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Introduction 1

Due to high strength to weight and stiffness to weight ratios, compos-2 ite structures are now increasingly used in different applications, such as 3 aerospace, automobile and civil engineering. During their service lifetime, they are subjected to a wide range of impact loading. These impacts are sometime caused by accidental event or by scarce operational conditions. However, they are more sensitive to impact damage than conventional metallic structures due to their anisotropic nature. By design, they indeed present local structural fragility regarding localized transient (sometimes high-energy) forces.

Low velocity impact could lead to significant damage [START_REF] Richardson | Review of low-velocity impact properties of composite materials[END_REF], in terms of matrix cracks, delamination and eventually fibre breakage for higher impact energies, which are not detectable from visible observation and can cause considerable reduction in the residual strength of the composite. In order to produce an effective design of composite structures and to ensure structural integrity, it becomes crucial to understand the damage mechanism in these structures.

For that purpose, experimental and numerical techniques have been developed to help investigating the damage prediction of low velocity impacts.

Among them, empirical damage prediction models have been derived from conventional instrumented impact test apparatus [2; 3]. An instrumented drop-weight-testing was used together with several non destructive characterization techniques, such as an ultrasonic C-scanning, cross-section fractography, an optical microscope and X-ray chamber. These techniques could exhibit some correlation between damage or alteration phenomena which are specific to composite structures and the physical signals captured by sensors. At this early stage, the focus was carried on composite laminates. In addition, the main goal was then to establish the limits of these materials in terms of resistance for design purpose in applications, where they were considered as an alternative to traditional homogeneous materials. The corresponding testing procedures are still used in protocols of qualification for new materials. However, following an impact that created a damage, imperceptible from a surface inspection, the characterizing delamination growth under fatigue became soon a subject of attention. Model of damage growth were then associated to the study of impact resulting damages [4; 5].

In order to simulate the low-velocity impact and to predict the impactinduced damage in laminated composites, various researchers have deployed the numerical methods which are very efficient because the extent and propagation of damage can be more easily detected and controlled with minimum human interaction. Most of the earlier works could found in [6; 7]. Composite materials have been also implementing addition feature for monitoring and control purposes. The monitoring of such composite structure as well as the dynamic control of them raised up the need for reduced model that could capture the overall response without impairing the evaluation of the damage sensitive evolution [8; 9]. Within recent years, many authors have studied this subject based on the three-dimensional finite element model to analyze interlaminar stress distribution and on the three-dimensional stress-based failure criteria to predict damage [10; 11]. However, finite elements analysis becomes impractically large for high frequencies, leading to an assortment of problems (problems of CPU capacity, lack of accuracy, excessive computation cost and time).

An alternative, wave-based, approach to investigate the stress distribution is the Wave Finite Element (WFE) method [12; 13; 14]. This approach is based on the finite element method and periodic structure theory which starts from an FE model of only a typical substructure [START_REF] Mead | A general theory of harmonic wave propagation in linear periodic systems with multiple coupling[END_REF] of the periodic structure, then the mass and stiffness matrices of this substructure are used to formulate an eigenvalue problem whose solutions yields the wave properties (wavenumber, wave modes, group velocity, modal density, etc.).

The Wave Finite Element method seems to be so interesting, it provides an efficient way and a large decrease of cost and time for computing the forced responses of systems compared to the conventional finite element method.

Accordingly, it has been extensively used in the last few years for the free [START_REF] Mace | Finite element prediction of wave motion in structural waveguides[END_REF] and forced [START_REF] Mencik | A model reduction strategy for computing the forced response of elastic waveguides using the wave finite element method[END_REF] response of waveguides of different natures, such as beamlike structures [START_REF] Mencik | Multi-mode propagation and diffusion in structures through finite elements[END_REF], laminated beams [START_REF] Renno | On the forced response of waveguides using the wave and finite element method[END_REF] and plates [16; 20], fluid filled pipes [21; 22], etc.

In this paper, a novel numerical technique based on the Wave Finite Element (WFE) approach in time domain is proposed to study the impact damage behavior of laminated composite structures. The method consists of a dynamic stress analysis using the WFE method and a failure analysis using Tsai-Wu and Hasshin's failure criteria. The accuracy of the results predicted by the proposed model is validated by comparing with FEM results for a cantilever composite beam.

The paper starts with presenting an overview of the WFE method and the extension of this method in time domain. Tsai-Wu quadratic and Hasshin's failure criteria are described in Sections 3 and 4 followed by a discussion comparing the proposed model and FEM results. Finally, some general conclusions to this work are given in Section 5.

The Wave Finite Element method

In this section, the WFE method for one-dimensional structures is first briefly reviewed [12; 23; 24]. Then, the forced response is treated for two classes of problems, say a single Waveguide and two waveguides coupled through an excited elastic junction.

Free wave propagation

The WFE method is based on the finite element model of a typical substructure of length d extracted from the global structural waveguide and meshed with an equal number of nodes, that means the same number of degrees of freedom n, on the left and right sides.

Assume that the global system is composed of N identical connected substructures along axis x as shown in Fig. 1. The dynamic equilibrium of the substructure is formulated in the frequency domain as:

Dq = f ( 1 
)
where q is the vector of the displacement degrees of freedom, f is the applied forces and D represents the dynamic stiffness matrix of the substructure, expressed as follows:

D = K + jωC -ω 2 M (2)
where K, C, and M are respectively the stiffness, damping, and mass matrices. The dynamic stiffness operator D can be partitioned and condensed onto its left (L) and right (R) boundaries to give the following matrix equation:

D LL D LR D RL D RR q L q R = f L f R (3) 
Assuming there are no external forces applied to the structure, the continuity of displacements and equilibrium of forces at the boundary between two consecutive substructures k and k + 1 yields,

u (k+1) L = u (k) R (4) 
Where the (2n × 1) state vectors

u T R = [(q R ) T (f R ) T ] and u T L = [(q L ) T (-f L ) T ].
the dynamic equilibrium Eq. ( 1) can be reformulated in this manner:

T u (k) L = u (k) R = u (k+1) L (5) 
where T refers to (2n × 2n) transfer matrix which can be expressed in terms of the dynamic stiffness matrix [START_REF] Renno | On the forced response of waveguides using the wave and finite element method[END_REF].

Based on Bloch's theorem [START_REF] Wilox | Theory of bloch waves[END_REF], the propagation constant λ = e -jkd relates the right and left nodal DOFs and forces by:

u (k) R = λu (k) L (6) 
Substituting Eq. ( 6) into Eq. ( 5) yields an eigenvalue problem:

T q L f L = λ q L f L (7) 
The solutions of the eigenvalue problem Eq. ( 7) are denoted as {(λ j , Φ j )} j and are usually called the wave modes traveling along the global structure.

They are split into n incident and n reflected wave modes, corresponding to positive and negative going waves,respectively (see Fig. 1).

The wave mode matrix, denoted Φ, can be partitioned as:

Φ = Φ inc q Φ ref q Φ inc f Φ ref f ( 8 
)
where the superscripts inc and ref refer to as incident and reflected waves while the subscripts q and f refer to the displacement and force components, respectively.

Forced response computation

The strategy for computing the forced response of waveguides has been proposed in [17; 18]. The vectors of displacements q (k) and forces f (k) at the substructure boundary k (k = 1, ..., N + 1), along the waveguide can be written in terms of wave modes {Φ j } j and wave amplitudes {Q j } j , as follow:

q (k) = Φ inc q Q inc(k) + Φ ref q Q ref (k) , k = 1, .., N + 1 (9) f (k) = Φ inc f Q inc(k) + Φ ref f Q ref (k) , k = 1, .., N + 1 ( 10 
)
where Q inc and Q ref are respectively the incident and reflected modal amplitudes.

The spatial distribution those components can be obtained via the following governing equations:

Q inc(k) = λ k-1 Q inc(1) , k = 1, .., N + 1 (11) 
Q ref (k) = λ -(k-1) Q ref (1) , k = 1, .., N + 1 (12) 
with the boundary conditions:

Q ref |lim = CQ ref |lim + F (13) 
Here, λ the (n × n) denotes the diagonal eigenvalue matrix of the incident modes which is defined as λ = λ inc = (λ ref ) -1 , C denotes the (n×n) diffusion matrix which provides the reflection and transmission coefficients of the wave modes across a given boundary and F is (n × 1) vector whose components refer to the excitation sources.

The Neumann and Dirichlet boundary conditions are write as:

Φ inc f Q inc + Φ ref f Q ref = ±F 0 , (14) 
Φ inc q Q inc + Φ ref q Q ref = q 0 . (15) 
In order to reduce the numerical errors [START_REF] Waki | On numerical issues for the wave/finite element method[END_REF], the element length must be carefully determined when the structure is discretized using FEM.

Hence, for the sake of accuracy, the length of substructure should be satisfying the following condition :

d ≤ λ min 2π ( 16 
)
where λ min is the minimal wave length.

Single waveguide

Considering a single waveguide which is split into N identical cells, whose left and right ends are respectively submitted to prescribed forces and displacements as shown in Fig. 1.

In this case, the boundary conditions will be expressed as:

Φ inc f Q inc(1) + Φ ref f Q ref (1) = -F 0 (17) Φ inc f Q inc(N +1) + Φ ref f Q ref (N +1) = q 0 ( 18 
)
Using the governing equations Eq. ( 11) and Eq. ( 12), we can write:

Φ inc f Φ ref f Φ inc q λ N Φ ref q λ -N Q inc(1) Q ref (1) = -F 0 q 0 ( 19 
)
To avoid numerical errors, it will be worth solving Eq. ( 19) this way:

Q inc(1) Q ref (1) = I 0 0 λ N I (Φ inc f ) + Φ ref f λ N (Φ ref q ) + Φ inc q λ N I -1 × -(Φ inc f ) + F 0 (Φ ref q ) + q 0 (20) 
Then, the spatial distribution of the kinematic variables (the vectors of displacements q k and forces f k ) along the waveguide is obtained by means of Eqs. ( 9) and (10).

Two coupled waveguides

The response of two waveguides coupled through an excited elastic coupling element is discussed.

It should be noted that, the present formulation is different from that defined in [START_REF] Mencik | Multi-mode propagation and diffusion in structures through finite elements[END_REF]. Where, the coupling element corresponding to impact zone was subjected to transverse impact.

Let's consider two waveguides (1 and 2) and two corresponding substructures (1 and 2) which are located at the ends of each waveguide and are coupled with the coupling element, as illustrated in Fig. 2. In this case, the matrix C can be partitioned as:

C = C 11 C 12 C 21 C 22 (21) 
where the components of matrices C 11 and C 22 denote the reflection coefficients of the wave modes traveling in waveguides 1 and 2 towards the coupling junction, while the components of matrices C 12 and C 21 denote the transmission coefficients of these wave modes through the coupling junction.

The calculation of these coefficients is presented using a hybrid FE/WFE approach: the waveguides are modelled using the WFE method and the joint is modelled using standard FE. It is assumed that the the interfaces guidescoupling element have compatible meshes and the coupling element is subject to external forces F c I .

The dynamical equilibrium of the coupling element can be formulated as follows:

D c   q c 1 q c I q c 2   =   D c 11 D c 1I D c 12 D c I1 D c II D c I2 D c 21 D c 2I D c 22     q c 1 q c I q c 2   =   F c 1 F c I F c 2   (22) 
where matrix D c refers to the complex dynamical stiffness of the coupling element, (q c 1 , F c 1 ) and (q c 2 , F c 2 ) represent the displacements and the forces applied at the DOFs of the coupling element on interfaces (1 and 2), respectively.

The dynamic condensation of the stiffness matrix of the coupling element into its left and right boundaries, leads to:

D c * q c 1 q c 2 = F c 1 -D c 1I (D c II ) -1 F c I F c 2 -D c 2I (D c II ) -1 F c I (23) 8 
The couplings conditions of interfaces guides-coupling element are written:

q c 1 q c 2 = q (1) R q (2) L , F c 1 F c 2 = - F (1) R F (2) L (24) 
Eq.( 23)and Eq.( 24)give:

D c * q (1) R q (2) L = F (1) R F (2) L - D c 1I (D c II ) -1 F c I D c 2I (D c II ) -1 F c I (25) 
q and f vectros are defined as in Section 2.2, thus can be expressed in terms of the wave amplitudes in the waveguides using Eq. ( 9) and Eq. ( 10). Then, Eq. ( 25) can be expressed as follows:

D c * Ψ inc q |Ψ ref q     Q inc(1) Q inc(2) Q ref (1) Q ref (2)     = -Ψ inc f |Ψ ref f     Q inc(1) Q inc(2) Q ref (1) Q ref (2)     - D c 1I (D c II ) -1 F c I D c 2I (D c II ) -1 F c I (26) where 
Ψ inc q = Φ inc(1) q 0 0 Φ inc(2) q , Ψ ref q = Φ ref (1) q 0 0 Φ ref (2) q Ψ inc f = Φ inc(1) f 0 0 Φ inc(2) f , Ψ ref f = Φ ref (1) f 0 0 Φ ref (2) f (27) 
Finally, Eq. ( 26) can be expressed in this way:

[D c * Ψ inc q +Ψ inc f | D c * Ψ ref q +Ψ ref f ]     Q inc(1) Q inc(2) Q ref (1) Q ref (2)     = - D c 1I (D c II ) -1 F c I D c 2I (D c II ) -1 F c I . (28) 
The diffusion matrix C is defined such as:

Q ref (1) Q ref (2) = C Q inc(1) Q inc(2) -[D c * Ψ ref q + Ψ ref f ] -1 D c 1I (D c II ) -1 F c I D c 2I (D c II ) -1 F c I ( 29 
)
where

C = -[D c * Ψ ref q + Ψ ref f ] -1 [D c * Ψ inc q + Ψ inc f ] (30) 
and

F = F 1 F 2 = -[D c * Ψ ref q + Ψ ref f ] -1 D c 1I (D c II ) -1 F c I D c 2I (D c II ) -1 F c I . (31) 
In order to obtain the forced response of the structure, the boundary conditions will be expressed as:

• For waveguide 1:

(Φ inc f ) 1 Q inc(1) 1 
+ (Φ ref f ) 1 Q ref (1) 1 = 0 (32) Q ref (N 1 +1) 1 = C 11 Q inc(N 1 +1) 1 + C 12 Q inc(N 2 +1) 2 + F 1 (33) 
• For waveguide 2:

Q ref (N 2 +1) 2 = C 22 Q inc(N 2 +1) 2 + C 21 Q inc(N 1 +1) 1 + F 2 (34) (Φ inc q ) 2 Q inc(1) 2 
+ (Φ ref q ) 2 Q ref (1) 2 = q 0 ( 35 
)
where N 1 and N 2 denote the numbers of substructures constituting the waveguides 1 and 2, respectively.

Wave Finite Element method in time domain

The WFE method enables the calculation of the frequency response of the waveguide and it is extended to obtain also the time response via the Inverse Discrete Fourier Transform (IDFT).

The excitation force F ext is sampled into M point signal time [t k ] (k=1..M ) , then it is transformed into the frequency-domain via Discrete Fourier Transform (DFT).

The spectrum of this excitation force Fext can be expressed in the frequency-

domain [ω k ] (k=1..M ) Fext (ω k ) = M m=1 F ext (t m )e -jtmω k (36) 
At each discrete frequency, this spectrum is used in the WFE approach to calculate the nodal displacement response ũ(ω m ).

Finally, the data is transformed back to the time-domain by applying an IDFT. The final result is the time history of the displacement at each node.

u(t k ) = 1 M M m=1 ũ(ω m )e -jt k ωm (37) 
It is to be noted that M, the number of samples should be sufficiently large to avoid numerical problems (Aliasing) and ensure the quality of response in time domain [START_REF] Doyle | Wave propagation in structures: spectral analysis using fast discret Fourier transforms[END_REF].

Failure Analysis

Since impact damage is a very complicated phenomenon, its prediction requires a deep understanding of the basic damage mechanism even in a low velocity impact.

Transverse impact initiates critical matrix cracks in a layer within the laminate. Delaminations can occur from these matrix cracks immediately along the bottom or upper interface of the cracked layer.

In this study, the impact damage analysis follows a two step process. First, Three-dimensional Tsai-Wu failure criterion [START_REF] Tsai | Theory of composite design[END_REF] is used to predict the layer failure in the laminated composite but this quadratic criterion cannot differentiate between damage modes. Since the propagation of impact-induced damage strongly depends on the damage modes, the Hashin's [START_REF] Hashin | Failure criteria for unidirectional fiber composites[END_REF] criteria will be used after the Tsai-Wu failure criteria for determining damage modes (critical matrix cracking, delamination). Fig. 3 shows the the coordinate system used to describe the properties of a layer, were the 1 direction is along the fibres and 2 direction normal to the fibres in the laminate plane and 3 direction is through the laminate thickness.

Tsai-Wu failure criterion

In order to predict accurately the impact damage of entire ply, threedimensional Tsai-Wu failure criterion is used. This failure criterion has been thought as an extension of the Von Mises criterion to a quadratic criterion.

For a three-dimensional stress state, it is given by the equation : 

F 1 σ 11 + F 2 σ 22 + F 3 σ 33 +
The following strength parameters account for ply failure:

F 1 = 1 X t - 1 X c , F 12 = - 1 2 √ X t X c Y t Y c F 2 = 1 Y t - 1 Y c , F 23 = - 1 2 √ Y t Y c Z t Z c F 3 = 1 Z t - 1 Z c , F 13 = - 1 2 √ X t X c Z t Z c F 11 = 1 X t X c , F 44 = 1 S 2 23 F 22 = 1 X t X c , F 55 = 1 S 2 13 F 33 = 1 X t X c , F 66 = 1 S 2 12 ( 39 
)
where :

X t , X c -tensile and compressive strength in the fibre direction, respectively;

Y t , Y c -tensile and compressive strength in the transverse direction, respectively;

Z t , Z c -tensile and compressive strength in the through-thickness direction, respectively;

S 12 -shear strength in the fibre and transverse plane;

S 23 -shear strength in the transverse and through-thickness plane;

S 13 -shear strength in the through-thickness and fibre plane.

Hashin's failure criteria

The Hashin's criteria differ slightly from the latter and they allow distinguishing between damage modes. Accordingly, two failure criteria, critical matrix cracking criterion and impact-induced delamination criterion, are utilized.

Critical matrix cracking criterion

In order to predict the extent of the critical matrix cracks, Hashin proposed a criterion for matrix cracking which it is applied to points in the layers to find the locations of matrix cracks during impact.

The matrix failure criterion can be expressed as follows:

(

σ 22 + σ 33 Y t ) 2 + ( σ 2 12 + σ 2 13 S 2 12 
) + (

σ 2 23 -σ 22 σ 33 S 2 

23

) = I M .

(40)

Delamination criterion

If the initial matrix crack is predicted in a layer of the laminate, a delamination can be initiated from this crack.

Hashin proposed delamination criterion which it is applied to points in the upper and lower interfaces to determine whether delamination occurs. It can be expressed as:

( σ 33 Z t ) 2 + ( σ 23 S 23 ) 2 + ( σ 13 S 13 ) 2 = I D . (41) 
The left-hand side of Eq. ( 39), ( 40) and (41), I T W , I M and I D denote failure index since damage is checked when the index at a point exceeds unity.

Numerical validations

The main use of the numerical application is to predict damage in Eglass/epoxy composite beam subjected to transverse impact. The steps of this analysis are summarized below:

• Using WFE method in time-domain to calculate the stresses in the global coordinate for each Gaussian point at each element.

• Calculate the failure index in the Gaussian points by using Tsai-Wu and Hashin's failure criteria to predict the extent of the impact damage.

In order to verify the accuracy of the method used in this study, a threedimensional dynamic finite element analysis, carried out by using the commercial finite element program ANSYS, was performed for calculating the stresses inside the composites during impact.

In this section, two examples are presented to verify the accuracy of the approach outlined above.The first is a clamped laminated beam,with rectangular cross-section, whose free end is submitted to transverse impact.The second example is two laminated beams coupled through an excited elastic junction. The forced response of the laminated beam is addressed using the WFE method in the time domain. The results computed by ANSYS were exported to MATLAB and plotted to obtain better comparisons with the proposed method.

Cantilevered laminated beam

Symbol (unit) Value

First, the longitudinal and normal displacement at A in the time domain are evaluated and compared with a reference solution provided by the FE model as shown respectively in Fig . 6(a) and Fig . 6(b).A good agreement between the two results can be observed.

These figures also show that the responses obtained by FEM are slightly on the higher side, which is due the different damping schemes employed by WFEM and FEM.

Next, the strain and stress distribution, in the x-direction on the top surface, evaluated using the WFE method in time domain are in very good agreement with the full FEM solutions as shown respectively in Fig . 7 and Fig. 8. These figure show that there are very small differences between the results, which verifies the efficiency of the proposed method in the time domain. These comparisons with the reference solution obtained by the FE model highlights the validation of the proposed method to estimate the time response of composite structures subjected to transverse impact. We consider now the case of two waveguides coupled through an excited elastic junction depicted in Fig . 9. The same impact load defined previously is applied at the coupling element corresponding to the impact zone. The other waveguide boundaries, for waveguide 1 and waveguide 2, are respectively free and clamped end. The material of the two waveguides and the coupling element is E-glass/epoxy with the same parameters as for the laminated beam listed in Tables. 1 and 2.

The two waveguides have the same cross-sectional area b × h = 0.02m × 0.004m, while their respective lengths are L 1 = 0.05m and L 2 = 0.05m.

These are discretized by means of similar substructures of length d = 0.5mm, so that each of them contains N 1 = N 2 = 100 substructures.

The length of the coupling element is L c = 0.02m and its cross-section is similar to those of the connected waveguides.

The SOLID185 elements are used for the discretization of two waveguides and the elastic junction.

The forced response of the coupled system was computed as shown in Fig. 10 and Fig. 11.

Fig. 10 shows the displacement in the x-, y-and z-directions at B and Fig. 11 shows the history of stress in the x-, y-and z-directions at the centre of the top surface of the composite beam.

Compared to the reference FE solution when the full coupled system is discretized, the convergence of the method completely agrees. 

Prediction of impact induced damage

In order to investigate the damage initiation behavior of E-glass/epoxy composite subject to transverse impact, a [0/45/-45/0] laminated beam with the same properties as the second example defined in the previous section is considered.

Table 3 presents the most critical failure index values of the beam along the thickness at impact point in different time, obtained though Eq. (38).

Initially, the damage starts in the centre of the top surface corresponding to the impact position. As the contact force increased, the damage propagated from the outer layer to the inner layers.

As seen in this Based on these validating and encouraging results, the future work would be the application of the WFE method in time domain to the numerical modeling of laminated composites beams with craks and delaminations.
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 1 Figure 1: Illustration of a periodic waveguide.

Figure 2 :

 2 Figure 2: Illustration of two periodic waveguides coupled through an elastic junction.

Figure 3 :

 3 Figure 3: The coordinate system used for the composite laminates.

Figure 4 :

 4 Figure 4: Schematic of the laminated beam: (a) geometry and coordinate systems, (b) schematic of the meshed substructure.

  As seen in Fig.4(b), the waveguide is discretized by means of N identical substructures of length d = 0.5 mm.This mesh is supposed to be fine enough to avoid the FE discretization error. Each layer was modelled with four SOLID185 elements which is defined by eight-nodes having three degrees of freedom at each node: translations in the nodal x, y, and z directions.

Figure 5 :Figure 6 :Figure 7 :

 567 Figure 5: Impact load history and its Frequency spectrum in the inset.

Figure 8 :

 8 Figure 8: Stress distribution at the last lamina in the x-direction.

4. 2 .

 2 Two laminated beam coupled with an excited elastic junction 4.2.1. Forced Responses

Figure 9 :

 9 Figure 9: Schematic of the coupled system

Figure 10 :

 10 Figure 10: Magnitude of the displacement of the laminated beam at B in the: (a) xdirection,(b) y-direction and (c) z-direction.

Figure 11 :

 11 Figure 11: Stress distribution at the last lamina: (a) sigma 1, (b) sigma 2, (c) sigma 3.

Fig. 12 (

 12 Fig. 12(a) and 12(b) represent the failure indices of matrix cracks for each

Figure 12 :

 12 Figure 12: Numerical results of the failure index:(a) failure index of matrix cracks , (b) failure index for delamination

  F 11 σ 2 11 + F 22 σ 2 22 + F 33 σ 2 33 + F 44 σ 2 23 +F 55 σ 2 13 + F 66 σ 2 12 + 2F 12 σ 11 σ 22 + 2F 13 σ 11 σ 33 + 2F 23 σ 22 σ 33 = I T W

Table 1 :

 1 Elastic properties of the E-glass/epoxy lamina

	In-plane longitudinal modulus	E1 (GPa)	44.6
	In-plane transverse modulus	E2 (GPa)	17.0
	Out-of-plane transverse modulus	E3 (GPa)	16.7
	In-plane shear modulus	G12 (GPa)	3.49
	Out-of-plane shear modulus	G23 (GPa)	3.77
	Out-of-plane shear modulus	G13 (GPa)	3.46
	In-plane Poisson's ratio	υ 12	0.262
	Out-of-plane Poisson's ratio	υ 23	0.264
	Out-of-plane Poisson's ratio	υ 13	0.350
	Density	ρ(kg/m 3 )	2000

Table 2 :

 2 Strength properties of the E-glass/epoxy lamina

  table, the present formulation predicts failure criteria results that are in good agreement with results obtained by Ansys program.

	t (ms) Lam.Nu	Failure index	
			Present Formulation Ansys
	2	1	0.003	0.0025
		2	0.213	0.223
		3	0.2691	0.268
		4	0.213	0.220
	3.5	1	0.071	0.075
		2	0.494	0.488
		3	0.040	0.042
		4	0.508	0.521
	4.5	1	0.117	0.113
		2	0.7139	0.752
		3	1.281	1.278
		4	1.016	1.015
	5	1	0.160	0.163
		2	0.781	0.790
		3	1.584	1.581
		4	1.115	1.113

Table 3 :

 3 Tsai Wu index failure.