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This study focuses on capillary bridges between unequal-sized spherical particles in the pendular regime where the capillary bridge surface is axisymmetric. An analytical theory as well as closed-form expressions have been developed for the rupture distance and the capillary force. These expressions have been validated with a very large dataset of numerical solutions of the governing Young-Laplace equation, generated through a high-resolution integration method.

For small capillary bridge volumes and contact angles smaller than 20 • , it has been shown that the meridional profile of the capillary bridge between unequal-sized particles can be accurately described by part of ellipses and that the contact radii for the large and the small particle are approximately equal. Contrary to the widely used toroidal approximation, the developed analytical theory takes into account the governing Young-Laplace equation, according to which the capillary force is constant along the capillary bridge. The analytical theory rigorously shows that expressions developed for cases with equal-sized particles can be directly employed in cases with unequal-sized particles by the use of the Derjaguin radius when the capillary bridge volume is small. Expressions for the rupture distance and the capillary force have also been derived analytically.

For large capillary bridge volumes the use of the Derjaguin radius is not sufficient to accurately describe the properties of capillary bridges between particles with unequal sizes. By curve-fitting to the large dataset of numerical solutions of the Young-Laplace equation, a closed-form expression for the rupture distance has been developed, that accounts for the influence of the particle size ratio and that is accurate over a wide range of capillary bridge volumes. Expressions in the literature for the capillary force between unequal-sized spherical particles have been rigorously evaluated. With the new expression for the rupture distance, an improved closed-form expression for the capillary force has been formulated that is accurate for a wide range of small and large capillary bridge volumes (more specifically, when the ratio of the capillary bridge volume to the cubic root of the Derjaguin radius is smaller than 0.5) and separation distances, for contact angles smaller than 40 • .

Introduction

Capillary cohesion is important in many problems in science and engineering, such as in selective laser sintering [START_REF] Clementz | Homogenization modeling of capillary forces in selective laser sintering[END_REF], caking and agglomeration [START_REF] Litster | Scaleup of wet granulation processes: science not art[END_REF][START_REF] Hartmann | Caking of amorphous powders -Material aspects, modelling and applications[END_REF], medical problems involving respiratory diseases [START_REF] Alencar | Crackles and instabilities during lung inflation[END_REF], particle-stabilised foams and emulsions [START_REF] Wasan | Colloidal dispersions: Structure, stability and geometric confinement[END_REF][START_REF] Guzowski | Capillary interactions in pickering emulsions[END_REF], capillary cohesion in partially saturated granular materials [START_REF] Soulié | Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials[END_REF][START_REF] Richefeu | Force transmission in dry and wet granular media[END_REF][START_REF] Scholtès | Micromechanics of granular materials with capillary effects[END_REF][START_REF] Delenne | Liquid clustering and capillary pressure in granular media[END_REF][START_REF] Pouragha | Statistical analysis of stress transmission in wet granular materials[END_REF] and capillary evaporation and condensation in porous media [START_REF] Mielniczuk | Laplace pressure evolution and four instabilities in evaporating two-grain liquid bridges[END_REF][START_REF] Dörmann | Distance-dependency of capillary bridges in thermodynamic equilibrium[END_REF]. For these problems, it is important to further develop general expressions for predicting the capillary force and the rupture distance (i.e. the maximum separation distance between the particles for which a capillary bridge exists). These expressions are generally formulated for given values of the capillary bridge volume and of the separation distance between two spherical particles, see for instance [START_REF] Lian | A theoretical study of the liquid bridge forces between two rigid spherical bodies[END_REF][START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF][START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF].

In wet granular assemblies, different regimes are encountered [START_REF] Delenne | Liquid clustering and capillary pressure in granular media[END_REF][START_REF] Urso | Pendular, funicular, and capillary bridges: Results for two dimensions[END_REF][START_REF] Wang | Capillary force and rupture of funicular liquid bridges between three spherical bodies[END_REF][START_REF] Murase | Estimation on the strength of a liquid bridge adhered to three spheres[END_REF][START_REF] Lievano | The rupture force of liquid bridges in two and three particle systems[END_REF]. These regimes are, listed here with increasing liquid content: [START_REF] Clementz | Homogenization modeling of capillary forces in selective laser sintering[END_REF] the pendular regime where only a single capillary bridge exists between two particles, (2) the funicular regime with coalesced capillary bridges, with liquid clusters that are simultaneously in contact with at least three particles and (3) the capillary regime where the pores are fully saturated with liquid. The current study focuses on capillary bridges in the pendular regime and situations where the surface of the capillary bridge is axisymmetric and the influence of gravity can be neglected. The influence of gravity on capillary bridges has been studied in detail in [START_REF] Adams | Mapping the influence of gravity on pendular liquid bridges between rigid spheres[END_REF]. The effect of viscosity is not considered, since the capillary bridges are assumed to be in quasi-static equilibrium.

The geometry of the surface of the capillary bridge between two solid bodies is described by the well-known Young-Laplace equation [START_REF] Delaunay | Sur la surface de révolution dont la courbure moyenne est constante[END_REF][START_REF] Fisher | On the capillary forces in an ideal soil; correction of formulae given by W.B. Haines[END_REF][START_REF] Erle | Liquid bridges between cylinders, in a torus, and between spheres[END_REF], according to which the mean curvature of the surface is constant. Solutions to the Young-Laplace equation provide properties of the axisymmetric capillary bridges, such as the rupture distance and the capillary force [14, 16-18, 26, 27]. It has been shown experimentally that the Young-Laplace equation accurately describes the properties of capillary bridges [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Mason | Liquid bridges between spheres[END_REF][START_REF] Rabinovich | Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment[END_REF][START_REF] Gras | Study of capillary interaction between two grains: a new experimental device with suction control[END_REF][START_REF] Nguyen | On the capillary bridge between spherical particles of unequal size: analytical and experimental approaches[END_REF][START_REF] Nguyen | Exact calculation of axisymmetric capillary bridge properties between two unequal-sized spherical particles[END_REF][START_REF] Gagneux | An analytical framework for evaluating the cohesion effects of coalescence between capillary bridges[END_REF][START_REF] Mielniczuk | Characterisation of pendular capillary bridges derived from experimental data using inverse problem method[END_REF][START_REF] Gagneux | Theoretical and experimental study of pendular regime in unsaturated granular media[END_REF].

Capillary bridges between two equal-sized spherical bodies have been extensively studied [9, 14, 15, 17, 18, 20, 25-28, 31, 33, 36-38, 38]. However, investigations of capillary bridges between spherical bodies of unequal sizes are limited [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF][START_REF] Nguyen | Exact calculation of axisymmetric capillary bridge properties between two unequal-sized spherical particles[END_REF][START_REF] Mehrotra | Pendular bond strength between unequal-sized spherical particles[END_REF][START_REF] Mehrotra | A novel method for the calculation of pendular bond characteristics between unequal-sized particles[END_REF][START_REF] Chen | Liquid bridge force between two unequal-sized spheres or a sphere and a plane[END_REF][START_REF] Harireche | A toroidal approximation of capillary forces in polydisperse granular assemblies[END_REF][START_REF] Dörmann | Simulation of capillary bridges between nanoscale particles[END_REF]. Expressions for the rupture distance and capillary force in these studies are discussed in the following Sections. The current study aims to investigate, both analytically and numerically, the influence of the size ratio, i.e. the ratio of the radius of small particle to that of the large particle, on the rupture distance and on the capillary force.

The capillary force and the rupture distance for capillary bridges between unequal-sized spherical particles have been studied, using four complimentary approaches: [START_REF] Clementz | Homogenization modeling of capillary forces in selective laser sintering[END_REF] experiments that directly provide information on the capillary force and the rupture distance, but are expensive and difficult to perform due to the effect of gravity and particle surface roughness [START_REF] Rabinovich | Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment[END_REF][START_REF] Nguyen | Exact calculation of axisymmetric capillary bridge properties between two unequal-sized spherical particles[END_REF]; (2) numerical solutions of the nonlinear Young-Laplace equation [START_REF] Lian | A theoretical study of the liquid bridge forces between two rigid spherical bodies[END_REF][START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF][START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF] that are effectively exact (when the discretisation is sufficiently fine), but are time-consuming and cumbersome; (3) closed-form expressions based on curve-fitting to large datasets that are computationally-fast and accurate over a wide range of capillary bridge volumes and separation distances, but that lack clear physical meaning and that contain numerous calibrated fitting coefficients [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF] and (4) analytical methods with clear physical meaning, but that involve some level of approximation and therefore have a limited range of validity [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF][START_REF] Fisher | On the capillary forces in an ideal soil; correction of formulae given by W.B. Haines[END_REF].

Experimental studies using Atomic Force Microscopy [START_REF] Uzhegova | The influence of capillary effect on atomic force microscopy measurements[END_REF] show that an increase of the particle size ratio R L /R s , with R L and R s being the radius of the larger and the smaller spherical particle respectively, results in an increase of the capillary force [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Rabinovich | Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment[END_REF]. Israelachvili [START_REF] Israelachvili | Intermolecular and Surface Forces[END_REF] showed theoretically that the capillary force between a sphere and a plate at zero separation is twice that between two spheres of the same radius, in agreement with experimental results by [START_REF] Mason | Liquid bridges between spheres[END_REF].

In many studies on the properties of capillary bridges between unequal-sized particles (for instance [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF][START_REF] Gras | Study of capillary interaction between two grains: a new experimental device with suction control[END_REF][START_REF] Wang | Stress-force-fabric relationship for unsaturated granular materials in pendular states[END_REF]; based on the analytical and curve-fitting approach), expressions for equal-sized spheres (for rupture distance and capillary force) are frequently used, where the particle radius is replaced by an equivalent radius that is dependent on the radii R s and R L of the small and the large particle. For this equivalent radius, the Derjaguin radius R (also called the harmonic radius), that originates from the Derjaguin approximation [START_REF] Israelachvili | Intermolecular and Surface Forces[END_REF][START_REF] Derjaguin | Untersuchungen über die Reibung und Adhäsion[END_REF], is used

R = 2R s R L R s + R L . (1) 
Note that for the case of equal-sized spheres, R L = R s = R, the Derjaguin radius equals the particle radius: R = R. It is noted in [START_REF] Willett | Pendular capillary bridges[END_REF]: "It is generally assumed without proof that, by analogy, this relationship [Eq. [START_REF] Clementz | Homogenization modeling of capillary forces in selective laser sintering[END_REF] for the equivalent radius] may be applied to capillary bridges".

The Derjaguin approximation [START_REF] Israelachvili | Intermolecular and Surface Forces[END_REF][START_REF] Derjaguin | Untersuchungen über die Reibung und Adhäsion[END_REF] is based on considerations on the equivalence of a force law between two curved surfaces and the surface free energy (per unit surface area) of interaction between two flat surfaces. It employs the assumptions that the surface area and the separation distance are very small.

Willett et al. [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF] investigated the accuracy of the use of the Derjaguin radius for capillary bridges between unequal-sized spheres, using numerical solutions of the Young-Laplace equation. For capillary bridges at zero separation (i.e. when the spheres are in direct contact) and small volumes, the deviations in the capillary force are smaller than 2%. The rupture distances are overpredicted when using the Derjaguin approximation. For large separation distances and large capillary bridge volumes, the deviations in the capillary force can be up to 20%. For the rupture distance Willett et al. [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF] have formulated a size-ratio dependent expression for the rupture distance by curve-fitting the dependence of the rupture distance on capillary bridge volume, contact angle and size ratio to the rupture distance obtained from their numerical solutions to the governing Young-Laplace equation.

Lian and Seville [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF] conducted a detailed study of numerical solutions of the Young-Laplace equation and proposed a closed-form expression that fits the rupture distance and the capillary force with good accuracy for small to medium capillary bridge volumes, but not for large volumes with unequal-sized particles, due to the absence of the size ratio in their expressions for the rupture distance and for the capillary force.

The most widely used analytical theory is the toroidal approximation [START_REF] Fisher | On the capillary forces in an ideal soil; correction of formulae given by W.B. Haines[END_REF][START_REF] Mehrotra | Pendular bond strength between unequal-sized spherical particles[END_REF][START_REF] Chen | Liquid bridge force between two unequal-sized spheres or a sphere and a plane[END_REF][START_REF] Harireche | Prediction of inter-particle capillary forces for nonperfectly wettable granular assemblies[END_REF][START_REF] Megias-Alguacil | Analysis of the capillary forces between two small solid spheres binded by a convex liquid bridge[END_REF], in which the meridional profile of the capillary bridge surface is represented by part of a circle. Although this method is simple, the capillary forces evaluated at the neck and at the contact circle are unequal, contradictory to the Young-Laplace equation according to which the mean curvature and the capillary forces are constant [START_REF] Lian | A theoretical study of the liquid bridge forces between two rigid spherical bodies[END_REF][START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Harireche | A toroidal approximation of capillary forces in polydisperse granular assemblies[END_REF].

The analytical ellipse approximation method has been developed in [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF] to describe the properties of capillary bridges between two perfectly-wetting equal-sized spheres. This method has been subsequently extended by Zhao et al. [START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF] to consider the effect of the contact angle. In this theory the meridional profile of the capillary bridge surface is represented by part of an ellipse. In comparison to other approaches in the literature, this approach has advantages, such as: (1) it takes into account the property of the Young-Laplace equation according to which the mean curvature is constant; [START_REF] Litster | Scaleup of wet granulation processes: science not art[END_REF] no calibrated fitting coefficients are required; (3) it predicts the rupture distance and capillary force with good accuracy. However, the studies in [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF] focused on capillary bridges between equal-sized spherical particles and with small capillary bridge volumes.

For unequal-sized particles and large capillary bridge volumes, the rupture distances and capillary forces have been less studied [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF]. In Willett et al. [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF], the dataset of the numerical solutions of the Young-Laplace equation is relatively limited (see their Fig. 10). The expression for the capillary force by Lian and Seville [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF] is accurate for small to medium volumes. The current analyses of the very large dataset of numerical solutions of the Young-Laplace equation are complemented with an analytical investigation. These investigations of the numerical solutions of the Young-Laplace equation show that for large volumes it is not sufficient just to use the Derjaguin radius; for small volumes, it is shown analytically that it is sufficient to employ the Derjaguin radius.

The numerical and analytical investigations conducted in this study result in an accurate description of the properties (rupture distance and capillary force) of capillary bridges that is valid for small as well as large capillary bridge volumes, with considerations of the effect of the particle size ratio (beyond the use of the Derjaguin radius) and of the contact angle. Specific objectives of this study are to:

• develop an analytical theory by extending the ellipse approximation described in [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF] for equal-sized spheres to the case of unequal-sized spheres;

• analyse analytically and numerically the suitability of the use of the Derjaguin radius for different particle size ratios, capillary bridge volumes, separation distances and contact angles;

• formulate a more accurate expression for the rupture distance that is also valid for large capillary

• evaluate the accuracy of the expressions for the capillary force in the literature and formulate an improved expression for the capillary force that is also accurate for large capillary bridge volumes and that accounts for the size ratio.

The outline of this study is as follows. Section 2 gives the description of the geometry of the capillary bridge and the numerical solution method for the Young-Laplace equation. Section 3 discusses the ellipse approximation approach to the case of unequal-sized spherical particles. Section 4 analyses the accuracy of current expressions for the rupture distance and the capillary force, with an emphasis on the size ratio, and formulates more accurate closed-form expressions appropriate for both small and large capillary bridge volumes. Section 5 summarises the findings of this study and discusses further developments.

Capillary bridge geometry and numerical solution of the Young-Laplace equation

The geometry of the axisymmetric capillary bridge between unequal-sized spherical particles is described in Section 2.1. In Section 2.2 the Young-Laplace equation is given that governs the surface geometry of the capillary bridge. A numerical solution method is developed in Section 2.3 to solve the Young-Laplace equation between unequal-sized particles. This numerical method is subsequently used to generate a very large dataset of high-resolution solutions, that is subsequently employed for validating the analytical ellipse approximation and for studying properties of capillary bridges for various size ratios, various (small and large) volumes and separation distances. This dataset is much larger than those considered in [START_REF] Lian | A theoretical study of the liquid bridge forces between two rigid spherical bodies[END_REF][START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF].

Geometry of the capillary bridge

As shown in Fig. 1, the capillary bridge is present in between two spherical particles. Without loss of generality, the large particle with radius R L is located on the left, while the small particle with radius R s is located on the right; hence, R L ≥ R s . Throughout this paper, subscripts s and L refer to properties of the small and large particle, respectively.

The coordinate system used in this study is dimensional, contrary to that in [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF]. The axial coordinate (along the axis of symmetry) is denoted by X, while the meridional profile of the surface of the capillary bridge is denoted by Y (X). Hence, Y (X) gives the local radius of the axisymmetric capillary bridge at axial location X. The location of X = 0 is selected at the neck, where Y (X) is minimal. The neck radius is denoted by Y 0 . Therefore, at the neck the meridional profile Y (X) satisfies the conditions

Y (0) = Y 0 Y (0) = 0 , (2) 
where Y (X) ≡ dY /dX. The meridional coordinates of the three-phase contact circle of the small particle are (X cs , Y cs ), while that of the large particle are (X cL , Y cL ). Hence, Y cs and Y cL are the contact radii of the small and the large particle, respectively. The separation distances, with respect to the neck at X = 0 are denoted by S s and S L for the small and the large particle, respectively (see also Fig. 1).

The meridional coordinates of the contact circles can be related to the separation distances S s and S L and the half-filling angles δ s and δ L , for the small and the large particle respectively (see also Fig. 1)

X cs = S s + R s (1 -cos δ s ) Y cs = R s sin δ s X cL = -S L -R L (1 -cos δ L ) Y cL = R L sin δ L . (3) 
For the case of small contact radii (Y cs /R s 1 and Y cL /R L 1), the expressions in Eq.( 3) can be approximated by

X cs ∼ = S s + 1 2 Y 2 cs Rs Y cs ∼ = R s δ s X cL ∼ = -S L -1 2 Y 2 cL R L Y cL ∼ = R L δ L . (4) 
At the contact circles, the slopes of the meridional profile Y (X) are dependent upon the contact angle θ (see also Fig. 1). These slopes are given by

Y (X cs ) = cot(δ s + θ) = √ R 2 s -Y 2 cs -T Ycs Ycs+T √ R 2 s -Y 2 cs ≡ Y cs Y (X cL ) = -cot(δ L + θ) = - √ R 2 L -Y 2 cL -T Y cL Y cL +T √ R 2 L -Y 2 cL ≡ Y cL , (5) 
where T is defined in terms of the contact angle θ by

T = tan θ . (6) 
This study focuses on concave capillary bridge profiles, and hence the half-filling angles δ s and δ L and the contact angle θ must satisfy the conditions δ s + θ ≤ 90 • and δ L + θ ≤ 90 • .

Young-Laplace equation and capillary force

The geometry of the capillary bridge surface is described by the well-known Young-Laplace equation [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF][START_REF] Delaunay | Sur la surface de révolution dont la courbure moyenne est constante[END_REF][START_REF] Erle | Liquid bridges between cylinders, in a torus, and between spheres[END_REF], according to which the mean curvature of the surface is constant. For axially symmetric capillary bridges, the Young-Laplace equation for the meridional profile Y (X) is given by

K[Y ](X) ≡ Y (1+Y 2 ) 3/2 -1 Y 1 (1+Y 2 ) 1/2 = H and H = pext-p int γ , (7) 
where K[Y ] is the mean-curvature operator; Y = dY /dX and Y = d 2 Y /dX 2 ; p ext and p int are pressures outside and inside the capillary bridge; γ is the surface tension (γ = 72.8 × 10 -3 N/m for water-air interfaces at a temperature of 20 • C). Boundary conditions for this nonlinear second-order ordinary differential equation are given by Eqs.( 2), (3) and [START_REF] Wasan | Colloidal dispersions: Structure, stability and geometric confinement[END_REF].

The Young-Laplace equation ( 7) has a first integral, given by Λ

[Y ](X) ≡ Y √ 1 + Y 2 + 1 2 HY 2 = λ , (8) 
where λ is a constant. This expression corresponds to axial force equilibrium along the capillary bridge [START_REF] Lian | A theoretical study of the liquid bridge forces between two rigid spherical bodies[END_REF][START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Erle | Liquid bridges between cylinders, in a torus, and between spheres[END_REF]. By substitution of Eqs.( 2) and (5) into Eq.( 8), it follows that the mean curvature H and the constant λ are given by

Y 0 - Y cL √ 1+Y 2 cL Y 2 cL -Y 2 0 = 1 2 H = Y 0 -Ycs √ 1+Y 2 cs Y 2 cs -Y 2 0 λ = Y 0 + 1 2 HY 2 0 . (9) 
The capillary force F cap between two spherical particles is then determined by

F cap = λ (2πγ) , (10) 
where F cap and λ are both dimensional.

From Eq.( 9 

K 4 Y 4 cL + K 2 Y 2 cL + K 0 = 0 , (11) 
where the coefficients K 4 , K 2 and K 0 depend on Y cL and Y cs (as well as on θ, R s and R L ) and are given by Eq. [START_REF] Derjaguin | Untersuchungen über die Reibung und Adhäsion[END_REF].

When the radii of the two particles are equal, R L = R s , the single solution of Eq.( 11) is Y cL = Y cs , as expected from symmetry considerations. The existence of physically-relevant solutions to Eq.( 11) is investigated by considering the discriminant ∆ = K 2 2 -4K 4 K 0 of the (bi)quadratic equation [START_REF] Pouragha | Statistical analysis of stress transmission in wet granular materials[END_REF].

This equation may have zero (∆ < 0), one (∆ = 0) or two real and positive solutions (∆ > 0) that satisfy the constraints Y cs ≤ Y cL ≤ R L . When two such solutions are obtained, only the one with smaller surface area (and hence smaller surface energy) is considered meaningful [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Erle | Liquid bridges between cylinders, in a torus, and between spheres[END_REF]. The region of existence of a solution of Eq.( 11) for Y cL is shown in Fig. 2, through the lower and the upper boundary, for the cases of R L /R s = 1, 2 and 128, for both θ = 0 • and 20 • .

For small contact and neck radii Y cs and Y 0 respectively, the expression for zero discriminant, ∆ = 0, can be approximated by

0 = ∆ ∼ = T 2 Y 0 Y cs 4 -4T T 2 + 1 Y 0 Y cs 3 + (6T 2 + 4) Y 0 Y cs 2 -4T T 2 + 1 Y 0 Y cs + T 2 , (12) 
This equation has been obtained by performing a Taylor series expansion in Y cs and Y 0 . It is independent on the size ratio R s /R L . For given value of T , the solution of Eq.( 12) yields a minimum value for the ratio Y 0 /Y cs , corresponding to the slope at Y cs = 0 of the lower boundary in Fig. 2. Results shown in Fig. 2 confirm that the lower boundary is indeed independent of the size ratio (for small values of Y cs /R s and for size ratios large than one), consistent with the analysis based on Eq.( 12).

For large values of Y cs /R s , however, both the size ratio and the contact angle significantly affect the region of existence of a solution to Eq.( 11) for Y cL . The formulation of an explicit expression for the boundaries of the region of existence of a solution to Eq.( 11) for Y cL , for various values of particle size ratio and contact angle, is beyond the scope of this study.

Numerical solution of the Young-Laplace equation

The meridional profile X(Y ), the dual of Y (X), has a negative and positive slope for X ≤ 0 and X ≥ 0, respectively (see also Fig. 1). The two parts of X(Y ) are denoted by X L (Y ) (for X ≤ 0) and X s (Y ) (for X ≥ 0). Based on Eq.( 8) and following the approach in [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF], X L (Y ) and X s (Y ) are determined from the following integrals (rather than as a solution of the nonlinear ordinary differential equation, Eq.( 7), as in [START_REF] Lian | A theoretical study of the liquid bridge forces between two rigid spherical bodies[END_REF][START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF])

X s (Y ) = X cs - Ycs Y [λ-1 2 HY 2 ] Y 2 -[λ-1 2 HY 2 ] 2 dY X L (Y ) = X cL + Y cL Y [λ-1 2 HY 2 ] Y 2 -[λ-1 2 HY 2 ] 2 dY . (13) 
Note that these expressions involve the neck radius Y 0 through H and λ, see Eq.( 8).

The integrals in Eq.( 13) have been evaluated using the high-resolution numerical integration method described in detail in [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF]. With specified values of the contact radius of the small particle Y cs and the neck radius Y 0 (and with Y cL determined from Eq.( 11), if a solution exists), the complete meridional profile X(Y ) (and hence Y (X)) of the capillary bridge can be obtained from Eq.( 13).

The capillary bridge volume (for each particle, i.e. the part up to the neck located at X = 0) is evaluated by numerical integration from the meridional profile Y (X)

V s = π Xcs 0 Y 2 dX -V cap s V L = π 0 X cL Y 2 dX -V cap L , (14) 
where

V cap s = π/3R 3 s (1 -cos δ s ) 2 (2 + cos δ s ) and V cap L = π/3R 3 L (1 -cos δ L ) 2 (2 + cos δ L ) are the volumes
of the caps of the spheres.

The total capillary bridge volume V and total separation distance 2S are determined by the capillary bridge volumes and the separation distances of each particle

V = V s + V L 2S = S s + S L , (15) 
where S s and S L are the separation distances for the small and large particles respectively (see also Fig. 1). It should be noted that the separation distance for the small particle S s may be negative, as shown in Fig. 3c and also observed in [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF].

For future reference the dimensionless volume V * and separation distance 2S * are defined by

V * = V R 3 2S * = 2S R , (16) 
where the scaling has been performed with the Derjaguin radius R given by Eq.( 1).

A database consisting of a large number of numerical solutions to the Young-Laplace equation of interest, the (scaled) capillary force λ is obtained by interpolating the dataset, using the method described in [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF].

Ellipse approximation for capillary bridges between unequal-sized spheres

In the ellipse approximation [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF] the meridional profile of the capillary bridge is described by part of an ellipse. This approximation has been developed for capillary bridges between equal-sized spherical particles in [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF]. It is valid for capillary bridges with small volumes. In this Section it is extended to the case of unequal-sized spheres.

In Section 3.1 the geometry of the ellipse is discussed and the effectiveness of the ellipse approximation approach for capillary bridges between particles of different sizes is demonstrated. Then, the so-called closure relations are developed in Section 3.2 that are based on constant capillary force along the capillary bridge. Through these closure relations the undetermined geometrical parameters in the description of the meridional profile by ellipses are fixed. Expressions for the contact radii are derived in Section 3.3, for given values of capillary bridge volume and separation distance. The analytical predictions for the rupture distance in Section 3.4 and for the capillary force in Section 3.5 are compared with those obtained from the dataset of the numerical solutions of the Young-Laplace equation. The developed theory proves analytically, for the first time, that for capillary bridges with small volumes the expressions for rupture distances and capillary forces developed for the case of equal-sized particles can be employed for the case of unequal-sized particles by using the Derjaguin radius.

Elliptical meridional profile

The meridional profile of the capillary bridge between two equal-sized particles has been approximated by part of an ellipse in [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF] (for various contact angles). However, the capillary bridge between two unequal-sized particles can not be represented by only a single ellipse. The underlying reason is that, for given values of capillary bridge volume V and separation distance 2S, there are too many boundary constraints for the ellipse representation of the meridional profile (this issue is discussed in detail in Section 3.2). As a result, two ellipses are required to represent the meridional profile Y (X) of the capillary bridge between unequal-sized particles, one for each particle. These two ellipses are described by

X 2 B 2 i + (M i -Y ) 2 C 2 i = 1 , (17) 
where the subscript i = s, L (for the small and the large particle, respectively) and B i and C i are the lengths of the half-axes and (0, M i ) are the coordinates of the centre of the ellipses. Substituting the boundary conditions in Eqs.( 2) and ( 5) into Eq.( 17), it follows that the parameters M i , B i and C i are given by

M i = Y ci X ci Y ci -(Y 2 ci -Y 2 0 ) X ci Y ci -2(Y ci -Y 0 ) C i = M i -Y 0 B i = X ci 1- M i -Y ci M i -Y 0 2 . ( 18 
)
To evaluate the accuracy of the ellipse approximation for capillary bridges between unequal-sized particles, the elliptical profile is compared to the numerical solutions of the Young-Laplace equation (for various size ratios, and small as well as large separation distances). This comparison in Fig. 3 shows that for different particle size ratios and for contact angles up to 20 • , the capillary bridge profile Y (X) can be well described by part of ellipses. For capillary bridges with contact angles larger than 20

•
or large capillary bridge volumes (such as V * > 10 -3 ) at large separation distances, the meridional profile Y (X) can no longer be accurately represented by part of ellipses (data not shown).

Considering that the coordinates X ci and neck radius Y 0 vary with the contact radii Y ci , the scaling method from [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF] has also been adopted here, given by

P i = |X ci | Y ci Q i = Y 0 Y ci . (19) 
Thus, the dimensionless coordinate P i represents the scaled axial position of the contact circle and the dimensionless coordinate Q i represents the scaled neck radius. The appropriateness of the scaling method has been carefully verified for small capillary bridge volumes and various separation distances, for different size ratios and contact angles. For the considered geometry of the capillary bridge, the values of P i and Q i satisfy the relationships P i ≥ 0 and 0

≤ Q i ≤ 1.
Substituting Eqs.( 2), ( 4), ( 5) and ( 19) into Eq.( 18), and performing a Taylor series expansion in the small parameters Y ci /R i , the geometrical parameters for the two ellipses become

M i ∼ = Q 2 i T +P i -T 2(Q i -1)T +P i Y ci C i ∼ = - Q 2 i T +P i Q i -2T Q i -P i +T 2(Q i -1)T +P i Y ci B i ∼ = ((Q i -1)T +P i )P i √ P i (2(Q i -1)T +P i ) Y ci . ( 20 
)
For the case that the two particles have the same radii (R s = R L ), the expressions for M i , C i and B i are identical to those in [START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF]. When B i = C i , the ellipse becomes a circle, and the ellipse approximation reduces to the toroidal approximation, with P tor = √ T 2 + 1 + T 1 -Q , see also [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF].

'Closure' relations

The ellipse approximation has been proposed for the case of equal-sized particles by [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF], in which the meridional profile of the capillary bridge is described by part of an ellipse. Contrary to the toroidal approximation in which the meridional profile is described by part of a circle, this representation contains a single free parameter (for fixed Y 0 , Y cs and θ) that has to be determined from a so-called 'closure relation'. The closure relation was formulated in [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF] by requiring that the mean curvature in Eq.( 7), involving second-order derivatives of the meridional profile Y (X), be equal at the neck and at the contact circle. However, the choice of a closure relation needs to be reconsidered for the case of unequal-sized particles, as the symmetry with respect to the neck location, X = 0, is lost. Considerations given in Appendix B show drawbacks of developing a (consistent) theory based on the ellipse approximation that involves the equality of the mean curvature as a closure relation for unequal-sized particles.

Therefore, an alternative closure relation is proposed here. The Young-Laplace equation Eq.( 7) has a first integral, Eq.( 8) involving the operator Λ[Y ](X), corresponding to constant axial force. The Young-Laplace equation is therefore equivalent to Eq.( 8). For given Y 0 and Y cs , with Y cL determined from Eq.( 11) (if a solution for

Y cL exists) that requires that Λ[Y ](X cL ) = Λ[Y ](X cs ), it follows that Λ[Y ](X cL ) = Λ[Y ](0) = Λ[Y ](X cs
) is automatically satisfied. Therefore, an alternative closure relation is formulated here such that Λ[Y ](X) be equal at other selected location(s), X.

Based on these considerations, it has been decided to describe the meridional profile here by part of two ellipses. Then two closure relations need to be formulated. These are based on equality of Λ[Y ](X) at midpoints in between the contact circles and the neck

Λ[Y ](X cL /2) = Λ[Y ](0) = Λ[Y ](X cL ) Λ[Y ](X cs /2) = Λ[Y ](0) = Λ[Y ](X cs ) . (21) 
The second equalities in these two equations are automatically satisfied (as discussed above), as they have been considered in the derivation of Eq. [START_REF] Pouragha | Statistical analysis of stress transmission in wet granular materials[END_REF]. Note also that these equations imply Λ

[Y ](X cL /2) = Λ[Y ](X cs /2).
Hence, the axial forces evaluated at the considered positions X = (X cL , X cL /2, 0, X cs /2, X cs ) are equal. Thus, these proposed closure relations take into account properties of the Young-Laplace equation, according to which Λ[Y ](X) is constant. Note that these closure relations only involve first derivatives of the meridional profile Y (X) (contrary to the closure relations in [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF] that involve second derivatives Y (X)).

After substituting the parameters M i , B i and C i from Eq.( 20) into the closure relations Eq.( 21), it follows after some lengthy algebra (performed with the symbolic mathematics software Maple) that, up to leading order in the small parameter Y ci /R i , the closure relations can be expressed as relationships between parameters P i and Q i that are defined in Eq.( 19)

h(P s , Q s ) = 0 h(P L , Q L ) = 0 , (22) 
where

h(P, Q) = 4(Q T 2 + 1 -T ) Q 2 T + P -T 4T 2 (Q -1) 2 + 6P (Q -1) T + 3P 2 + Q (Q -1) 8 Q 2 -1 T 2 + 2P (3Q + 1) T + 3P 2 T 2 + 1 + 8(Q + 1)(Q -1) 2 T 2 + 2(Q -1)(5Q + 7)P T + P 2 (Q + 7) T 1 + (Q -1) 2 4T 2 (Q -1) 2 + 6P (Q -1)T + 3P 2 -2 T 2 + 1 2(Q -1)T + P (Q + 1) (Q -1) (4T 2 (Q -1) 2 + 6P (Q -1)T + 3P 2 ) + (Q 2 -1)T + P (23)
As the function h is the same for the theoretical closure relations for the small and the large particle, h(P s , Q s ) = 0 and h(P L , Q L ) = 0 respectively, these are referred to as h(P, Q) = 0 in the following, for convenience in notation.

It can be verified that a solution to the closure relation h(P, Q) = 0 is given by P = -2T (Q -1). This solution is not physically meaningful, as it corresponds to M → ∞, see Eq.( 20), and hence it is The point (Q * , P * ) is denoted as 'critical point'. For given value of P , two branches of Q = F -1 (P ) exist, as also obtained in [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF][START_REF] Orr | Pendular rings between solids: meniscus properties and capillary force[END_REF]. Only the branch Q ≥ Q * with smaller surface area of the capillary bridge is physically-relevant, as discussed in [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF].

As shown in Fig. 4(a,c), for (very) small volumes V * ≤ 10 -6 , the results from the numerical solutions of the Young-Laplace equation collapse to a single curve which agrees with the theoretical closure relation P = F (Q), corresponding to Eq.( 22). The 'critical point' (Q * , P * ) is identical both for the small and large particle. For larger capillary bridge volumes, V * ≤ 10 -3 , it is shown in Fig. 4(b,d) that the results from the numerical solutions of the Young-Laplace equation no longer collapse to a single curve, but instead lie in a band, mostly above the theoretical closure relation P = F (Q). This has also been noted in [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF] where the case of equal-sized spheres has been considered. This band is narrower for the large particle than for the small particle.

Thus, these results in Fig. 4 show that, for various particle size ratios R s /R L , the theoretical closure relation P = F (Q), Eq.( 22), agrees well with the solutions of the Young-Laplace equation when the contact angle θ ≤ 20 • and the capillary bridge volume is small (V * ≤ 10 -3 ), much better than the toroidal approximation when Q is close to Q * . For the case of equal-sized spheres, the current closure relation is (numerically) nearly the same as that in [START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF] for the physically-relevant branch Q ≥ Q * (data not shown).

In order to determine the capillary force in Section 3.5, it is desirable to evaluate Q = F -1 (P ), given the value of P , in a straightforward manner for the physically-relevant branch Q ≥ Q * . According to [START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF], the closure relations Q = F -1 (P ) corresponding to Eq.( 22) can be well approximated (for the branch Q ≥ Q * ) by the relation

Q = F -1 (P ) ∼ = f (P ) ≡ (1-Q * )(P -P * )[2( √ T 2 +1-T )P P * -(P +P * )(1-Q * )] P * + Q * ( 24 
)
The approximation in Eq.( 24) satisfies the properties: (i)

f (0) = 1, (ii) f (0) = T - √ T 2 + 1 and (iii) f (P * ) = Q * .
The accuracy of this approximation has been demonstrated in [START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF].

Contact radius as function of capillary bridge volume and separation distance

Here it is shown how the contact radii Y cs and Y cL can be determined, given the capillary bridge volume V and the separation distance 2S. This method is valid for small capillary bridge volume, and hence small contact radii.

Substituting the ellipse expression Eq.( 17) for the meridional profile Y (X) into Eq.( 14) for the volume of the capillary bridge, and considering small contact radii Y cs and Y cL , the capillary bridge volume V has been obtained after performing a Taylor series expansion in

T V ∼ = π 6 [G(Q s )P s -J(Q s )T ] Y 3 cs -π 4 Y 4 cs Rs + π 6 [G(Q L )P L -J(Q L )T ] Y 3 cL -π 4 Y 4 cL R L , (25) 
where the functions G(Q) and J(Q) are given by (see also [START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF])

G(Q) = 4Q 2 + (3π -8)Q + (10 -3π) J(Q) = (8 -3π)Q 3 + (12π -36)Q 2 + (48 -15π)Q + (6π -20) . ( 26 
)
As demonstrated in [START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF], G(Q) and J(Q) can be accurately approximated by

G(F -1 (P )) ∼ = 6 -3π √ 1 + T 2 -T P J(F -1 (P )) ∼ = 3π -12 √ 1 + T 2 -T 2 P 2 . ( 27 
)
For given values of capillary bridge volume V and separation distance 2S, Y cs and Y cL are both unknown in Eq. [START_REF] Fisher | On the capillary forces in an ideal soil; correction of formulae given by W.B. Haines[END_REF]. Therefore, to solve this equation an additional relation between Y cs and Y cL is required. Such a relation is given by Eq.( 46) (equivalent to Eq.( 11)), which represents the condition that the capillary forces at the contact circles be equal. 

) (R L -R s ) Y 2 cs + R s R L T Y cs + R s Y 2 0 T 2 + 1 -R s R L Y 0 T 2 + 1 Y 2 cL + R s R L T T 2 + 1 Y 2 0 -Y 2 cs Y cL -R s R L T Y 2 0 Y cs + R L Y 2 0 Y 2 cs T 2 + 1 + R s R L T 2 + 1 Y 0 Y 2 cs = 0 (28) 
It has been verified numerically that for small capillary bridge volumes the solutions to Eqs.( 46) and ( 28) are effectively identical.

By substituting Y 0 = Q s Y cs (see Eq.( 19)) into Eq.( 28) and performing a Taylor expansion in the small parameter Y cs , it follows that

Y cL ∼ = Y cs + w(Q s ) R L -Rs R L Rs Y 2 cs w(Q) = (1-Q)(1+Q)(Q 2 T +2Q+T ) 4Q 2 (29) 
The function

w(Q) is in the range of 0 ≤ w(Q) ≤ 2 for 0 • ≤ θ ≤ 45 • and 0.4 ≤ Q ≤ 1.0. Since Y cs R s ≤ R L ,
the second term of the first equation in Eq.( 29) is negligible. Therefore, the contact radii of the small and the large particle are approximately equal

Y cL ∼ = Y cs . (30) 
This approximation has been verified with the numerical solutions of the Young-Laplace equation that correspond to small capillary bridge volumes. With Eq.( 30), it follows that Q L ∼ = Q s (see also Eq.( 19))

and hence P L = F (Q L ) ∼ = F (Q s ) = P s , based on the closure relations in Eq. [START_REF] Lievano | The rupture force of liquid bridges in two and three particle systems[END_REF]. Consequently, the volume equation Eq.( 25) can be rewritten in terms of Y cs as

V ∼ = π 3 [G(Q s )P s -J(Q s )T ] Y 3 cs - π 2 1 R Y 4 cs . (31) 
where the equivalent Derjaguin radius R is defined in Eq.( 1).

With Y cL ∼ = Y cs and P L ∼ = P s , it follows that X cL ∼ = -X cs (see also Eq.( 19)). Combining this relation with Eqs.( 4) and ( 15), the separation distance near the small particle S s (see also Fig. 1) is expressed by

S s ∼ = S - Y 2 cs 4 1 R s - 1 R L . ( 32 
)
Substituting Eq.( 27) into Eq.( 31) and expressing P in terms of the separation distance 2S and the contact radius for small particle Y cs through the use of Eqs.( 4), ( 19) and (32), Eq.( 31) leads to a quintic equation in Y cs , given the capillary bridge volume V and the separation distance 2S

T Y 5 cs + R Y 4 cs + 4SR T Y 3 cs + 4SR 2 Y 2 cs + 4S 2 R 2 T Y cs -R 2 V = 0 , (33) 
T = - ( √ T 2 +1-T )[( √ T 2 +1-T )(π-4)T +π] 2 V = 2 π V . (34) 
Since -π/2 ≤ T ≤ -3/10 when 0 • ≤ θ ≤ 60 • and Y cs R, the quintic term in Y cs in Eq.( 33) can be neglected in comparison to the quartic term. In addition, the cubic term in Y cs can be neglected in comparison to the quadratic term. Hence, Eq.( 33) can be reduced to the (depressed; as the coefficient of Y 3 cs equals zero) quartic equation

Y 4 cs + 4SR Y 2 cs + 4S 2 R T Y cs -R V = 0 . ( 35 
)
As described in [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF], two regimes corresponding to small and large separation distances can be identified for solutions to Eq.( 35) for the contact radius Y cs . Using the unification method suggested by [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF], the solution to Eq.( 35) can be expressed as

Y cL ∼ = Y cs = 2R 1/4 S 3/2 V -1/4 f (ξ)g(η), (36) 
where the definition of ξ involves the Derjaguin radius R (different from that in [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF]); f (ξ) and g(η) are given by

f (ξ) = -2ξ + 1 + 4ξ 2 ξ = S V 1/2 R 1/2 g(η) = -T + T 2 + 1 η 3 2 η = S V 1/3 . ( 37 
)
The accuracy of Eq.( 36) has been verified by comparison with the numerical solutions of the Young-Laplace equation, for small capillary bridge volumes (V * 1/3 ≤ 0.1), different particle size ratios, separation distances and contact angles θ ≤ 20 • . Note that the contact radii Y cs and Y cL only depend on the particle radii R s and R L via the Derjaguin radius R, see Eq.(36).

Rupture distance for small volumes

Experimental observations show that capillary bridges will be ruptured with continuous increase of the separation distance between the particles [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Rabinovich | Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment[END_REF]. This rupture, or critical separation, distance S crit depends on the volume of the capillary bridge and on the contact angle. The rupture distance corresponds to the point of loss of uniqueness of the solution of the Young-Laplace equation [START_REF] Lian | A theoretical study of the liquid bridge forces between two rigid spherical bodies[END_REF][START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Erle | Liquid bridges between cylinders, in a torus, and between spheres[END_REF]. The dependence of this rupture distance on the capillary bridge volume (and the contact angle) can be predicted by using the ellipse approximation [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF].

The closure relation P = F (Q), given by Eq.( 22) and shown in Fig. 4, demonstrates that there is a maximum for P in the interval 0 < Q < 1. The corresponding values for Q and P , considered to be critical, are denoted by Q * and P * , respectively. The corresponding values of G(Q) and J(Q) (both functions are defined in Eq.( 26)) are denoted by G * and J * respectively. For small capillary bridge volumes between particles of unequal radii at rupture, Y cs R, the quartic term of Y cs in Eq.( 31) can be neglected. The relation for the capillary bridge volume then becomes V ∼ = π 3 (G * P * -J * T ) Y 3 cs .

Using Eqs.( 4), ( 19) and ( 32), the (half) critical separation distance S crit is obtained from P * ∼ = S crit /Y cs . Therefore, the rupture distance S crit is obtained by the same method as that used in [START_REF] Kruyt | An analytical theory for the capillary bridge force between spheres[END_REF][START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF] for capillary bridges between equal-sized particles

S crit ∼ = αV 1/3 α = 3 π P * 3 G * P * -J * T 1/3 , ( 38 
)
where the values of P * , G * and J * are given in Table 1 in Appendix C for the current theory, for various values of the contact angle θ. These values are slightly different from those in [START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF], as the closure relations (P = F (Q)) are (slightly) different. A comparison of the coefficient α according to Lian et al. [START_REF] Lian | A theoretical study of the liquid bridge forces between two rigid spherical bodies[END_REF], Zhao et al. [START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF] and Eq.( 38) for contact angles 0 • ≤ θ ≤ 20 • is given in Fig. 5. Note that the expression for the rupture distance by [START_REF] Lian | A theoretical study of the liquid bridge forces between two rigid spherical bodies[END_REF] has been based on curve fitting to a (fairly) large dataset of numerical solutions to the Young-Laplace equation, while the expressions by [START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF] and in the current study have been obtained solely by analytical methods. The values of α according to the current theory are slightly smaller than that of Lian et al. [START_REF] Lian | A theoretical study of the liquid bridge forces between two rigid spherical bodies[END_REF] and Zhao et al. [START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF], with a difference smaller than 7%.

Capillary force for small volumes

Here it is shown how the ellipse approximation method leads to expressions for the capillary force given the capillary bridge volume V and the interparticle separation distance 2S, without having to introduce any calibrated fitting parameters. The analytical description is essentially identical to that in [START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF] (presented there in dimensionless form) and is given here for completeness (in dimensional form).

Given values of the capillary bridge volume V and the separation distance 2S, the contact radii Y cs ∼ = Y cL are determined by Eq.( 36). The separation distance for the small particle S s (see also Fig. 1) then follows from Eq.( 32), and hence the separation distance for the large particle S L (see also Fig. 1) is given by S L = 2S -S s . Parameter P s is obtained from Eqs.( 4) and [START_REF] Urso | Pendular, funicular, and capillary bridges: Results for two dimensions[END_REF] and Q s subsequently follows from Eq.( 24). Finally, the (scaled) capillary force λ (see also Eq.( 10)) is given by

λ ∼ = Q s 1 -Q 2 s - T √ T 2 + 1 Q 2 s 1 -Q 2 s Y cs . ( 39 
)
Note that since the contact radii Y cs and Y cL only depend on the particle radii R s and R L via the Derjaguin radius R, the same holds for the capillary force λ.

The capillary forces according to Eq.( 39) and from the dataset of numerical solutions of the Young-Laplace equation are compared in Fig. 6, for R L /R s = 2 and R L /R s = 128 and for different small capillary bridge volumes, V * ∼ = 10 -6 and V * ∼ = 10 -3 . The case of R L /R s = 128 can be regarded as equivalent to the case of a capillary bridge between a sphere and a plate. For these cases, the capillary forces predicted by the current theory agree well with those from the numerical solutions of the Young-Laplace equation. For separation distances S * ≤ 0.5S * crit , the deviations with various values of contact angle are smaller than 3% for V * ∼ = 10 -6 and are smaller than 10% for V * ∼ = 10 -3 .

For larger separation distances S * ≥ 0.5S * crit , the deviations are larger, but the capillary forces are relatively small.

The procedure for calculating the capillary force for capillary bridges between unequal-sized, nonperfectly wettable spherical particles (given the capillary bridge volume V , the separation distance S, the contact angle θ and the particle radii R s and R L ) is similar to that described in [START_REF] Zhao | Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime[END_REF]. The steps consist of: checking that the separation distance S is smaller than the critical separation distance S crit determined by Eq.( 38); calculating Y cs from the given capillary bridge volume V and separation distance S by Eq.( 36); substituting Y cs into Eq.( 32) to obtain S s and then X cs from Eq.( 4); using Eq.( 19) to find P and Eq.( 24) to obtain Q; determining the dimensionless capillary force λ by Eq.( 39).

Based on the analytical ellipse approximation method, it has been shown analytically here that the contact radii of the small and the large particle, Y cs and Y cL respectively, are equal (Eq.( 30)).

With this result, it follows from Eq.( 31) for the capillary bridge volume that the the contact radii Y cs and Y cL only depend on the radii R s and R L of the small and the large particle through the Derjaguin radius R in Eq.( 1). Therefore, expressions for the rupture distance and the capillary force that have been developed for cases with equal-sized particle can be used for cases with unequal-sized particle by employing the Derjaguin radius when the capillary bridge volume is small. This method has been widely adopted [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF][START_REF] Wang | Stress-force-fabric relationship for unsaturated granular materials in pendular states[END_REF][START_REF] Wang | A micro-macro investigation of the capillary strengthening effect in wet granular materials[END_REF], supported by observations on numerical solutions of the Young-Laplace equation [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF], but without clear analytical justification (see also [START_REF] Willett | Pendular capillary bridges[END_REF]). Here, its correctness has been shown analytically, within the range of validity of the ellipse approximation method, i.e. for small capillary bridge volumes. For large capillary bridge volumes, the accuracy of the use of the Derjaguin radius in expressions for the rupture distance and the capillary force is investigated in detail in the following Section.

Large volumes: rupture distance and capillary force

For capillary bridges between unequal-sized particles with large volumes, the rupture distances and capillary forces have been less studied [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF]. In Willett et al. [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF], the dataset of the numerical solutions of the Young-Laplace equation is relatively limited, as demonstrated in their Fig. 10. Lian

and Seville [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF] obtained an expression for the capillary force, based on their analysis of the capillary force at zero separation and of the variation with separation distance of the ratio of the force for nonzero separation to that at zero separation. Their method is accurate for small to medium volumes but not suitable for large volumes, since for large volumes a concave pendular capillary bridge may not exist for zero separation distance.

Here a detailed analysis is performed, for large volumes, of the influence of the size ratio R s /R L and the contact angle θ on the rupture distance and on the capillary force for various separation distances. In comparison to the studies in [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF], the current study: (1) employs a (much) larger dataset than considered in [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF] and (2) has a wider range of volumes and of particle size ratios than in [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF].

For large capillary bridge volumes and large separation distances, the meridional profile of the capillary bridge can not be accurately described by part of ellipses, thus the ellipse approximation method from Section 3 is not suitable for large volumes. Based on observations from the current large dataset with numerical solutions of the Young-Laplace equation, a more accurate closed-form expression for the rupture distance is formulated in Section 4.1, and the expressions of Lian and Seville [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF] for the capillary force are improved in Section 4.2 such that they also become accurate for large volumes. In all expressions in Sections 4.1 and 4.2, the effect of the size ratio is accounted for (beyond the use of the Derjaguin radius, when needed).

Rupture distance for small and large volumes

Willett et al. [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF] investigated the influence of the particle size ratio on the rupture distance, both experimentally and numerically. Their experimental results demonstrated the influence of the size ratio on the rupture distance, for large volumes. By fitting their (limited) dataset with numerical solutions of the Young-Laplace equation, they formulated the following expression for the rupture distance

2S * crit = 1 + θ 4 Rs R L + 1 V * 1/3 + 1 2 Rs R L -2 5 V * 2/3 , (40) 
where the contact angle θ is expressed in radians. The rupture distances predicted by Eq.( 40) have been compared with results extracted from the current dataset with numerical solutions of the Young-Laplace equation, for various particle size ratios, capillary bridge volumes with V * 1/3 ≤ 0.5 and contact angles of θ = 0 • , 20 • and 40 • (these parameters are within the ranges described in [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF]). The largest deviations between the predictions according to Eq.( 40) and those from the current large dataset of numerical solutions are: 3.5% for θ = 0 • , 4.5% for θ = 20 • and 10% for θ = 40 • . Therefore, it is desirable to develop a more accurate expression for the rupture distance by considering higher order terms in V * 1/3 , R s /R L and θ. By curve-fitting the data for the rupture distances extracted from the current high-resolution dataset with numerical solutions of the Young-Laplace equation, a more accurate expression for the rupture distance has been obtained

2S * crit = U 1 θ, R s R L V * 1/3 + U 2 θ, R s R L V * 2/3 + U 3 θ, R s R L V * , (41) 
where the contact angle θ is expressed in radians; V * and S * crit are defined in Eq.( 16); the functions U i (i = 1, 2, 3) are second-degree polynomials in terms of θ and R s /R L , as given in Appendix D. The rupture distances predicted by Eq.( 41) are compared with those extracted from the dataset of the numerical solutions of the Young-Laplace equation in Fig. 7. The proposed expression (Eq.41) agrees very well with the numerical solutions of the Young-Laplace equation, for a wide range of particle size ratios (1 ≤ R L /R s ≤ 128) and small as well as large capillary bridge volumes (0 ≤ V * 1/3 ≤ 0.6). The deviations are smaller than 1% for contact angles θ = 0 • and θ = 20 • , and smaller than 2% for contact angle θ = 40 • for large volumes.

Capillary force for small and large volumes

Here two expressions from literature [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF] for the capillary force, that have been formulated for large volumes, are evaluated for their accuracy with respect to the current large dataset of numerical solutions of the Young-Laplace equation.

By curve-fitting to their dataset of numerical solutions of the Young-Laplace equation, Willett et al. [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF] formulated an expression for the dimensionless capillary force

λ * = λ/R ln λ * = f 1 -f 2 exp f 3 ln S + + f 4 ln 2 S + , (42) 
where S + is defined by S + = S * /V * 1/2 ; f 1 , f 2 , f 3 and f 4 are functions of the dimensionless volume V * and of the contact angle θ, given in the Appendix of [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF]. In Eq.( 42), the size ratio R s /R L is not accounted for, but it has been considered in the expression Eq.( 40) for the dimensionless rupture distance 2S * crit . Based on their (limited) dataset of numerical solutions of the Young-Laplace equation, Willett et al. [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF] stated that Eq.( 42) is valid for θ ≤ 50 • and V * ≤ 0.1, with deviations of smaller than 3%.

Lian and Seville [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF] obtained an alternative expression for the capillary force, based on their analysis of the capillary force at zero separation and of the variation with separation distance of the ratio of the force for nonzero separation to that at zero separation. Their final expression for the capillary force is given by

F * cap = 2πλ * = 2π -2.082δ 0.9197 0 cos θ -0.16δ 0 (1 + δ 0 ) tan θ 1 + 0.8438δ -0.724 0 S θ + 1.3393δ -1.459 0 S 2 θ , (43) 
where S θ is defined by

S θ = S * S * crit 1 + 0.5θ cos 2 (δ 0 + θ) 2S * crit = (1 + 0.5θ)(V * 1/3 + 0.1V * 2/3 ) ( 44 
)
and δ 0 is a half-filling angle (in radians) that is determined from the (implicit) equation for δ 0 , given volume V and contact angle θ

V * = (1 + 1.653δ 0 sin θ) 0.654δ 3.73 0 , (45) 
where V * is defined in Eq.( 16). The rupture distance 2S * crit in Eq.( 44) is obtained from Eq.( 40) after substitution of R s /R L = 1.

Observations on numerical solutions of the Young-Laplace equation with large volumes show (see Fig. 8a, for the case of V * 1/3 = 0.5 and θ = 20 • ) that the dimensionless capillary force λ * (that has been scaled by the Derjaguin radius) depends on the volume V * , separation distance 2S * , size ratio R s /R L and contact angle θ, i.e. λ * = λ * (V * , S * , R s /R L , θ). If the effect of the particle sizes R s and R L were completely described by the Derjaguin radius, then λ * would not depend on the size ratio R s /R L . For small separation distances, the effect of the size ratio R s /R L on the capillary force is negligible, as shown in Fig. 8a (see also [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF]). In contrast, for large separation distances the size ratio has a significant influence on the capillary force (see Fig. 8a). This is shown in more detail in Fig. 8b that demonstrates that the dimensionless capillary force at rupture λ * crit depends not only on the dimensionless capillary bridge volume V * , but also on the size ratio R s /R L . Therefore, for large volumes the size ratio should be taken into account in expressions for the capillary force.

It is clear that the size ratio R s /R L has neither been considered in the capillary force expression (Eq.( 43)) nor in the expression (Eq.( 44)) for the rupture distance. Therefore, the expression proposed by Lian and Seville [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF] does not accurately predict the capillary force for large volumes between unequal-sized particles.

To investigate the accuracy of the expressions for the capillary force by Willett et al. [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF] and Lian and Seville [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF] in more detail, their predictions have been compared with the capillary forces from the current large dataset of numerical solutions to the Young-Laplace equation. As an example, Fig. 9 shows results for the case of R L /R s = 16 and θ = 20 • , for various volumes and separation distances. It has been found that the expression of Willett et al. [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF] gives deviations smaller than 5% for separation distances S * ≤ 0.5S * crit , for various particle size ratios and for contact angles θ ≤ 40 • and dimensionless capillary bridge volumes with 0.1 ≤ V * 1/3 ≤ 0.5 (see Fig. 9b-d)). However, the deviations are larger than 10% for small volume V * 1/3 < 0.1 (see Fig. 9a,b)), contrary to the conclusion given in [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF]. In comparison, the expression of Lian and Seville [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF] gives deviations that are smaller than 10% when separation distances S * ≤ 0.5S * crit and for small volumes V * 1/3 ≤ 0.1, but it gives large deviations for large volumes. The capillary forces according to the expression of Lian and Seville [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF] do not agree well with the forces from the numerical solutions of the Young-Laplace equation, as the size ratio R s /R L has not been accounted for, with deviations larger than 10% when V * 1/3 ∼ = 0.45 (see Fig. 9c,d).

To enhance the accuracy of the expressions by Lian and Seville [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF], the size ratio R s /R L can either be introduced into the expression for capillary force in Eq.( 43), or into the expression for S θ in Eq. [START_REF] Uzhegova | The influence of capillary effect on atomic force microscopy measurements[END_REF]. A simple way to account for the effect of the size ratio R s /R L is to replace the rupture distance S * crit in Eq.( 44) by the more accurate expression for rupture distance given by Eq. [START_REF] Chen | Liquid bridge force between two unequal-sized spheres or a sphere and a plane[END_REF]. In this way the size effect R s /R L is involved in the expression for capillary force. Fig. 9 shows that this enhanced Lian & Seville expression, consisting of Eq.( 43) and the first expression of Eq.( 44) with S * crit determined from Eq.( 41), accurately predicts the capillary forces from the numerical solutions of the Young-Laplace equation, with deviations smaller than 5% for the range of small and large volumes,

V * 1/3 ≤ 0.5.
The results shown in Fig. 9d demonstrate that concave pendular capillary bridges with large volume may only exist for a minimum separation distance between unequal-sized particles that is larger than zero. The minimum separation distance corresponds to the lower boundary of the region of existence of solutions for Y cL (given Y cs and Y 0 ) discussed at the end of Section 2.2. Therefore, the scaling method developed in [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF] that refers to values at zero separation distance is not suitable for capillary bridges with large volumes (such as V * 1/3 ∼ = 0.45).

Conclusions

The capillary force and the rupture distance for capillary bridges between unequal-sized spherical particles have been studied. Three complimentary approaches have been adopted: (1) very accurate, yet time-consuming numerical solutions of the Young-Laplace equation, (2) an analytical approach based on the ellipse approximation with clear physical meaning that does not require any calibrated fitting parameters, but whose validity is restricted to small volumes and (3) computationally-fast closed-form expressions, based on curve-fitting to a very large dataset, without clear physical meaning and containing numerous calibrated fitting coefficients, but accurate over a wide range of capillary bridge volumes and separation distances.

Specific findings of this study are:

• A high-resolution numerical method for solving the Young-Laplace equation has been developed

for capillary bridges between unequal-sized spherical particles.

• The validity of the ellipse approximation method for capillary bridge between unequal-sized spherical particles has been demonstrated, for small capillary bridge volumes (V * 1/3 ≤ 0.1) and for contact angles up to 20 • .

• Based on the ellipse approximation, it has been shown that the contact radii for small and large particle are effectively equal, i.e. Y cL ∼ = Y cs , for small capillary bridge volumes. This has been verified with numerical solutions of the Young-Laplace equation.

• Expressions for the rupture distance and the capillary force have been obtained using the ellipse approximation method, for given values of capillary bridge volume and separation distance, without having to introduce any calibrated fitting coefficients.

• For small volumes, it is shown analytically (for the first time; using the ellipse approximation method) that the Derjaguin radius can be used to extend expressions that have been developed

for the case of equal-sized particles to the case of unequal sizes. This is confirmed by the analysis of the numerical solutions of the Young-Laplace equation.

• For large volumes, the analysis of numerical solutions of the Young-Laplace equation shows that expressions for unequal-sized particles can not be obtained by simply substituting the Derjaguin radius for the particle radius in the expressions for the rupture distance and the capillary force that have been developed for equal-sized particles.

• Based on a large dataset of numerical solutions of the Young-Laplace equation, a new expression for the rupture distance, accounting for the influence of the size ratio, has been developed and validated for a wide range of volumes, size ratios and contact angles.

• The accuracy of expressions from literature [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF] for the capillary force has been evaluated, for various particle size ratios (1 ≤ R L /R s ≤ 128), contact angles (0 • ≤ θ ≤ 40 • ) and a wide range of volumes (V * 1/3 ≤ 0.5) and separation distances (up to the rupture distance). It has been found that the expression of Willett et al. [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF] is more accurate for large volumes, while the expression of Lian and Seville [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF] gives smaller deviations for small volumes. The expression of Lian and Seville [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF] has been enhanced to accurately describe the influence of the size ratio on the capillary force for large volumes.

For future studies, it is recommended to implement the expressions for the rupture distance and the capillary force according to the analytical theory and to the closed-form expressions into software for DEM simulations [START_REF] Wang | Stress-force-fabric relationship for unsaturated granular materials in pendular states[END_REF][START_REF] Wang | A micro-macro investigation of the capillary strengthening effect in wet granular materials[END_REF][START_REF] Duriez | Contact angle mechanical influence in wet granular soils[END_REF][START_REF] Duriez | Subtleties in discrete-element modelling of wet granular soils[END_REF] or to incorporate them in micromechanics-based constitutive relations for partially saturated granular materials (for instance [START_REF] Hicher | A microstructural elastoplastic model for unsaturated granular materials[END_REF][START_REF] Zhao | Multiscale modeling of unsaturated granular materials based on thermodynamic principles[END_REF]), in order to investigate capillary cohesion in wet granular assemblies. In addition, it is suggested to develop the ellipse approximation approach to analytically study properties of capillary bridges, given values for the capillary pressure and the separation distance (rather than for the capillary bridge volume and the separation distance as considered here).

By isolating the term with R2 L -Y 2 cL in Eq.( 46) and subsequently squaring the resulting equation, the biquadratic equation Eq.( 11) (i.e. a quadratic equation in Y 2 cL ) for Y cL , given Y 0 and Y cs (and R L , R s and θ), is obtained. The corresponding coefficients K 4 , K 2 and K 0 in Eq. ( 11) are given by

K 4 = (R L -R s )Y 2 cs + R 2 s -Y 2 cs T R L Y cs + R s Y 2 0 T 2 + 1 -Y 0 R L R s (T 2 + 1) 2 + T 2 R 2 s T 2 + 1 Y 2 0 -Y 2 cs 2 K 2 = 2 (-T R 2 s -Y 2 cs R L Y 2 0 Y cs -R L Y 2 0 Y 2 cs ) T 2 + 1 + R L R s Y 0 Y 2 cs (T 2 + 1) (R L -R s )Y 2 cs + T R 2 s -Y 2 cs R L Y cs + R s Y 2 0 T 2 + 1 -Y 0 R L R s (T 2 + 1) -T 2 R 2 s (T 2 + 1)(Y 2 0 -Y 2 cs ) 2 R 2 L K 0 = (-R 2 s -Y 2 cs R L T Y 2 0 Y cs -R L Y 2 0 Y 2 cs ) T 2 + 1 + R L R s Y 0 Y 2 cs (T 2 + 1)
The values for P * , G * (determined by Eq.( 22)) and J * , G * (determined by Eq.( 26)) are listed in Table 1 for contact angles θ in the range of 0

• ≤ θ ≤ 20 • .
Appendix D: functions in closed-form expression for the rupture distance

The dimensionless rupture distance 2S * crit is described by Eq. [START_REF] Chen | Liquid bridge force between two unequal-sized spheres or a sphere and a plane[END_REF]. The functions U i (θ, R s /R L ) involved are described by second-degree polynomials in the contact angle θ and in the size ratio R s /R L . The coefficients in the expressions for U i (θ, R s /R L ) have been determined by curve-fitting the expression in Eq.( 41) to the rupture distances that have been extracted from the large dataset of high-resolution numerical solutions of the Young-Laplace equation. The resulting expressions for the functions U i (expressed concisely as a matrix-vector multiplication) are given by 

     U 1 U 2 U 3      =      1 
          1 Rs R L Rs R L 2      , ( 48 
)
where the calibrated coefficients have been incorporated. The meridional profile is described by Y (X); the neck radius is denoted as Y0; the meridional coordinates of contact circles of the small and the large particles are (Xcs, Ycs) and (XcL, YcL), respectively; the half-filling angles are δs and δL, respectively; the separation distances, with respect to the neck located at X = 0, for the small and the large particle are Ss and SL, respectively. The total separation distance between the two particles is 2S. crit (defined in Eq.( 16)) according to Eq.( 41) and extracted from the current dataset of numerical solutions of the Young-Laplace equation for 0 ≤ V * 1/3 ≤ 0.6, for various size ratios RL/Rs: 40); for the expression in Eq.( 43) from Lian and Seville [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF], S * crit is given by Eq.( 44); for the enhanced Lian and Seville, that consists of Eq.( 43) and the first expression of Eq.( 44), S * crit has been determined by Eq.( 41). 
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  disregarded. For P ≥ 0, 0 ≤ Q ≤ 1 and 0 ≤ T ≤ √ 3, only the solution for P (given Q) with larger value is meaningful. The physically-relevant solution can be represented as a functional relationshipP = F (Q).This function is compared with results from numerical solutions of the Young-Laplace equation for the small and large particles and with the toroidal approximation in Fig.4, for contact angles θ = 0 • and θ = 20 • , R L /R s = 4/3 and R L /R s = 16, for cases with dimensionless capillary bridge volumes V * ≤ 10 -6 and V * ≤ 10 -3 separately.The theoretical closure relation F (P ) shown in Fig.4has a maximum P * , obtained for Q = Q * .
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 2 Figure 2: Region of existence of a solution to Eq.(11) for YcL: upper and lower boundary, for particle size ratios RL/Rs = 1 (black solid lines), 2 (red dashed lines) and 128 (blue dashed dotted lines); the vertical lines on the right of the plots correspond to the maximum considered half-filling angle δs of 60 • ; the lower boundary for equal-sized particles corresponds to Y0 = 0. (a) contact angle θ = 0 • ; (b) contact angle θ = 20 • .
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 3 Figure 3: Meridional profiles Y (X) of the capillary bridge obtained by numerically solving the Young-Laplace equation (red, solid lines) and elliptical fits according to Eq.(17) (blue, dotted lines) for contact angle θ = 20 • and capillary bridge volume V * ∼ = 10 -4 . Part of the spheres is shown in black. The large sphere is on the left (X ≤ 0) and the small one on the right (X ≥ 0), as in Fig.1. (a) small separation distance S with particle size ratio RL/Rs = 2; (b) large separation distance S with particle size ratio RL/Rs = 2; (c) small separation distance S with particle size ratio RL/Rs = 16; (d) large separation distance S with particle size ratio RL/Rs = 16.
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 4 Figure 4: Theoretical closure relations P = F (Q) (red, solid lines), conforming to the real, non-negative and physicallyrelevant solution of Eq.(22) for P (given Q). The critical points (Q * , P * ) are indicated that correspond to the maximum of P = F (Q). Data shown as grey and blue points correspond to numerical solutions of the Young-Laplace equation for the small and large particles respectively (blue points are plotted 'on top' of the grey points), for ranges of capillary bridge volume V and particle size ratios RL/Rs specified below. Also indicated (black, dashed lines) is the relation according to the toroidal approximation, Ptor = ( √ T 2 + 1 + T )(1 -Q). The values of particle size ratio RL/Rs, contact angle θ and capillary bridge volume are: (a) RL/Rs = 4/3, θ = 0 • and V * ≤ 10 -6 ; (b) RL/Rs = 4/3, θ = 0 • and V * ≤ 10 -3 ; (c) RL/Rs = 16, θ = 20 • and V * ≤ 10 -6 ; (d) RL/Rs = 16, θ = 20 • and V * ≤ 10 -3 .
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 5 Figure 5: Comparison of the coefficient α in the expression Scrit = αV 1/3 for the rupture distance Scrit as a function of the capillary bridge volume V , according to Lian et al. [14], Zhao et al. [18] and Eq.(38), for contact angles 0 • ≤ θ ≤ 20 • .
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 6 Figure 6: Comparison of the capillary forces predicted by the current theory and those obtained from numerical solutions of the Young-Laplace equation for RL/Rs = 2 and RL/Rs = 128. The dimensionless capillary force λ * = λ/R; the dimensionless separation distance S * = S/R; the rupture distance S * crit = Scrit/R, where Scrit has been evaluated from Eq.(38). Markers correspond to selected separation distances.
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 7 Figure 7: Dimensionless rupture distance 2S *crit (defined in Eq.(16)) according to Eq.(41) and extracted from the current dataset of numerical solutions of the Young-Laplace equation for 0 ≤ V * 1/3 ≤ 0.6, for various size ratios RL/Rs: (a) contact angle θ = 20 • , (b) contact angle θ = 40 • . Markers correspond to selected separation distances.

  Figure 7: Dimensionless rupture distance 2S *crit (defined in Eq.(16)) according to Eq.(41) and extracted from the current dataset of numerical solutions of the Young-Laplace equation for 0 ≤ V * 1/3 ≤ 0.6, for various size ratios RL/Rs: (a) contact angle θ = 20 • , (b) contact angle θ = 40 • . Markers correspond to selected separation distances.
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 8 Figure 8: Results from numerical solutions of the Young-Laplace equation with different size ratios RL/Rs, for V * 1/3 = 0.5 and contact angle θ = 20 • (markers correspond to selected separation distances): (a) dimensionless capillary force λ * at various dimensionless separation distance 2S * ; (b) dimensionless capillary force λ * crit at rupture distance 2S * crit for various dimensionless capillary bridge volumes V * 1/3 .
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 9 Figure 9: Comparison between the dimensionless capillary forces from the numerical solutions of the Young-Laplace equation (markers correspond to selected separation distances) and the expressions by Willett et al. [15] and by Lian et al. [16] for RL/Rs = 16 and contact angle θ = 20 • . For the Young-Laplace solutions, S * crit has been obtained from the solutions of Young-Laplace equation; for the expression in Eq.(42) from Willett et al. [15], S * crit has been determined from Eq.(40); for the expression in Eq.(43) from Lian and Seville[START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF], S * crit is given by Eq.(44); for the enhanced Lian and Seville, that consists of Eq.(43) and the first expression of Eq.(44), S * crit has been determined by Eq.(41).

  

  ) it follows that Y 0 , Y cs and Y cL are related. As shown in Appendix A, the value of Y cL can be determined from Y cs and Y 0 as solution of the biquadratic equation in Y cL (i.e. a quadratic

	equation in Y 2 cL )

  This relation between the contact radii Y cs and Y cL (given the neck radius Y 0 ) is further analysed when Y cs R s and Y cL R L , and hence the capillary bridge volume V is small. As then R 2 L -Y 2 cL ∼ = R L , Eq.(46) can be simplified to a quadratic equation in Y cL (given Y cs and Y 0

Table 1 :

 1 Critical values of P * , Q * , J * and G * , for various contact angles θ.

	Contact angle θ	P *	Q *	J *	G *
	0 •	0.4109 0.3599 -0.6814 1.6063
	5 •	0.4514 0.3567 -0.6864 1.5925
	10 •	0.4949 0.3546 -0.6896 1.5836
	15 •	0.5414 0.3541 -0.6904 1.5814
	20 •	0.5910 0.3560 -0.6874 1.5895

[START_REF] Derjaguin | Untersuchungen über die Reibung und Adhäsion[END_REF] 
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Appendix A: relation between neck and contact radii

By expressing Eq.( 9) at the neck and at the contact circles explicitly, the following relation between the contact radii Y cL , Y cs and the neck radius Y 0 is obtained

Appendix B: drawbacks of curvature-based closure relations for unequal-sized particles

In this Appendix the possibilities are explored for formulating closure relations that are based on the curvature of the capillary bridge surface, for unequal-sized particles.

When a single ellipse is used to represent the meridional profile Y (X), then there is a single free parameter, as Y cL follows from Y 0 and Y cs according to Eq.( 46) (if a solution exists). For consistency with the case of equal-sized particles, the closure relation should be that the mean curvature at the neck be equal to that at the contact circle of the small particle. However, it can not be guaranteed that the mean curvature at the contact circle of the large particle (X cL , Y cL ) is equal to that at the contact circle of the small particle (X cs , Y cs ). This forms an inconsistency in such a theory, and hence the use of a single ellipse to represent the meridional profile Y (X) is not suitable for the case of unequal-sized particles.

Alternatively, when two ellipses are used to represent the meridional profile, one corresponding to the small particle (X ≥ 0) and another one corresponding to the large particle (X ≤ 0), then there are two free parameters. Therefore, two closure relations are required to determine these parameters. For consistency with the case of equal-sized particles, the first closure relation should be that the mean curvature at the neck be equal to that at the contact circle of the small particle (X ≥ 0), and the second closure relation should be that the mean curvature at the neck be equal to that at the contact circle of the large particle (X ≤ 0). However, with two ellipses whose geometrical parameters are determined independently of one another, it can not be guaranteed that the mean curvature at the neck as evaluated from the geometry of the 'small' ellipse (X ≥ 0) is equal to the mean curvature at the neck as evaluated from the geometry of the 'large' ellipse (X ≤ 0). This forms an inconsistency in such a theory.

Appendix C: constants in the analytical expression for the rupture distance

In the expression for the rupture distance based on the ellipse approximation, Eq.( 38), the coefficient α depends on the values for P * , G * and J * . These values depend on the contact angle θ only.