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This paper addresses an elective surgery scheduling problem involving capacity constraints for operating rooms and downstream surgical intensive care units (SICU). Considering the uncertainties in surgery durations, lengths of stay, and new arrivals of patients, we seek to provide stochastically optimized surgery schedules for surgical managers. Conventional formulations (e.g. stochastic programming) for the studied problem mainly optimize the schedule of one single decision period, without consideration of the correlations between the present and successive periods. To overcome this short-sightedness, a novel two-level optimization model is proposed in this paper: at the first level, the high-priority patients that will be scheduled are selected from the waiting list; at the second level, every selected patient is assigned to a specific surgical block. The sub-problem of the first level is modeled as a Markov decision process to reduce the expected total cost on a long-term basis; the second level is formulated as a stochastic programming problem, which optimizes the schedule over a short-term planning horizon.

Intensive structural analyses are conducted for the proposed model to simplify the solution procedure.

An approximate dynamic programming approach based on recursive least-square temporal difference learning is then proposed to solve the problem. Numerical experiments are carried out to compare the proposed model with a pure stochastic programming model. The results indicate that the policy obtained from the proposed model possesses considerable advantages in reducing the total cost, shortening waiting time for patients, and improving the utilization rate of hospital facilities.

Introduction

. As a result of the ageing population and the increasing quality of life, the demand for healthcare services is continually growing in many areas of the world [START_REF] Sperandio | An intelligent decision support system for the operating theater: A case study[END_REF][START_REF] Wang | Scheduling operating theatres: Mixed integer programming vs. constraint programming[END_REF][START_REF] Xiao | Stochastic programming analysis and solutions to schedule overcrowded operating rooms in china[END_REF][START_REF] Marques | Different stakeholders' perspectives for a surgical case assignment problem: Deterministic and robust approaches[END_REF]. Facing this trend, improving the quality of surgery scheduling has become a crucial task for hospital managers. In a hospital, operating rooms (ORs) consume the largest part of the budget and have great potential for saving costs (Min & Yih, 2010a;[START_REF] Wang | Particle swarm optimization-based planning and scheduling for a laminar-flow operating room with downstream resources[END_REF].

For this reason, OR planning problems have drawn the interest of researchers. However, considering only OR capacity in surgery scheduling problems does not provide high-quality schedules. Many researchers emphasize the importance of managing downstream resources, such as the Post-Anesthesia Care Unit (PACU) or Surgical Intensive Care Unit (SICU), since mismanagement of these downstream facilities leads to long waiting times for patients, cancellations of surgeries, and degradation of the quality of care (Min & Yih, 2010a;[START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF][START_REF] Siqueira | Long-term integrated surgery room optimization and recovery ward planning, with a case study in the brazilian national institute of traumatology and orthopedics (into)[END_REF]. This paper focuses on the scheduling of elective patients with both ORs and downstream resources (SICU beds). To avoid interruptions to elective surgeries, we apply a dedicated policy in which emer-gency patients are treated in dedicated facilities, as this policy is commonly used in literature [START_REF] Cardoen | Operating room planning and scheduling: A literature review[END_REF][START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF][START_REF] Samudra | Scheduling operating rooms: Achievements, challenges and pitfalls[END_REF]. For this reason, the emergencies are not considered in our model. To determine the surgery schedule, decisions are made on a weekly basis: we first select patients from the waiting list, according to their priorities, then allocate them among the surgical blocks. Our objective is to minimize the total cost incurred by patients' waiting, the performance of surgeries, overuse of ORs, inadequate SICU beds and maintaining open OR blocks.

Moreover, as randomness is an intrinsic property of surgery scheduling problems, the uncertainties in patient arrivals, surgery durations, and lengths of stay (LOS) are taken into consideration in our model.

Various mathematical formulations and solution approaches are employed in existing researches on operational-level surgery scheduling. [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] introduce a stochastic programming (SP) formulation solved by a sample average approximation (SAA) approach. Experimental results show that the policy obtained by SP outperforms that yielded by deterministic programming. SP formulation and the SAA approach are also used by [START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF], in which the authors tackle an OR planning problem with consideration of ICU and ward capacity. Their results validate the superiority of SP over deterministic programming, and highlight the importance of considering downstream capacity constraints in OR planning. [START_REF] Saadouli | A stochastic optimization and simulation approach for scheduling operating rooms and recovery beds in an orthopedic surgery department[END_REF] schedule elective patients under the capacity constraints of ORs and recovery beds. A practical percentile value is used to account for the variability in surgery durations, thus the problem can be formulated as a knapsack model and a mixed integer program. The resulting schedule is evaluated by a discrete event simulation model to validate the improvement of efficiency over the schedule in actual practice. Further, [START_REF] Jebali | A chance-constrained operating room planning with elective and emergency cases under downstream capacity constraints[END_REF] propose a chance-constraint programming model for stochastic OR and ICU planning.

The solution provided by a featured SAA algorithm increases the robustness of the OR plan, but results in a higher total cost and lower OR utilization rate. [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF] reformulate the problem studied by [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] as a robust optimization counterpart, which allows decision makers to adjust risk levels according to actual need. Moreover, a recent work provided by [START_REF] Moosavi | Scheduling of elective patients considering upstream and downstream units and emergency demand using robust optimization[END_REF] deals with an elective surgery scheduling problem, while considering both upstream and downstream units. A real case study is performed to evaluate the quality of the schedule obtained through robust optimization.

In comparison with the aforementioned works, the problem settings in this paper are different in two aspects. First, we use the product of urgency level and waiting time to prioritize elective patients. The efficiency of this prioritization method is widely accepted by related works [START_REF] Testi | A three-phase approach for operating theatre schedules[END_REF][START_REF] Testi | Prioritizing surgical waiting lists[END_REF][START_REF] Valente | A model to prioritize access to elective surgery on the basis of clinical urgency and waiting time[END_REF][START_REF] Min | Managing a patient waiting list with time-dependent priority and adverse events[END_REF][START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF]. In contrast, [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] do not explicitly incorporate patient priorities into their model; Jebali andDiabat (2015, 2017) use a priority function that is non-linear in waiting time; [START_REF] Saadouli | A stochastic optimization and simulation approach for scheduling operating rooms and recovery beds in an orthopedic surgery department[END_REF] give each patient a static priority, while [START_REF] Moosavi | Scheduling of elective patients considering upstream and downstream units and emergency demand using robust optimization[END_REF] propose a quadratically increasing patient priority. Second, we consider the fixed cost for maintaining open surgical blocks, and allow unnecessary blocks to be closed so that hospital expenses can be considerably reduced.

This problem setting is consistent with that of [START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF].

By comparison, most of the referenced papers address the utilization of ORs by minimizing overtime and idleness without considering the closure of OR blocks.

For surgery scheduling problems, determining the selection of patients to be treated is an important issue. This selection is impacted by resource availability and patients' priorities in the waiting list [START_REF] Latorre-Núñez | Scheduling operating rooms with consideration of all resources, post anesthesia beds and emergency surgeries[END_REF]. In the frequently used mathematical programming (MP) formulations, a pseudo block is often added at the end of the planning period to accommodate the deferred surgeries (e.g., [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF][START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF]. Assigning a patient to the pseudo block should be more expensive than assigning him/her to a normal block, thus the decision maker is encouraged to schedule as many surgeries as possible. Under these settings, the conventional MP formulations search for the optimal schedule with the lowest cost for the considered period. Nevertheless, consecutive planning periods are correlated since the unscheduled patients will continue to incur costs during the following periods. Furthermore, the patient-related cost continuously increases over time. For these reasons, minimizing the single-period cost while neglecting the costs of following periods cannot provide the optimal policy in the long run.

Apart from the various MP formulations applied in the referenced works, the Markov decision process (MDP) has a good performance in solving decision-making problems with uncertainties. In the literature on surgical resource planning problems, MDP is usually used to model dynamic advance scheduling problems [START_REF] Patrick | Dynamic multipriority patient scheduling for a diagnostic resource[END_REF]Min & Yih, 2010a, 2014;[START_REF] Astaraky | A simulation based approximate dynamic programming approach to multi-class, multi-resource surgical scheduling[END_REF][START_REF] Truong | Optimal advance scheduling[END_REF]. Regarding these types of problems, the decision maker manages a dynamic waiting list and determines the set of patients to be treated during each period [START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF][START_REF] Samudra | Scheduling operating rooms: Achievements, challenges and pitfalls[END_REF]Zhu, Fan, Yang, Pei, & Pardalos, 2018). MDP provides the optimal policy for an infinite horizon since it minimizes the total cost of all periods. Therefore, we propose a novel two-level optimization model that combines MDP with SP, to overcome the short-sightedness of conventional MP formulations and seek for the optimal policy on a long-term basis. In the proposed model, the studied problem is divided into two levels: at the first level, we tackle a dynamic advance scheduling problem that determines the selection of patients to be operated; at the second level, we solve an allocation scheduling problem that assigns the selected patients to OR blocks. The two levels are formulated as MDP and SP, respectively.

The direct correlation between the two levels is that the patients to be assigned to OR blocks at the second level are selected from the waiting list by the first level. In numerical experiments, the benefits of combining MDP and SP are validated by comparing the resulting policy to that provided by a pure SP, which serves as a benchmark for the proposed two-level optimization model.

In practice, the scale of a realistic MDP problem often makes dynamic programming algorithms intractable due to the "three curses of dimensionality": state space, action space and outcome space [START_REF] Powell | Approximate dynamic programming: Solving the curses of dimensionality[END_REF]. To cope with the high dimensionality of action space, we perform structural analysis for the MDP model at the first level to reduce the number of actions to be evaluated. In addition, to tackle the dimensions of state space and outcome space, we develop an approximate dynamic programming (ADP) algorithm based on recursive least-squares temporal difference (RLS-TD(λ)) learning [START_REF] Xu | Efficient reinforcement learning using recursive least-squares methods[END_REF]. As an extension of LS-TD(λ) [START_REF] Boyan | Technical update: Least-squares temporal difference learning[END_REF] and RLS-TD(0) [START_REF] Bradtke | Linear least-squares algorithms for temporal difference learning[END_REF], RLS-TD(λ) has advantages in computational efficiency and is more suitable for online learning. Recently, researchers have begun to employ RLS-TD(λ)-based approaches in real-time control applications (Yin, Dridi, & Moudni, 2017). Nevertheless, to the best of our knowledge, no other studies have applied RLS-TD(λ) in surgery scheduling or in OR planning problems. In this work, we apply the proposed RLS-TD(λ)-based ADP approach to accelerate the decision making in MDP by using a set of parameters to approximate the exact value function. With regard to the methodologies for solving SP problems, SAA is one of the most popular algorithms in the literature of OR planning [START_REF] Lamiri | A stochastic model for operating room planning with elective and emergency demand for surgery[END_REF][START_REF] Lamiri | Optimization methods for a stochastic surgery planning problem[END_REF][START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Xiao | Stochastic programming analysis and solutions to schedule overcrowded operating rooms in china[END_REF][START_REF] Heydari | Predictive/reactive planning and scheduling of a surgical suite with emergency patient arrival[END_REF]. In this paper, we adopt an adapted SAA algorithm to translate SP models into solvable integer linear programming problems.

The reminder of this paper is organized as follows: Section 2 first provides the benchmark model, i.e., a conventional pure SP formulation for the studied problem, then introduces the proposed two-level optimization model. Section 3 analyzes the model properties that can help to narrow down the action space and simplify the solution procedure. Section 4 presents the ADP approach based on RLS-TD(λ) and the adapted SAA algorithm. In Section 5, the results of numerical experiments are presented and analyzed. Conclusions and possible future extensions are given in Section 6.

Problem Description and Formulation

We consider a single-specialty elective surgery scheduling problem with limited OR and SICU capacity.

Newly admitted patients are first put onto a waiting list. At the end of each week, patients that will be treated during the following week are removed from the waiting list and assigned to specific surgical blocks. After surgery, a patient may occupy a recovery bed in SICU for a number of consecutive days, or he/she is directly discharged. Before we describe the models, the following general assumptions are given: Assumption 1. Every patient i has a dynamic time-dependent priority p i = u i w i , where u i ∈ {1, 2, ..., U } is the urgency level, w i ∈ {1, 2, ..., W u } is the waiting time (weeks), U is the highest urgency level and W u is the maximum allowed waiting time for the patients at urgency level u (see the fourth paragraph of Section 1 for the justification). Specifically, the urgency level u i is assessed and determined when patient i is added to the waiting list, and this parameter does not change over time, while if patient i is not scheduled in the present week, the waiting time w i will be added by one in the next week. Every patient must be scheduled before w i exceeds W u . Moreover, for patients i and i with p i = p i and u i > u i , patient i is preferentially scheduled.

Assumption 2. The number of newly arrived patients each week follows Poisson distribution, which is a classical assumption for patient arrivals in the literature [START_REF] Adan | Improving operational effectiveness of tactical master plans for emergency and elective patients under stochastic demand and capacitated resources[END_REF][START_REF] Tancrez | Assessing the impact of stochasticity for operating theater sizing[END_REF][START_REF] Van Riet | Trade-offs in operating room planning for electives and emergencies: A review[END_REF][START_REF] Astaraky | A simulation based approximate dynamic programming approach to multi-class, multi-resource surgical scheduling[END_REF][START_REF] Truong | Optimal advance scheduling[END_REF]. The waiting list is updated at the end of each week. All patients must be added to the waiting list before being selected for surgery. Assumption 3. All patients have identical probability distributions for surgery duration and LOS, since they are from the same specialty. Surgery durations and LOS are log-normally distributed, as log-normal distribution is widely used to describe the stochasticity of surgery durations and LOS, and results in the best fit for hospital data [START_REF] Strum | Estimating times of surgeries with two component procedures: Comparison of the lognormal and normal models[END_REF][START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Van Riet | Trade-offs in operating room planning for electives and emergencies: A review[END_REF][START_REF] Xiao | Stochastic programming analysis and solutions to schedule overcrowded operating rooms in china[END_REF][START_REF] Marques | Different stakeholders' perspectives for a surgical case assignment problem: Deterministic and robust approaches[END_REF].

Assumption 4. At the most, two surgical blocks (a morning shift and an afternoon shift) can be allocated to an OR on a single day. The same problem setting is used in [START_REF] Marques | Different stakeholders' perspectives for a surgical case assignment problem: Deterministic and robust approaches[END_REF]. In addition, referring to [START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF], we assume that each open surgical block generates a fixed cost, and some blocks may be closed according to the actual surgical demand to save unnecessary expenses. Furthermore, since only one specialty is considered, each open block is assumed to be accessible to any patient.

Assumption 5. A patient might need intensive care in the SICU after surgery for an uncertain number of consecutive days. In the case of insufficient SICU capacity, extra patients that need SICU care can only be transferred to the units with lower level of care, and a penalty is thereby incurred. The same assumption can be seen in [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF].

Considering these assumptions, the studied problem is formulated as an SP model and a two-level optimization model, respectively, while the former serves as the benchmark of the latter. A summary of the notations used in this section is provided in Appendix A.

Benchmark Model: Stochastic Programming

The planning horizon of the benchmark SP model is one week. Surgeries can only be performed on weekdays from Monday to Friday, while the SICU is permanently open from Monday to Sunday. Let I and B be the set of patients and surgical blocks, respectively. Every block b ∈ B is settled in a specific OR on a specific workday t b = 1, 2, ..., 5. Each scheduled patient is treated for only once in one of the surgical blocks, while unscheduled patients are assigned to a pseudo block b with infinite capacity. Let c p and c w be the unit costs of performing and postponing surgery, respectively, then it is reasonable to set c p < c w . Referring to the problem configurations of [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] and [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF], the costs incurred by assigning patients i to surgical block b ∈ B and pseudo block b are defined as p i c p and p i c w , respectively, thus surgery and waiting costs are proportionate to patient priority. This setting allows high-priority patients to be assigned to a surgical block b ∈ B before low-priority ones.

Decision variables x ib and y b are defined as follows: x ib is equal to one if patient i is assigned to block b, Each patient has an uncertain surgery duration di and an uncertain LOS li , which are discretized so that the number of stochastic scenarios is finite and the computational complexity is reduced. A justification for discrete surgery duration and LOS is provided by [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF]. The overtime work of block b is represented by õb , and the unit overtime penalty is c ob . Variable zit determines the demand for intensive care: zit = 1 if patient i occupies an SICU bed on day t, otherwise zit = 0. On a specific day t = 1, 2, ..., 7, there are totally K t available SICU beds, while the number of patients that are denied admission to SICU is denoted by kt . Inadequate SICU capacity incurs a cost of c e per patient per day.

The studied problem is formulated as the following SP with recourse (SP1):

SP1: min i∈I b∈B p i c p x ib + i∈I p i c w x ib + b∈B c r y b + E[Q(x , y , d , l )] (1) s.t. b∈B x ib = 1, ∀ i ∈ I (2) b∈B x ib = 1, ∀ i ∈ I, w i = W u (3) x ib y b , ∀ i ∈ I, b ∈ B (4) x ib , y b ∈ {0, 1}, ∀ i ∈ I, b ∈ B (5) 
where 

B = B ∪ {b }, E[Q(x , y , d , l )] is the recourse problem and Q(x , y , d , l ) is written as: SP-R: min b∈B c ob õb + 7 t=1 c e kt (6) s.t. õb i∈I di x ib -hy b , ∀ b ∈ B (7) zit x ib , ∀ i ∈ I, b ∈ B, t = t b , ..., t b + li -1 (8) kt i∈I zit -K t , ∀ t = 1, 2, ..., 7 (9) zit ∈ {0, 1}, ∀ i ∈ I, t = 1, 2, ..., 7 (10) 

Two-Level Optimization Model

The major drawback of the previously presented SP formulation is that the cost is minimized separately within each week. Nonetheless, as the unscheduled patients of the present week will continue to generate costs during the following weeks, the correlations between consecutive weeks cannot be neglected. MDP is a commonly used formulation for optimizing the cost over an infinite horizon, hence, in this paper, we combine MDP with SP and propose the two-level optimization model. In the proposed model, the decisions to be made for the studied problem can be divided into two levels: at the first level, patients that will be treated in the next week are chosen from the waiting list; at the second level, these selected patients are assigned to specific surgical blocks. The two levels are formulated as MDP and SP, respectively. The MDP model at the first level determines the scheduled patients in each week, so that the estimated total cost is minimized on a long-term basis. The SP model at the second level then assigns the patients determined by MDP to surgical blocks, with the objectives of minimizing the overuse of ORs and avoiding the shortage of SICU capacity. Formulations of the two levels are elaborated in the following subsections.

Level 1: Waiting List Management

The decision-making problem at this level is modelled as an MDP. First of all, define n τ uw as the number of patients who are given the urgency level u and have been waiting for w weeks in the waiting list, where τ is the index of week. Similarly, the decision variables in week τ are denoted by m τ uw , representing the number of scheduled patients at urgency level u that have waited for w weeks. Let ñτ u be the number of new arrived elective patients at urgency level u during week τ , thus the transition of the waiting list to week τ + 1 can be written as

     n τ +1 u,1 = ñτ u n τ +1 u,w+1 = n τ uw -m τ uw (12)
Then, the state s and the action a of MDP can be defined as the vector of n τ uw and m τ uw , respectively.

s = {n uw |u = 1, 2, ..., U ; w = 1, 2, ..., W u } (13) a = {m uw |u = 1, 2, ..., U ; w = 1, 2, ..., W u } (14) 
In this paper, the superscript τ can be dropped in some cases for simplicity, because the MDP is a stationary model whose cost function and transition probability are independent of τ . Let A(s) ⊆ A be the set of feasible actions of state s, then for every a = {m uw } ∈ A(s),

   0 m uw n uw , if w W u -1 m uw = n uw , if w = W u (15)
Next, the cost function is defined as follows to estimate the total cost of week τ : Let

C(s τ , a τ ) = U u=1
P (• • •) be the probability that statement • • • holds, thus P (ñ τ u = n τ +1 u,1
) is the possibility of having n τ +1 u,1 new patients in week τ , and the value of P (n τ +1 u,w+1 = n τ uw -m τ uw ) is determined by

P (n τ +1 u,w+1 = n τ uw -m τ uw ) =    1, if n τ +1 u,w+1 = n τ uw -m τ uw 0, if n τ +1 u,w+1 = n τ uw -m τ uw ( 17 
)
Then referring to (12), the transition probability of the MDP can be specified by

P (s τ , a τ , s τ +1 ) = U u=1 P (ñ τ u = n τ +1 u,1 ) × U u=1 Wu w=1 P (n τ +1 u,w+1 = n τ uw -m τ uw ) (18) 
Finally, the objective of the MDP is to find the optimal policy π * : S → A that minimizes the discounted estimated cost over the infinite horizon:

π * = arg min π ∞ τ =1 γ τ -1 E{C[s τ , π(s τ )]} (19) 
where π(s τ ) is the corresponding action of state s τ under policy π.

Level 2: Patient Assignment

Based on the decision made at the first level, each selected patient is assigned to a specific surgical block at this level. This sub-problem is formulated as an SP model denoted by SP2. The formulation of SP2 is very similar to that of SP1 with the following differences: the second term of objective function (1) and constraint (3) are removed in SP2; the subscript in constraint (2) is replaced by b ∈ B; the patient set I in SP2 contains only the patients selected by the first level, instead of the entire waiting list.

Structural Properties

In this section, we thoroughly investigate the structural properties of the studied problem. These insights will help us to simplify the models and develop efficient solution techniques. All the notations used in this section are summarized in Appendix B.

The Markov Decision Process

Considering that the set of feasible actions A(s) for a given state s can be very large, we study the properties of value function and Q-value to predigest the exploration in the action space. First, two partial orders on the state space S and the action space A are introduced by Definition 1 and Definition 2, and unit vector ∆ u w is defined by Definition 3. These definitions will be used to illustrate and prove the structural properties of the proposed MDP model.

Definition 1. Let x = {x uw } ∈ S ∪ A and y = {y uw } ∈ S ∪ A.

(i) If ∀u, w: x uw y uw and ∃u , w s.t. x u w > y u w , then x > y.

(ii) If ∀u, w: x uw = y uw , then x = y.

(iii) If ∃u , w s.t. x u w < y u w and ∃u , w s.t. x u w > y u w , x and y are incomparable.

Definition 2. Let x = {x uw } ∈ S ∪ A and y = {y uw } ∈ S ∪ A, and use p(x) to denote the patient priority of x. Then a partial order is defined as: The set of newly arrived patients is denoted by Ψ = {ψ uw }:

(i) p(x) < p(y) if x = y + z(∆ u w -∆ u w ) (z
   ψ u,1 = ñu , ∀u = 1, 2, ..., U ψ u,w+1 = 0, ∀u = 1, 2, ..., U, w = 1, 2, ..., W u -1 (21) 
Thus the new state can be written as G s a + Ψ. Based on the discussions above, we can begin to investigate the properties of value function and Q-value. The value function of state s under the optimal policy π * can be written as

V π * (s) = +∞ n=1 γ n-1 E{C[s n , π * (s n )]} ( 22 
)
where s 1 = s. Since 0 < γ < 1 and C[s n , π * (s n )] is finite, then there exists a large integer N 0 such that γ N E{C[s N +1 , π * (s N +1 )]} < , where is the error tolerance of the solution technique that we use.

Therefore, we can suppose γ n-1 E{C[s n , π * (s n )] = 0 for any n > N , thus

V n π * (s) =      C[s, π * (s)] + γ s ∈S P [s, π * (s), s ]V n+1 π * (s ), n = 1, 2, ..., N 0, n = N + 1, N + 2, ... (23) 
where

V 1 π * (s) = V π * (s).
We can prove that the following statements are true.

Proposition 1. (i) The optimal value function V π * (s) is increasing in s.

(ii) The optimal action π * (s) in non-decreasing in s.

Proof. See Appendix B.

Define the Q-value of state-action pair {s, a} as

Q(s, a) = C(s, a) + γ s ∈S P (s, a, s )V π * (s ) (24) then V π * (s) = min a∈A(s)
Q(s, a) and π * (s) = arg min a∈A(s)

Q(s, a). Referring to (23), the expression of Q n (s, a)

can be written as

Q n (s, a) =      C(s, a) + γ s ∈S P (s, a, s )V n+1 π * (s ), n = 1, 2, ..., N 0, n = N + 1, N + 2, ... (25) 
where (ii) ∀s ∈ S, π * (s + ∆ u w ) -π * (s) ∆ u w .

Q 1 (s, a) = Q(s, a), V n π * (s) = min a∈A(s) Q n (s,
(iii) V π * (s) is increasing in p(s).

(iv) Q(s, a) is decreasing in p(a).

Proof. See Appendix B.

With the properties that Q(s, a) is convex in a and decreasing in p(a) for any s ∈ S, we can explore the action space by the order that a and p(a) increase, and terminate the exploration once Q(s, a) begins to grow. Thus the enumeration of the action space is avoided, and the computational burden is relieved.

Although the procedure of finding greedy actions is simplified by the analyses above, the exploration in the state space is still computationally expensive. The state space of the studied MDP model can be very large because the number of patients in the waiting list has no upper bound. As a result, dynamic programming algorithms cannot find the optimal solution within a reasonable CPU time. In this work, we propose an ADP algorithm based on RLS-TD(λ) to improve the computational efficiency.

The convergence of RLS-TD(λ) has been proved in [START_REF] Xu | Efficient reinforcement learning using recursive least-squares methods[END_REF]. In the proposed algorithm, a linear approximator V (s, θ θ θ) is defined to approximate the exact value function V (s) of the MDP, where

θ θ θ T = {θ 1 , θ 2 , ..., θ Ξ } is the parameter vector of dimension Ξ. The expression of V (s, θ θ θ) is V (s, θ θ θ) = θ θ θ T φ φ φ(s) = Ξ ξ=1 θ ξ φ ξ (s) ( 26 
)
where φ φ φ(s) is the Ξ-dimensional feature vector of state s. φ φ φ(s) is relevant to the state s and can be written as φ φ φ(s) = {φ 1 (s), ..., φ ξ (s), ..., φ Ξ (s)} = {n uw |∀u, w}. Then the dimension of φ φ φ(s) and θ θ θ is

Ξ = U u=1 W u (27)
To minimize the error between V (s, θ θ θ) and V (s), θ θ θ should be updated through iterations to approach the optimal parameter vector θ θ θ * = arg min θ θ θ∈R Ξ V (s) -V (s, θ θ θ) . The computational burden is dramatically reduced by computing the low-dimensional θ θ θ instead of the huge-dimensional V (s). Let n be the index of iteration, then the updating equations of θ θ θ are given by [START_REF] Xu | Efficient reinforcement learning using recursive least-squares methods[END_REF] and Yin et al. ( 2017):

e n = C(s n , a n ) -[φ φ φ(s n ) -γφ φ φ(s n+1 )] T θ θ θ n-1 (28) P n = P n-1 - P n-1 ζ n [φ φ φ(s n ) -γφ φ φ(s n+1 )] T P n-1 1 + [φ φ φ(s n ) -γφ φ φ(s n+1 )] T P n-1 ζ n (29) θ θ θ n = θ θ θ n-1 + P n-1 e n ζ n 1 + [φ φ φ(s n ) -γφ φ φ(s n+1 )] T P n-1 ζ n (30)
where e n is the TD error of the nth iteration; Ξ × Ξ matrix P n is typically initialized as P 0 = I ( is some small positive constant and I is the identity matrix); ζ n is the eligibility trace which is initialized as all zeros and updated by ζ n+1 = γλζ n + φ φ φ(s n+1 ), where parameter λ ∈ [0, 1].

In the nth iteration, the obtreated Q-value for a state-action pair {s n , a n } relying on the approximate value function is

Q(s n , a n ) = C(s n , a n ) + γ V (s n+1 , θ θ θ n-1 ) = C(s n , a n ) + γ Ξ ξ=1 θ n-1 ξ φ ξ (s n+1 ) (31)
where s n+1 is a randomly sampled successor of {s n , a n }. The greedy policy then selects the approximate optimal action ân (s n ) for state s n by ân (s n ) = arg min

a n ∈A(s n ) Q(s n , a n ) (32)
Finally, the procedure of searching for the greedy action is presented in Algorithm 1. For patients with equal priorities u w = u w but different urgency levels u = u , the patients of higher urgency level are scheduled before those of lower urgency level.

The Stochastic Programming Model

Solving SP1 and SP2 accurately is not practical, because it is difficult to obtain the expectation of the recourse function due to its complicated structure. Moreover, even a crude discretization of the random parameters leads to an exponential growth in computational complexity. SAA is a Monte-Carlo simulation-based approximate method to replace the stochastic scenarios by samples. The optimal value obtained by SAA converges when the sample size is large enough [START_REF] Kleywegt | The sample average approximation method for stochastic discrete optimization[END_REF]. For the studied problem in this work, the feasible set of solutions is polyhedral, since the stochastic scenarios and the linear constraints are both finite. Therefore, the optimal solutions of SP1 and SP2 can be obtained by applying the SAA approach [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF]. SP1 and SP2 are then translated into the following integer linear programming models, termed as SAA1 and SAA2:

SAA1: min i∈I b∈B p i c p x ib + i∈I p i c w x ib + b∈B c r y b + 1 J J j=1 b∈B c ob o j b + 7 t=1 c e k j t (33)
Algorithm 1: Procedure of searching for greedy action ân (s n ) for state s n = {n uw } ∈ S

1 Initialize: a n := 0 0 0, Q min := +∞, p max := 0 and BreakM ark := 0;

2 for u = 1, 2, ..., U do 3 if p max uW u then 4 p max := uW u ; 5 {µ, ω} := {u, W u }; 6 n := n µω ; 7 while a n < s n do 8 if n > 0 then 9 a n := a n + ∆ µω ; 10 n := n -1;
11 Sample the next state s n+1 from the successors of {s n , a n };

12 Compute Q(s n , a n ) by ( 31); b∈B

13 if Q(s n , a n ) Q min then Q min := Q(s n , a n ) ;
x ib = 1, ∀ i ∈ I (34) b∈B x ib = 1, ∀ i ∈ I, w i = W u (35) x ib y b , ∀ i ∈ I, b ∈ B (36) o j b i∈I d j i x ib -hy b , ∀ b ∈ B, j = 1, ..., J (37) 
z j it x ib , ∀ i ∈ I, b ∈ B, j = 1, ..., J, t = t b , ..., t b + l j i -1 (38) k j t i∈I z j it -K t , ∀ t = 1, ..., 7, j = 1, ..., J (39) 
x ib , y b , z

j it ∈ {0, 1}, ∀ i ∈ I, b ∈ B, t = 1, ..., 7, j = 1, ..., J (40) 
k j t , o j b 0, k j t , o j b ∈ Z ∀ b ∈ B, t = 1, ..., 7, j = 1, ..., J (41) 
where J is the sample size and superscript j denotes the jth sampled value. SAA2 and SAA1 are the same for the most part with the following differences: the second term of (33) and constraint (35) are removed in SAA2, B is replaced by B, and I is replaced by I .

4 Solution Techniques

Approximate Dynamic Programming

The ADP algorithm for solving the proposed MDP model is an on-policy learning approach with a rolling horizon. On-policy learning means that we use the action determined by the current policy to sample the next state that we visit, thus we explore the state space along the sampled trajectory rooted at the initial state s τ . Rolling horizon means that each week τ , we explore N subsequent states of s τ in the state space, thus θ θ θ is updated for N times. The searching depth N affects the convergence of θ θ θ as well as the computational efficiency. As N increases, the explored trajectories becomes longer, and, as a result, θ θ θ gets closer to θ θ θ * , while more CPU time is consumed. Referring to [START_REF] Xu | Efficient reinforcement learning using recursive least-squares methods[END_REF], the computational complexity of the RLS-TD(λ) based ADP can be written as O(Ξ 2 N ). Since the computation time is proportionate to N , determining the value of N is a trade-off between accuracy and efficiency. The ADP algorithm based on RLS-TD(λ) learning is demonstrated in Algorithm 2.

Sample Average Approximation

The SAA algorithm applied in this paper is presented in Algorithm 3. It is based on the general SAA algorithm provided by [START_REF] Kleywegt | The sample average approximation method for stochastic discrete optimization[END_REF] with some modifications to fit the studied problem. Algorithm 3, vM J and g J ( χm * J ) provide a lower bound (LB) and an upper bound (UB), respectively. vM J and its variance S 2 (v M J ) are calculated as follows

vM J = 1 M M m=1 vm J (42) 
Algorithm 2: ADP algorithm based on RLS-TD(λ) learning

1 Initialize: θ θ θ 0 := 0 0 0, P 0 := I, n := 1 and τ := 1;

2 while true do 3 s n := s τ ; 4 while n N τ do 5 Obtain ân (s n ) and s n+1 by applying Algorithm 1;

6 Update P n and θ θ θ n by ( 28), ( 29) and (30); 

τ := τ + 1; S 2 (v M J ) = 1 M (M -1) M m=1 (v M J -vm J ) 2 (43) 
g J ( χm J ) and its variance S 2 [g J ( χm J )] are calculated by

g J ( χm J ) = O J ( χm J ) (44) 
S 2 [g J ( χm

J )] = 1 J (J -1) J j=1 [O j ( χm J ) -g J ( χm J )] 2 (45) 
where O J ( χm J ) and O j ( χm J ) denote the objective values of χm J calculated by (33) or the objective function of SAA2 with J samples and with only the jth sample, respectively.

Selecting the optimal solution from the solution set is based on the following optimality gap estimator [START_REF] Kleywegt | The sample average approximation method for stochastic discrete optimization[END_REF]:

E G (m) = g J ( χm J ) -vM J + Ω α S 2 (v M J ) + S 2 [g J ( χm J )] (46) 
In equation ( 46), Ω α = F -1 (1 -α) where α ∈ (0, 1) is a significance level and F (x) is the cumulative distribution function of the standard normal distribution.

5 Numerical Experiments

Computational Environment and Problem Setting

The numerical experiments in this work are coded in C++ and run on a PC with an Inter(R) Core(TM) i7-3770 CPU @3.40GHz and a RAM of 8GB. Gurobi 7.5.2 is used as the optimization solver.

by Algorithm 1 accounts for an average of 43% of the entire action space, hence it can be concluded that CPU time is considerably saved by applying Algorithm 1. 

Convergence of SAA

To evaluate the convergence of the SAA approach in the studied problem, we apply Algorithm 3 to solve a small-scale case modeled as SP1. There are 27 randomly generated patients in the waiting list, and the optimization is realized only for the present week.

First, we use different values of J to observe the gap between UB and LB as well as the CPU time.

The other parameters are set as M = 10 and J = 20000. Significance level is set by α = 0.05 for all the experiments in this work. Experimental results are provided by Table 1 in detail, and Figure 3 demonstrates the evolutions of two bounds as the sample size J increases. By replacing the stochastic parameters with their expected values, we obtain a deterministic problem-named expected value problem (EVP). The bounds of EVP are also shown in Figure 3.

Table 1 and Figure 3 show that the gap between LB and UB of SAA decreases exponentially as J increases, which is consistent with the conclusions of [START_REF] Shapiro | On the rate of convergence of optimal solutions of monte carlo approximations of stochastic programs[END_REF] and Kleywegt (2002). Specifically, the relative gap of SAA is reduced to 0.01% when the sample size J is 100, whereas that of EVP always remains large (> 12%). Besides, the CPU time dramatically grows as J increases from 1 to 20, and decreases to less than two minutes when J = 100, then slightly increases for 1 standard deviation of LB: S 2 (v M J ); 2 standard deviation of UB: S 2 [g J ( χm * J )]; 3 standard deviation of two bounds: S 2 (v M J ) + S 2 [g J ( χm * J )]; 4 absolute gap: UB-LB=g J ( χm * J ) -vM J ; 5 relative gap: (UB-LB)/UB=[g J ( χm * J ) -vM J ]/g J ( χm * J ); 6 unit: ms. J > 100.

In the second group of experiments, we tested the effect of M on LB and CPU time with J = 100 and J = 20000. Table 2 presents the experimental results in detail. Finally the tests on J with J = 100 and M = 10 were carried out and the results are exhibited in Table 3. 3 indicate that as M (J ) increases, the absolute gap and standard deviation of LB (UB) reduces, which signifies that the quality of the bound is improved. Nevertheless, there is an obvious increase in CPU time as M (J ) increases. Based on the experimental results of this subsection, the parameters of the SAA algorithm are determined as M = 10, J = 100 and J = 20000, to trade off the solution quality with computational efficiency. Note that the same parameters apply to both SAA1 

Comparison Between the Two Models

In this part, we compare the policies obtained from the benchmark model and the proposed two-level optimization model. A series of simulations for 25 consecutive weeks are carried out for the two models with various parameters. Let TS x λ denote the simulation on the proposed two-level optimization model with ρ = 0.75 and λ = x, and let TS x ρ denote the simulation with ρ = x and λ = 0.5, then the experimental results are presented in Table 4. It is obvious that the average cost in the proposed model is much lower than that in the benchmark model. Specifically, the drop of the average cost per week is between 68.7% and 81.8%. In the meantime, the proposed model reduces the waiting time of patients at all urgency levels, and shows great advantages in saving OR operating cost (by 18.8% ± 6.9%), improving the utilization rate of SICU (by 11.9% ± 5.6%) and OR blocks (by 47.7% ± 14.1%), as well as increasing the throughput of patients. The main drawbacks of the proposed model are the augmentations in the overtime of OR blocks (3.08 ± 2.00 time intervals or 1.54 ± 1.00 hours) and the shortage of SICU beds (0.24±0.24 patient-days). In addition, the proposed model consumes more CPU time than the benchmark model by 26.8% ± 22.8%, except that in case TS 1.00 λ , the CPU time consumed by the proposed model is 6.8% less.

Figure 4 compares the data from the simulations on the two-level optimization model and the benchmark model. TS 1.00 λ is arbitrarily selected for this comparison. Figure 4(a) demonstrates the distinct gap between the cost of the two models. Figure 4(b) shows that even if the CPU times are longer in TS 1.00 λ , an optimal solution can always be found within a considerable time, which is no more than 70 minutes. While apparent differences in policy performance can be found between the two models, regulating the parameters λ and ρ results in fewer variations in policy performance. From the data provided by Table 4, a generally declining trend of cost and a growing trend of CPU time can be obtreated as λ increases. With regard to ρ, the data of the cases from TS 0.1 ρ to TS 1.0 ρ reveal that a larger value of ρ leads to shorter patient waiting time, lower cost, and longer CPU time.

Conclusion

In this paper, we study an elective surgery scheduling problem with consideration of ORs and downstream resources. To deal with uncertainties regarding surgery durations, LOS, and newly arrived patients, various stochastic optimization approaches have been applied in literature. However, most of the existing approaches optimize the schedule of an individual planning horizon (e.g., one week) without considering the correlations between the adjacent planning horizons. In this work, we propose a two-level optimization model to overcome this drawback: at level one, we apply MDP to manage the patient waiting list, for the purpose of minimizing the estimated total cost in the long run; at level two, we focus on optimizing the patient-to-block assignment plan for the current decision period by applying SP. To effectively solve large- 

  otherwise x ib is set to zero; y b is equal to one, if block b is open, otherwise y b is set to zero. The regular length of every block is denoted by h and every open surgical block incurs a fixed cost of c r .

  kt , õb 0, kt , õb ∈ Z, ∀ t = 1, 2, ..., 7, b ∈ B (11) In SP1, the objective function (1) minimizes the total cost: the first two terms are the cost incurred by performing and delaying surgeries, the third term calculates the cost of keeping surgical blocks open, and the recourse problem captures the overtime cost of ORs and the insufficiency cost of SICU. Constraint (2) requires each patient to be assigned exactly once to a surgical block, and constraint (3) ensures that each patient is treated before his/her waiting time exceeds W u . Next, constraint (4) ensures that patients can only be assigned to open blocks. Lastly, x ib and y b are defined as binary decision variables by constraint (5). In the recourse problem SP-R, the objective function (6) minimizes the total cost incurred by the overuse of ORs and shortage of SICU beds. Constraint (7) is the capacity constraint of surgical blocks determining the overtime of ORs. Constraint (8) ensures that each patient i occupies an SICU bed for li days from the surgery date t b . Then the SICU capacity constraint (9) determines the extra beds required on each day. Finally, constraint (10) defines zit as binary decision variables, and constraint (11) defines kt and õb as non-negative integers, since the overtime of surgical blocks are discretized to time intervals.

  uwm τ uw + c w uw(n τ uw -m τ uw )] + c y |B| + c ob ( • •) + = max{• • •, 0}, d and l are the expectations of surgery duration and LOS, respectively. The first term of (16) is the total patient-related cost of week τ : every scheduled patient incurs a surgery cost, and every unscheduled patient incurs a waiting cost. The operating costs of OR blocks are estimated by c y |B|, with the assumption that all the blocks will be open. The last two terms estimate the penalties incurred by OR overtime and insufficient SICU beds, where ρ ∈ (0, 1] is a coefficient estimating the utilization rate of ORs and SICU beds, since these facilities might not be fully used.

  is a positive integer) and u w < u w .(ii) p(x) = p(y) if x = y. Definition 3. Let ∆ u w = {δ uw |u = 1, 2, ..., U ; w = 1, 2, ..., W u }be a vector where δ u w = 1 and the other elements are 0. Then, for s = {n uw } and a = {m uw }, the post-action state of {s, a} is defined as G s a = {g uw }: w+1 = n uw -m uw , ∀u = 1, 2, ..., U, w = 1, 2, ..., W u -1 (20)

  a) and π * (s) = arg min a∈A(s) Q n (s, a). Then the following propositions are provided: Proposition 2. (i) ∀s ∈ S, Q(s, a) is jointly convex in s and a.

  ..., p max do 17 for i = U, U -1, ..., 1 do 18 if ∃ω ∈ Z + s.t. iω = µω -∆p then 19 {µ, ω} := {i, ω };

9

  Obtain ân (s n ) by applying Algorithm 1 and let âτ := ân (s n ); 10 Assign the patients selected by âτ to surgical blocks by applying Algorithm 3; 11 Generate the new state s τ +1 := G s τ âτ + Ψ for the next week;
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 1 Figure 1: Evolutions of θ θ θ with λ = 0.5

Figure 2 :Figure 3 :

 23 Figure 2: Evolutions of θ θ θ with N = 5000

Figure 4

 4 Figure4(c) indicates that beginning from the same initial state with 13 unscheduled patients, the size of waiting list (the number of patients in the waiting list) in the benchmark model increases to 64 by the end of the simulation, which is eight times more than that in TS1.00 λ . This phenomenon can be explained by Figure4(d), which reveals that the proposed model can schedule more patients in accordance with the fluctuations of actual demand. Moreover, the similarities between the curves in Figure4(a) and 4(c)

Figure 4 :

 4 Figure 4: Comparison of the benchmark model and the two-level optimization model

Table 1 :

 1 Results of SAA with M = 10 and J = 20000 J LB Dev.LB 1 UB Dev.UB 2 Dev.Total 3 Gap.Abs 4 Gap 5 CPU time 6

	1 59,784	492.28 70,597	33.83	493.44	10,813 15.32%	30,060
	2 60,568	420.12 66,984	28.39	421.08	6,416	9.58%	157,369
	5 62,294	349.08 66,123	26.40	350.08	3,829	5.79%	753,261
	10 62,803	265.02 65,081	21.54	265.89	2,278	3.50% 2,322,564
	20 63,897	217.64 65,090	23.91	218.95	1,193	1.83% 3,095,089
	35 64,541	99.12 65,109	18.91	100.91	568	0.87% 1,864,485
	50 64,886	87.91 65,059	7.61	88.24	173	0.27%	379,870
	75 64,901	54.66 64,957	7.30	55.15	56	0.09%	136,143
	100 64,943	23.00 64,951	7.14	24.08	8	0.01%	114,072
	150 64,939	27.78 64,944	7.08	28.67	5	0.01%	240,111
	200 64,934	23.77 64,941	7.11	24.81	7	0.01%	344,426

Table 2 :

 2 Results of SAA with J = 100 and J = 20000

	M	LB	Dev.LB	UB	Dev.UB Dev.Total Gap.Abs	Gap	CPU time
	2 64,897	127.50 64,957	7.23	127.70	60 0.0924%	25,415
	5 64,938	45.78 64,961	7.30	46.36	23 0.0354%	64,220
	10 64,943	23.00 64,951	7.14	24.08	8 0.0123%	114,072
	15 64,942	24.68 64,952	7.20	25.71	10 0.0154%	182,667
	20 64,950	32.63 64,958	7.26	33.43	8 0.0123%	268,093
	Table 2 and Table				

Table 3 :

 3 Results of SAA with J = 100 and M = 10

	J	LB	Dev.LB	UB	Dev.UB Dev.Total Gap.Abs	Gap	CPU time

Table 4 :

 4 Simulation resultsAverage block fill rate per week (block fill rate: Average overtime of OR blocks per week (time intervals).Average insufficiency of SICU beds per week (patients/days).

	Cost 9 CPU 10		138,771 829,570	28,236 938,853	27,043 935,424	27,540 1,040,018	26,073 1,056,072	26,302 1,232,873	43,429 773,177	38,408 862,550	33,436 1,020,765	31,763 1,053,291	27,234 1,144,146	26,652 1,149,740	27,940 1,189,886	27,076 1,240,586	25,874 1,218,996	25,193 1,229,983
	Insf SICU 8		0.04	0.08	0.04	0.32	0.20	0.24	0.52	0.16	0.16	0.28	0.08	0.32	0.16	0.32	0.12	0.08
	Ot OR 7		1.84	5.52	5.84	5.20	4.16	5.40	5.36	2.92	5.28	5.64	6.92	4.32	4.68	5.48	6.12	4.96
	Blc Fill 6		95.2%	76.0%	73.6%	70.8%	81.6%	83.9%	79.6%	76.0%	79.6%	76.8%	73.2%	76.4%	78.0%	80.4%	76.0%	80.8%
	Utl OR 5		53.89%	80.13%	85.53%	87.15%	72.55%	72.00%	77.32%	72.30%	78.33%	81.51%	84.90%	78.67%	77.50%	76.62%	82.30%	77.23%
	Ocp SICU 4		45.91%	48.82%	50.18%	51.68%	50.26%	50.68%	53.50%	48.89%	50.38%	53.20%	50.41%	50.85%	49.59%	51.93%	53.88%	49.03%
	Throughput 3	u=6 u=2 u=1	38 147 71	39 168 97	39 168 100	39 168 101	39 168 101	39 165 99	39 168 100	39 167 96	39 168 101	38 168 100	39 165 98	39 168 98	39 168 98	39 168 100	39 168 101	39 168 100
	Wt Avg 2	u=6 u=2 u=1	1.2895 3.1769 6.2394	1.0000 1.0536 1.6598	1.0000 1.0360 1.5000	1.0000 1.0417 1.6337	1.0000 1.0179 1.4653	1.0000 1.0000 1.5051	1.0000 1.5536 2.8300	1.0000 1.4085 2.6771	1.0000 1.2083 2.1089	1.0000 1.1667 1.9000	1.0000 1.0182 1.4082	1.0000 1.0179 1.6020	1.0000 1.0298 1.7551	1.0000 1.0298 1.4300	1.0000 1.0000 1.2871	1.0000 1.0060 1.2500
	Wt Max 1	u=6 u=2 u=1	2 5 9	1 2 3	1 2 3	1 2 3	1 2 3	1 1 3	1 2 4	1 2 4	1 2 4	1 2 4	1 2 3	1 2 3	1 2 3	1 2 3	1 1 3	1 2 3
	Model		Benchmark	TS 0.00 λ	TS 0.25 λ	TS 0.5 λ	TS 0.75 λ	TS 1.00 λ	TS 0.1 ρ	TS 0.2 ρ	TS 0.3 ρ	TS 0.4 ρ	TS 0.5 ρ	TS 0.6 ρ	TS 0.7 ρ	TS 0.8 ρ	TS 0.9 ρ	TS 1.0 ρ

1 Maximum patient waiting time (weeks). 2 Average patient waiting time (weeks). 3 Throughput of patients. 4 Average occupation rate of SICU beds per week. 5 Average utilization rate of open OR blocks per week. 6 b∈B y b /|B|). 7 8 9 Average cost per week. 10 Average CPU time per week (ms).

The authors gratefully acknowledge the financial support granted by China Scholarship Council (CSC, Grant No. 201604490106).

Algorithm 3: Sample average approximation algorithm 1 Initialize M , J and J ;

2 for m = 1, 2, ..., M do 3 Generate J independent random samples; 4 Solve the integer programming problem SAA1 or SAA2, and let vm J be the optimal objective value, and χm J be the solution vector; 5 Generate J independent random samples;

6 Evaluate g J ( χm J ) and S 2 [g J ( χm J )] by ( 44) and (45), respectively;

7 Compute vM J and S 2 (v M J ) by ( 42) and ( 43), respectively;

Compute the optimality gap estimator E G (m) by ( 46);

, then select χm * J as the final solution;

The test problem is based on the scenario of elective coronary artery bypassing grafting surgeries provided by Min and Yih (2010a). Patients are classified into three urgency levels: high (u = 6), mid (u = 2), and low (u = 1). Rates of new arrivals are 1.5, 7.5, and 4.5 per week for high-, mid-and low-priority patients, respectively. Maximum allowed waiting times are determined by {W 6 , W 2 , W 1 } = {2, 8, 40} weeks. Surgery durations are discretized into time intervals of 30 minutes. Then according to the data from [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] and [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF], the average surgery duration d and the average LOS l of vascular surgeries are 4 intervals and 3.5 days, respectively, and the standard deviations of d and l are 2.03 intervals and 3.5 days, respectively. There is one OR with 10 available surgical blocks per week, and the regular time length of each block is h = 8 intervals. By [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF], the overtime cost is c o = 780 per interval and the unit waiting cost is c w = 1.5c p = 750.

Furthermore, we define that the fixed operating cost for each open block is c r = 800, and the unit cost for not having an SICU bed for a treated patient is c e = 1000 per day.

Convergence of RLS-TD(λ) based ADP

To know the effectiveness of the ADP algorithm based on RLS-TD(λ), simulations for a period of 25 consecutive weeks are conducted and the values of the parameter vector θ θ θ in each iteration are recorded.

Figure 1 demonstrates how the searching depth N affects the convergence rate, and Figure 2 illustrates the evolutions of θ θ θ with N = 5000 and λ = 0, 0.5, 0.75 and 1. We arbitrarily select θ 1 , θ 3 , θ 4 and θ 12 to be shown in the figures. Figure 1 indicates that the values of θ θ θ converge faster as N is larger, and the CPU time consumed by the optimization of the first level grows linearly as N increases. These results are consistent with the analysis in Section 4.1. From the curves of Figure 2 we can see that the values of θ θ θ converge rapidly in all cases, regardless of the changes of λ. Besides, we compute the size of the action space A(s) for each visited state in the simulations. The results show that the actions evaluated scale MDP problems, we firstly carry out structural analyses and design Algorithm, 1 which accelerates the procedure of finding the greedy actions within the action space. We then propose an ADP approach, based on RLS-TD(λ) (Algorithm 2), to simplify the exploration in the state space. In addition, an adapted SAA algorithm is adopted in this work to convert SP into a solvable deterministic integer programming problem.

Numerical experiments are performed to validate the convergence and efficiency of the proposed algorithms. We then conduct simulations to compare the two-level optimization model with a benchmark SP model under the same conditions. Simulation results indicate that the former has significant superiorities in lowering the total cost, shortening the waiting time of patients, saving the operating cost of ORs, and improving the utilization rates of ORs and SICU beds. On the other hand, the proposed model consumes more CPU time and might increase the overuse of hospital facilities. Moreover, the policy generated by the proposed model is not greatly affected by the model/algorithm parameters (ρ and λ), so it is always of better overall quality than the policy obtained from the benchmark model.

In the future, the proposed model can be extended to a more comprehensive one by integrating more issues into the model, such as cancellations and rescheduling of surgeries, multiple clinical departments, and the availability of surgeons. In addition, we need to investigate the properties of the integer programming problem translated from SP via the SAA approach, to develop a more efficient method of solving the assignment problem.
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