrix

K Kalman gain R Measurement error covariance matrix

Ly Likelihood function Subscripts and superscripts

θ Parameter c Continuous

p(θ) Prior function d Discrete

p(θ|y) Posterior function t Time coordinate

g Proposal distribution (j) Particle index

ω Particle weight

Table 1: Nomenclature
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wind and surface temperature. This range will serve as reference to check the validity of the61

results below. The total solar aperture of the box was estimated at 0.162 m2.62

Figure 1: Round Robin Test Box
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Figure 2: Measurements of indoor and outdoor temperature, heating power and solar irradiance

The test box was installed outdoors, in the LECE laboratory at Plataforma Solar de63

Almeria, in the South East of Spain. Experiments were carried during a 43-days period in64

the winter of 2013-2014. Measurements used in this study are: indoor temperature (which65

is the average of two type T thermocouples placed inside the box), outdoor air temperature,66
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heating power, and global horizontal solar irradiance. The box is also equiped with sensors67

that were not used here: internal and external surface temperatures of each side, heat flow68

meters, diffuse horizontal solar irradiance, wind speed and direction, relative humidity, and69

horizontal and vertical long wave radiation from the sky. All sensor types are listed in (25).70

All measurements were received with a sampling time of 1 min, but were then resampled to71

a time step of 5 min in order to reduce calculation time without compromising precision.72

A period of 12 days was chosen for the present investigation, starting from the 6th of73

December 2013 at 00:00. Measurements are shown in Fig. 2. The first 6 days will be74

used as validation data for the trained model, and the last 4 days as training data. The75

measured indoor temperature during the validation period will be compared to the output76

of the models calibrated with the training data. This particular partition of the original77

12-days dataset is motivated by the following reasons:78

• Both the training and the validation dataset comprise a period of free-floating indoor79

temperature, and a period of controlled indoor heat input. In terms of model calibra-80

tion, these boundary conditions are not very informative at first, then become more81

informative: we expect to witness their effects on the evolution of the estimation of82

the heat loss coefficient.83

• The training and validation sets are separated by a short ”buffer period” in order to84

make them relatively independent from each other. By this precaution, we want to85

avoid a correlation between both datasets, that would not guarantee that the trained86

model is generalizable.87

3. Modelling88

3.1. Model89

In order to estimate its heat loss coefficient (HLC) and other properties, the test box is90

represented by a lumped Resistor-Capacitance model. It is a 3R2C model described by:91
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Ṫi(t)
Ṫe(t)

 =

−
1
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− 1
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1
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− 1
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− 1
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
︸ ︷︷ ︸

A
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
1

R3C1

1
C1

k1

C11
R2C2

0 k2

C2


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B


Ta(t)

q(t)

Isol(t)

+ w(t)

(1)

y(t) =
[
1 0

]
︸ ︷︷ ︸

C

Ti(t)
Te(t)

+ v(t) (2)

where Ti, Ta and Te are the indoor, ambient (outdoor) and envelope temperatures. The92

envelope temperature is associated with the thermal mass of the opaque surfaces, and does93

not represent a specific coordinate within the envelope. The model has two states Te (un-94

observed) and Ti (observed, shown in Fig. 2(a)); q (W) is the indoor heating power; Isol95

(W/m2) is the solar irradiance on a southern vertical plane. A schematic view of the 3R2C96

model is shown in Fig. 3. The choice of this model structure is motivated by simplicity: in a97

previous study (19), a 2R2C model was judged sufficient to describe the dynamics of a very98

simple mono-zone building. The 3R2C model is an extension of this model, applied to the99

RRTB where the influence of the window may be significant.100

Figure 3: 3R2C model

In the continuous state equation (Eq. 1), w(t) denotes a Wiener process that represents101

modelling errors with an incremential covariance Qc (15), and v(t) is the measurement error102
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of the indoor temperature, normally distributed white noise with zero mean and variance103

Rc. The coefficients of the Qc matrix and Rc are considered unknown and will be estimated104

along with the other parameters of the model.105

The 3R2C model has 8 parameters that enable a physical interpretation of the RRTB:106

R1 and R2 (K/W) are two thermal resistances representing heat transfer through the opaque107

walls; R3 is a resistance directly linking the outdoor and indoor temperatures, representing108

heat transfer through the window; C1 and C2 (J/K) are thermal capacities and k1 and k2109

(m2) are two solar aperture coefficients, one for each state of the model. The last parameter110

is the initial envelope temperature Te(0): since Te is an unobserved state, its initial value is111

unknown. In the following, we denote as θ the vector of these parameters.112

The stochastic model described by Eq. 1 must be discretized in order to specify its

evolution between discrete time coordinates. Let us denote the sample interval length ∆t

and assume that the inputs u(t) = [Ta(t) q(t) Isol(t)] are constant during this interval. Eq.

1 and 2 can be discretized into the following discrete linear system:

xt = Fθ xt−1 + Gθ ut + wt (3)

yt = Hθ xt + vt (4)

where xt denotes the vector of states at the time coordinate t, and yt denotes the obser-113

vations. The Fθ and Gθ matrices of the discrete equation result from the matrices of the114

continuous equation 1 using the usual state-space discretization method. Their coefficients115

are functions of θ and of the time step size ∆t. Similarly, the process noise in discrete time116

wt ∼ N (0,Qd) has a covariance matrix Qd that can be calculated from the covariance ma-117

trix of the process noise in continuous time w(t) ∼ N (0,Qc). The observation error vt has118

a covariance Rd, which depends on Rc and the time step size.119

The discretization equations are given here, and are available with more detail in (15; 1):120
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Fθ = exp (A ∆t) (5)

Gθ = A−1 (Fθ − I) B (6)

Hθ = C (7)

Q =
∫ ∆t

0
exp (A ∆t) Qd exp

(
AT ∆t

)
dt (8)

Rd = 1
∆tRc (9)

where A, B and C are the matrices of the continuous linear system 1 and 2.121

3.2. Kalman filter122

Let us first suppose that the parameters θ of the system are known, and a sequence123

of output observations y1:T (in our case the indoor temperature) and input variables u1:T124

(outdoor temperature, heating power and solar irradiance) has been obtained.125

Given a state transition probability p (xt|θ,xt−1,ut) (Eq. 3) and an observation prob-126

ability p (yt|xt) (Eq. 4), a Kalman filter produces p (xt|y1:T , θ), the probability distribu-127

tion function of each state xt given measurements and parameter values, and the marginal128

likelihood function Ly(θ) = p (y1:T |θ). Its algorithm has been described by many authors129

including (15; 1) and is shortly recalled here.130

In the following, definitions adapted from (26) are used: xt|s is the expected state at time

t given observations up to time s. Pt|s is the variance of the state xt, i.e. the mean-squared

error.

xt|s = E (xt|y1:s, θ) (10)

Pt|s = Var (xt|y1:s,θ) = E
[
(xt − xt|s)(xt − xt|s)T |y1:s, θ

]
(11)

The Kalman filter algorithm is described here and illustrated by Fig. 4:131

• Set the initial states x0|0 and their covariance P0|0132

• for t = 1...T :133
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1. Prediction step: given the previous state xt|t and its covariance Pt|t, the model

estimates the one-step ahead prediction.

xt+1|t = Fθ xt|t + Gθ ut+1 (12)

Pt+1|t = Fθ xt|t FT
θ + Q (13)

2. Innovations (prediction error) εt+1 and their covariances Σt+1 are then calcu-

lated, along with the Kalman gain Kt+1, by comparing measurements yt+1 (see

Fig. 4) with the one-step ahead prediction xt+1|t:

εt+1 = yt+1 −Hθ xt+1|t (14)

Σt+1 = Hθ Pt+1|t HT
θ + R (15)

Kt+1 = Pt+1|t HT
θ Σ−1

t+1 (16)

3. Updating step: the new states at time t + 1 are updated, as a compromise

between the one-step ahead prediction and the measurement.

xt+1|t+1 = xt+1|t + Kt+1 εt+1 (17)

Pt+1|t+1 = (I−Kt+1 Hθ) Pt+1|t (18)

• The total (negative) log-likelihood can be calculated up to a normalizing constant:134

− lnLy(θ) = 1
2

T∑
t=1

ln |Σt(θ)|+
1
2

T∑
t=1

εt(θ)T Σt(θ)−1 εt(θ) (19)

This standard Kalman filter algorithm works for linear systems only. Non-linear systems135

require another filter, such as the Extended Kalman Filter (used by (16)), the Unscented136

Kalman Filter (27), or the particle filter.137

4. Bayesian parameter estimation138

The goal of the on-line parameter estimation exercise is to assess the value of all static139

parameters of the model, at each time coordinate of the measurement period: the expected140
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Figure 4: Schematic view of one iteration of the Kalman filter

output is a sequence of posterior distributions {p(θ|y1:t), t ∈ 1...T}, where T is the number141

of data points in the measurement period. This sequential estimation is performed by the142

SMC algorithm. In order to validate the results of this method, the estimation has also143

been carried in a “traditional” off-line fashion with the Metropolis-Hastings algorithm. Both144

methods are described below.145

4.1. Off-line parameter estimation: Metropolis Hastings146

The target of off-line Bayesian parameter estimation is the estimation of the posterior147

distribution p (θ|y1:T ), which is the probability of the parameters θ given a batch of data148

y1:T . Bayes equation reads:149

p (θ|y1:T ) ∝ Ly(θ) p(θ) (20)

where p(θ) is the prior over the parameter values and Ly(θ) is the likelihood function, cal-150

culated by Eq. 19 in the case of a linear state-space model. The prior allows accounting151

for expert knowledge; an informative prior contributes to regularizing the inverse problem152

of parameter estimation.153

The Marginal Metropolis Hastings (MMH) algorithm is part of the family of Markov154

Chain Monte Carlo (MCMC) methods. It calculates a finite sequence of samples {θn, n ∈ 1...N}155

approximating the posterior distribution. Algorithm 1 employs a Kalman filter to compute156
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Algorithm 1 Metropolis Hastings algorithm
1: for n = 1...N do

2: Draw a new value from a proposal distribution g

3: θ′ ← g (θ′|θn−1)

4: Compute the marginal likelihood using a Kalman filter (for linear models):

5: (p (x1:T |θ,y1:T ) , Ly(θ′))← KalmanFilter(θ′)

6: Accept or reject the proposal:

7: α ∼ U(0, 1)

8: if α ≤ Ly(θ′) p(θ′) g(θn−1|θ′)
Ly(θn−1) p(θn−1) g(θ′|θn−1) then

9: θn ← θ′

10: else

11: θn ← θn−1

12: end if

13: end for

the states p (x1:T |θ,y1:T ) and likelihood Ly(θ) associated to each proposal for θ. If the state-157

space model (Eq. 3) is non-linear, this filter can be replaced by a particle filter: this approach158

is known as Particle Markov Chain Monte Carlo (PMCMC) (28).159

The choice of the proposal disribution g, and a good initialisation, are critical for the160

performance of the algorithm. A burn-in phase at the beginning of the Markov chain must161

be discarded as it does not reflect the posterior distribution. (29) construct the proposal162

distribution by using the gradient and Hessian of the posterior, calculated by differentiation163

of the Kalman filter equations. Alternatively, the Adaptive Metropolis Hastings algorithm164

is used by (19).165

4.2. On-line estimation: Sequential Monte Carlo166

We now consider the procedure for on-line parameter estimation. The target is to con-167

struct a sequence of posterior distributions {p(θ|y1:t), t ∈ 1...T}, one for each observation168

point, that will allow us to visualize the information gained during the experiment in real169

time.170
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The SMC algorithm for parameter estimation is an adaptation of particle filtering for state171

variables. The foundation of this method is the Importance Sampling paradigm as described172

by (30): simulating samples under an instrumental distribution and then approximating173

the target distributions by weighting these samples using appropriately defined importance174

weights. The reader is referred to (30) and (24) for a deeper explanation of SMC and its175

application to parameter estimation. The method used here is inspired from the Iterated176

Batch Importance Sampling algorithm (31). It is described in Fig. 5 and Algorithm 2.177
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Figure 5: Principle of the SMC algorithm

The algorithm starts with the generation of a population of Nθ particles drawn from a178

prior distribution p(θ). Each parameter is assigned an initial state x0 and weight. At each179

time step t, a Kalman filter computes the states x(j)
t and likelihood L

(j)
t associated to each180

particle θ(j)
t . If the state-space model (Eq. 3) is non-linear, this filter can be replaced by a181

particle filter: this approach is known as the SMC2 algorithm (32). By this operation, the182

population of particles is updated so that at each time t they are a properly weighted sample183

from p (θ|y1:t) (32). After several time steps, there is a risk that only a few of the initial Nθ184
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Algorithm 2 Sequential Monte Carlo algorithm
1: Initialisation: generate a population of Nθ particles, their states and weights

2: for all j ∈ {1...Nθ} do

3: θ
(j)
0 ∼ p(θ)

4: x(j)
0 ∼ p(X0)

5: ω
(j)
0 = 1

6: end for

7: for t = 1...T do

8: for all j ∈ {1...Nθ} do

9: Resampling

10: {aj, j ∈ 1...Nθ} ←Multinomial
(
ω

(j)
t−1, j ∈ 1...Nθ

)
11: Rejuvenation by a single MMH step with proposal distribution N

(
µ̂t−1, Σ̂t−1

)
12:

(
θ

(j)
t ,x(j)

0:t−1, L
(j)
t−1

)
← MMH

(
θ

(aj)
t−1 ,x

(aj)
0:t−1,y0:t−1

)
13: Propagate and weight

14:
(
x(j)
t , L

(j)
t

)
←KalmanFilter

(
x(j)
t−1, θ

(j)
t ,yt

)
15: where L(j)

t = p
(
yt|x(j)

t−1, θ
(j)
t

)
is the incremential likelihood.

16: ω
(j)
t = ω

(j)
t−1 · L

(j)
t

17: end for

18: Normalise weights

19: ω
(j)n
t = ω

(j)
t /

∑Nθ
j=1 ω

(j)
t−1

20: Calculate weighted mean and covariance of parameters

21: µ̂t = ∑Nθ
j=1 ω

(j)n
t θ

(j)
t

22: Σ̂t = ∑Nθ
j=1 ω

(j)n
t

(
θ

(j)
t − µ̂t

) (
θ

(j)
t − µ̂t

)T
23: end for
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particles are significantly more likely than the others and concentrate the majority of the185

total weight: a resampling step is then performed in order to generate a new population of186

particles from the most influencial ones, and a MCMC rejuvenation step then restore the187

diversity of particles (33).188

Resampling does not occur every time a new observation becomes available, but only189

when required: this is measured by the effective number of particles that significantly con-190

tribute to the total weight of all particles (33). This operation decreases the number of191

unique particles, hence the subsequent rejuvenation step that restores diversity. The choice192

of N
(
µ̂t, Σ̂t

)
as the proposal distribution for the MCMC rejuvenation step was proposed by193

(31) and ensures a reasonable acceptance ratio while leaving p (θ|y1:t) invariant. The rejuve-194

nation step makes the algorithm quite computationally expensive, since the total likelihood195

of all particles p (y1:t|θ) must be recalculated every time resampling occurs. This problem196

is mitigated by the fact that particles can be resampled independently, making this effort197

parallelisable.198

4.3. Algorithm settings and performance199

Both the MMH and the SMC algorithms require a large number of model evaluations.200

Choosing the appropriate settings (number of iterations, convergence criteria) for each is201

crucial to ensure convergence in a reasonable time, before comparing their evaluation results.202

• Each MMH run is a chain of 20,000 iterations, including a 10,000 burn-in and a thinning203

factor of 10. The posterior is thus approximated by a chain of 1,000 uncorrelated204

samples. Convergence was ensured by checking the autocorrelation function and the205

stationarity of this chain.206

• The SMC algorithm used 3,000 θ-particles. Other authors (20) have used 2,000 in a207

similar case. There is no procedure to ensure the convergence of SMC at each time208

step, since each particle is only propagated once.209

The present work has not investigated ways to reduce the computational cost. It is difficult to210

compare the performance of both algorithms in terms of number of function evaluations until211
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convergence for two reasons. First, the performance of SMC mostly relies on the number212

of required resampling-rejuvenation steps, which is not predictable. Second, the outcome213

of both algorithms is different, as SMC returns a posterior distribution at each time step:214

requiring the same amount of information from a sequence MMH runs would be prohibitive.215

5. Results216

The RRTB was monitored for 12 days, 4 of which were used to train a 3R2C model. The217

model was trained separately by off-line and on-line Bayesian inference, using the MMH and218

SMC algorithms. In order to compare both methods at different points in time, the MMH219

algorithm was run several times by using 1 day, 2 days, 3 days or 4 days of training data,220

respectively.221

Both methods used the same parameter prior p(θ), which will be displayed along with222

the results. It is a Gaussian prior with a wide support for each of the individual parameters.223

Indeed, we found that using a uniform prior could compromise the convergence ability of224

each algorithm in the case of parameters with low identifiability.225

Results are presented in the following steps:226

• First, the on-line and off-line estimation results of the heat loss coefficient and solar227

aperture of the box are shown. Theoretical values of these characteristics (25) are228

available for comparison. We discuss the events that bring information to the estimates.229

• Then, we show the estimation of each individual parameter of the 3R2C model: their230

practical identifiability is briefly discussed.231

• Finally, we compare the model predictions over the test measurement period, in order232

to provide some validation for these results.233

5.1. Estimation of HLC and solar aperture234

We first consider two parameters that allow us to compare estimation results with refer-235

ence values of the test box: the heat loss coefficient and the total solar aperture:236
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HLC = R1 +R2 +R3

(R1 +R2) R3
(21)

k = k1 + k2 (22)

One of our targets is to determine which specific part of the data drives the parameter237

estimation towards more confident values. Therefore, Fig. 6(b) and 6(c) show the estimation238

results of HLC and the solar aperture k by comparing them with measurement data in Fig.239

6(a). The blue line and blue area show the average and 95% confidence interval of the240

posterior distributions obtained by SMC at each time coordinate. The box-and-whisker plots241

show the prior distribution at t = 0 in grey, and the four posterior distributions obtained by242

MMH using either 1, 2, 3 and 4 days of measurements, in red.243

The 95% confidence interval of a parameter estimated by either SMC or MMH narrows244

down progressively, as data is sequentially added to the problem. A quick, stepwise decrease245

is an indicator of an event that “brings information” to the parameter. Both the HLC and246

the k properties have a similar behaviour in this matter: their confidence intervals are first247

narrowed down during the first day of measurements, as the solar irradiance rises. Then, a248

high information gain occurs as indoor heating is turned on, on the third day. It is general249

knowledge that the parameters of a building energy model are hardly identifiable without a250

heat source. This study however quantifies the effect of this input signal on the parameter251

uncertainty.252

A fair match can be seen between results from both MMH and SMC algorithms: the253

distributions mostly overlap.254

The SMC algorithm has two advantages compared to MMH in this situation: first, it255

was only run once to produce all sequential posterior distributions, whereas each off-line256

parameter estimation had to be started from the beginning of the sequence. The second257

advantage is the higher resolution in the temporal evolution of parameter estimates.258
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(a) Measurements in the RRTB

(b) Estimation of the HLC

(c) Estimation of the solar aperture

Figure 6: (a) Measured indoor and outdoor temperature, heating power and solar irradiance on the RRTB;

(b) Estimation of HLC by the SMC and MMH algorithms compared to the reference value; (c) Estimation

of the total solar aperture
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5.2. Individual parameters259

The overall heat loss coefficient (see Fig. 6(b)) is an aggregated property, calculated260

from the value of three separate thermal resistances R1, R2 and R3. Similarly, the total261

solar aperture k shown in Fig. 6(c) is the sum of two coefficients. Finding a consistent value262

for either does not guarantee that each parameter of the 3R2C model will be individually263

identifiable. For this reason, the results for all parameters of the 3R2C model are shown in264

Fig. 7, using the same symbols as in Fig. 6.265

Here are some points that arise from these results:266

• Most parameter estimates see their confidence intervals narrow down abruptly when267

heating is turned on (t = 48h).268

• R3 (Fig 7(c)) is an exception to this result. This resistance was added to the model269

in an attempt to represent the heat flow through the window, separately from the270

opaque envelope. There is close to no variation between the prior distribution and271

posterior distributions for this parameter: it can be considered as non identifiable in272

this problem.273

• Conversely, Fig. 7(d) shows the estimation of the initial condition on the envelope274

temperature, which is an unobserved state of the 3R2C model. This parameter is275

estimated with a fairly high confidence as soon as the experiment starts.276

5.3. Validation277

In order to ensure the interpretability of the estimated parameter values, calibrated278

models should be validated. As shown in Fig. 2, the original dataset has 4 days of training279

data and 6 days of test data. The validation is shown in Fig. 8 by two plots.280

The auto-correlation function (ACF) of the one-step prediction residuals is shown in Fig.281

8(a). Residuals were calculated with the 3R2C stochastic model calibrated by the SMC282

algorithm, using the mean values of parameter posterior distributions obtained at the end of283

the training set. The ACF indicates that the residuals are close to white noise: this implies284
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(a) R1 (K/W) (b) R2 (K/W)

(c) R3 (W/K) (d) Te(0) (C)

(e) C1 (J/K) (f) C2 (J/K)

(g) k1 (m2) (h) k2 (m2)

Figure 7: Estimation of each individual parameter
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Figure 8: (a) Autocorrelation function of one-step prediction residuals in the training dataset; (b) 6 days

indoor temperature prediction over the test dataset with 95% confidence intervals

that the 3R2C model order is sufficient to describe the dynamics of the system. The same285

observation can be made about the results of the MMH algorithm.286

Fig. 8(b) shows the forecasts by models calibrated by both MMH and SMC, over the287

6 days validation period. Forecasting uncertain states over an uncertain parameter space288

can be done by drawing a sample of θ from the posterior distribution, and averaging the289

state expectancies and variances over this sample. The initial temperature of the unobserved290

state at the beginning of the validation set is unknown. The mean for its initial distribution291

was set so that it has the same interpolation ratio between indoor and outdoor temperature,292

than the estimated parameter value Te(0). This has however little influence on the remaining293

validation period. More detail on this forecasting methodology is given in (19). Fig. 8(b)294

shows a good overlap of the predictions by models calibrated with MMH and SMC. Measured295

indoor temperatures of the validation dataset are mostly comprised within the confidence296

intervals of the forecasts.297

6. Conclusion298

Sequential Monte Carlo is a method for on-line parameter estimation: initial probability299

distributions for each parameter of a model are updated sequentially, every time a new300

observation is received. The outcome of this method is a time series of posterior distributions,301
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that describe the progression of acquired knowledge on the parameter values at each time302

step. In the present work, SMC is applied to the on-line characterisation of a simple test303

box (RRTB) and its results are compared to another identification technique, and validated.304

• The temporal progression of posterior distributions shows which factors influence pa-305

rameter estimation. Unsurprisingly, the most influencial event in the training dataset306

is the activation of indoor heating. This concerns all parameters of the calibrated307

model.308

• Estimated values of the heat loss coefficient and solar aperture were in accordance with309

target values.310

• SMC results are in accordance with parameters estimated with an off-line method311

(Metropolis Hastings).312
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