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Abstract

This paper addresses the simulation of complex systems which consider phenomena with different time

scales. Such problems are encountered on studies of electrical systems which try to take into account the

simulation of the power converter and its control laws, over representative operating cycles of several hours.

Moreover, when storage elements are integrated into a power chain, their aging may need the designer to

consider larger time scales, which can then exceed a few years. It is the reason why most studies separate the

time scales between the slow dynamics for the energetic, thermal and aging phenomena, and the fast ones

to study the power converter and its control laws. This paper presents an original cycle-based and multi-

rate method for the simulation of power systems with a wide range of time scales and with high mutual

dependency between the fast and slow state variables. This method is applied to the supercapacitor energy

storage system of a full-electric ferry. The proposed simulation results take into account at the same time the

switching of the power converter and the aging of the supercapacitor, with a reduction of the computational

effort greater than 105. In other words, while a full calculation of the problem takes 10 centuries on a

personal computer, the proposed method permits to have the same result in only 15 days.

Keywords: Multirate method, Computer simulation, Supercapacitors, Full-electric ferry, Aging

1. Introduction

Simulation is an important step in the optimal design of power systems. To be effective and useful, it

must take into account multiphysics and multi-time scales phenomena. More specifically, the integration of

the power converter in the optimization process of complex power conversion and storage systems leads to

real problems of computation time (Crosbie et al., 2007; Pierquin et al., 2014; Herr et al., 2017; Dang et al.,
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2017). Indeed, the pulse width modulation used by the power stage requires a sampling time at a much lower

value than the switching period to give accurate results. Then, even with an efficient variable step solver, this

short time step reduces the reachable simulation horizon within a reasonable time. The method proposed

in (Middlebrook and Cuk, 1976), which is the most used today, permits to avoid this problem by working

with average values. The idea is to replace the power stage by a set of switched models. In the framework

of the piecewise linear systems, it is possible to deduce a single equivalent circuit which is then only set

by the value of the duty cycle and switching frequency (Olivier et al., 2010; Hernandez-Torres et al., 2010;

Crow and Chen, 1996). Once the power stage is averaged, there is much less constraints on the minimum

step size and the simulation horizon can be increased. Nevertheless, the same problem arises if one wishes

to simultaneously simulate phenomena with very different time scales. To illustrate this difficulty, we can

Figure 1: The ferry Ar Vag Tredan and its power cycle.

rely on the Ar Vag Tredan ship application (see Figure 1), which was introduced in recent works (Bennabi

et al., 2016; Trieste et al., 2015; Bernard et al., 2017). This zero emission ferry uses supercapacitors to store

the electric energy. It makes 36 trips daily and therefore, it recharges 36 times per day its supercapacitors
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at a dock (in less than 5 minutes). For this application, the design optimisation mainly depends on the

supercapacitor aging. Because this aging depends on the voltage and temperature cycles, a multiphysics

modeling is required. To compute the aging of the supercapacitor, a time horizon of 20 years is needed.

But in the same time, this aging needs an accurate voltage profile which imposes a time step lower than few

seconds. Last but not least, the thermal constant is close to the daily cycle and needs a simulation of many

hours to achieve a steady state. All in all, evaluating the aging of supercapacitors on this application requires

many steps, such as making an average model of the power converter, simulating at least one round-trip to

have the voltage profile and repeat the operation up to reach the steady state temperature.

In (Hmam et al., 2016a, 2017) the authors present an original multirate method for the simulation of such

multi-physics systems, containing a wide range of time scales. This method used a cycle-based problem

formulation, which consists in finding the repeating operation sequences of the system, at the different time

scales. This method is applied to the supercapacitor ferry by considering round-trip cycles to build daily

cycles, which is then used to form annual cycles. In order to reduce the simulation time, an average power

converter model is used.

In this paper, we propose to extend this previous work by taking into account in the same time the

switching of the power converter and the aging of the supercapacitor. Such a tool thus makes way for the

development of a single model, able of handling both the problem of control (corrector adjustment) and

energy management (taking into account the lifetime of the various devices). In order to do that, the whole

system is modeled by a set of ordinary differential equations, without making assumptions about the cou-

pling between physical domains. Next, by using the cycle-based formulation, the problem is decomposed

into PWM cycles, used to build one round-trip, also used to build a daily and next an annual cycle. Finally,

this formulation permits to calculate 20 years of operation, from few years, which are computed from few

days, computed from few round-trips, themselves computed from few PWM periods.

The paper is organized as follows. In Section 2, a brief description of the system is presented, as well as

the cycle-based decomposition, which describes the operation profile of this ferry during its whole lifetime.

This section also presents an approach of discretization of classical solvers, to make them compatible with

a cycle representation.

In Section 3, the ODE modelling of the supercapacitor ferry is presented. This model takes into account

the electrical dynamics of the supercapacitor and the smooth inductor, the current controller (with a classical

PI regulator), the thermal dynamics and the aging of the supercapacitor. Next, Section 4 presents some
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simulation results where all the previous equations are computed together. Results are given for each layer

of the formulation, from the PWM cycles to the 20 years of operation. Section 5 is the conclusion.

2. Description of the application and cycle-based formulation

2.1. Operation of the ferry

This section presents the full-electric ship Ar Vag Tredan, operating since September 2013 and crossing

the harbour of Lorient, France. It uses supercapacitors to store all the electric energy. The power cycle

for one round-trip is illustrated by Figure 1. The ferry makes 36 trips daily and therefore, it recharges 36

times per day its supercapacitors at a dock. The charging station is designed for a constant power charging

strategy. The duration of this recharge is 5 min. The operation profile of this boat is particularly interesting

because it can be decomposed into a recursive formulation. Indeed, as shown by Figure 2, the lifetime of

the ferry can be divided into 20 successive years (Y ). Each year is composed of 335 successive operating

days (Do), followed by 30 days of rest (Dm) due to a planned annual maintenance (in addition of a real-time

monitoring of the state of health of supercapacitors). In the same way, an operating day is composed of 36

successives round-trip cycles (Co), followed by a rest period of 6 hours (Cr cycles). Finally, each round-trip

can be subdivided into a succession of PWM cycles (M ).

Do

Y Y Y Y Y

Do Do Do Dm Dm Dm

Co CoCo

M MM M

Co

1 yr

1 day

1/2 h

100µs

Pb(x, t)

Y(x, t)

Do(x, t)

Co(x, t)

Cr Cr

20 yr

1 yr

1 day

1/2 h

18 h

335 days

Figure 2: Cycle-based formulation of the usage of the ferry Ar Vag Tredan, for 20 years of exploitation, from the PWM cycle up to

the lifetime.

What is interesting in this cycle-based formulation is that each layer can be computed from a partial

calculation of a lower one. For instance, it is not necessary to simulate all of the 20 years of operation
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to estimate the aging of the supercapacitors. By using a first order extrapolation method for example, the

calculation of only one or few years permits to estimate an average degradation of the supercapacitor, which

can be extrapolated over several years. The formulation makes it easy to extend these extrapolations for each

layer. Thus, each year can be computed from the extrapolation of few operating days, each day from few

round-trips and finally each round-trip from few PWM cycles. This example on a ferry application is easily

extendable to many other applications. For instance, in (Pierquin et al., 2016), a power converter with its

PWM modulation and passive smoothing filter supply a transformer which considers electromagnetic and

thermal phenomenon by using finite element method. In this work, the authors manage to decouple the

converter from the transformer through a waveform relaxation method. This method can be replaced by a

cycle-based formulation, by considering a first scale with the PWM cycle (M ), a second scale with a sine

wave period (S) which can then be extrapolated over few hours (H). In (Robert et al., 2017), the authors

consider an exhaust gas recirculation valve, which takes into account the electrical, mechanical, thermal and

magnetic domains. The simulation is achieved with an average model for the power converter and with a

relaxation method for the thermal behavior. Once again, a cycle-based formulation is easy to apply on such

problem, with a cycle defined at the scale of one PWM period (M ), a second at the scale of one mechanical

cycle of 10 seconds (C) and a third at the scale of few hours in order to take into account the thermal

transient. It is therefore possible to apply this formalism to many problems, as soon as its description can

be made on the basis of successive cycles. This method is more detailed in the next section.

2.2. Cycle-based formulation

In (Hmam et al., 2016a,b), an original cycle-based formulation has been proposed. It permits to organise

the problem with stacked layers and to help the simulation of wide time-scale problems. In this section,

a brief description of this method is given. Firstly, it assumes that the problem to be addressed can be

decomposed into a finite number of elementary cycles, as explained in the previous section. It is also

considered that the complete dynamic problem can be decomposed into a series of k sub-problems, each

one defined by a non-autonomous ordinary differential equation (ODE) such as:

ẋ = fi(x, t), i ∈ [1; k] (1)

Each elementary problem fi(x, t) is simulated on a time lap Ti, corresponding to an elementary cycle

simulation. Applied to our problem, this time lap can be one year, one day, a half-hour or finally a PWM

cycle. Now, by considering the problem (1), the simulation of one cycle on the shortest layer permits to
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pass from an initial state xn to the next state xn+1, such as :

xn+1 = xn +

∫ tn+Ti

tn

fi(x, t) dt (2)

The proposed method considers that the evolution of the state vector x(t) can be substituted by its average

rate of change at the scale of an elementary cycle of length Ti. This averaging method is well known in

power converter modelling (Middlebrook and Cuk, 1976; Tse and Bernardo, 2002; Maksimović et al., 2001;

Banerjee and Verghese, 2001) where the electrical state variables are replaced by their mean value, at the

scale of the switching frequency. Here, this averaging is not calculated from analytical expressions but is

computed numerically by an ODE solver. This approach is then generalized to any kind of cycle. The

average state vector derivative at the scale of Ti is given by the next equation:

Fi(xn, tn) =
1

Ti

∫ tn+Ti

tn

fi(x, t) dt (3)

By this way, the system is solved for an operating cycle Ti and then only state vector variations Fn(xn, tn)

over a time interval [tn, tn + Ti] are evaluated. It is equivalent to the average rate of change, or simply the

slope between the endpoints of the interval. Using the formulation (3) in equation (2), the problem can be

written in the form of the following recursive scheme:

xn+1 = xn + Ti Fi(xn, tn) (4)

where xn describes the state vector at the beginning of each cycle. Because the initial problem is time

continuous, and in the case of a succession of several identical cycles Fi, it is assumed that the average rate

of change estimated at the scale of a cycle Ti for a given state vector xn could be close from one cycle to the

following. Then, the state vector for the next cycles can be approximated with a variable step discretization

method and using extrapolation concept. In order to illustrate this point, let us consider the problem of m

successive cycles Fi, starting from the initial condition xn. The aim is to evaluate the state vector variations

over a time interval [tn; tn+m]. If all the cycles are evaluated, the final state vector xn+m is given by :

xn+m = xn + Ti

m−1∑

j=0

Fi(xn+j , tn+j) (5)

In order to speed-up the simulation, the idea is to approximate the right term of the equation (5) by an

approximation function Φi which can be likened to a conventional numerical integration scheme (Gear and

Petzold, 1984; Stoer and Bulirsch, 2002), given by the next equation :

xn+m = xn + hΦi(xn, tn;h), with h = mTi (6)
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with m ∈ N∗, the number of consecutive cycles Fi. The function Φi depends on the discretization method

and of the chosen step size h. It is noteworthy that the extrapolation step size h must be a multiple of the

operating cycle Ti. Figure 3 gives an example of cycle homogenization, in the case of m-subsequent cycles

of length T0. The averaging function F0 is calculated with respect to equation (3) and is then called m

times for the computation of the complete problem (from x0 to xm). For a faster computation, extrapolation

function Φi can be used to estimate the total change of the state vector from only few evaluations of F0.

x0

x1

t0 t1 t2 tm−1

x2

xm−1

F0
(x

0
, t0

)

F0
(x1

, t1
)

t0

t1 t2 tm

F0
(x

0
, t0

)
F0

(x1
, t1

)

t

t

tm

tm−1

xm

x0

x1

x2

xm−1

xm

Φ0(
x0,

t0;
mT0)

T0

F0 F0 F0 F0 F0

t

Figure 3: Example of homogenization process of m successive cycles F0 of length T0. The extrapolation function Φ is used to

overcome a costly calculation time of all the m-subsequent cycles.

2.3. Multi-layer problem formulation

Now, we were able to lay down the basic principle of the method: A continuous system subject to oper-

ation cycles can be replaced by a discret homogenized system inwhere the extrapolation of cycles becomes

possible. This method can then be extended with a multi-layer formulation, where cycles are described

recursively from sub-cycles. The example illustrated by Figure 2 is such a multi-layer formulation, where
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each cycle can be expressed from a serie of shorter sub-cycles. To illustrate this extended formulation, one

can start with the computation of the average variation of the state vector over one PWM cycle, noted M ,

as given by equation (3):

M(xn, tn) =
1

TM

∫ tn+TM

tn

f(x, t) dt (7)

where f is the ode function of the complete system. From now on, an index is added to the state vector

in order to differentiate the level of considered layers. For the description of a round-trip cycle, the index

notation is xcn for the nth cycle. In the same way, its time length is noted T c. With such a notation, it

becomes possible to describe a round trip Co of half an hour, from a sequence of PWM cycle M of 100µs:

Co(x
c
n, t

c
n) =

1

T c

18,000,000∑

j=0

TMM(xMj , t
M
j ) (8)

The same equation is used to compute a rest cycle Cr of the same length but with a null power profile. One

can then compute an operating day Do from the previous cycles Co and Cr:

Do(x
d
n, t

d
n) =

1

T d




17∑

j=0

T cCo(x
c
j , t

c
j) +

23∑

j=18

T cCr(x
c
j , t

c
j)


 (9)

where the index d is used for all variables relating to the day. A day of maintenance Dm is computed from

a sequence of idle cycles Cr, such as:

Dm(xdn, t
d
n) =

1

T d

23∑

j=0

T cCr(x
c
j , t

c
j) (10)

Finally, it becomes easy to build a year Y from day cycles Do and Dm:

Y (xyn, t
y
n) =

1

T y




334∑

j=0

T dDo(x
d
j , t

d
j ) +

364∑

j=335

T dDm(xdj , t
d
j )


 (11)

and the 20 years of exploitation from a sequence of years Y :

Pb(xpbn , t
pb
n ) =

1

T pb

20∑

j=0

T yY (xyj , t
y
j ) (12)

But the set of equations (7) to (12) is just a rewrite of the problem. It does not reduce the computational

effort. In order to do this, it is necessary to use approximation functions, as given by equation (6), where it

is not necessary to compute all the sub-cycles of a sequence, but only few of them. The next section present

such extrapolation methods.
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2.4. Extrapolation methods

The main idea of the extrapolation principle, presented in (Hmam et al., 2016a), is to reduce the compu-

tation time by evaluating a minimum number of cycles in a sequence. In order to solve ordinary differential

equations, variable step integration schemes, such as Runge-Kutta methods, are commonly used (Holsapple

et al., 2007; Herty et al., 2013; Anastassi and Kosti, 2015). In the multi-layer formulation proposed in this

paper, such an integration scheme can be used to help evaluating the evolution of the state vector over many

successive cycles. However, it must be adapted because the problem to solve is not an ordinary differential

equation but a discrete iterative equation, as given by equation (6). The most straightforward adaptation

from the continuous to discrete scheme is obtained by the second order method Heun-Euler (Dormand and

Prince, 1980; Fehlberg, 1969). Indeed, this method only needs 2 evaluations, at the beginning and at the

end of the interval. Figure 4 gives a discretized version of this explicit second order method (Hmam et al.,

2016a). The concept of integration is now replaced by the concept of extrapolation. Then, for an extrapola-

xn

tn tn+m

t

xn+m

x̃n+m

εn+m

Fi

k1

Fitn+m−1

k2

tn+1

k1 +
k2

2

extrapolation
Ti

exact solution

Figure 4: Illustration of the Heun-Euler embedded method, adapted to this multi-layer formulation.

tion of m successive cycles Fi and starting from a time tn, it is possible to compute an approximation of the

state vector variation with the evaluation of only two sub-cycles, which are the first and the last one. The

extrapolation is then considered between n + 1 and n + m − 1 and is obtained considering the following

equations (Hmam et al., 2016a):
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k1 = Fi(xn, tn)

k2 = Fi (xn + (m− 1)Ti k1, tn + (m− 1)Ti)

xn+m = xn +mTi
1
2 (k1 + k2)

x̃n+m = xn + Ti ((m− 1)k1 + k2)

εn+m = x̃n+m − x̃n+m = Ti
m−2
2 (k2 − k1)

(13)

Such a second order and explicit method is very efficient for nonstiff problems and for a small number

of extrapolation cycles. In the case of stiff problems with large extrapolations, it is preferable to use implicit

methods. The main difficulties with this kind of method are the need to evaluate the Jacobian matrix and

the use of many iterations to converge toward a solution. That makes these implicit solvers highly stables,

but also computationally intensive. A compromise is the use of semi-implicit methods, such as the matlab

ode23s method, which is based on a Rosenbrock method and whose algorithm is detailed in (Ashino

et al., 2000). It is called semi-implicit because it only uses one iteration to converge and it is assumed

that the Jacobian matrix is constant on the extrapolation interval. Considering these assumptions and by

a reformulation of the ODE solver in a discrete form, a condensed form of the implemented algorithm is

given by the next set of equations (Ashino et al., 2000):

f0 = Fi(xn, tn)

k1 = W−1 f0

f1 = Fi (xn + 0.5mTi k1, tn + 0.5mTi)

k2 = W−1(f1 − k1) + k1

xn+m = xn +mTi k2

f2 = Fi (xn+m, tn+m)

k3 = W−1 (f2 − c32(k2 − f1)− 2 (k1 − f0))
εn+m = mTi

6 (k1 − 2 k2 + k3)

(14)

where

W = I−mTi d J, d =
1

2 +
√

2
, c32 = 6 +

√
2 (15)

and

J ' ∂F (xn, tn)

∂x
(16)

It can be noted that this method is a first step at last and allows to use the evaluation f2 both at the

end of a step and at the begining of the next one. Moreover, an expensive operation in computation time
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is the numerical evaluation of the Jacobian matrix. It is the reason why only one evaluation is done per

extrapolation step. Now that the multi-layer and cycle-based formulation is presented, it can be applied to

the Ar Vag Tredan Ferry.

3. Application of the multi-layer formulation to the Ar Vag Tredan ferry

It is proposed to apply the idea of cycle-based decomposition of the operation profile of the Ar Vag

Tredan ferry, presented earlier in this paper (Olivier et al., 2014; Trieste et al., 2015). The objective is

to be able to simulate, with a single model, all the dynamics of the power storage unit and its power

converter. Figure 5 illustrates a simplified diagram of the power chain, including the supercapacitors, the

power converter with the smoothing inductor, and the PI controller for the current regulation. A thermal

model is also considered to take into account the aging of the supercapacitor parameters. The next section

is dedicated to the presentation of the multi-physics modeling.

il

∫
dt Ki

Kp

εi

+

− +

+ + −

u− 1

u

uc

iref

Rs

Csc

Tsc

Rp

Vdc

is

Ta

L

α

m(t)

ucmdusc

Figure 5: Diagram of the energy storage system.

3.1. System modelling

As said before, this application can be divided into three main parts, which are the supercapacitors, the

power converter with its smoothing inductor, and finally the current controller with its modulation function.
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It should be recalled that the main objective of this work is to propose a full simulation of the system, from

the PWM to the lifetime of the supercapacitors, without formulating any hypothesis or reduction of the

proposed models. This is why we don’t use average equivalent models, neither steady state assumption for

the faster dynamics (Hmam et al., 2016a; Bouabdallah et al., 2013; Prieto et al., 2016).

For the supercapacitors, electrical, thermal and aging phenomena (Kreczanik et al., 2014; Trieste et al.,

2015) are taken into account through four state variables:

d uc
dt

=
ic
Csc

(17)

d Tsc
dt

=
1

Cth

(
Pφ −

Tsc − Ta
Rth

)
(18)

dCsc
dt

= Kc0Csc(0) ksc(uc, Tsc) (19)

dRs
dt

= Kr0Rs(0) ksc(uc, Tsc) (20)

which need the next intermediate equations:

ic =
Rp il − uc
(Rs +Rp)

(21)

Pφ = Rs i
2
c +Rp (il − ic)2 (22)

ksc(u, T ) = 2
u−U0
∆U 2

T−T0
∆T (23)

In this work, the power converter is considered perfect. This assumption seems very restrictive, but in

reality it is very easy to consider a dynamic power stage and to include its losses. But to keep a certain

simplicity on the writing of the model, it is preferred here to consider only the sequential aspect of the

commutation law of the power stage. Then, the output voltage ucmd is described by a simple switching

function such as:

ucmd =





Vdc if u = 1

0 otherwise
(24)

The control signal u is based on a natural modulation between the setting duty-cycle α calculated at the

output of the PI current controller and a symmetric triangular carrier m(t) (normalized to [0;1]). Written

under the formalism of an ODE, the PWM signal is given by:

m(t) =
1

TM
(
t mod TM

)
(25)

u(t) =
1

2
[1 + sgn(α−m(t))] (26)
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where α is the duty cycle, (. mod .) is the modulo operation and sgn(.) the sign function. Finally, the mod-

eling of the PI controller of the current il in the smoothing inductor requires two additional state variables

given by:

d il
dt

=
ucmd − (uc +Rs ic)

L
(27)

d εi
dt

= iref − il (28)

where ic is obtained from equation (21). The control angle α is then obtained by using the next equation:

α = εiKp + (iref − il) Ki (29)

For the current setting iref , two different strategies are considered. The first one, acting during the discharge

of the supercapacitor and during the first phase of the recharge, consists in imposing the power profile given

in Figure 1:

iref =
Psc(t)

uc
(30)

This strategy is used while the supercapacitor voltage usc does not exceed the end of charge voltage Ueoc.

This is why a proportional action is implemented at the end of the phase of recharge:

iref = min (Psc(t) ; (Ueoc − uc)Keoc) (31)

All the system parameters are summarized in Table 1. All the different models of this powertrain are detailed

in Trieste et al. (2015, 2011). In these works, the electrical, thermal and aging models are presented and

compared to experimental data.

3.2. Cycle-based formulation

The simulation of this system is done using the cycle-based formulation presented in Section 2. The

first step of this method is to write the problem into classical ODEs functions. Indeed, it permits to use

classical solvers on the lower layer, which corresponds in this example to the PWM cycle. The considered

state vector for this problem is given by

x = [uc Tsc Csc Rs il εi]
T (32)

with, as a reminder, uc the supercapacitor voltage, Tsc its temperature, Csc its capacitance, Rs its equivalent

serial resistance, il the current in the smoothing inductor and εi the integrator state of the PI controller.
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Table 1: System parameters.

Symbol Quantity Value

L Smoothing inductance 1 mH

Rp Balancing resistor 500 Ω

Rs Serial resistor 1.45 mΩ

Csc Equivalent capacitance 400 F

Ns Number of cells 216

Ki Integrator gain 700

Kp Proportional gain 1.5

Keoc Proportional gain 30 kW/V

Ueoc End of charge voltage 583.2 V

Vdc DC-bus voltage 600 V

U0 Nominal voltage 583.2 V

∆U Aging sensitivity 43.2 V

T0 Nominal temperature 25 ◦C

∆T Aging sensitivity 10 ◦C

Kc0 capacitance degradation rate -1.5%/yr

Kr0 resistance degradation rate +10%/yr

Rth thermal resistance 5 ◦C/kW

Cth thermal capacitance 500 kJ/◦C

TM PWM period 100 µs

Then, the set of previous equations is rewritten to obtain three ODE:

d x

dt
= fM (x, t) (33)

d x

dt
= fCr(x, t) (34)

d x

dt
= fDm(x, t) (35)

These three fundamental ODE correspond to the system equations during respectively the working phases,

the 8 hours of rest per day and the 30 days of maintenance per year (see Figure 2). The second step con-

sists in the calculation of the average state vector variations at the scale of each cycle. The only difference

between these three ODEs is the power profile Psc considered on the cycle. For the ODE given by equa-

tion (33), this power profile corresponds to one round-trip, as shown in Figure 1. For the ODEs given by

equations (34) and (35), the power profile Psc is null over the cycle and the power converter is off. We can
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therefore consider that:

fCr(t, x) = fDm(x, t) (36)

Then, a PWM cycle is computed with the system given by equation (33) and by using a classical ODE

solver, such as (Hmam et al., 2016a):

M(t, x) =
1

TM

∫ t+TM

t
fM (x, t) dt (37)

where TM is called the Horizon of the cycle. Here, it corresponds to the period of the PWM signal. The

solver is here a classical explicit Runge-Kutta method based on Dormand-Prince pair (Dormand and Prince,

1980; Sanchez-Gasca et al., 1995). The same calculation is done for the daily and annual rest periods, with

respectively the functions fCr and fDm:

Cr(t, x) =
1

T c

∫ t+T c

t
fCr(x, t) dt (38)

Dm(t, x) =
1

T d

∫ t+T d

t
fDm(x, t) dt (39)

(40)

with T d for one day and T c for one cycle of a half hour. The last step of the method is the extrapolation of

these mean variations over few or several cycles. These extrapolations are fulfilled by modified continuous

solvers given by the sets of equations (13) and (14). Different discrete solvers can be used for each layer, i.e.

for the extrapolation of PWM cycles, round-trips, days and years. When a sequence is composed of a small

number of cycles, an explicit and low order method should be preferred. The main reason is that whatever

the number of extrapolated cycles, a second order explicit solver needs two cycles, while an implicit third

order solver needs at least 9 function evaluations (including 6 evaluations for the Jacobian in the case of

this 6th order ODE problem). The efficiency of the method can then be highly reduced if the extrapolations

are short too. It is why the implicit method is used only for the extrapolation of the PWM cycles. Indeed,

this layer involves an high number of consecutive cycles to pass from the switching period (which is 100 µs

in this study) to one round-trip (of 1/2 h). Then, only implicit formulations are stable and efficient enough

to give accurate results even with these very large extrapolation steps. Conversely, for the upper layers, the

number of successive cycles is relatively small. Low order explicit extrapolation methods are then used for

the computation of the days, years and lifetime cycles.
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4. Simulation results

Figure 6 gives the simulation results obtained for the first round-trip of the ferry.

These results are obtained by using a classical ode45matlab solver on the PWM cycle with a maximum

relative tolerance of 1E-7. The extrapolation of PWM cycles is computed with a relative tolerance of 1E-2

with an implicit third order solver given by the set of equations (14). A focus of this result is given by

Figure 7, where only the first 4 ms are illustrated (i.e. first 40 PWM cycles). We can see that the step size is

automatically adapted to the states variation speed. During the transient response of the current controller,

the extrapolation is of few PWM cycles only, to keep the extrapolation error of the current il and the PI

integrator εi under the maximum relative tolerance. As soon as this transient state is over, the step size is

highly increased to reach extrapolations of more than 100 seconds (ie more than 1,000,000 PWM cycles).

It is then obvious that such extrapolations are possible only by using an implicit solver and only if the lower

layer is computed with a small tolerance. All-in-all, for a relative tolerance of 1E-7 for the PWM layer and a

tolerance of 1E-2 for the round-trip layer, the number of PWM cycles that are computed (including rejected

steps) is 20,062. The calculation effort is then reduced by a factor of 9000 for this layer.

Thanks to the recursive form of this formulation, it becomes easy to simulate one day from the extrap-

olation of round-trip cycles. This result is given by Figure 8 and by considering for this layer a relative

tolerance of 1E-2.

Here, the dominant phenomenon is the temperature variation. This time, the used method is a second

order with an explicit formulation. Then, each cycle needs two evaluations. We can see that 15 cycles are

computed, then the speed-up factor is of 1.6, which is a much less value than for the previous layer. It is

mainly due to the small number of consecutive cycles, which do not permits large extrapolations. Moreover,

the thermal constant imposes to calculate the transient states with cycles close to each other. Nevertheless,

the gain are cumulative and the total computation effort for both layers is close to 15,000.

The last result presented in this paper is the simulation of one year from daily-cycles (see Figure 9). It is

obtained with a second order and explicit solver, with a relative tolerance of 1E-2. This time, 18 daily-cycles

evaluations have been necessary to simulate 365 days. The speed-up factor is then close to 20.

When we compute the 20 years of operation of the ferry (not illustrated here) by using annual-cycles, a

gain of 2.5 is obtained for a tolerance of 1E-2.

All-in-all, while a full-computation of the problem needs the evaluation of more than 1012 PWM cycles,

the proposed method permits to reduce this number of evaluation to about 107. Another point of view is to
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Figure 6: Simulation result for the round-trip layer, composed of PWM cycles.

17



time (s)

vo
lta

ge
 u

c (V
)

full computation
extrapolated cycles
computed cycles

time (s)

te
m

pe
ra

tu
re

 
 T

sc
 (°

C
)

time (s)

 C
 (p

.u
.)

time (s)

 R
s (p

.u
.)

time (s)

cu
rre

nt
 i l (A

)

time (s)

PI
 in

te
gr

at
or

 
i (A

.s
)

0 0.5 1 1.5 2 2.5 3 3.5 4
time (s) 10-3

0

0.5

1
co

m
m

an
d 

(p
.u

.)

PWM command
duty cycle ( )

Figure 7: Focus on the first 4 ms of the simulation of one round-trip, composed of PWM cycles.
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Figure 8: Simulation for one day calculated from round-trip and rest cycles.
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Figure 9: Simulation for one year calculated from operating days and rest days.

consider the effort on the simulation time. Even if a full computation of this problem is impossible with a

classical personal computer, a quick estimation from the full simulation of one hour of operation leads to a

time of 10 centuries to solve the 20 years of lifetime. The proposed method permits to reduce this time to

only 15 days.

5. Conclusion

In this paper, a cycle-based formulation of initial value dynamical problems is presented. It has been

proposed to address the problem of the simulation of large timescale and multi-physics applications, es-

pecially when it is possible to split the problem in a sequence of few elementary initial value problems.

By also offering a multi-layer formulation, it becomes possible to build recursive cycles at different time

scales, and thus to take into account all periodicities in the operation of a system. This method is applied

to the simulation of a full-electric ferry, which only uses supercapacitors as energy storage device. With

this original approach, it becomes possible to simulate in the same time and with the same set of equations,

the electrical, thermal and aging behaviour of the supercapacitor and its current controller, from the scale

of the PWM cycle (100 µs), until its total operating lifetime (20 years). A speed up factor of about 105 on

the simulation time is obtained. As a conclusion, this work proposes an original framework that makes the

simulation of dynamic and multi timescale systems more affordable, mainly when the operating profile can
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be reduced to a sequence of recursive cycles. A possible evolution of this work is to improve its integra-

tion with classical multi-physics modeling software such as Simscape or Modelica. This would drastically

speed up the simulation time of multi-physics systems without spending time to reformulate the model at

the different time scales.
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