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Abstract

We consider the evolution of light beams in nonlinear Kerr media wherein
the beam propagation is governed by the coupled non-paraxial (2+1) di-
mensional nonlinear Schrödinger equation. In the advent of system failing
to obey the slowly varying envelope approximation, the usual paraxial ap-
proximation cannot be adopted. Our model equation could potentially serve
as a governing model for nano-waveguides and on-chip silicon photonic de-
vices. Using the trial solution method, we derive the different combinations
of soliton solutions such as bright-bright, dark-dark, and bright-dark soliton
and briefly discuss the characteristics of the soliton. Following the initial
discussion on the soliton solution, we extend the study to investigate the
modulational instability of the system of equations. We examine the role
of the dispersion/diffraction in the instability spectra and demonstrate the
different characteristics of the instability bands as a function of system pa-
rameters.
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1. Introduction

The propagation of optical beam down the optical fiber is given by the
celebrated nonlinear Schrödinger equation (NLSE). NLSE has been very suc-
cessful in explaining the pulse/beam propagation through optical waveguides
for more than three decades. However, the NLSE is tailor-made for optical
pulse propagation in fiber like waveguide structure under some strict assump-
tion. One of the important approximation is the so-called slowly varying
envelope approximation (SVEA). The SVEA is able to provide an adequate
description only if the optical beams are: (i) much broader than their carrier
wavelength, (ii) of sufficiently low intensity and (iii) propagating along (or
at near-negligible angles with respect to) the reference axis. These criteria
define the paraxial approximation. If all the three conditions are not satisfied
simultaneously, the beam is referred to as non-paraxial [1, 2]. Non-paraxiality
is particularly prominent when there is miniaturization of devices. This show
cases the importance of including the nonparaxial term into the NLSE while
considering the light propagations in nano photonic waveguide devices.

Recently, there has been a lot of interest in the context of nonparaxial
NLSE starting from Lax et al [3], especially on ultra narrow beams [4] where
the condition (i) doesn’t exist. Another area of research is the Helmholtz
nonparaxial NLSE in the angular context where the condition (iii) is relaxed
[5]. Blair has studied the scalar and vector nonlinear nonparaxial evolution
equations for the propagation in two-dimensions. Exact and approximate
solutions to these higher order evolution equation were also obtained which
showed quasi-soliton behavior based on propagation and collision studies [6].
Numerical solutions to the nonparaxial NLS equation using the split-step
Crank-Nicolson method were studied by Malakuti and Parilov [7] where they
have shown that the nonparaxiality prevents the singularity formation and
regularizes the solutions of NLSE. Temgoua and Kofane studied nonparaxial
rogue waves in optical Kerr media [8], where they have shown that the non-
paraxiality increases the intensity of rogue waves by increasing the length
and reducing the peak width simultaneously. Also they noticed that the
nonparaxial rogue waves are faster than the ones obtained from the standard
NLS equation with the nonparaxiality moving the higher peak of rogue waves
from the center to the periphery. At the same time, nonparaxiality causes
the reduction in the interaction of the rogue waves. Chamorro-Posada et al
[9] studied the nonparaxial spatial solitons which could be used in miniatur-

2



ized nonlinear photonic devices. They showed the exact nonparaxial soliton
solution from which the paraxial soliton is recovered with appropriate limits.
The soliton studies in the nonparaxial limit continues to earn more research
interest in the recent times, owing to its fundamental and applied interest
especially in the miniaturized photonic systems.

As an ubiquitous structures in nonlinear physics, the soliton appears to
be a topic of intense research interest appearing in diverse fields such as
nonlinear fiber optics [10, 11], matter waves in Bose-Einstein condensates
[12], shallow water waves [13], molecular biology [14], ultrashort pulses in
nonlinear optics [11, 15]. Temporal, spatial and spatiotemporal solitons find
applications in almost all-optical routing, transparent beam interconnections,
and the massive integration of optical operations in a fully three-dimensional
environment. Two different types of envelope solitons, bright and dark, can
propagate in nonlinear dispersive media. Compared with the bright soliton
which is a pulse on a zero-intensity background, the dark soliton appears as
an intensity dip in an infinitely extended constant background. Whenever
linear effects (such as dispersion, diffraction or diffusion) are balanced ex-
actly by nonlinearity (self-phase modulation, self-focusing or reaction-kinetic
properties, respectively), robust self-trapped structures-solitons-can emerge
as dominant modes of the system dynamics [1]. The exact soliton solution
has been obtained for the dynamic equation of pulse propagation by a va-
riety of methods such as Inverse scattering method [16, 17], Hirota bilinear
transformation [18, 49], tanh method [20, 21], Sine-cosine method [22, 23],
homogenous balance method [24, 25], exponential function method [26, 27],
G’/G method [28, 29]. Out of many, trial solution method [30, 51, 32, 33, 52]
is a direct and easier method of finding the exact solutions developed by Liu
et al [35].

There are some recent studies as well. To mention a few, Liu et.al has
studied different soliton solutions and their interactions and characteristic
behaviors through the Hirota method [50]. Zhou et.al has studied the soli-
tons in different media using the ansatz method/trial equation method and
the inverse engineering methods [49]. Biswas et.al studied the soliton so-
lutions through the modified simple equation method [51]. Also the soli-
ton solutions in birefringent fibers with Kerr nonlinearity was studied by
Ekici et.al through the exponential method [53], the soliton solution to the
negative index materials with parabolic nonlinearity were studied by Mirza-
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zadeh et.al [52]. Conservation laws for cubic-quartic optical solitons in media
with Kerr and power law nonlinearities were studied by Belic et.al [54].

In the nonlinear system, the existence of solitons are very much related
to the phenomenon of modulation instability (MI). MI is considered as a
precursor to the soliton formation. MI is a phenomenon studied in many
nonlinear systems, especially to nonlinear optics where there is an exponen-
tial growth of amplitude/phase perturbations of the input beam due to the
interplay of diffraction/dispersion of the light beam with the nonlinearity of
the system. This growing perturbations finally leads to the break down of the
input beams into ultrashort pulses. Spatial and temporal MI have been vastly
studied in many branches like, nonlinear fiber optics [36], Bose-Einstein Con-
densates [37], plasma physics [38], liquid crystals [39], plasmonics [40] and
fluid dynamics [41]. However there has been only a few studies on spatio-
temporal MI [42] and even fewer on nonparaxial NLSE [43]. To the best
of our knowledge, there has not been any study on the MI of the coupled
nonparaxial (2+1) NLSE.

Inspired by the recent work on the nonparaxial NLSE, in this paper, we
investigate the propagation of optical pulse in the coupled nonparaxial (2+1)
NLSE, where we derive the bright-bright, dark-dark and bright-dark soliton
solutions. We further extend the study to investigate the MI and report the
different characteristics of instability spectra under different settings. The
paper is organized as follows: Section II presents the theoretical model and
the propagation equations. Section III describes the soliton solutions, while
MI analysis is reported in Section IV. Section V concludes the paper with
summary of results.

2. Theoretical model

We study the general coupled nonparaxial (2+1) NLSE [44, 45] given in
the dimensionless form as follows,

i
∂Ψ1

∂z
+ κ

∂2Ψ1

∂z2
+ s

∂2Ψ1

∂x2
+ β

∂2Ψ1

∂t2
+ γ1|Ψ1|2Ψ1 + γ2|Ψ2|2Ψ1 = 0; (1)

i
∂Ψ2

∂z
+ κ

∂2Ψ2

∂z2
+ s

∂2Ψ2

∂x2
+ β

∂2Ψ2

∂t2
+ γ3|Ψ2|2Ψ2 + γ4|Ψ1|2Ψ2 = 0; (2)
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where,Ψ1 and Ψ2 are the space and time dependent amplitude of the prop-
agating beam of light. z, x, t are the normalized spatial and temporal co-
ordinates with z being the direction of propagation and x, the transverse
direction. κ is the dimensionless coefficient of diffraction along the longitu-
dinal direction z, s is the dimensionless coefficient of diffraction along the
transverse direction. β decides the temporal dispersion to be anomalous or
normal depending on β being positive or negative. γ1, γ2, γ3 and γ4 repre-
sents the coefficients of nonlinearity. Such that when γ2 = γ3 and γ1 = γ4

we have the modified Manakov NLSE model which simplifies to the normal
Manakov model of NLSE when κ = 0. Similarly when γ1 = γ3 and γ2 = γ4

we have the normal nonparaxial coupled NLSE which simplifies to the usual
coupled NLSE when κ becomes zero. In this case γ1 is the coefficient of self
phase modulation and γ2 is the cross phase modulation. Here, we examine
the problem of soliton propagation in the most general case, considering all
coefficients of nonlinearities γi (with i = 1, .., 4) are unequal.

3. Soliton Solutions

There are different methods in practice to find the soliton solutions for a
given equation. The choice of the methods are usually problem based and
depends on the factors such as complexity, accuracy etc., Considering the
complexity of the underlined problem we use the trial solution method as
the choice, owing to its relative simplicity and accuracy. To start with, we
rewrite Eq. (1) and (2) as,

i
∂Ψj

∂z
+ κ

∂2Ψj

∂z2
+ s

∂2Ψj

∂x2
+ β

∂2Ψj

∂t2
+ γσ|Ψj|2Ψj + γξ|Ψ3−j|2Ψj = 0; j = 1, 2;

(3)

with σ=1, ξ=2 for j=1 and σ=3, ξ=4 for j=2.
We use the trial solution as

Ψj = fj(Uj)e
−iφj(x,z,t) (4)

where fj(Uj) represents the shape of the pulse such that

Uj = bj(t− vjz − ηjx+ δ), (5)

bj represents the inverse width of soliton vj and ηj represents the velocity of
the soliton and the phase part is given by

φj(z, x, t) = kjz +mjx− ωjt+ δ0 (6)
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where j=1, 2. kj and mj represents the soliton wave numbers. ωj represents
the soliton frequency and δ0 denotes the phase constant. Substituting Eq.
(4) into Eq. (3) and separating the real and imaginary parts gives us the
following equations.

(kj − κk2
j − sm2

j − βω2
j + γσfj(Uj)

2 + γξf3−j(Uj)
2)fj(Uj)+

(b2
jβ + b2

jsη
2
j + b2

jv
2
jκ)f ′′j (Uj) = 0; (7)

bj(vj − 2vjκkj − 2sηjmj − 2βωj)f
′
j(Uj) = 0; (8)

with j=1, 2, where f ′j(Uj) and f ′′j (Uj) denotes dfj/dUj and d2fj/dU
2
j , respec-

tively. Since f ′j(Uj) and bj are non zero, simplifying (8) gives the velocity of
solitons as

vj =
2(sηjmj + βωj)

1− 2κkj
; j = 1, 2; (9)

3.1. Bright-Bright Soliton Solutions

Considering the bright soliton solutions to the above equations as

fj(Uj) = Aj sech(Uj); j = 1, 2; (10)

where Aj represents the soliton amplitude. Substituting Eq. (10) into Eq.
(7), simplifying and separating the coefficients yields us the following equa-
tions:
(i)Separating the coefficients of sech3 term gives us,

(−2b2
j(β + sη2

j + v2
jκ) + |Aj|2γσ + |A3−j|2γξ)Aj = 0; j = 1, 2; (11)

(ii)Further, separating the coefficients of sech term yields us,

(b2
j(β + sη2

j + v2
jκ) + kj(1− κkj)− sm2

j − βω2
j )Aj = 0; j = 1, 2; (12)

Simplifying Eq. (12) gives us the expression for soliton width inverse bj as

bj = ±

√
−kj + κk2

j + sm2
j + βω2

j

β + sη2
j + v2

jκ
; j = 1, 2; (13)

6



(a) (b)

(c) (d)

Figure 1: (Color online)(a) The evolution of bright soliton solution Ψ1 for
different values of time like (a) t = 0,(b)t = 10 (c)t = 20. (d) shows the
soliton solution when, t = 10 and η = 0.

Similarly Eq. (11) gives us the expression for the soliton amplitudes. When
j=1 we have

A1 = ±

√
2b2

1β + 2b2
1sη

2
1 + 2b2

1v
2
1κ− A2

2γ2

γ1

; (14)

and when j=2 we have

A1 = ±

√
2b2

2β + 2b2
2sη

2
2 + 2b2

2v
2
2κ− A2

2γ3

γ4

; (15)

7



(a) (b) (c)

Figure 2: (Color online) The evolution of (2+1) spatio-temporal dark soliton
solution ψ1 for different time (a) t = 0, (b) t = 10, (c) t = 1 and the transverse
- velocity η = 0.

Since Eq. (14) and Eq. (15) represents the amplitude of the same soliton,
the two equations must be equal, which implies that if b1 = b2, value of A1

can’t be different. Thus from Eq. (14) and Eq. (15) we conclude that, γ2=γ3

and γ1=γ4. Hence we obtain the amplitude of the copropagating solitons as,

A2 = ±

√
2b2

2β + 2b2
2sη

2
2 + 2b2

2v
2
2κ− A2

1γ4

γ3

; (16)

As A1, A2, 1/bj represents the soliton amplitudes and inverse pulse widths
respectively, these parameters should be real which implies that (β + sη2

j +
v2
jκ) 6= 0 also (κ k2

j + s m2
j+βω

2
j ) > |kj| for (β+sη2

j +v2
jκ) > 0 and (κ k2

j + s
m2
j+βω

2
j ) < |kj| for (β+sη2

j +v2
jκ) < 0. From Eq. (14), we find the essential

condition for the existence of soliton solution is 2b2
j(β+sη2

j +v2
jκ) > A2

2γ2 for
γ1 > 0 and 2b2

j(β + sη2
j + v2

jκ) < A2
2γ2 for γ1 < 0. Finally the bright soliton

solution is given by

Ψj =

√
(β + sη2

j + v2
jκ)2b2

j − A2
2γ2

√
γ1

sech

√
−kj + κk2

j + sm2
j + βω2

j√
β + sη2

j + v2
jκ

(t− |vj|z − ηjx+ δ)e−i(kjz+mjx−ωjt+δ0); j = 1, 2; (17)
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If we assume, v1=v2, η1=η2=η, b1=b2 and k1=k2, then from Eq (9) the pa-
rameters ω1 and ω2 are related by

ω2 =
sη

β
(m1 −m2) + ω1 (18)

and from Eq. (13) the parameters m1 and m2 are related by,

m2 =
2ω1ηβ + (sη2 − β)m1

sη2 + β
(19)

Now we assume the following values for the system parameters κ = 0.2,
s=0.2, β = 0.2 and the soliton parameters as k1 = k2=1, m1 = m2 = 1,
ω1 = ω2=2.5 and η=1.5. So that from Eq. (9) we get the velocity of solitons
as v1 = v2 = 2.67. Substituting this value of vj into Eq. (13) along with
other parameter values gives us the value of bj as 0.6. Substituting the value
bj and vj along with other parameter values into equations from (14) to (16)
gives us the value of A1=0.86, A2=0.86.

Fig.1 shows the evolution of (2+1) spatio-temporal bright soliton solution
ψ1 for different values of time. The parameter values are the same as the one
obtained above. Also we assume δ0 = 1 and δ = 1. Fig 1(d) shows the same
soliton solution when the velocity along transverse direction, ηj is made zero.

3.2. Dark-Dark Soliton Solutions

In order to find the dark soliton solution, we consider the solution of the
form,

fj = Aj tanh Uj; j = 1, 2; (20)

Substituting Eq. (20) into Eq. (7), simplifying and separating the coefficients
following the same procedure above, yields us the parameters of dark soliton
as,

bj = ±

√
kj − κk2

j − sm2
j − βω2

j

√
2
√
β + sη2

j + v2
jκ

; j = 1, 2; (21)

A1 = ±
√
−(2b2

1β + 2b2
1sη

2
1 + 2b2

1v
2
1κ+ A2

2γ2)
√
γ1

(22)
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A2 = ±
√
−(2b2

1β + 2b2
1sη

2
1 + 2b2

1v
2
1κ+ A2

1γ1)
√
γ2

(23)

A1 = ±
√
−(2b2

2β + 2b2
2sη

2
2 + 2b2

2v
2
2κ+ A2

2γ3)
√
γ4

(24)

A2 = ±
√
−(2b2

1β + 2b2
1sη

2
1 + 2b2

1v
2
1κ+ A2

1γ4)
√
γ3

(25)

Analogous to the previous sections, Eq. (22) and (24), (23) and (25) leads
us to the conclusion that, γ1=γ4 and γ2=γ3. Since A1, A2, 1/bj are the
amplitudes and width of the solitons, these parameters must be real, which
gives the following constraints for the existence of the soliton solution.
For the dark soliton solution to exist, γ1 and γ2 cannot be simultaneously
greater than zero. If γ1 and γ2 is negative, then the condition |2b2

j(β +
sη2

j + v2
jκ)| > |A2

2(1)γ2(1)| should be satisfied for the existence of dark soliton

solution. If γ1 is positive and γ2 is negative, then |2b2
j(β+sη2

j +v2
jκ)| < |A2

2γ2|
should be satisfied for the dark soliton solution to exist and if γ1 is negative
and γ2 is positive, then |2b2

j(β + sη2
j + v2

jκ)| < |A2
1γ1| is the condition to be

satisfied. Similarly equation (27) shows that the dark soliton solution can
exist if (β + sη2

j + v2
jκ) > 0 for |kj| > |κ k2

j+ s m2
j + βω2

j | and if |kj| < |κ
k2
j+ s m2

j + βω2
j | for (β+sη2

j + v2
jκ) < 0 which is same as the bright solitons.

Finally the dark soliton solution in its full form is,

Ψj = ±

√
−2b2

jβ − 2b2
jsη

2
j − 2b2

jv
2
jκ−B2γ2

√
γ1

tanh

√
kj − κk2

j − sm2
j − βω2

j )√
2(β + sη2 + v2

jκ)

(t− |vj|z − ηx+ δ)e−i(kjz+mjx−ωjt+δ0); j = 1, 2; (26)

where vj, ωj and mj are the same as given by Eq. (9), (18) and (19) respec-
tively, when the following conditions b1=b2, v1=v2 = v, η1=η2=η and k1=k2

are satisfied. We assume the following parameter values k1 = k2 = m1 =
m2 = 1, ω1 = ω2 = 2.5, η = 1.5, β = -0.2, κ = 0.2, s = 0.2, γ1 = γ2 = -
1. Substituting these values into equation (9) gives us the value of longitu-
dinal velocity v = 0.66 which further gives the value of bj from (21) as 1.69.
Similarly (22) and (23) gives the value of A1 = 0.92 with the assumption A2

= 1. In Fig.2 we have the evolution of (2+1) spatio-temporal dark soliton
solution ψ1 for different values of time (a) t = 0, (b) t = 10, (c) t = 1 and
the transverse velocity η = 0.
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(a) (b) (c)

Figure 3: (Color online) The evolution of (2+1) spatio-temporal bright-dark
soliton solutions (a) |ψ1|2 (b) |ψ2|2 for t=5. (c)Shows the corresponding 2D
plot for the same with t=5 and z

3.3. Bright-Dark Soliton Solutions

We consider the bright-dark soliton solutions of the following form

Ψ1 = A sech(U1)eiΦ1 ; (27)

Ψ2 = B tanh(U2)eiΦ2 (28)

Substituting Eq. (27) and (28) into Eq. (1) and (2), and following the
procedure same as the previous section, we obtain the soliton parameters as:

b1 = ±

√
k1 + κk2

1 + sm2
1 + βω2

1 −B2γ2

β + sη2
1 + v2

1κ
(29)

A = ±

√
2b2

1(β + sη2
1 + v2

1κ) +B2γ2

γ1

(30)

v1 =
−2(sη1m1 + βω1)

1 + 2κk1

(31)

v2 = −2(sη2m2 + βω2)

1− 2κk2

(32)
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B = ±

√
−2b2

2(β + sη2
2 + v2

2κ) + A2γ4

γ3

(33)

b2 = ±

√
−k2 − κk2

2 − sm2
2 − βω2

2 + A2γ4

2(β + sη2
2 + v2

2κ)
(34)

Further equation (29) in (30) helps in deducing the expressions of bright
soliton amplitudes to,

A = ±
√

2(k1 + κk2
1 + sm2

1 + βω2
1)−B2γ2√

γ1

; (35)

Similarly Eq. (34) in (33) yields us the amplitude of dark soliton B to,

B = ±
√

(k2 + κk2
2 + sm2

2 + βω2
2)

√
γ3

; (36)

Thus the final form of bright-dark soliton solutions is,

Ψ1 = ±
√

2b2
1(β + sη2

1 + v2
1κ) +B2γ2√

γ1

sech√
k1 + κk2

1 + sm2
1 + βω2

1 −B2γ2)√
β + sη2

1 + v2
1κ

(t− |v1|z − η1x+ δ)

ei(k1z+m1x−ω1t+δ0); (37)

Ψ2 = ±
√
−2b2

2(β + sη2
2 + v2

2κ+ A2γ4√
γ3

tanh√
−(k2 + κk2

2 + sm2
2 + βω2

2) + A2γ4√
2(β + sη2

2 + v2
2κ)

(t− |v2|z − ηx+ δ)

ei(k2z+m2x−ω2t+δ0); (38)

Fig.3 shows the bright-dark solitons for the parameter values k1 = k2 =
m1 = m2 = 1, β = κ =s=0.2, η1 = η2 = η = 1.5, v1 = v2 = 1.143, A=2.8,
ω1 = ω2=2.5, B=1.62, γ1 = γ3 = γ4=1, γ2=-1, b1=2.41, b2=1.7, t=5.
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4. Linear Stability Analysis

Most nonlinear systems exhibit instability against perturbation which
inturn leads to the modulation of their steady states by the interplay between
their nonlinearity and dispersion/diffraction. In order to study the MI for
the above equation, we use the standard linear stability analysis. Here we
consider the steady state solution to the above mentioned system which is
given by,

ψ1(x, z, t) =
√
P0e

iΦ1z; (39)

ψ2(x, z, t) =
√
P0e

iΦ2z; (40)

where ω1 =
−1±
√

1+4κP0(γ1+γ2)

2κ
and ω2 =

−1±
√

1+4κP0(γ3+γ4)

2κ
are the nonlinear-

ity induced phase shifts. In order to study the stability of the system, we
add a small perturbation into the system so that the perturbed solution is
given by,

ψ1(x, z, t) = (
√
P0 + a(x, z, t))eiΦ1z; (41)

ψ2(x, z, t) = (
√
P0 + b(x, z, t))eiΦ2z; (42)

where the complex fields |a(x, z, t)| �
√
P0 and |b(x, z, t)| �

√
P0. Substitut-

ing Eqs. (41) and (42) into Eqs. (1) and (2) and collecting terms of a(x, z, t)
and b(x, z, t), we obtain the coupled linearized equations of the perturbed
fields,

P0(γ1(a(x, z, t) + a∗(x, z, t)) + γ2(b(x, z, t) + b∗(x, z, t)))

+β
∂a2(x, z, t)

∂2t
− i

√
1 + 4κP0(γ1 + γ2)

∂a(x, z, t)

∂z
+

κ
∂a2(x, z, t)

∂2z
+ s

∂a2(x, z, t)

∂2x
= 0; (43)

P0(γ4(a(x, z, t) + a∗(x, z, t)) + γ3(b(x, z, t) + b∗(x, z, t)))

+β
∂b2(x, z, t)

∂2t
− i

√
1 + 4κP0(γ3 + γ4)

∂b(x, z, t)

∂z

+κ
∂b2(x, z, t)

∂2z
+ s

∂b2(x, z, t)

∂2x
= 0 (44)

Here, a∗(x, z, t) and b∗(x, z, t) are the complex conjugate of the perturbed
fields. Now we assume the following ansatz for the perturbations a(x, z, t)
and b(x, z, t),

a(x, z, t) = F1e
i(µx+λz−Ωt) +G1e

−i(µx+λz−Ωt) (45)
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b(x, z, t) = F2e
i(µx+λz−Ωt) +G2e

−i(µx+λz−Ωt) (46)

with F1, G1, F2, G2 forming the amplitudes of the perturbation which are
real. µ and λ are the wave vectors of the perturbation in the transverse
and longitudinal direction of propagation, respectively. Ω is the frequency
of perturbation. Substituting Eq. (45) and (46) into Eq. (43) and (44) we
obtain the following stability matrix

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44



(a) (b)

Figure 4: (Color online) The contour plots of MI spectra (a) in the anomalous
dispersion regime, (b) the normal dispersion regime, with other parameters
as κ = 0.005 and s=0.002, P0 = 1, γ1 = 1, γ2 = 1, µ = 2.

where m11 = −κλ2−sµ2−βΩ2+m12+λ
√

1 + 4κP0(γ1 + γ2);m12=m21=
P0γ1; m13=m23=m14=m24=P0γ2; m34=m43=P0γ3; m31=m32=m41=m42

= P0γ4; m22 = −κλ2 − sµ2 − βΩ2 + m12 − λ
√

1 + 4κP0(γ1 + γ2); m33 =

−κλ2−sµ2−βΩ2 +m34 +λ
√

1 + 4κP0(γ3 + γ4); m44 = −κλ2−sµ2−βΩ2 +

m34 − λ
√

1 + 4κP0(γ3 + γ4); From the above matrix, using the assumption
γ1=γ4 and γ2=γ3 we arrive at the dispersion relation for λ given by,

λ =
1√
2κ2

√
−X1 +

√
X2) (47)
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where X1=(−1 + 2sκµ2 + 2βκΩ2 − 6κP0γ and X2=1 − 4κ(sµ2 + βΩ2) +
4κP0γ(3− 4κ(sµ2 + βΩ2) + 9κP0γ) where γ = γ1 + γ2. MI occurs when the
wave vector λ has a nonzero imaginary part leading to an exponential growth
of the perturbed amplitudes. The growth rate of the MI gain is defined as

G(Ω) = 2|Im λ| (48)

(a) (b) (c)

Figure 5: (Color online)(a) The contour plots of MI spectra with the trans-
verse diffraction parameter s in different dispersion regimes. (a) s being
positive in the anomalous dispersion region with β = 0.005 (b) s being neg-
ative in the anomalous dispersion region with β = 0.005 (c) s being positive
in the normal dispersion region with β = −0.005. The other parameters are
taken as P0 = 1, γ1 = 1, γ2 = 1, κ = 0.005, µ = 2.

5. Modulational Instability

Using Eq. (48), in what follows, we briefly analyze the MI for a coupled
system of nonparaxial NLSE for the first time to the best of our knowledge.
Particularly, our emphasize is on the effect of diffractions and dispersion in
the instability spectra.

5.1. The effect of dispersion

For studying the effect of dispersion on MI, we varied β from −10−5 to
−10−2 and 10−5 to 10−2. We observe that, there is no change in maximum
gain value, but the MI bandwidth (ΩBW ) changes drastically as seen in the
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Table 1: : MI behaviors for different parameters
β κ s MI Gain (Ω)
−ve +ve +ve Only G(0) peak
−ve −ve +ve Only G(0) peak

−ve +ve −ve No MI gain
−ve −ve −ve No MI gain

contour plots of fig 4.

From fig. (4(a)), we note that for the anomalous dispersion (β > 0),
the ΩBW drastically reduces as β increases for a positive value of transverse
diffraction, s. But when s is negative, the two sidebands of MI is separated
from the central frequency and the separation of sidebands is more for a
lower value of β. Also, we notice that the sign of κ hardly influence the
instability spectra in this parametric regime. In the normal dispersion (β <
0) regime, from fig (4(b)) we note that there is no MI, but a single peak
around the central frequency which implies amplification of the wave at the
central frequency or the pump frequency and not the generation of sidebands.
We note that the maximum gain value is lower for normal dispersion than the
anomalous dispersion case. Here also we note that the bandwidth reduces as
the value of |β| increases. Table 1 shows the MI behavior of the system for
different parameter values, which shows that in the normal dispersion regime
when the system has a negative diffraction there is no gain in the system but
the system shows MI gain for the same in the anomalous dispersion region.

5.2. The effect of transverse diffraction

To study the effect of transverse diffraction ‘s’ on MI, we varied the value
of s in the range of 0 to -0.6 as shown in fig (5). It is evident from the fig (5),
the maximum gain of MI remain unchanged, while the optimum frequency
corresponding to maximum gain shift to higher frequency side as |s| increases.
As in the previous case, the MI bandwidth reduces as |β| increases. For the
parameter of our choice, we noted that there is no MI for normal dispersion (β
-ve) for s being -ve and κ is not deterministic to the origin of MI. In the regime
of anomalous dispersion, for any positive values of transverse diffraction, the
MI bandwidth decreases with increase in the s, while Gmax remains constant.
Interestingly, unlike the previous cases, the MI gain register a non-zero value
for Ω = 0, whose gain increases with increase in the strength of s. But for
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(a) (b)

Figure 6: (Color online) The MI gain spectra for (a) different values of pos-
itive longitudinal diffraction κ and (b) for different values of negative longi-
tudinal diffraction κ with other parameters as P0 = 1, β = 0.005, γ1 = 1, γ2

= 1, s = 0.004.

the case of positive diffraction in the normal dispersion region, we notice that
for low values of s only a single frequency around the central frequency is
observed, which develops into a pair of sidebands on the either side of the
central frequency for larger values of s. Another interesting point is that the
MI is still possible in the anomalous dispersion (β +ve) region even if the
transverse diffraction is absent.

5.3. The effect of longitudinal diffraction

Here we study the effect of longitudinal diffraction on MI, we keep the sys-
tem to be in the anomalous dispersion regime with the transverse diffraction
as positive. Fig 6(a) shows the behaivour of MI spectra for positive values of
longitudinal diffractions which shows that Gmax decreases with an increase in
|κ|. But the zero frequency gain (G(0)) and ΩBW remains unaffected. At the
same time fig. 6(b) shows that the reverse happens when κ is negative i.e.,
Gmax increases with increase in |κ|. Fig. 6(b) shows the instability spectra
for negative values of κ, unlike the previous case the Gmax increases with in-
crease in κ. This shows that the effect of the sign of diffraction is absolutely
crucial in determining the nature of the spectra.
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6. Conclusion

In summary, we have modeled and studied the coupled non-paraxial (2+1)
dimensional nonlinear Schrödinger equation without taking into account the
famous slowly varying envelope approximation. To explore the propagation
features of the proposed model in the waveguide structure, we have derived
the soliton solutions under different settings using the trial solution method.
For a comprehensive understanding of the underlined problem different com-
binations of the soliton solutions for instance, bright-bright, dark-dark, and
bright-dark soliton have been derived in the non-paraxial limit. Following
that, we have studied the modulational instability in the system of equa-
tions using linear stability analysis. An explicit dispersion relation has been
derived and MI analysis is performed under different parametric conditions,
with an emphasize on the role of the dispersion and diffraction parameter
in the instability spectra. We have reported that the sign of the dispe-
rion/diffraction parameter is fundamental to the origin of MI and the mag-
nitude of which determines the strength of gain and bandwidth of MI.

To conclude, our detailed theoretical analysis reveals the NLSE qualita-
tively differs in the non-paraxial limit. Particularly, in the miniaturized sys-
tem such as nano-waveguide, the paraxial approximation used in the NLSE
is less favorable and therefore one have to modify the standard NLSE with-
out SVEA as discussed in the present context. With the advancement of
on-chip silicon photonic technology, we believe that the aforementioned re-
sults on the dynamics of soliton propagation would be an interesting topic
of research with potential applications in nonlinear plasmonics.

It would be particularly relevant to investigate the existence and sta-
bility properties of vectors solitons in non-Kerr media beyond the slowly
varying envelope approximation. Noting that in many optical materials, the
nonlinear refractive index deviates from the Kerr behavior for larger light
intensities. In such media, an additional quintic nonlinearity arises due to
fifth-order susceptibility [46]. Note that a self-defocusing fifth-order suscepti-
bility χ(5) usually accounts for the saturation of the third-order susceptibility
χ(3) [47]. Well known optical materials demonstrating nonideality of the non-
linear optical response include for example semiconductor waveguides (e.g.,
AlxGa1−xAs, CdS, and CdS1−xSex) and semiconductor-doped glasses (see,
e.g., [48]). Considering the vectorial case, the dynamics of femtosecond op-
tical pulse propagation in such systems should be described by the coupled
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non-paraxial (2+1) dimensional nonlinear Schrödinger equation with cubic-
quintic nonlinearity which represent the quintic generalization of the coupled
cubic NLS equations. We note that finding the soliton pairs for such a prob-
lem may be a complicated task. Such interesting studies are in the scope of
our future work and will be published elsewhere.
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