Jean-Gabriel Bauzin 
email: jbauzin@parisnanterre.fr
  
Minh-Nhat Nguyen 
  
Najib Laraqi 
  
  
  
Thermoelastic mechanical and heat conduction study through inverse method and transfer functions

Keywords: Inverse thermoelastic problem, Analytical thermoelastic resolution, Thermal displacement, Laser surface treatment

This study proposes an inverse thermoelastic methodology, to study the effect of a laser treatment being applied to the surface of a thin cylinder bonded to a displacement sensor. By means of an analytical approach, we establish the thermoelastic transfer function between the temperature of the heated surface, and the mechanical dilatation of the cylinder. Subsequently we measure, at discrete time intervals, the displacement of an internal point of the cylinder; we then apply a deconvolution product to those measurements, in order to identify the temperature of the heated surface. In this way, it is no longer necessary to know the temperature field to solve the thermoelastic problem of our experimental device. Then, two examples drawn from previous works, one theoretical, the other experimental, are used to demonstrate the accuracy and efficiency of our approach based on the measurement of thermal displacements. Lastly, we demonstrate that our inversion procedure can be applied successfully even for situations where the measurement signal is affected by noise, through using the Tikhonov regularization method.

Introduction

In most mechanical experiments, we find that temperature plays a major role in the behavior of the system under study. Mechanical constraints, and thus, the displacements resulting from mechanical distortions, do depend on the temperature field present in the system. This is particularly relevant in the case of thermal surface treatment processes that are applied to manufactured objects. Typically, a thermal surface treatment process is using a laser beam in order to modify the mechanical characteristics of the material's surface. Indeed, thermal surface treatments are essential to many industrial processes, to the point that they justify that the associated thermomechanical problem be properly formalized and solved. Several theoretical studies have already dealt with the case of a laser treatment being applied to the surface of a cylinder, by solving the so-called Inverse Heat Conduction Problem (IHCP) through different methods [START_REF] Sun | Estimation of Surface Absorptivity and Surface Temperature in Laser Surface Hardening Process[END_REF]- [START_REF] Lee | A method for inverse analysis of laser surface heating with experimental data[END_REF]. In the context of heat transfer studies, the problem of estimating boundary conditions, such as the heat flux flowing thru the surface, or such as the temperature at the surface, has been the subject of many studies in the literature [START_REF] Beck | Inverse Heat Conduction: Ill-Posed Problems[END_REF]- [START_REF] Ozisik | Inverse Heat Transfer: Fundamentals and Applications[END_REF]. By reviewing the studies related to the IHCP problem, we observe that temperature measurements are being used in almost every case. Experimentally, it is found that determining the evolution of temperatures at certain points of the device is essential to solve the IHCP. Sensitivity analysis makes it possible to analyze and optimize the position of temperature sensors in order to ensure feasibility of the resolution. But, as mentioned above, in the case of laser surface treatment processes, the problem studied is not only of a thermal 2 nature, but also mechanical. Wang et al. [START_REF] Wang | The influence of temperature and surface conditions on surface absorptivity in laser surface treatment[END_REF] conducted an experiment to measure temperatures inside solid devices by means of thermocouples, and based on the obtained measurements, they performed a thermal inverse study by the Conjugate Gradient method. As indicated in many studies trying to solve the Inverse Problem [START_REF] Maillet | Techniques inverses et estimation de paramètres. Partie 1[END_REF]- [START_REF] Bauzin | Thermal characterization of frictional interfaces using experiments and inverse heat conduction methods[END_REF], Sensitivity Analysis shows that the location of the thermocouples should be as close as possible to the heated surface. Then, using the experimental data from Wang et al. [START_REF] Wang | The influence of temperature and surface conditions on surface absorptivity in laser surface treatment[END_REF], Chen and Wu [START_REF] Chen | Estimation of surface absorptivity in laser surface heating process with experimental data[END_REF] had proposed an hybrid technique based on Laplace Transform and on the Finite Difference method, to estimate the temperature of the laser-heated surface. Lee and Huang [START_REF] Lee | A method for inverse analysis of laser surface heating with experimental data[END_REF] developed an integral-transform-free methodology for one-dimensional IHCP with time-dependent boundary conditions to estimate the heat flux of the same problem. They approximated the unknown surface temperature using a fourth-degree polynomial function in order to reduce the number of unknowns of the IHCP. More recently, they proposed a method to solve one-dimensional inverse heat conduction problems with a relatively long heating/cooling time by using a half-range Fourier cosine function to analyze laser surface heating and spray cooling on a hot surface [START_REF] Bauzin | Thermal characterization of frictional interfaces using experiments and inverse heat conduction methods[END_REF]. However, all these studies deal with a problem of a thermoelastic nature and the instrumentation requires temperature measurements as well as deformation or stress measurements, inside the solids. It can sometimes be difficult to place both displacement sensors and temperature sensors. So it would be interesting to solve the IHCP from mechanical measurements only (displacement measurement) without requiring any temperature sensor. But this novel approach requires to solve a coupled thermoelastic problem. In the literature, only a few investigations [START_REF] Grysa | An inverse temperature field problem of the theory of thermal stresses[END_REF]- [START_REF] Tu | Inverse analysis of laser surface heating from thermal strain measurements[END_REF] were able to predict the unknown boundary condition on the heated surface via using only displacement sensors. Blanc and Raynaud [START_REF] Blanc | Solution of the Inverse Heat Conduction Problem From Thermal Strain Measurements[END_REF] solved the IHCP by using the thermal strain and temperature measurements instead of the temperature measurements only. Taler and Zborowski [START_REF] Taler | Solution of the Inverse Problems in Heat Transfer and Thermal Stress Analysis[END_REF] used the discrete form of Duhamel's integral and future time steps, in order to control the thermal stress in elements of complex shapes. Chen et al. [START_REF] Chen | Estimation of surface condition from the theory of dynamic thermal stresses[END_REF] applied an hybrid numerical algorithm of the Laplace transform technique, the finite-difference method with a sequential-in-time concept, and the least-squares scheme, so as to estimate the surface heat flux from the theory of dynamic thermal stresses. Recently, Tu [START_REF] Tu | Inverse analysis of laser surface heating from thermal strain measurements[END_REF] developed a strain gauge measurement method to measure the thermal strain and performed the thermal inverse analysis of laser heating process. Solving inverse problem in heat transfer through transfer functions has been the subject of several works in the literature. Fernandes et al. [START_REF] Fernandes | An analytical transfer function method to solve inverse heat conduction problems[END_REF] solve the IHCP (multidimensional problem) by identifying the analytical transfer function by means of Green's functions. Al Hadad et al. [START_REF] Hadad | Experimental transfer functions identification: Thermal impedance and transmittance in a channel heated by an upstream unsteady volumetric heat source[END_REF] performed an experimental transfer functions identification for the thermal impedance and transmittance in a channel heated by an upstream unsteady volumetric heat source. In this study, we develop a thermoelastic transfer function between the temperature present at the surface of a solid, and the displacement observed at a given location inside that solid. This analytical model is validated by comparison with a numerical one. From this analytical model, inverse analysis of the laser heating process is performed. Based on the experimental temperature measurements presented by Chen and Wu [START_REF] Chen | Estimation of surface absorptivity in laser surface heating process with experimental data[END_REF], we calculate the displacements at locations within the solid. Then, in order to validate our inversion procedure, we re-use the numerical and experimental data that had been produced by Lee and Huang [START_REF] Lee | A method for inverse analysis of laser surface heating with experimental data[END_REF], and by Tu [START_REF] Tu | Inverse analysis of laser surface heating from thermal strain measurements[END_REF]. Finally, the regularized inversion procedure is applied to several noised numerical cases. It results that it is no longer required to make assumptions on the form of evolution of the surface temperature, as in previous works.

Analytical approach

Thermoelastic Transfer function

To serve as a model for our study, we consider a thin cylinder with constant cross section, made of a material that is both homogeneous and isotropic (Fig. 1). The cylinder is heated on its surface at the point of abscissa 0 x = and it is fixed at its other end, at x = L. We measure the displacement of the rod particles in a point located at abscissa x. In order to solve the thermoelastic problem associated to this model, we assume that no radial nor circumferential expansion occurs. Furthermore, we assume that the particles of the rod will undergo only slow motion, so that the cylinder behaves according to the longitudinal free vibration of a rod model. The large length-to-diameter ratio of the cylinder will be taken into account to ensure the one-dimensional nature of the thermoelastic problem. Under those assumptions, and as it is presented by Tu in [START_REF] Tu | Inverse analysis of laser surface heating from thermal strain measurements[END_REF], the equation on the displacement ( ) , u x t could be written as follows [START_REF] Day | Heat Conduction Within Linear Thermoelasticity[END_REF]:
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In addition, the relationship among the stress ( ) 

,
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Using the boundary condition ( ) 0, 0 t σ = on the heated surface, we can write:

( ) ( ) 0 0 0, u t k T t x ∂ = ∂ (4) 
Because we assume a constant surrounding temperature amb T in the experimental process, the temperature function ( ) , T x t and ( ) 0 T t are defined as the rise of temperature above the ambient temperature amb T . Moreover, the cylinder is fixed at the unheated end ( x L = ), the other boundary condition is:

( ) , 0 u L t = (5)
The cylinder is initially at rest, the initial conditions are thus: ( ) We recall that the Laplace transform of a function f is defined as follows:

,0 0 u x = , ( ) ,0 0 u x t ∂ = ∂ (6) 0 u = 0 ϕ = ( ) 0 0 T t x = Displacement sensor x x
( ) ( ) { } ( ) 0 , , pt F x L f t x f t x e dt ∞ - = = ∫ (7) 
Where: L is the Laplace operator, p the Laplace variable. The inverse Laplace transform, given by equation ( 8), can be used to obtain back function f from its Laplace-transformed form. In this study, in order to compute the inverse Laplace transform, we will use a numerical Euler procedure [START_REF] Abate | A Unified Framework for Numerically Inverting Laplace Transforms[END_REF].

( ) ( ) { } 1 , f x t L F x - = (8) 
The Laplace transform is applied to the displacement:

( ) { } , U L u x t = .
The equations ( 1), ( 5) and ( 6) become:
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In order to take into account the heating, a time-dependent temperature function ( )

0
T t is imposed on the surface ( 0 x = ) at the end of the cylinder (Eq. ( 10)). This function will be unknown and needs to be identified. Moreover, in order to solve the mechanical problem of equation ( 9), it is necessary to know the expression of the Laplace transform of the temperature T in the solid. The cylinder is insulated along the longitudinal direction, resulting in the surface of the unheated end to be considered as a zero temperature gradient. Furthermore, the large length-to-diameter ratio of the cylinder permits us to assume one-dimensional heat conduction. The governing partial differential equation, and the boundary and initial conditions of the heat conduction system are thus:
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The Laplace transform is this time applied on the temperature variable, within equations ( 11)-( 14) and the solution of this system of equations in the Laplace space can be written in the following form:

( ) ( ) ( ) 0 ch q L x T x T ch qL  -   = (15) 
with p q α = , and for the heat flux:

( ) ( ) ( ) 0 sh q L x x q T ch qL ϕ λ  -   = - (16) 
By replacing the expression of the temperature in the transformed equations ( 9) and ( 10), it comes:
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For a fixed x, the relationship between the displacement and the temperature is written as:

( ) ( ) 0 U x G x T = ⋅ (19) 
The thermomelastic transfer function ( )

G x is: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 2 - - - 1- sh q L x sh q L x k G x ch qL ch qL q β β β β   =       (20) With 0 q c α β =
Similarly, it is possible to calculate the displacement at a given abscissa x in the solid from the knowledge of the temperature ( ) { } ( , ) T x L T x t = at this position by the following relation:
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The inverse Laplace transform of the transfer function ( ) G x is the impulse response of the problem (equation ( 23)). This impulse response for the displacement is presented in Figure 2 on a Cartesian scale and on a semi logarithmic scale for different abscissae in the solid. Calculations of any response presented later in the study will use these results of impulse responses to the problem.

( ) ( ) { } 1 , g x t L G x - = (23) 
Figure 2 : Impulse response for different positions x

These impulse responses are calculated with the thermo-physical properties of AA1100 aluminum alloy in order to be in the same conditions as the works cited above [START_REF] Wang | The influence of temperature and surface conditions on surface absorptivity in laser surface treatment[END_REF]- [START_REF] Lee | A method for inverse analysis of laser surface heating with experimental data[END_REF], [START_REF] Tu | Inverse analysis of laser surface heating from thermal strain measurements[END_REF]. The thermo-physical properties [START_REF] Wang | The influence of temperature and surface conditions on surface absorptivity in laser surface treatment[END_REF], [START_REF] Tu | Inverse analysis of laser surface heating from thermal strain measurements[END_REF] and material properties [START_REF] Tu | Inverse analysis of laser surface heating from thermal strain measurements[END_REF] of the AA1100 aluminum alloy are:

3 2710kg m ρ - = ⋅ , 1 1 222W m K λ - - = ⋅ ⋅ , 1 1 904 p C J kg K - - = ⋅ , 10 2 
2.69 10

G N m - = ⋅ ⋅ , 0.3 ν = , 6 1 23 10 deg t α - - = ⋅ .
For the same reason, the length L of the sample cylinder is 10 cm.

Response calculation of displacements by means of the convolution product

It is shown that the output could be calculated by the convolution product [START_REF] Hadad | Experimental transfer functions identification: Thermal impedance and transmittance in a channel heated by an upstream unsteady volumetric heat source[END_REF], [START_REF] Howell | Principles of Fourier Analysis[END_REF], [START_REF] Peyrière | Convolution, séries et intégrales de Fourier[END_REF] between the input (excitation or cause) ( )

0
T t and a corresponding thermoelastic transfer function ( ) , g x t (impulse response of the system given by equation ( 23)):

( ) ( ) ( ) 0 , , u x t g x t T t = * (24) 
where * denotes the convolution product. For any input ( )

0
T t the output ( ) , u x t is given by the convolution integral, as expressed in Eq. ( 25) represented in terms of Temperature (input) and displacement (response) [START_REF] Fernandes | An analytical transfer function method to solve inverse heat conduction problems[END_REF]. Thus, we have:

( ) ( ) ( ) 0 0 , , t u x t g x t T d ξ ξ ξ = - ∫ (25) 
Parameterization of the excitation ( )

0
T t , over a base of piecewise constant functions defined on a constant time step t ∆ allows to exhibit a sampling ( )

, k k u u x t =
of the response. The convolution product can then be expressed in the following matrix form [START_REF] Hadad | Experimental transfer functions identification: Thermal impedance and transmittance in a channel heated by an upstream unsteady volumetric heat source[END_REF]:

u CT = (26) 
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1 , i i t i t g g x t dt - = ∫ (28) C is a square matrix of size f f N N ×
where each element i g is given by equation (28) . It is important to note that in order for equation [START_REF] Tikhonov | Numerical Methods for the Solution of Ill-Posed Problems[END_REF] to be valid, it is necessary that the time step be small enough with respect to the characteristic times of the input ( )

0
T t and transfer function ( ) , g x t . In a first approach, the temporal discretization being sufficiently fine, the hypothesis of a linear variation on the time step t ∆ can be made and it comes:

( ) ( ) 1 , , 2 
i i i g x t g x t g -  +  =     (29)

Validation of the analytical solution with numerical simulations

The analytical solution developed is compared to a numerical solution computed by finite element software. The mesh resolution chosen is sufficiently fine to ensure that discretization has no significant impact on the results. The applied temperature ( )

0 T t on the surface in 0 x m =
is a door function (Figure 3). In order to return into the temporal space, a numerical inversion is used (Euler procedure [START_REF] Abate | A Unified Framework for Numerically Inverting Laplace Transforms[END_REF]) to obtain the impulse response of the system ( )

, g x t . For 0.01 x m =
, the impulse response ( )

0.01, g x t =
is presented in Figure 2. We compare in Figure 3 the temporal displacements calculated with a numerical method (finite elements) versus the displacements values resulting from our analytical approach using the convolution product presented previously. It can be seen that the semi-analytical solution and the numerical solution give very similar results. The analytical approach is thus validated. Consequently, the proposed analytical approach can also be used in a reverse approach to identify the surface temperature from the measurement of displacement.

Identification of the surface temperature from displacement

Identification Procedure

For any dynamic system, the relation between input and output in the complex variable p domain is given by the multiplication expressed in Eq. [START_REF] Hadad | Experimental transfer functions identification: Thermal impedance and transmittance in a channel heated by an upstream unsteady volumetric heat source[END_REF] or in the time domain by the convolution (Eq. ( 24)). Thus, in terms of the temperature/displacement we can write the deconvolution product:

( ) ( ) ( ) 0 1 , , T t u x t g x t = * (30) 
Therefore, observing Eq.( 30), it results that an inversion occurred between the input/output pair. The solution of this problem is the surface temperature ( )

0
T t , the input being the displacement. The new transfer function of this system is ( )

1 , g x t .
By discretizing the linear problem on a constant time step t ∆ , according to equation (8) the matrix system becomes:

1 T C u - = (31) 
In order to invert the system, a singular value decomposition of the matrix C is carried out:

T C UDV = (32) with: 
( )

1 2 1 2
, , , where

T T T T Nf Nf Nf U U UU VV V V I D diag D D D D D D = = = = = ≥ ≥ ≥ K K (33) 
Equation ( 31) is then written in the following form:

1 ˆT T V D U u - = ⋅ (34) with: 
( )

1 1 1 1 1 2 , , , Nf D diag D D D - - - - = K (35) 
According to equation (30), it is then possible to calculate the temporal evolution of the surface temperature ( )

0
T t (which we will name "identified surface temperature" in the sequel of this article) from the knowledge of the displacement at a certain depth and the thermomechanical characteristics of the material. This identification of the surface temperature from the displacement data will be validated on 3 different cases: the numerical case of a door function as presented previously, a numerical case approached in previous studies [START_REF] Lee | A method for inverse analysis of laser surface heating with experimental data[END_REF], [START_REF] Tu | Inverse analysis of laser surface heating from thermal strain measurements[END_REF] and on three experimental cases presented in previous studies [START_REF] Wang | The influence of temperature and surface conditions on surface absorptivity in laser surface treatment[END_REF]- [START_REF] Lee | A method for inverse analysis of laser surface heating with experimental data[END_REF], [START_REF] Tu | Inverse analysis of laser surface heating from thermal strain measurements[END_REF].

Sensitivity analysis to the known parameters

It is important to present how the performance of the reconstruction of the surface temperature can be biased when some confidence bounds on the parameters are considered. The length of the cylinder L has no impact on the displacement calculation until the heat front has reached the end of the specimen.

Similarly, an error on this parameter would have very little impact on the result. For the configuration presented and for the numerical values used in this study, the shear modulus does not affect significantly the calculation on the displacement. For the other physical parameters, Figure 4 presents the error made on the identification of the surface temperature with regard to the error made on each parameter ( , , t α ν α ). The calculation is performed from perfect displacement data, without noise. The imposed surface temperature is constant 0

T . The error on the estimated temperature is ( )

0 0 0 T T T -
. It can be seen that the sensitivities of the model to the thermal and mechanical characteristics are in the same order of magnitude. The calculation has been performed with the numerical values given in section 2.1. Thus, from the knowledge of the accuracy of the thermomechanical characteristics, it is possible to predict the error made on the estimation of the surface temperature. We can notice that if the characteristics are perfectly known, we find perfectly the input temperature. In addition, identification from noised data representative of a real measurements cannot be carried out without regularization of the problem (cf. part 4).

Comparison with other numerical studies

The study of a numerical case that was treated by Lee and Huang [START_REF] Lee | A method for inverse analysis of laser surface heating with experimental data[END_REF] and Tu [START_REF] Tu | Inverse analysis of laser surface heating from thermal strain measurements[END_REF] is taken as input in order to validate the inversion technique, so as to explain the surface temperature. In order to compare our results with the results achieved in case (2) of mathematical example from Lee and Huang [START_REF] Lee | A method for inverse analysis of laser surface heating with experimental data[END_REF] and Tu [START_REF] Tu | Inverse analysis of laser surface heating from thermal strain measurements[END_REF], we will transform equations into a dimensionless form via introducing the following dimensionless quantities:

x X L = , 2 t L α τ = (36) 
In this case, the time-dependent temperature function at the heated surface is assumed as:

( )

2 3 4 0 1 1 1 2 6 24 T t τ τ τ τ = -+ - + (37) 
The thermal displacement at the measurement point m X X = can be computed from Eq. [START_REF] Aster | Parameter Estimation and Inverse Problems[END_REF] or from the numerical solution. As in the references [START_REF] Lee | A method for inverse analysis of laser surface heating with experimental data[END_REF], [START_REF] Tu | Inverse analysis of laser surface heating from thermal strain measurements[END_REF], the temperatures are considered to be measured The surface temperature is obtained by applying the deconvolution product (Eq.( 34)). References had identified a polynomial time-dependent evolution of the surface temperature:

( ) The results are consistent and the identified coefficients are close to the ones entered during the generation of displacements. As it has been proved in several studies, it is important that the measurements are close to the solicitation to be identified in order to have the best sensitivity. The results presented in the Table 1 shows that the coefficients of the polynomial expression are identified more accurately when the measurement points are close to the heated surface.

Validation from idealized test case data of the literature

We consider the experimental laser surface heating problem studied by Wang et al. [START_REF] Wang | The influence of temperature and surface conditions on surface absorptivity in laser surface treatment[END_REF] and Chen and Wu [START_REF] Chen | Estimation of surface absorptivity in laser surface heating process with experimental data[END_REF]. A CO2 continuous wave laser is used to heat the surface of a test cylinder. Three different surface treatments are applied on the test cylinder: NaOH treatment, graphite coating and polishing treatment. The material of the test cylinder is AA 1100 aluminum alloy. The boundary conditions are similar to those presented in the presentation of the analytical problem of this study. The temperatures are measured with type-K thermocouple at a depth of 1 mm from the heated surface. After curve fitting, the measured temperatures at various times in least square sense can be expressed in the following polynomial forms given by Chen and Wu [START_REF] Chen | Estimation of surface absorptivity in laser surface heating process with experimental data[END_REF] : 

( ) 2 
The standard deviations of these experimental temperature data with respect to the curve-fitted temperatures are the displacement generated at any point x by the substitute thermograms obtained at 1mm from the surface is calculated. For this purpose, we use the convolution product between the temperature evolution of the equations ( 38)-( 40) and the impulse response, for x = 1mm of transfer function M (equation ( 21)). Secondly, by carrying out the deconvolution product (equation( 30)) between the displacement obtained and the impulse response for x = 1mm, the identified surface temperature is calculated. The results are compared with those obtained in the studies [START_REF] Lee | A method for inverse analysis of laser surface heating with experimental data[END_REF], [START_REF] Tu | Inverse analysis of laser surface heating from thermal strain measurements[END_REF] in Figure 5. . 0, T t obtained using the proposed method and that given by Lee and Huang [START_REF] Lee | A method for inverse analysis of laser surface heating with experimental data[END_REF] and Tu [START_REF] Tu | Inverse analysis of laser surface heating from thermal strain measurements[END_REF] for various surface treatments.
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Again, the results of the present study are consistent with those obtained in previous studies. However, it is important to note that in the approach proposed in this article, no hypothesis has been made on the form of the function governing the evolution of temperature. We did not take the assumption of a polynomial form for the evolution of the surface temperature. Our identification procedure will therefore be applicable regardless of the form of the temperature function.

Regularized identification of the surface temperature

So far, we have achieved that the estimation procedure using the deconvolution product can be used without prior knowledge of the form of the surface temperature function. In the previous examples, the signals being used were interpolated curves (i.e. signal was not affected by noise). However, the use of a noisy displacement signal in the procedure causes instability in the inversion of the system of equations (34). It is therefore essential to regularize the procedure. Indeed, the matrix to be inverted is ill-conditioned: the ratio of the largest to the smallest singular value is large. In the literature two are proposed to this situation: either by filtering the noise or by regularizing the matrix to be inverted, so as to make it well-conditioned [START_REF] Aster | Parameter Estimation and Inverse Problems[END_REF]. It is usually preferable to use the matrix regularization approach. Hence, in this work, we will regularize the matrix to be inverted, in order to get a stable identification. We present in this study the Tikhonov regularization method [START_REF] Tikhonov | Solutions of ill-posed problems[END_REF], [START_REF] Tikhonov | Numerical Methods for the Solution of Ill-Posed Problems[END_REF]. The estimation of parameters is performed by minimizing the square of the norm of the difference between measured and calculated displacements. The functional ( ) F T of the least-squares method is given by the following equation:

( ) 2 2 + mes F T CT u T µ = - (41) 
Where µ is the Tikhonov regularization parameter which varies from 0 to ∞. If 0 µ = , this corresponds to the case without regularization. The Tikhonov estimate can be given an inverse SVDlike form:

1 ˆT T V D U u µ µ - = ⋅ (42) 
with :

1 1 2 2 2 2 2 2 2 1 2 , , , Nf Nf D D D D diag D D D µ µ µ µ -   =     + + +   K (43)
The choice of the regularization parameter is important. If the standard deviation of the measurement noise m σ is known, the optimal hyper-parameter ( ) DP µ value can be found by Morozov's discrepancy principle. The regularization hyper-parameter value can be set according to Morozov's discrepancy principle as the value which proscribes the inversion process to go beyond a minimization making residuals lower than the measurement noise [START_REF] Aster | Parameter Estimation and Inverse Problems[END_REF]. This can be expressed as:

m RMSR σ ≥ ( ) 2 1 1 f i N rec i i i f u u RMSR N = = - = - ∑ (44) 
RMSR is the Root Mean Square Residual, m σ is the standard deviation of the noise and rec i u the displacement signal recalculated using estimation approach. In the rest of this study, we will take the numerical cases studied previously by noisily randomizing the data.

First case: Door function

The displacement is now corrupted by noise, such as ( ) ( ) . Figure 6 shows this randomly noisy displacement that will be used for the identification of the door function of temperature that has been imposed in part 2.3.

( ) ( ) ( ) rec residues t u t u t = -

, where ( ) u t are the original observable) on the displacements are calculated and presented in the Figure 9. We find that the standard deviation of the residues is 

Second case: periodic crenel temperature

The same method of inversion is applied but for a periodic temperature in crenellations (Figure 10).

This time, the displacements are generated in 0.02 x m = . The impulse response ( ) 0.02, g x t = (show in Figure 2) is used for the convolution and for the deconvolution product. The same ). The Figure 10 presents the noised displacement used for the estimation of the surface temperature. estimates with respect to some deviations in the regularization parameter value from the Morozov principle. Then, it is thus possible to reconstruct the temperature signal applied to the surface for a configuration having strong discontinuities from a highly noisy displacement signal. Here again, the residues on the displacements ( Surface Temperature [K]

Conclusion

This work has proposed an inverse methodology aimed at analyzing laser treatment. Our approach is based on mechanical and thermal equations, applied to the measurement of displacements resulting from mechanical distortions due to heating by the laser beam. Indeed, no temperature measurement is required. We determined the temperature function at the laser heating point, by minimizing the mean squares error between the experimental displacement data, and the estimated displacement data calculated from the thermoelastic transfer function. The inversion procedure developed in this work is based on the convolution product of the impulse response of the thermoelastic problem, by the displacement signal. The proposed inversion procedure was validated by comparing our results with previously achieved results, that were based on both numerical and experimental data. Our work provides a novel approach that is easy to use. In addition, our procedure enables identification of the function governing the temperature on the surface of a solid under laser surface treatment, whatever the form of that temperature function, which was not the case in previous studies. We leverage Tikhonov Regularization method so as to reach quality identification in situations where the displacement measurements are noised, as we have highlighted on two numerical cases. The use of an analytical approach for the identification of thermal boundary conditions from displacement measurements, proves here to be a powerful tool for the study of laser-heating surface treatment, while still being simple to implement.
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 1 Figure 1: Schematic diagram of the problem with a displacement sensor.

Figure 3 :

 3 Figure 3: Input surface temperature and comparison of the numerical solution (FEM) with semi-analytical method for the displacement in 0.01 x m =

Figure 4 :

 4 Figure 4 : Impact of the error of the known parameters on the estimation of the surface temperature.

Figure 5 :

 5 Figure 5 : Comparison of surface temperature ( )

  performed is therefore coherent. The inversion procedure is thus validated by the residuals recalculated after identification.

Figure 8 :

 8 Figure 8 : Comparison of the input surface temperature and the identified surface temperature using noised displacement for different µ .

Figure 9 :

 9 Figure 9 : Displacement residues recalculated through eq.24.

Figure 10 : 8 8

 108 Figure 10 : Input surface temperature and Noised displacement generated in 0.02 x m = .

Figure 11 :

 11 Figure 11 : RMSR for Tikhonov surface temperature estimation It can be seen in Figure 12 that the identified signal of surface temperature does indeed match the real surface temperature. The estimation of the surface temperature is performed for three values of Tikhonov regularization parameter ( DP µ ,

DP

  

  µ

  [START_REF] Grysa | An inverse temperature field problem of the theory of thermal stresses[END_REF]) are in agreement with the noise added during the generation of the input data of the inverse procedure.

Figure 12 :

 12 Figure 12 : Comparison of the input surface temperature and the identified surface temperature from noised displacement for different µ .

Figure 13 :

 13 Figure 13 : Displacement residues recalculated through eq.24.

  within two different discrete time intervals, mA

	, 4 0.0181 τ =	; mB τ : 1 0.0091 τ =	; 2 0.0272 τ =	; 3 0.0453 τ =	; 4 0.0634 τ =	).
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			τ and mB τ ( mA τ : 1 0.0027 τ =	, 2 0.0045 τ =	, 3 0.0135 τ =

Table 1 :

 1 . So, in order to compare our results, we calculate the order-4 polynomial form of the identified curve. All the coefficients identified by the different studies in scope of this comparison are synthesized in Table1. Identified coefficients of temperature function( ) 

	0 T t d 1 τ =	+	d	2 τ	2	+	d	3 τ	3	+	d	4 τ	4
	X	m						τ	m		
								τ	mA			τ	mB
											d1	d2	d3	d4	d1	d2	d3	d4
	0.01 A							-1		0.5	-0.16667 0.04167	-1	0.5	-0.16667 0.04167
			B								-1		0.5	-0.16667 0.04167	-1	0.5	-0.16667 0.04167
			C								-1		0.5	-0.16667 0.04167	-1	0.5	-0.16667 0.04167
	0.3	A							-1		0.5	-0.16667 0.04167	-1	0.5	-0.16667 0.04167
			B					-0.99993 0.49396 -0.00137 1.33845	-0.99993 0.49384 -0.00165 -1.31198
			C					-1.0003	0.5009	-0.1674	0.0419	-0.9995	0.4996 -0.16667 0.04167
	0.5	A							-1		0.5	-0.16667 0.04167	-1	0.5	-0.16667 0.04167
			B					-0.99992 0.49362 -0.00238 -1.25385	-0.99993 0.49371 -0.00387 -1.23177
			C					-0.9986	0.4965	-0.1636	0.0408	-0.9946	0.4961	-0.1657	0.0416
			*								-1		0.5	-0.16667 0.04167	-1	0.5	-0.16667 0.04167
	*: Exact solution, A: Tu [17], B: Lee and Huang [4], C: Present study

f τ for various strain/displacement measurement locations m X and measurement time intervals at various times m τ

If the inversion procedure based on a deconvolution product is not regularized, then we obtain an unstable, divergent system. A Tikhonov regularization is applied. 

X Dimensionless space coordinate (Eq. ( 36))

Matrix and vectors C

Matrix of the convolution product (Eq. ( 27))

D

Diagonal matrix (Eq. (32) and Eq. (33))