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In this paper, we consider a two-species fishery model where the species can have different biological interactions, namely, competitive, symbiotic or prey-predator relationships. Each species is harvested by a group of fisherpersons. We characterize and compare equilibrium harvesting strategies, steady-state stocks and total discounted utilities under different modes of play, that is, noncooperation in both groups, cooperation in each of the groups and cooperation in only one group of fisherpersons. Our main results are as follows: (i) In all scenarios, the equilibrium strategy of an agent fishing either species consists of harvesting, in each period, a proportion of the available stock. (ii) The dividend of cooperation in a given group is increasing with the number of members in that group. (iii) Coordination between agents fishing a given species may be detrimental (biologically and economically) to the other species.

Introduction

The exploitation of fisheries, and more generally of renewable resources, has been the subject of a large number of contributions over a long period of time. Two decades ago, [START_REF] Wilen | Renewable resource economists and policy: What differences have we made[END_REF] recalled and discussed the main developments in fisheries economics and policy over the past half century. One landmark in this literature is the seminal paper by [START_REF] Hardin | The tragedy of the commons[END_REF] where the concept of the tragedy of the commons is introduced. In short, this concept specifies that open access, or competition between the agents, leads to harvesting levels above the rate of reproduction of the resource, which may cause its depletion. [START_REF] Levhari | The great fish war: an example using a dynamic Cournot-Nash solution[END_REF] were the first to model and quantify the tragedy of commons in a fishery context. A large number of contributions followed, where the Levhari & Mirman's model is modified or extended in various directions. A common denominator in this literature is the use of dynamic games to analyze the exploitation of a renewable asset over time. This choice is quite natural as a dynamic game allows to capture current and future externalities, as well as strategic interactions between agents. We refrain from reviewing this literature and refer the interested reader to the comprehensive surveys by [START_REF] Long | Dynamic games in the economics of natural resources: a survey[END_REF][START_REF] Long | Resource Economics[END_REF]. 1 As fisheries are typically populated by more than one species, a natural question is how the results obtained in one-species models generalize to multiple species. In that case, in addition to the dynamic (intertemporal) externalities, the analysis must account for the biological interactions between the species. [START_REF] Fischer | Strategic dynamic interaction: fish wars[END_REF][START_REF] Mesterton-Gibbons | A technique for finding optimal two-species harvesting policies[END_REF] pioneered the domain by studying a fishery with two species, each harvested by one player. They used this fishery model, designated by FM in the sequel, to characterize and contrast cooperative and noncooperative strategies, taking into account various types of biological interactions between the two species.

In this paper, we extend the FM model by assuming that each species is harvested not by one, but by a group of agents, that is, we add a competitive dimension to the fishing activities of each species. Our objective is in the same vein as that of [START_REF] Fischer | Strategic dynamic interaction: fish wars[END_REF][START_REF] Mesterton-Gibbons | A technique for finding optimal two-species harvesting policies[END_REF], that is, the determination and comparison of equilibrium harvesting strategies and outcomes under various behavioral assumptions about the agents exploiting the fishery, as well as various biological relationships between the species.

The papers that are most related to ours are those of [START_REF] Mazalov | Fish wars and cooperation maintenance[END_REF], [START_REF] Rettieva | Stable coalition structure in bioresource management problem[END_REF] and [START_REF] Górniewicz | Verification and refinement of a two species Fish Wars model[END_REF]. [START_REF] Mazalov | Fish wars and cooperation maintenance[END_REF] and [START_REF] Rettieva | Stable coalition structure in bioresource management problem[END_REF] extend the FM model to a case where the fishing grounds have different locations and fish can migrate. Górniewicz & Wiszniewska-Matyszkiel (2018) modify the FM model in order to account for the possibility of extinction under the so-called Allee effect. 2 The authors also offer a rigorous mathematical analysis of the equilibria in models à la FM.

Other contributions involving multi-species dynamic games use different bioeconomic models, with objectives that differ from ours. 3 For instance, [START_REF] Doyen | The tragedy of open ecosystems[END_REF] discuss the tragedy of open ecosystems using a model with n species. [START_REF] Wang | A stochastic differential fishery game for a two species fish population with ecological interaction[END_REF] extend the one-fishery model of [START_REF] Jørgensen | Stochastic differential game model of a common property fishery[END_REF] to a stochastic differential game of a two-species fishery with ecological interaction and characterize the stationary feedback Nash-equilibrium. They also analyze various cases of competitive, restricted and cooperative fisheries management and their impact on the ecological system. Salenius (2018) models a three-species fishery with three players (Norway, the European Union and Iceland) as a differential game and estimates empirically open-loop equilibria under various settings related to the management of the fishery.

Our research questions are as follows:

1. What are the equilibrium harvesting strategies corresponding to various modes of play?

2. How do the results vary with the type of biological interaction and with parameter values?

1 For reviews of game theory applications to fisheries, see, e.g., [START_REF] Bailey | Application of game theory to fisheries over three decades[END_REF], [START_REF] Hannesson | Game theory and fisheries[END_REF], Sumaila (2013), and [START_REF] Grønbaek | Game theory and fisheries[END_REF]. 2 The Allee effect refers to a species starting to degenerate and soon becoming extinct when it reaches some critical level of biomass [START_REF] Joosten | Strong and Weak Rarity Value: Resource Games with Complex Price-Scarcity Relationships[END_REF]).

3 For optimal-control two-species models, see, e.g., [START_REF] Hannesson | Optimal harvesting of ecologically interdependent fish species[END_REF] and Mesterton-Gibbons (1996).
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3. How do the various outcomes compare in terms of environmental and economical considerations?

4.

Under what conditions is it better for agents in one group to act cooperatively? By answering the above questions, we seek to separate the effects of three sources of externalities, namely, the intertemporal, biological and behavioral externalities. Understanding and untangling these effects are clearly of conceptual, methodological and practical values.

In a nutshell, our main results are as follows: (i) In all setups, the equilibrium strategy of an agent fishing either species consists of harvesting, in each period, a fixed proportion of the available stock. (ii) The dividend of cooperation in a given group is increasing with the number of agents in that group. (iii) Coordination among a group of agents fishing a given species may be detrimental (biologically and economically) to the other species.

The rest of the paper is organized as follows: In Section 2, we recall the FM model and define the scenarios we are interested in. In Section 3, we state some preliminary results that are valid across all scenarios. Section 4 is devoted to the benchmark case, where a single agent exploits the fishery. In Section 5, we characterize the equilibrium strategies and outcomes in various scenarios. In Section 6, we compare these scenarios, focusing on biological and economic outcomes. Section 7 briefly concludes.

Model

Consider a fishery with two species. To simplify notation, whenever a species l ∈ {1, 2} is considered, m ≡ 3 -l will represent the other species. Let x lt be the stock levels of species l at date t ∈ [0, ∞). In the absence of any human activity, the one-period growth functions of the stocks are

x l;t+1 = x α l lt x β l mt , x l0 given, l = 1, 2, (1) 
where the parameter α l > 0 characterizes the regeneration capacity of species l and the parameter β l = 0 characterizes the indirect effect that species m exerts on species l. Fisher & Mirman (1992,1996) identify three possible combinations of interactions, namely: (i) symbiotic relationship when β 1 and β 2 are both positive; (ii) competitive relationship when β 1 and β 2 are both negative, which corresponds to a case where both species feed on the same resource; and, finally, (iii) prey-predator relationship when β 1 and β 2 have opposite signs. We use the notation xl to refer to the steady-state value of the stock level of species l. As in [START_REF] Fischer | Strategic dynamic interaction: fish wars[END_REF], we make the following assumption ensuring the stability of xl in the absence of human intervention:

Assumption 1 α l + |β l | < 1, l = 1, 2.
Remark 1 In the absence of human intervention, it is easy to verify that, under Assumption 1, the unique positive steady state is given by

x nf 1 , x nf 2 = (1, 1)
, where the superscript nf stands for no fishing. The common interpretation in that case is that the saturation or natural equilibrium level of each species is normalized to 1. When the stock level x lt < 1, l = 1, 2, the impact of constant α l on the fish stock is negative: the smaller is α l , the higher is the regeneration capacity of the fish stock l. In the same way, the smaller is β l , the higher is the (positive or negative) effect of the other species on the fish stock l.

Suppose that two specialized fleets exploit the fishery. Denote by N l the set of agents (fisherpersons, vessels) harvesting species l and by n l the cardinality of N l , l = 1, 2. Denote by c ilt the catch by agent i ∈ N l at date t. Consequently, when fishing activities are undertaken, the stock dynamics become

x l;t+1 = x lt - i∈N l c ilt α l x mt - i∈Nm c imt β l , x l0 given, l = 1, 2.
(

The utility function of an agent, in both groups, is concave increasing in her catch. For simplicity, let this utility function be logarithmic, and denote by δ ∈ (0, 1) the common periodic discount factor. Assuming that each agent maximizes her stream of utility over an infinite horizon, the optimization problem of Agent i ∈ N l , l = 1, 2, is then:

max c ilt ∈C ilt ∞ t=0 δ t ln(c ilt ) (3) subject to (2) (4) 
where C ilt is the set of feasible decisions for player i ∈ N l at date t. Clearly, feasible decisions are restricted by the level of the stock and by the decisions of other agents. 4 We suppose that the agents observe the level of the stock of the two species in each period and use a feedback (or Markovian) information structure, thus defining a discrete-time dynamic Markov game. We consider the following scenarios:

Single owner: In this benchmark scenario (labeled S), we assume that there is only one owner of the fishery who exploits both species.

Specialized fishing: We assume, as in the FM model, that fishing the two species is specialized, that is, each species requires a specific equipment. To assess the impact of cooperation on the results, we characterize and contrast equilibrium solutions in the following setups:

N The game is played fully noncooperatively. A Nash equilibrium involving n 1 + n 2 players is sought.

C Agents in each specialized group coordinate their fishing policies, that is, they maximize their joint payoff, and play noncooperatively against the cartel formed by the other group. In this case, we solve for a Nash equilibrium involving two players.

Nl Agents in the specialized group fishing species l play noncooperatively, whereas agents in the other group coordinate their strategies. We solve for a Nash equilibrium involving n l + 1 players.

As alluded to before, characterizing and contrasting the results according to these scenarios allow us to untangle the effects of three externalities, namely: dynamic interactions, biological interactions and ownership of the resource. The comparisons are made in terms of the species' steady-state stock levels, which are biological indicators, and in terms of the agents' total discounted utilities, which are economic indicators. For instance, comparing the results in Scenario Nl to those obtained in Scenario C provides a measure of the dividend of cooperation in group l, while comparing them to those obtained in Scenario N provides a measure of the dividend of cooperation in group m. Similarly, setting n 1 = n 2 = 1 in Scenario N and comparing the results to those according to the single owner scenario S gives an assessment of the benefit of centralization, or of having a single technology that enables fishing the two species.

Preliminary results

Before presenting the outcomes in various settings related to the number of players fishing each species and their cooperative or noncooperative behavior, we establish in this section results that are valid in all cases in order to avoid unnecessary repetitions. To save on notation, let

Ω ≡ (1 -δα 1 ) (1 -δα 2 ) -δ 2 β 1 β 2 , (5) 
Θ ≡ (1 -α 1 ) (1 -α 2 ) -β 1 β 2 , (6) 
A l ≡ 1 -δα l Ω , l = 1, 2, (7) 
B l ≡ δβ l Ω , l = 1, 2, (8) 
ρ l = α l (1 -α m ) + β 1 β 2 , l = 1, 2, (9) 
ξ l = α l (1 -δα m ) + β m (1 + δβ l ) , l = 1, 2. ( 10 
)
The following two remarks establish the signs of Ω and Θ.

Remark 2 Irrespective of the signs of β 1 and β 2 , Ω is positive. Indeed, if sign(β 1 ) = sign(β 2 ), then by Assumption 1, we have The following proposition characterizes the steady-state values of the two fish stocks when the fishing strategy of each species is linear in the stock level of that species. We show later on that a linear strategy is part of a feedback-Nash equilibrium in a competitive setting and corresponds to the optimal policy in a cooperative setting.

1 -δα l > 1 -α l > |β l | > δ|β l |, l = 1, 2, which implies Ω > 0. If sign(β 1 ) = -sign(β 2 ) , then Ω is trivially positive.
Proposition 1 For any fishing strategy of the form c l = γ l x l where γ l ∈ [0, 1), l = 1, 2, the steady-state values of the fish stocks are

x l = (1 -γ l ) ρ l Θ (1 -γ m ) β l Θ , l = 1, 2. ( 11 
)
Proof. The steady state is obtained by solving the following system of equations:

x l = (x l (1 -γ l )) α l (x m (1 -γ m )) β l , l = 1, 2.
Straightforward manipulations lead to the result.

Recalling that in the absence of human intervention, the steady state is xnf 1 , x nf 2 = (1, 1), steady-state values in a given scenario can be interpreted as proportions with respect to xnf 1 and x nf 2 . Proposition 1 establishes the form that the steady-state values of the two species take in all considered scenarios, provided that the equilibrium fishing strategies be linear in the stock level. What will vary across these scenarios are the actual values of these steady states through the changes in γ 1 and γ 2 , which depend on the setup, i.e., on the type of biological interaction, on the number of agents, and on their behavior (cooperation or not within each group). Clearly, for any γ 1 and γ 2 ∈ [0, 1), the steady-state values are positive, that is, a resource collapse is not possible.

The impact of the intensity of fishing on the steady-state level of the fish stock l = 1, 2 is as follows:

dx l dγ l = -x l ρ l Θ (1 -γ l ) , ( 12 
)
dx l dγ m = -x l β l Θ (1 -γ m ) . ( 13 
)
Note that ρ l > 0 when β 1 β 2 > 0, but could be negative in the prey-predator case. We make the following additional assumption:

Assumption 2 ρ l > 0, l = 1, 2.
Under Assumption 2, the steady-state stock of a given species is decreasing in the fishing intensity of this species. In the prey-predator case, fishing the prey has a negative impact on the stock of its predator. Assumption 2 means that the direct effect of fishing the prey dominates the indirect effect due to the decrease in its predator stock. In the same way, under Assumption 2, the direct effect of fishing the predator dominates the indirect effect due to the increase in the stock of its prey.

The impact of fishing a given species on the stock of the other is positive in the competitive and predator cases, and negative in the symbiotic and prey cases. These results are fairly intuitive.

Remark 4 Note that it is possible that the steady-state stock level of the prey species be greater than 1, if the reduction in the stock of the predator due to harvesting more than compensates for the harvesting of the prey species. Steady-state levels above the saturation level due to human intervention could also happen in the competitive case. Recall that the interpretation of the biological parameters α and β changes when the stock level is above the saturation level. For that reason, in our numerical analysis, we restrict the range of parameter values to those yielding a steady state in (0, 1] × (0, 1].

The impact of parameter values on the steady-state levels for l = 1, 2 is given by

∂x l ∂ζ = x l ln (1 -γ l ) ∂ ∂ζ ρ l Θ + ln (1 -γ m ) ∂ ∂ζ β l Θ + ∂x l ∂γ l ∂γ l ∂ζ + ∂x l ∂γ m ∂γ m ∂ζ , (14) 
where ζ ∈ {α l , α m , β l , β m }.

Single owner

Suppose that a technology exists for fishing simultaneously both species, and that the fishery is owned by a single entity. This setup results in a standard infinite-horizon discrete-time dynamic optimization problem. Let V (x) represent the maximal total discounted utility of the owner over an infinite horizon when the current stock is x = (x 1 , x 2 ) ∈ R + × R + (the value function). Using Bellman's principle of optimality [START_REF] Bellman | Dynamic programming[END_REF], the optimization problem ( 3)-( 4) has an equivalent recursive representation:

V (x) = max c 1 ∈C 1 (x) c 2 ∈C 2 (x) {ln (c 1 ) + ln (c 2 ) + δV (x 1 , x 2 )} (15) 
where

x l = (x l -c l ) α l (x m -c m ) β l , l = 1, 2, (16) 
and where C 1 (x) and C 2 (x) are the sets of feasible decisions at x. In the infinite-horizon case, some technical conditions are needed to establish the equivalence between the formulations (3)-( 4) and ( 15)-( 16) and the existence of the value function. These are discussed in Appendix 8.1.

In the next proposition, we show that the optimal fishing policy is linear, and that the value function is log-linear. To do so, we use the following assumption on the parameter values: Assumption 3 The parameter values satisfy the following restriction:

ξ l > 0, l = 1, 2.
Proposition 2 Under Assumptions 1-3, for (x, y) ∈ R + × R + , the unique optimal policy of a single owner is to fish a proportion

γ S l = 1 A m + B m ∈ (0, 1) , l = 1, 2,
of the stock of each species, and the value function is given by

V S (x 1 , x 2 ) = 2 l=1 (A m + B m ) ln(x l ) + C S ,
where

(1 -δ) C S = 2 l=1 (A l + B l -1) ln (A l + B l -1) -(A l + B l ) ln (A l + B l ) .
Proof. See Appendix 8.2.

Remark 5 For all the scenarios analyzed in the sequel, it is straightforward to show in a similar way that the optimal response of any given player i ∈ N l to a joint strategy of the form j =i∈N l c lj = γ l x l , j∈Nm c mj = γ m x m , l = 1, 2, is a linear strategy, so that we will be looking for equilibrium in the space of linear strategies.

From an economic point of view, the single-owner case yields the highest discounted utility. The reason is that the harvesting operations are then fully centralized and the solution is obtained by solving an optimization problem, whereas in all other scenarios we solve for an equilibrium, which at best can match the centralized (optimal) outcome.

The impact of parameter values on the optimal fishing strategies is as follows for l = 1, 2:

dγ S l dα l = -δ 1 -δα m 1 -δ (α m -β m ) < 0, dγ S m dα l = -δ 2 1 -δ (α m -β m ) (1 -δ (α l -β l )) 2 β l , dγ S l dβ l = -δ 2 β m 1 -δ (α m -β m ) , dγ S m dβ l = -δ (1 -δα l ) (1 -δ (α m -β m )) (1 -δ (α l -β l )) 2 < 0.
An increase in the parameter α l (decrease in regeneration capacity of species l) results in less fishing activity for species l and in less fishing for the other species if the interaction parameter β l is positive (symbiotic or when l is a predator). An increase in the parameter β l results in less fishing activity for species m. The impact of an increase in β l on the fishing activity of species l depends on the sign of β m , that is, on the indirect effect species l has on the other, resulting in less fishing activity when this effect is positive (symbiotic or when l is a prey).

Table 1 indicates the signs of the four terms of Equation ( 14) characterizing the impact of each model parameter on the steady-state stock level of species l. As indicated in this table, the impact is ambiguous for the three types of interaction. Various possibilities are illustrated in Figure 1.5 Table 2 contains the numerical values used for the cases illustrated in Figure 1. Numerical experiments indicate that α l has a negative impact on x l in the symbiotic case and that β l has a negative impact on x l when β l β m > 0 and β l > 0, and a positive impact on x m when β m < 0. 4 and5.

ζ -∂ ∂ζ ρ l Θ -∂ ∂ζ β l Θ ∂x l ∂γ l ∂γ S l ∂ζ ∂x l ∂γ m ∂γ S m ∂ζ α l - -β l + + α m -β 1 β 2 -β l β m β l β l -β m - β m β l β m -β l - + +

Specialized fishing

Suppose that no single technology exists for harvesting simultaneously both species and that the fishery is exploited by two groups of specialized fleets, with n l agents fishing species l, l = 1, 2. Assuming that the total catch of each species is proportional to the stock of that species, the next proposition gives the form of the total discounted utility of any agent i belonging to group l = 1, 2. Note that this form is valid for any mode of play, that is, cooperation or noncooperation within and between groups of agents.

Proposition 3 Assume that the total catch is given by γ 1 x 1 and γ 2 x 2 , where γ l = i∈N l p il , l = 1, 2. The total discounted utility over an infinite horizon of an agent i in group l ∈ {1, 2} corresponding to the strategy pair γ = (γ 1 , γ 2 ) is given by

V il (x 1 , x 2 ; γ) = A m ln(x l ) + B l ln (x m ) + C il (γ), l = 1, 2,
where

(1 -δ) C il (γ) = ln (p il ) + (A m -1) ln (1 -γ l ) + B l ln (1 -γ m ) .
Proof. See Appendix 8.3.

In the specialized fishing setting, agents in a given group can coordinate their fishing strategies or not. The following sections establish the equilibrium strategies of agents in a given group according to their mode of play.

Non-cooperative fishing

First assume that each agent in group l ∈ {1, 2} unilaterally decides on her harvested quantity, given the fishing strategy of the other agents.

Proposition 4 If agents in group l ∈ {1, 2} act unilaterally, given that the total catch rate in the other group is γ m , then under Assumptions 1-3, the catch rate by agent i ∈ N l is

p N il = 1 n l + A m -1 ,
and the total catch rate by agents in group l is given by

γ N l = n l n l + A m -1 ∈ (0, 1) .
The total discounted utility over an infinite horizon of an agent i in group l is given by

V N l (x 1 , x 2 ; γ m ) = A m ln (x l ) + B l ln (x m ) + C N l (γ m ),
where

(1 -δ) C N l (γ m ) = (A m -1) ln (A m -1) -A m ln (A m + n l -1) +B l ln (1 -γ m ) .
Proof. See Appendix 8.4.

The above proposition shows that the equilibrium harvesting strategy of species l ∈ {1, 2} depends on the number of non-cooperating players harvesting species l and is independent of the harvesting strategy used by the players in the other group. Using [START_REF] Joosten | Strong and Weak Rarity Value: Resource Games with Complex Price-Scarcity Relationships[END_REF], we obtain:

∂x l ∂n l = - ρ l Θ x l A m + n l -1 < 0, ∂x m ∂n l = - β m Θ x m A m + n l -1 .
Increasing the number of non-cooperating players leads to a decrease in the steady-state stock of the species they are fishing. This is hardly surprising as we are simply adding fleets in an open-access fishery context. As a consequence, the impact of increasing the number of non-cooperating players on the steady state of the stock of the other species depends on the sign of the interaction parameter β m .

Cooperative fishing

Now assume that the agents in group l ∈ {1, 2} agree to coordinate their harvesting strategies by jointly maximizing their total utility, given the fishing strategy of the agents in the other group.

Proposition 5 If agents in group l ∈ {1, 2} coordinate their strategies, then under Assumptions 1-3, the catch rate by agent i ∈ N l is

p C il = 1 n l A m
and the total catch rate by agents in group l is given by

γ C l = 1 A m ∈ (0, 1) .
The total discounted utility over an infinite horizon of an agent i in group l is given by

V C l (x 1 , x 2 ; γ m ) = A m ln (x l ) + B l ln (x m ) + C C l (γ m ),
where

(1 -δ) C C l (γ m ) = (A m -1) ln (A m -1) -A m ln (A m ) +B l ln (1 -γ m ) -ln (n l ) .
Proof. See Appendix 8.5. The total catch in a cooperating group is independent of the number of agents in the group. It is equal to the optimal catch in a group containing a single agent and this total catch is distributed equally among the members of the cooperating group. As a consequence, the steady-state level of the stock is independent of the number of cooperating agents.

Impact of model parameters

Under specialized fishing, the impact of model parameters on the fishing strategies of cooperating and non-cooperating players is given by

dγ l dα l = - δn (1 -δα m ) 2 (Ωn + δ (α l (1 -δα m ) + δβ l β m )) 2 < 0, dγ l dα m = -β l β m δ 3 n (Ωn + δ (α l (1 -δα m ) + δβ l β m )) 2 , dγ l dβ l = -β m δ 2 n (1 -δα m ) (Ωn + δ (α l (1 -δα m ) + δβ l β m )) 2 , dγ l dβ m = -β l δ 2 n (1 -δα m ) (Ωn + δ (α l (1 -δα m ) + δβ l β m )) 2 ,
where n = n l when players in group l are not cooperating, and n = 1 when they are. As in the single owner case, an increase in α l reduces the fishing intensity of species l; other impacts depend on the type of interaction between the two species. Table 3 indicates the signs of the four terms of Equation ( 14) characterizing the impact of each model parameter on the steady-state stock level of species l. As in the single owner case, the impact of all parameters is ambiguous for the three interaction possibilities.

ζ -∂ ∂ζ ρ l Θ -∂ ∂ζ β l Θ ∂x l ∂γ l ∂γ l ∂ζ ∂x l ∂γ m ∂γ m ∂ζ α l - -β l + β m α m -β 1 β 2 -β l β 1 β 2 β l β l -β m - β m + β m -β l - β l β 1 β 2
Table 3: Impact of model parameters on the steady-state values. This table contains the sign of each of the four terms of Equation ( 14) when fishing is undertaken by two independent fleets.

Comparison

In all comparisons to follow, we shall focus on the difference in the steady-state values of the two species (a biological measure), and on the difference in the individual discounted utilities (an economic measure).

Specialized vs. non-specialized fishing

Suppose that the sets N l are singletons, that is, only one agent harvests each species. Obviously when n l = 1, the equilibrium fishing strategies γ C l and γ N l coincide. This special case corresponds to the scenario analyzed in Fischer and Mirman (1992) and the results according to this scenario are superscipted with F. Comparing scenario F to the single-owner case (scenario S) assesses the impact of having a single technology that enables to harvest both species and the value of coordinating the harvest of two species.

The following proposition compares the steady-state values.

Proposition 6 When the biological interaction is symbiotic, the steady-state levels with a single owner harvesting both species are higher than with two specialized agents. When one of the species preys on the other one, the steady-state level of the prey is higher with a single owner harvesting both species than with two specialized agents.

Proof. When n 1 = n 2 = 1, γ F l = γ N l = γ C l = 1 Am , l = 1, 2. We have γ S l -γ F l = 1 A m + B m - 1 A m = - B m A m (A m + B m ) , l = 1, 2.
The result for the symbiotic and the prey cases follows from ( 12)-( 13). In the two other cases, the result is ambiguous. Proposition 6 shows that the institutional arrangement (or alternatively the available technology), e.g., allowing one agent to exploit both species or having two players, each one harvesting one species, leads to different results depending on the relationship between the two species. In the competitive scenario and for the stock level of the predator, the differences in steady-state levels can be higher or lower when the two species are harvested by a single agent.

Using Proposition 3, the discounted utility for each player under scenario F is

V F l (x 1 , x 2 ) = A m ln (x l ) + B l ln (x m ) + C F l , l = 1, 2,
where

(1 -δ) C F l = (A m -1) ln (A m -1) -A m ln (A m ) + B l ln A l -1 A l .
Proposition 7 The difference in total discounted utilities between a single owner and two specialized fleets is independent of the stock levels of both species and is given by

D SF V S (x 1 , x 2 ) -V F 1 (x 1 , x 2 ) -V F 2 (x 1 , x 2 ) , = C S -C F 1 -C F 2 (1 -δ) .
This difference is positive for all biological interactions and all parameter values.

Proof. See Appendix 8.6.

As alluded to before, the single owner scenario involves an optimization (centralized) problem, whereas all other specialized fishing scenarios, including scenario F, are equilibrium (decentralized) problems, leading to lower total payoffs.

Figure 2 illustrates the impact of the model parameters on D SF by varying them around a base-case value corresponding to Case C1. These results are robust to the model parameter values.

Varying α l has the same impact for all types of biological interactions. That is, D SF is U-shaped and nearly flat for intermediate values: the difference in utilities between the single owner and the two specialized fleets is almost constant, except for extreme values of the regeneration parameter.

The impact of varying the interaction parameter β l on D SF depends on the sign of β l ; D SF is increasing convex in |β l |. Recall that the larger is |β l |, the lower is the (positive or negative) impact of the other species on the stock of species l, and the higher are the benefits of centralization.

Cooperation versus competition

In this section, we assess the difference between cooperation and competition within a group given an arbitrary fishing strategy used by the agents in the other group. We start by comparing the difference in steady-state values of the two species. The following proposition shows that cooperation leads, not surprisingly, to a lower exploitation of the resource, but not necessarily to a higher steady-state level of both species.

Proposition 8 For all biological interactions, cooperation within group l ∈ {1, 2} leads to a lower fishing intensity of species l than competition. Cooperation within group l leads to a higher steady-state level of species l. It leads to a higher steady-state level of species m when the biological interaction is symbiotic or when species m is a predator. When the interaction is competitive or when species m is a prey, cooperation within group l leads to a lower steady-state level of species m. The gap between the steady-state levels under cooperation and competition is increasing with the number of players in group l.

Proof. The difference in harvesting strategies is

γ N l -γ C l = (n l -1) A m -1 A m (A m + n l -1) ≥ 0,
where the two solutions coincide when n l = 1. Recall that when agents in group l play noncooperatively, the impact of the number of agents in group l on the steady-state stock levels is given by

∂x l ∂n l = - ρ l Θ x l A m + n l -1 < 0, ∂x m ∂n l = - β m Θ x m A m + n l -1 .
Since the steady-state stock levels when agents in group l play cooperatively do not depend on n l and coincide with the non-cooperative levels when n l = 1, the result follows.

When the game is played noncooperatively in group l, a player does not internalize the harvesting decisions of the other players when making her own, which leads to overfishing with respect to the cooperative solution. Increasing the number of players widens the gap between the cooperative and non-cooperative steady-state levels. In the case of a predator or a competing species, overfishing benefits the other species.

We now consider the economical dividend of cooperation for group l ∈ {1, 2}, as measured by

D CN l = n l V C l (x 1 , x 2 ; γ m ) -V N l (x 1 , x 2 ; γ m ) = n l C C l (γ m ) -C N l (γ m ) , where (1 -δ) C C l (γ m ) -C N l (γ m ) = -A m ln (A m ) -ln (n l ) + A m ln (n l + A m -1) = A m ln A m + n l -1 A m -ln (n l ) .
Proposition 9 Independently of the strategy used by the members of the other group, it is always beneficial for agents in group l ∈ {1, 2} to cooperate, and the economical benefits of cooperation are increasing with n l . Cooperation in group l is detrimental to the agents in the other group when the biological relationship is competitive or when species l is a predator to the other species. When the biological relationship is symbiotic or when species l is a prey to the other species, cooperation in group l is beneficial to the agents of the other group. The gap between the payoffs in the other group is increasing with n l .

Proof. The benefit of cooperation in group l is

D CN l = n l 1 -δ A m ln A m + n l -1 A m -ln (n l ) = n l 1 -δ f (n l ),
and is independent of the stock of both species and of the fishing strategy used by the agents in the other group. Note that

f (n l ) = 1 n l (A m -1) n l -1 A m + n l -1 ≥ 0 so that D CN l is > 0 for n l > 1 = 0 for n l = 1
and is increasing in n l . Using Proposition 3, the impact of cooperation in group l on the payoff of an agent i in group m is given by

C im (γ C l , γ m ) -C im (γ N l , γ m ) = B m (1 -δ) ln 1 -γ C l -ln 1 -γ N l = B m (1 -δ) ln 1 + n l -1 A m .
The gap between the payoffs in group m is positive if β m > 0, negative otherwise. This gap is increasing with n l :

d dn l ln 1 + n l -1 A m = 1 A m + n l -1 .

Global impact of cooperation

The results in the preceding section establish that it is always beneficial for agents in a given group to coordinate their fishing strategy, and that cooperation in group l ∈ {1, 2} has a positive impact on the steady-state fish stock level of species l. This means that, for agents in group l, Scenario C where the agents in each group coordinate their strategy is better than Scenario Nl where agents in group m coordinate their strategies while agents in group l act non-cooperatively, and results in a higher steady-state level for the species l.

In the same way, for agents in group l, Scenario Nm where agents in group l coordinate their strategies while those in group m act non cooperatively is better than Scenario N, and results in a higher steady-state level for the species l.

However, depending on the biological interaction between the species, cooperation in group l may have a detrimental impact on the steady-state stock of species m and on the payoff of the agents fishing that species. This happens when the biological interaction is competitive, or when species l is a predator of species m.

Our last proposition compares the global impact of cooperation by comparing the outcome of Scenario C, where agents cooperate in both groups, with that of Scenario N, where agents do not coordinate their harvesting strategies in either group.

Proposition 10

The steady-state stock of species l is larger under cooperation if β l > 0. Otherwise, the steady-state stock quantity of species l can be higher or lower under cooperation. The economical dividend of cooperation is positive when the relationship between the species is symbiotic. In other cases, it can be positive or negative.

Proof. See Appendix 8.7.

Examples where cooperation is detrimental to the steady-state stock of one or both species and where cooperation is not economically profitable are provided in Tables 4 and5.

Table 4 provides the signs of the differences in steady-state values and individual and global utilities between the fully cooperative scenario C and the fully non-cooperative scenario N, when the biological relationship is competitive. Parameter values are symmetrical and correspond to Case C1 of Table 2. The results in Table 4 show that all possible outcomes can be obtained in the competitive case, and, in particular, that cooperation may result in a decrease in the payoffs of all agents or in a decrease in the steady-state stock of one of the species.

Case C1 n 1 = n 2 = 2 n 1 = n 2 = 3 n 1 = 2, n 2 = 10 x C 1 -x N 1 + + - x C 2 -x N 2 + + + C C 1 -C N 1 - + - C C 2 -C N 2 - + + D CN - + +
Table 4: Global impact of cooperation, competitive case. This table provides the signs of the differences in steady-states and individual and global utilities between the fully cooperative scenario C and the fully non-cooperative scenario N, when the biological relationship is competitive. Parameter values are symmetrical and correspond to Case C1 of Table 2.

Table 5 provides the signs of the differences in steady-states and individual and global utilities between the fully cooperative scenario C and the fully non-cooperative scenario N, when the biological relationship is prey/predator. As indicated in Proposition 10, the steadystate stock level of the predator is always higher under cooperation. Table 5 shows that the steady-state stock level of the prey can be higher or lower, and that the benefits of cooperation can be higher or lower for both types of agents. Parameter values are provided in Table 2.

n 1 = n 2 = 2 n 1 = n 2 = 2 n 1 = 2, n 2 = 3 n 1 = 10, n 2 = 2 n 1 = 2, n 2 = 10 Case C1 C8 C8 C9 C10 x C 1 -x N 1 + + - + - x C 2 -x N 2 + + + + + C C 1 -C N 1 - - - + - C C 2 -C N 2 - + + + + D CN - - - + +
Table 5: Global impact of cooperation, prey/predator case. This table provides the signs of the differences in steady-states and individual and global utilities between the fully cooperative scenario C and the fully non-cooperative scenario N, when species 1 is the prey. Parameter values are provided in Table 2.

Concluding remarks

In this paper, we investigated the impact of biological interactions and agents' behavior on equilibrium strategies and outcomes in a two-species fishery. Our model extends the setup of [START_REF] Fischer | Strategic dynamic interaction: fish wars[END_REF][START_REF] Mesterton-Gibbons | A technique for finding optimal two-species harvesting policies[END_REF] to a framework where there is a group of fisherpersons exploiting each species. Our results indicate that cooperation among two competing groups of agents is not necessarily beneficial, both from a biological and an environmental point of view. This is due to the biological interactions between the two species, and to the fact that coordination only happens among players in the same group. This is not the case when decisions are completely centralized (single owner scenario), which is shown to provide the highest overall utility. As in the FM model, two assumptions play a crucial role in the determination of equilibrium strategies and outcomes. First, the fact that both species procure the same utility, and, second, the fact that each agent harvests only one species.

Relaxing either one of these assumptions would require the use of a numerical approach to obtain the resulting equilibria. This is clearly a worthy extension to this work as these two assumptions are quite restrictive. 

C l (x) = {c l : 0 < c l < x l } , l = 1, 2. ( 17 
)
Note that in that case, the immediate reward ln(c 1 ) + ln(c 2 ) is not bounded. When β 1 > 0 and β 2 > 0, Equation (2) implies that, if x ∈ (0, 1] × (0, 1], then the transition state x ∈ (0, 1]×(0, 1] for all possible decisions, so that the state space can be restricted to (0, 1]×(0, 1]. As a consequence, the immediate reward is non-positive for all feasible harvesting strategies and all possible states, so that the optimization problem ( 15)-( 16) satisfies the conditions of Negative Dynamic Programming. In that case, it has been established [START_REF] Strauch | Negative dynamic programming[END_REF]) that the value function exists and that the optimal strategy is obtained by solving the Bellman equation. Moreover, since the discount factor δ < 1, the value function is the unique solution of the Bellman equation.

The competitive and prey-predator cases

As shown in Gorniewicz & Wiszniewska-Matyszkiel (2018), when at least one of the biologic parameters is negative, the FM model needs to be slightly modified in oder to obtain the optimal strategies and the value function from the solution of the Bellman equation. Note that, when β l < 0, Equation (2) implies that the stock of species m tends to infinity when the stock of species l ∈ {1, 2} vanishes. As the authors rightly point out, the behavior of the FM model is then unrealistic.

Define the set of feasible decisions by

C l (x) = {c l : 0 < c l < x l (1 -ε)} , (18) 
where 0 < ε < 1. It is then straightforward, using Equation ( 2), to obtain bounds on the value of x 1 and x 2 such that

0 < η min l < x l < η max l , l = 1, 2.
By restricting the set of available decisions in that way, the immediate reward ln(c 1 ) + ln(c 2 ) is bounded above by a constant M = ln (η max 1

) + ln (η max ):

ln(c l ) < ln(x l (1 -ε)) < ln (η max l (1 -ε)) < ln (η max l ) , l = 1, 2,
and the value function is bounded above by M 1-δ . It is easy to show that the optimization problem ( 15)-( 16) is then equivalent to

W (x) = max c 1 ∈C 1 (x) c 2 ∈C 2 (x) {ln (c 1 ) + ln (c 2 ) -M + δW (x 1 , x 2 )} x l = (x l -c l ) α l (x m -c m ) β l , l = 1, 2, where V (x) = W (x) + M
1-δ and where W (x) satisfies the conditions of Negative Dynamic Programming.

Note that the positive constant ε can be selected so that the constraint on the catch is not binding, so that the solutions obtained by Fisher & Mirman (1992,1996) are also solutions of the restricted problem. As pointed out by Gorniewicz & Wiszniewska-Matyszkiel (2018), the existence of the value function in the unrestricted FM model is an open problem when at least one of the biological parameters is negative.

Assuming that there is an upper bound on the proportion of the stock that can be harvested is not necessarily unrealistic; while harvesting costs are not taken into account in the FM model, one can assume that these costs become prohibitive when the stock becomes very low, which could motivate such an assumption.

In the sequel, we will assume that the set of feasible decisions is given by Equation ( 17) in the symbiotic case and by Equation [START_REF] Rettieva | Stable coalition structure in bioresource management problem[END_REF] in the two other cases, and that the constraint in Equation ( 18) is not binding.

Note that other modifications of the model can be implemented to ensure the existence of a solution, for instance by changing the dynamics so that the stock of a given species cannot be larger than the saturation level, or so that the size of the stock of a species ceases to have an impact on the evolution of the other when it falls under a given threshold.

We refer the interested reader to Gorniewicz & Wiszniewska-Matyszkiel (2018) where modifications of the dynamics, motivated by the Allee effect, are proposed, and where alternative proofs of the existence of a solution are provided for the restricted model presented above.

Proof of Proposition 2

Assume that, for x 1 > 0 and x 2 > 0,

V (x 1 , x 2 ) = 2 l=1 (A m + B m ) ln (x l ) + C. We then have V (x 1 , x 2 ) = max c 1 ∈C 1 (x) c 2 ∈C 2 (x)
{G(c 1 , c 2 ; x 1 , x 2 )} ,

where G(c 1 , c 2 ; x 1 , x 2 ) = and is strictly positive under Assumption 3. Therefore, for a given (x 1 , x 2 ), G(c 1 , c 2 ; x 1 , x 2 ) is a strictly concave function of (c 1 , c 2 ). As a consequence, the first-order conditions are sufficient, and the optimal solution at (x 1 , x 2 ) is given by

c * l (x 1 , x 2 ) = x l 1 + δ (α l (A m + B m ) + β m (A l + B l )) = x l A m + B m .
Assume that c * l (x) is interior. Replacing the optimal values for c l , l = 1, 2, in Equation where ε = 0 in the symbiotic case and ε > 0 in the competitive and prey-predator cases. Note that

A m + B m = 1 -δα m + δβ m Ω = 1 + δ α l (1 -δα m ) + β m (1 + δβ l ) Ω = 1 + δξ l Ω > 1.
The solution is clearly interior in the symbiotic case. In the other cases, it suffice to set ε to any value satisfying 0 < ε < min δξ 1 Ω + δξ 1 , δξ 2 Ω + δξ 2 .

We then have

1 A m + B m = 1 - δξ l Ω + δξ l < 1 -ε.

Proof of Proposition 3

The total discounted utility of Agent i fishing species l satisfies V il (x 1 , x 2 ; γ) = ln (p il x l ) + δV il (x 1 -γ 1 x 1 , x 2 -γ 2 x 2 ; γ). Assuming V il (x 1 , x 2 ; γ) = A m ln (x l ) + B l ln (x m ) + C il (γ) yields V il (x 1 , x 2 ; γ) = ln (p il x l ) + δA m ln (x l -γ l x l ) α l (x m -γ m x m ) β l +δB l ln (x m -γ m x m ) αm (x l -γ l x l ) β m + δC il 

Proof of Proposition 4

Consider Player i in group l ∈ {1, 2} and define P il to be the total catch rate of all the other players in group l, so that γ l = p il + P il .

Given . 

Remark 3

 3 Irrespective of the signs of β 1 and β 2 , Θ is positive. If sign(β 1 ) = sign(β 2 ), then by Assumption 1, we have |β l | < 1 -α l , and consequently Θ > 0. If sign(β 1 ) = -sign(β 2 ), then Θ is trivially positive.
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2 l=1 2 , ∂ 2 α l ( 1 -

 2221 ln (c l ) + δ (A m + B m ) (α l ln (x l -c l ) + β l ln (x m -c m )) + δC.Differenciating G with respect to the decision variables yields∂G ∂c l = c l -x l + δc l (α l (A m + B m ) + β m (A l + B l )) c l (c l -x l ) , -x l ) 2 + δc 2 l (α l (A m + B m ) + β m (A l + B l )) c 2 l (c l -x l ) G ∂c l ∂c m = 0. For l = 1, 2, α l (A m + B m ) + β m (A l + B l ) δα m ) + β m (1 + δβ l ) Ω
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Figure 1 :

 1 Figure 1: Sensitivity of the steady-state stock levels to model parameter values for various constellations, described in Table2. In all experiments, the discount factor δ = 0.95.

Figure 2 :

 2 Figure 2: Impact of model parameters on the benefits of centralization D SF (left axis) and total discounted utilities (right axis). The base case is C1 in Table 2. The discount factor δ = 0.95.

Table 1 :

 1 Impact of model parameters on the steady-state levels. This table contains the sign of each of the four terms of Equation (14) when the fishery is managed by a single owner.

	Cases C1 C2	C3	C4 C5	C6	C7	C8	C9 C10
	α l	0.5 0.5	0.5 0.3 0.5 0.9 0.36 0.4 0.3 0.6
	α m	0.5 0.5	0.6 0.2 0.5 0.2 0.97 0.9 0.8 0.6
	|β l |	0.1 0.05 0.005 0.5 0.1 0.01 0.4	0.13 0.1 0.1
	|β m |	0.1 0.1 0.05 0.5 0.05 0.5 0.015 0.01 0.1 0.1

Table 2 :

 2 Numerical illustrations. This table contains the parameter values used to produce the numerical illustrations in Figures1 and 2and in Tables

  γ m and P il , Player i ∈ N l maximizesG N il (p il ) ≡ C il (γ) = ln (p il ) + (A m -1) ln (1 -p il -P il ) + B l ln (1 -γ m ) .

	Differentiating w.r.t. p il yields			
	dG N il dp il	=	p il 1	P

il + A m p il -1 P il + p i -1 , d 2 G N il dp 2 il = -(P il + p il -1) 2 + p 2 il (A m + 1) p 2 il (P il + p il -1) 2

A precise definition of the sets C ilt is provided in Appendix 8.1.

Note that we restrict the range of parameter values for this numerical analysis to those satisfying Assumptions 1-3 and yielding a steady state in (0, 1] × (0, 1].
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This is a concave optimization problem and the best response of Player i ∈ N l to the fishing strategy of the other agents is given by

Simultaneously solving for i = 1, ..., n l yields the equilibrium fishing strategy of the players in group l, which is independent of the fishing strategy of the agents in group m:

Note that

The numerator is positive if

under Assumption 2. As a consequence, A l > 1 for l = 1, 2 and the equilibrium fishing strategy γ N l ∈ (0, 1) . Replacing the equilibrium strategy γ N l in C il (γ) yields

Proof of Proposition 5

Given γ m , the agents in group l jointly maximize

Since A m > 1, this is a concave optimization problem and the best response of the group of agents fishing species l is independent of the fishing strategy of the agents fishing the other species and is given by

Replacing the equilibrium strategy

Proof of Proposition 7

We have

Consider the function

and

Proof of Proposition 10

The steady-state of species l under scenarios C (all agents coordinate their strategies) and N (all agents act individualistically) compare as follows:

When β l > 0, this expression is larger than 1.

The global dividend of cooperation is given by

where

It comes

D CN is positive when B 1 and B 2 are both positive, which is the case under symbiotic interactions.