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Abstract
This paper derives finite sample results to assess the consistency of Generalized Pareto regression

trees introduced by Farkas et al. [2021] as tools to perform extreme value regression for heavy-tailed
distributions. This procedure allows the constitution of classes of observations with similar tail behaviors
depending on the value of the covariates, based on a recursive partition of the sample and simple model
selection rules. The results we provide are obtained from concentration inequalities, and are valid for a
finite sample size. A misspecification bias that arises from the use of a “Peaks over Threshold” approach
is also taken into account. Moreover, the derived properties legitimate the pruning strategies, that is the
model selection rules, used to select a proper tree that achieves a compromise between simplicity and
goodness-of-fit. The methodology is illustrated through a simulation study, and a real data application
in insurance for natural disasters.
Key words: Extreme value theory; Regression trees; Concentration Inequalities; Generalized Pareto
Distribution.

1 Introduction
Extreme value theory (EVT) is the branch of statistics which has been developed and broadly used to
handle extreme events, such as extreme floods, heat wave episodes or extreme financial losses [Katz et al.,
2002, Embrechts et al., 2013]. One of the key results behind the success of this approach was proved
by Balkema and de Haan [1974], who established the ability of the Generalized Pareto (GP) family to
approximate the tail of a distribution. This property allows the statistician to find information from
the largest observations of a random sample to extrapolate the tail. This yields the so-called Peaks over
Threshold (PoT) method introduced by Smith [1984] which consists in fitting a GP distribution to the
excesses above some (high) suitably chosen threshold. In a regression framework, the parameters of this
GP distribution depend on covariates reflecting the fact that different values of these covariates may result
in a different tail behavior of the response variable [see e.g. Davison and Smith, 1990, Smith, 1989]. In
this paper, we study the use of regression trees to perform GP regression on the excesses for heavy-tailed
distributions. This ensemble method, introduced by Breiman et al. [1984], determines clusters of similar
tail behaviors depending on the value of the covariates, based on a recursive partition of the sample and
simple model selection rules. In the present work, we provide theoretical results and empirical evidence
on the consistency of such a procedure and of these selection rules. The result we provide are based
on concentration inequalities, in order to hold for finite sample sizes. The main difficulty stands in the
misspecification of the model and on handling the fact that the distributions are heavy tailed.

Tail regression is a challenging task. Several papers have been interested in extreme quantile regres-
sion, Chernozhukov [2005] and, Wang et al. [2012] derive extreme quantile estimators assuming a linear
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form for the conditional quantile. Gardes and Stupfler [2019] and Velthoen et al. [2019] use conditional
intermediate-level quantiles to extrapolate above the threshold and deduce estimators for extreme con-
ditional quantiles. Another approach is to model the parameters of the GP distribution as functions of
the covariates e.g. as local polynomials [Beirlant and Goegebeur, 2004] or as generalized additive models
[Chavez-Demoulin et al., 2015, Youngman, 2019]. More and more approaches in extreme value regression
use machine learning methods. Carreau and Vrac [2011] present a new class of stochastic downscaling
models, the conditional mixture models (CMM) which builds on a neural network. CMM are mixture
models whose parameters are functions of predictor variables. Rietsch et al. [2013] address the issue
of the optimization of the spatial design of a network of existing weather stations by combining EVT
with neural networks. Very recently, Velthoen et al. [2021] proposed a gradient boosting procedure to
estimate conditional GP distribution. Several works [Richards and Huser, 2022, Pasche and Engelke,
2022, Allouche et al., 2022] have proposed methodologies based on neural networks for extreme quantile
regression. Finally, Gnecco et al. [2022] have developed a method for extreme quantile regression using
random forests. Their extremal random forest estimates the parameter of a GP distribution condition-
ally on the predictor vector using local likelihood maximization. Finally, two works consider piece-wise
stationary marginal and dependence model to estimate the meteorological and oceanographic variables
[Ross et al., 2018, Barlow et al., 2023].

Regression trees, introduced by Breiman et al. [1984] along with the CART algorithm (for Classifica-
tion And Regression Trees), are flexible tools to perform a regression and clustering task simultaneously,
with the ability to deal with discrete and smooth covariates simultaneously. They have been used in
various fields, including industry [González et al., 2015], geology [see e.g. Rodriguez-Galiano et al., 2015],
ecology [see e.g. De’ath and Fabricius, 2000], claim reserving in insurance [Lopez et al., 2016]. Through
the iterative splitting algorithm used in CART, nonlinearities are introduced in the way the distribution
is modeled, while furnishing an intelligible interpretation of the final classification of response variables.
The splitting criterion—used to iteratively separate observations into clusters with similar behaviors—
depends on the type of problems one is considering. While the standard CART algorithm relies on
mean-squared criterion to perform mean-regression, alternative loss functions have been considered as
in [Chaudhuri and Loh, 2002] for quantile regression, or in [Su et al., 2004] who used a log-likelihood
based loss. Loh [2011, 2014] provide detailed descriptions of regression trees procedures and a review
of their variants. In this paper, building on the result of Balkema and de Haan [1974] , we use a GP
log-likelihood loss, as in [Farkas et al., 2021], to perform extreme value regression.

The rest of the paper is organized as follows. In Section 2, we introduce notations and describe the
GP regression tree algorithm. Section 3 lists the main results of this paper, that is deviation bounds
for the regression tree estimator for finite sample size, and consistency of the “pruning” (that is model
selection) strategy. Empirical results are gathered in Section 4, which provides a simulation study, and
a real data analysis in natural disaster insurance. Detailed proofs of the technical results are shown in
the Appendix.

2 Regression trees for extreme value analysis
This section describes the estimation method (GP regression trees) that we consider in this paper, and
which has already been introduced by Farkas et al. [2021]. Some classical results in EVT are given in
Section 2.1 to motivate the GP approximation. Regression trees adapted to this context are described
in Section 2.3.

2.1 Extreme value theory and regression
Let us consider independent and identically distributed observations Y1, Y2, . . . with an unknown survival
function F (that is F (y) = P (Y1 > y)). A natural way to define extreme events is to consider the values
of Yi which have exceeded some high threshold u. The excesses above u are then defined as the variables
Yi−u given that Yi > u. The asymptotic behavior of extreme events is characterized by the distribution
of the excesses which is given by

Fu(z) = P [Y1 − u > z | Y1 > u] =
F (u+ z)

F (u)
, z > 0 .

2



Pickands [1975] showed that, if F satisfies the following property

lim
t→∞

F (ty)

F (y)
= y−1/γ0 , ∀y > 0, (1)

with γ0 > 0, then
lim
u→∞

sup
z>0
|Fu(z)−H(z;σ0, γ0)| = 0 (2)

for some σ0 > 0 and H(·;σ0, γ0) necessarily belongs to the Generalized Pareto (GP) distributions family
which distribution function is of the form

H(z;σ0, γ0) =

(
1 + γ0

z

σ0

)−1/γ0

, z > 0,

where σ0 > 0 is a scale parameter and γ0 > 0 is a shape parameter, which reflects the heaviness of the
tail distribution. Especially, if γ0 ∈ (0, 1), the expectation of Y1 is finite whereas if γ0 ≥ 1 the expectation
of Y1 is infinite. More details on these results can be found in e.g. [Coles, 2001, Beirlant et al., 2004].

Note that in full generality, the shape parameter γ0 ∈ R. However, the applications we have in mind,
such as in Section 4, concern natural catastrophes which fall into the domain of heavy-tailed distributions,
that is distributions for which γ0 > 0. We therefore choose here to focus on the case γ0 > 0. Besides, in
this paper, we derive non-asymptotic results on the consistency of a procedure on the GP log-likelihood
(see Section 3). The derivation of such results requires some smoothness on the GP log-likelihood, which
is satisfied for γ0 > 0, but not for all γ0 ∈ R.

The so-called Peaks over Threshold (PoT) method is widely used [see Davison and Smith, 1990, Coles,
2001]. It consists in choosing a high threshold u and fitting a GP distribution on the excesses above
that threshold u. The estimation of the parameters σ0 and γ0 may be done by maximizing the GP
likelihood. The choice of the threshold u can be understood as a compromise between bias and variance:
the smaller the threshold, the less valid the asymptotic approximation, leading to bias; on the other hand,
a too high threshold will generate few excesses to fit the model, leading to high variance. In practice,
threshold selection is a challenging task. The existing methods for the choice of the threshold u relies on
graphical diagnostics or on computational approaches based on supplementary conditions (that depend
on unknown parameters) on the underlying distribution function F [see Scarrott and MacDonald, 2012]
. However, it should be mention that some recent works model GP distribution upper tail (with γ0 > 0)
and the remaining of the full distribution in one step, which allows one to overcome the challenging issue
of threshold selection [Tencaliec et al., 2020, Huang et al., 2019].

In the present paper, we consider a regression framework, that is, our goal is to estimate the impact
of some random covariates X on the tail of the distribution of a response variable Y. The previous
convergence result (2) holds, but for quantities σ0, γ0 and u that may depend on X. More precisely, this
means that, if we assume that γ0(x) > 0 for all x (which is the assumption that we will make throughout
this paper), then (1) becomes

lim
s→∞

F (sy | x)

F (y | x)
= y−1/γ0(x), ∀y > 0, (3)

where F (y | x) = P(Y ≥ y | X = x) [see Beirlant et al., 2004, and references therein], and (2) becomes

lim
u(x)→∞

sup
z>0
|Fu(x)(z | x)−H(z;σ0u(x)(x), γ0(x))| = 0. (4)

where Fu(x)(z | x) = P [Y − u(x) > z | Y > u(x),X = x].
Therefore, in this regression framework, the PoT approach consists now in the estimation of the

function θ0(x) = (σ0(x), γ0(x))t (where at denotes the transpose of a vector a).

2.2 Framework
We now suppose that we have observed (Yi,Xi)1≤i≤n a n-sample of (Y,X), where X =

(
X(1), . . . , X(d)

)
belongs to a compact set X ⊂ Rd and Y ∈ R. In the approach described thereafter, each covariate can
be either discrete or smooth, and it is not necessary that they are all of the same nature. Recall that the
PoT approach consists in considering observations such that Yi ≥ u(Xi).
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In this paper, we will restrain ourselves to the case where the function u(x) = u. To allow an adaptive
choice of this parameter, our results hold uniformly for u ∈ [umin(n), umax(n)] (see Section 3), with
umin(n) and umax(n) such that

1. umin(n) is defined as the 1− kn/n quantile of F , that is

P(Y ≥ umin(n)) =
kn
n
,

where kn be an intermediate sequence, that is kn →∞ and kn/n→ 0, as n→∞,

2. umax(n) is defined such that

P(Y ≥ umax(n)) =
u0kn
n

,

for some constant u0 ≤ 1.
Note that umin(n) and umax(n) are functions of n.

Here, kn denote the average number (up to some constant) of observations on which the model is
fitted. It is hence related to the rate of convergence of the procedure.

Remark 1. Our results easily extend to the case where u(x) =
∑m
j=1 uj1x∈Xj , where (Xj)1≤j≤m are

subsets of the space of covariates. Another possible extension would be to assume that u(x) = f(β,x) for
some parameter β and f a known function. Nevertheless, a choice of such a particular threshold function
seems hard to justify. Hence, we restrain ourselves to the simplest case.

In the next section, we introduce a regression tree approach adapted to both smooth and discrete
covariates, and relying on few assumptions (since the estimated regression function θ0 does not need to
be smooth).

2.3 GPD regression trees
Regression trees are a convenient tool to capture heterogeneous behaviors in the data [see Breiman et al.,
1984]. These models aim at constituting classes of observations which have a relatively similar behavior
in terms of the response variable Y . These classes are defined by “rules”, which affect an observation
to one of these classes according to the values of its covariates X. These rules are obtained from the
data through the CART (Classification And Regression Tree) algorithm, and the non-linearity of the
procedure allows for an adaptation to the estimation of large classes of regression functions.

Fitting regression trees relies on a so-called “growing phase”, described in our context in Section 2.3.1,
which corresponds to the determination of these splitting rules, and explains how an estimator of the
regression function θ0 can be deduced from such a tree. The “pruning step”, which can be understood as
a model selection procedure, is described in Section 2.3.2.

2.3.1 Growing step: construction of the maximal tree

The ultimate goal of the CART algorithm is to optimize some objective function θ∗(x) (also referred to
as splitting criterion). This function θ∗(x) can be seen as the minimizer of a certain risk function over a
class of target functions, that is

θ∗(x) = arg min
θ∈Θ

E[φ(Y,θ) | X = x],

where Θ ⊂ Rd represents the parameter space and φ a loss function whose choice depends on the quantity
to be estimated. For instance, if φ is the quadratic (absolute) loss, then θ∗ corresponds to the conditional
mean (median) of Y given X.

The procedure of the CART algorithm consists in determining iteratively a set of “rules” x =
(x(1), . . . , x(d)) → R`(x) to split the data into two more homogeneous classes by finding at each step
an appropriate simple rule (that is a condition on the value of some covariate). A set of rules (R`)` is
a set of maps such that, for all x ∈ X ⊂ Rd, R`(x) = 1 or 0 depending on whether some conditions
are satisfied by x, with R`1(x)R`2(x) = 0 for `1 6= `2 and

∑
`R`(x) = 1. In case of regression trees,

these partitioning rules have a particular structure, since they can be written, for quantitative covariates
(the case of x containing qualitative variables is described in Remark 2 below), as R`(x) = 1x1≤x<x2 for
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some x1 ∈ X and x2 ∈ X , with comparison symbols to be understood as component-wise comparisons.
In other terms, if d = 1, rules can be identified as partitioning segments, if d = 2 they are rectangles
(hyper-rectangles in the general case).

The determination of these rules from one step to another can be represented as a binary tree, since
each rule R` at step k generates two rules R`1 and R`2 (with R`1(x) +R`2(x) = 0 if R`(x) = 0) at step
k+ 1. The list of rules (R`) are identified with the leaves of the tree at step k, and the number of leaves
of the tree is increasing from step k to step k+ 1. The algorithm stops when each leaf contains only one
observation or when the observations in the same leaf have the same characteristics. The stopping rule
can also be slightly modified to ensure that there is a minimal number of points of the original data in
each leaf of the tree at each step.

From a given set of K rules R = (R`)`=1,...,K , let T` = {x : R`(x) = 1}, the `–th leaf of the
corresponding tree. The estimator θ̂K(x) associated with the set of leaves (T`)`=1,...,K is obtained as

θ̂K(x) =

K∑
`=1

θ̂K(R`)R`(x) =

K∑
`=1

θ̂K` 1x∈T` .

The tree is obtained when the previous algorithm stops is referred to as the maximal tree and denoted
T̂max with the set of leaves (T`)`=1,...,Kmax , where Kmax denotes its number of leaves. It corresponds to
a trivial estimator of the objective function θ∗(x) since for each leaf, either the number of observations
is equal to one, or all observations in this leaf share the same characteristics x. The tree T̂K is thus
identified by its leaves (T`)`=1,...,K and the list of parameter values θ̂K` associated with each leaf T`.

In our case, φ will be chosen as the negative GP log-likelihood, that is

φ(z,θ) = log(σ) +

(
1

γ
+ 1

)
log
(

1 +
γz

σ

)
, z > 0

where θ = (σ, γ)t ∈ Θ. Thus, this objective function θ∗(x) is given by

θ∗(x) = arg min
θ∈Θ

E[φ(Y − u,θ)1Y >u | X = x],

and, the estimator θ̂K(x) associated with the set of leaves (T`)`=1,...,K corresponds to

θ̂K(x) =

K∑
`=1

θ̂K` 1x∈T` =

K∑
`=1

(
σ̂K`
γ̂K`

)
1x∈T` .

Note that, in this case, the CART algorithm is applying only to the observations Yi such that Yi > u,
and that all the quantities defined may depend on u. The algorithm can be described as follows:

Step 1: R1(Xi) = 1 for all i = 1, . . . , n (corresponds to the root of the tree), and let n1 = 1 the
number of rules at Step 1.

Step k+1: Let nk be the number of rules at Step k and let (R1, ...Rnk ) denote the rules obtained at
step k. For ` = 1, . . . , nk,

• if all observations i such that R`(Xi) = 1 have the same characteristics, then keep rule ` as it is no
longer possible to split the data;

• else, rule R` is replaced by two new rules R`1 and R`2 determined in the following way: for each
component X(j) of X = (X(1), . . . , X(d)), define the best threshold x(j)

`? to split the data, such that

x
(j)
`? = arg min

x(j)

{
n∑
i=1

φ(Yi, θ̂j−(x(j), R`))1Yi>u1X(j)
i ≤x

(j)R`(Xi)

+

n∑
i=1

φ(Yi, θ̂j+(x(j), R`))1Yi>u1X(j)
i >x(j)

R`(Xi)

}
,

where θ̂j−(x(j), R`) = arg minθ∈Θ

∑n
i=1 φ(Yi,θ)1Yi>u1X(j)

i ≤x
(j)R`(Xi),

θ̂j+(x(j), R`) = arg minθ∈Θ

∑n
i=1 φ(Yi,θ)1Yi>u1X(j)

i >x(j)
R`(Xi).
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Then, select the best splitting component index :

j? = arg min
j

{
n∑
i=1

φ(Yi, θ̂j−(x
(j)
`? , R`))1Yi>u1X(j)

i ≤x
(j)
`?

R`(Xi)

+

n∑
i=1

φ(Yi, θ̂j+(x
(j)
`? , R`))1Yi>u1X(j)

i >x
(j)
`?

R`(Xi)

}
Define the two new rules: R`1(x) = R`(x)1

x(j?)≤x(j?)
`?

, and R`2(x) = R`(x)1
x(j?)>x

(j?)
`?

.

• Let nk+1 = nk + 2 denote the new number of rules.

Stopping rule: Stop if nk+1 = nk.

Remark 2. In this version of the CART algorithm, all covariates are smooth or {0, 1}−valued. For
qualitative variables with more than two modalities, they must be transformed into binary variables, or
the algorithm must be slightly modified so that the splitting step of each R` should be done by finding
the best partition into two groups on the values of the modalities that minimizes the loss function. This
can be done by ordering the modalities with respect to the average value—or the median value—of the
response for observations associated with this modality.

The procedure of the growing phase is summarized in Algorithm 1.

Algorithm 1 Growing phase
Input: Observations (Yi,Xi)i=1,...,n such that Yi > u
n1 ← 1, R1(Xi)← 1 ∀i = 1, . . . , n . Root of the tree
for ` = 1, . . . , nk do

if All observations i such that R`(Xi) = 1 have the same characteristics then
R` ← R` . Do not change R`

else
for j = 1, . . . , d do

for x(j) ∈ R do . via a grid search
θj−(x

(j), R`)← argminθ∈Θ
∑n

i=1 φ(Yi,θ)1Yi>u1X
(j)
i ≤x(j)R`(Xi)

θj+(x
(j), R`)← argminθ∈Θ

∑n
i=1 φ(Yi,θ)1Yi>u1X

(j)
i >x(j)R`(Xi)

x
(j)
`? ← argminx(j){

∑n
i=1 φ(Yi,θj−(x

(j), R`))1Yi>u1X
(j)
i ≤x(j)R`(Xi)

+
∑n

i=1 φ(Yi,θj+(x
(j), R`))1Yi>u1X

(j)
i >x(j)R`(Xi)}

end for
j? ← argminj{

∑n
i=1 φ(Yi,θj−(x

(j)
`? , R`))1Yi>u1X

(j)
i ≤x

(j)
`?

R`(Xi)

+
∑n

i=1 φ(Yi,θj+(x
(j)
`? , R`))1Yi>u1X

(j)
i >x

(j)
`?

R`(Xi)}
end for
R`1(x)← R`(x)1x(j?)≤x(j?)

`?

R`2(x)← R`(x)1x(j?)>x
(j?)
`?

nk+1 ← nk + 2
end if

end for
Output: Kmax, (R`)`=1,...,Kmax

, (θ̂`)`=1,...,Kmax

2.3.2 Selection of a subtree: pruning step

The pruning step, presented in the next section, consists in extracting from the maximal tree T̂max a
subtree, that is a tree with the same root as T̂max and all of its nodes in T̂max, that achieves a compromise
between simplicity and goodness-of-fit.
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For the pruning step, a standard way to proceed is to use a penalized criterion to select the appropriate
subtree of T̂max [see Breiman et al., 1984, Gey and Nedelec, 2005]. To determine this subtree, it is not
necessary to compute all the subtrees of T̂max. It is sufficient to determine, among all the subtrees with
K leaves for K ≤ Kmax, the subtree T̂K that minimizes the following criterion

1

kn

K∑
`=1

n∑
i=1

φ(Yi − u, θ̂K(Xi))1Yi>u1Xi∈T` + λK, (5)

where λ > 0 denotes a penalisation constant, that can be chosen using cross-validation [see e.g. Allen,
1974, Stone, 1974]. Recall that kn is the average number of observations such that Yi > u, that is the
number of observations on which the CART procedure is performed. Then, it only remains to determine
the final tree among the obtained list of Kmax admissible subtrees. The trees T̂K , K = 1, . . . ,Kmax, are
easy to determine, since T̂K is obtained by removing one leaf from the tree T̂K+1 [see Breiman et al.,
1984, p.284–290].

The number of leaves of the selected tree is thus obtained as the minimizer of the penalised criterion
(5), that is

K̂ = min

{
arg min

K=1,...,Kmax

{
1

kn

K∑
`=1

n∑
i=1

φ(Yi − u, θ̂K(Xi))1Yi>u1Xi∈T` + λK

}}
,

and the selected tree is denoted by T̂K = T̂K̂ .

3 Main results
In this section, we show that the GP regression tree procedure defined in Section 2.3 is consistent.
Notations and assumptions used throughout this section are listed in Section 3.1. We then state our first
main results on the consistency of a fixed tree with K leaves, by separating the stochastic part of the
error (Section 3.2) from the misspecification part (Section 3.3) caused by the GP approximation. The
consistency of the pruning methodology is studied in Section 3.4.

3.1 Notations and assumptions
In order to derive our consistency results, we need the following assumptions.

Assumption 1. 1. kn = O(na1), with a1 > 0

2. The number of leaves Kmax of the maximal tree T̂max is such that Kmax ≤ κkn with 0 < κ ≤ 1

3. The parameter space Θ is compact, that is

Θ = [σmin, σn]× [γmin, γmax],

where γmin, γmax, σmin > 0 and σn = O(na2) with a2 > 0.

Consider a threshold u ∈ [umin, umax] (defined in Section 2.2) and a tree T̂K , recall that the trees and
the estimators all depend on u. We denote θ̂K` =

(
σ̂K` , γ̂

K
`

)t the estimated parameter in each leaf T`,
that is, for ` = 1, . . . ,K

θ̂K` = arg min
θ∈Θ

{
1

kn

n∑
i=1

φ(Yi − u,θ)1Yi>u1Xi∈T`

}
.

For each ` = 1, . . . ,K, this estimator is expected to be close to θ∗K` =
(
σ∗K` , γ∗K`

)t defined by

θ∗K` = arg min
θ∈Θ

E [φ(Y − u,θ)1Y >u1X∈T` ] . (6)

However, this quantity is not exactly our target: ideally, we wish to estimate, for ` = 1, . . . ,K,

θK0,` = (σK0,`, γ
K
0,`),
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such that
lim
t→∞

sup
z>0
|F t(z | T`)−H(z;σK0,`(t), γ

K
0,`)| = 0,

where F t(z | T`) = P(Y − t ≥ z | X ∈ T`, Y ≥ t).
Hence, T̂K denotes the tree with leaves (T`)`=1,...,K and with parameters θ̂K(u) = (θ̂K` )`=1,...,K .

Similarly, we denote by T ∗K (resp. T0,K) the tree with the same leaves as T̂K but with parameters
θ∗K = (θ∗K` )`=1,...,K (resp. θK0 = (θK0,`)`=1,...,K).

For any sequence of parameters θK = (θK` )`=1,...,K of a tree with K leaves (T`)`=1,...,K , we denote
θK(x) the regression function defined as the following step-wise function

θK(x) =

K∑
`=1

θK` 1x∈T` .

In the next section, we will also need some regularity assumptions on the negative log-likelihood
y → φ(y − u,θ)1y>u.

Assumption 2. For θ1,θ2,θ3,θ4 ∈ Θ, let

H`
θ1,θ2,θ3,θ4

(y − u) =

(
∂2
σφ(y − u,θ1) ∂σ∂γφ(y − u,θ2)

∂σ∂γφ(y − u,θ3) ∂2
γφ(y − u,θ4)

)
1y≥u.

Assume that there exists a constant C1 > 0 such that

inf
θ1,θ2,θ3,θ4∈Θ

a,b∈R

inf
`=1,...,K

umin≤u≤umax

∣∣∣∣E [H`
θ1,θ2,θ3,θ4

(Y − u)

(
a
b

)
| X ∈ T`

]∣∣∣∣ ≥ C1‖(a, b)‖∞,

where ‖(a, b)t‖∞ = max(|a|, |b|).
Remark 3. The condition on the infimum can be relaxed: Assumption 2 comes naturally in using a
Taylor expansion. Hence, the infimum with respect of θ1, . . . ,θ4 can be restricted to θ2 to θ3 belonging
to a small neighborhood of θ1 (and not to the whole set θ).

We will first focus on the difference T̂K and T ∗K in Section 3.2, which is the stochastic part of the
error. Section 3.3 concerns the difference between T ∗K and T0,K (and ultimately the difference between
the regression functions θ̂∗(x) and θ0(x)) that can be understood as a misspecification term, caused by
the fact that the excesses above the threshold are not exactly GP distributed. Finally, the consistency
of the pruning step is shown in Section 3.4.

3.2 Deviation bounds for our estimator
In this section, we study the consistency of a fitted tree T̂K with K leaves (T`)`=1,...,K , a subtree of the
maximal tree T̂max. For this first result, K is fixed. Selection results for K are provided in Theorem 3
in Section 3.4. The leaves (T`)`=1,...,K of T̂K are supposed to be fixed sets, as it is classically assumed
to derive consistency of regression trees, [see e.g. Chaudhuri, 2000, Chaudhuri and Loh, 2002]. Recall
that the tree T̂K is identified by its leaves (T`)`=1,...,K and the list of parameter values θ̂K` associated
with each leaf T`. Considering a leaf T`, θ̂K` should ideally be close to its limit value θ∗K` , as n tends to
∞. Hence, we introduce the “oracle" tree T̂ ∗K which is defined by the same subdivision (T`)`=1,...,K as
T̂K but differs via the value of the parameters in each leaf (which is taken as θ∗K` for leaf `). We denote
θ∗K(x) the regression function associated with T̂ ∗K .

To compare T̂K and T ∗K , the first step is to define a distance between trees. Let us define for two
trees T and T ′ associated with the regression functions θ(x) = (σ(x), γ(x))t and θ′(x) = (σ′(x), γ′(x))t

respectively,

‖T − T ′‖2 =

(∫
‖θ(x)− θ′(x)‖2∞dPX(x)

)1/2

,

where PX denotes the distribution of the covariates X and ‖θ(x)−θ′(x)‖∞ = max (|σ(x)− σ′(x)|, |γ(x)− γ′(x)|).
The main result of this section is a deviation bound for ‖T̂K − T ∗K‖2, which is Theorem 1 below.
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Theorem 1. Under Assumptions 1 and 2, there exists ρ0 > 0 such that for β ≥ 10/(ρ0a1) and t ≥
c1K(log kn)k−1

n , with c1 > 0,

P

(
sup

umin≤u≤umax

‖T̂K − T ∗K‖22 ≥ t

)

≤ 2

(
exp

(
− C1knt
Kβ2(log kn)2

)
+ exp

(
− C2knt1/2

K1/2β log kn

))
+
C3K

k
5/2
n t3/2

, (7)

where C1, C2 and C3 are positive constants.
Moreover,

E

[
sup

umin≤u≤umax

‖T̂K − T ∗K‖22

]
≤ C4

Kβ2(log kn)2

kn
. (8)

The proof of Theorem 1 is postponed to the appendix section (Section A.3). The exponential terms
on the right-hand side of (7) come from concentration inequalities proved by Einmahl et al. [2005], while
the polynomially decreasing term is related to the fact that the log-likelihood is an unbounded quantity,
but that can still controlled when considering its expectation.

As a by-product, we obtain (8) (by integration of the bound of (7)). From (8), one can see that

the L2−norm of the stochastic part of the error, E
[
supumin≤u≤umax

‖T̂K − T ∗K‖22
]1/2

, is proportional to

K1/2, and, as expected, increases with the complexity of the tree. On the other hand, the error decreases
almost at rate k1/2

n (up to some logarithmic factor), which is the convergence rate of standard estimators
used to estimate the parameters of a GP distribution in absence of covariates.

Let us note that we do not explicitly take into account the dimension d of the covariate X in the result
of Theorem 1, in order to simplify the notations. However, it is possible to retrieve the contribution of
the dimension through the results contained in the Appendix: it appears inside the covering numbers
obtained in Lemma 10 and then can be tracked through all the proofs below. All the constants provided
in the results are increasing functions of d. From an asymptotic point of view, they could modify the
rate of consistency if d were allowed to go to infinity with n. This is not a situation when regression trees
are traditionally used, since a too high dimension for d would lead to a too important computation time.

3.3 Misspecification bias
For X = x, the ultimate goal is to estimate the parameter set θ0(x) = (σ0(x), γ0(x))t, introduced
in (2), by maximization of the GP likelihood, and from the fact that the true function θ0(x) is not
necessarily piecewise constant as θ∗(x). The difference between θ0(x) and θ∗(x) can be understood as a
misspecification term due to the fact that the observations above the threshold are not exactly distributed
according to a GP distribution. This bias term can be controlled under second order conditions which
are standard in Extreme Value Analysis [see e.g. Beirlant et al., 2004].

Indeed, recall that assuming that the underlying distribution F (· | x) satisfies Condition (3) guar-
antees that asymptotically the associate excesses above the threshold u are GP distributed. For finite
samples, the excesses are thus not exactly GP distributed which introduces some bias term. In order
to control this bias term, a second-order condition is needed, that is a condition to control the rate of
convergence in Condition (3). There exist numerous ways to express this second-order condition. Here,
we consider the same condition as Condition C.6 in [Beirlant and Goegebeur, 2004]. First, Condition (3)
can be translated into

F (y | x) = y−1/γ0(x)η(y | x) , ∀y > 0, (9)

where η is a slow-varying function, that is η(ty | x)/η(t | x)→ 1 as t→∞, for all y > 0.

Assumption 3. Assume that for all x, there exist a constant c and a function ψ such that

η(ty | x)/η(t | x) = 1 + cψ(t)

∫ t

1

vρ−1dv + o(ψ(t))

as t→∞ for each y > 0 with ψ(t) > 0 and ψ(t)→ 0 as t→∞ and ρ ≤ 0.
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Let us note that we could also consider the case of c, ψ and ρ depending on x, and then assume
some uniform bound over x of these quantities. We chose this more restrictive formulation to simplify
the notations.

The next result guarantees that the bias term tends to 0 as u→∞.
Proposition 2. Under Assumptions 2 and 3, there exist a constant c and a function ψ such that
ψ(u) > 0, ψ(u)→ 0 as u→∞, and such that, for X = x,

‖θ0(x)− θ∗(x)‖∞ ≤ C2
kn
n

(1 + cγmaxψ(u) + o(ψ(u))) ,

where C2 is a constant depending on u, γmin and γmax.

3.4 Consistency of the pruning step
The previous results cover the case of a tree with a fixed number of leaves K. In practice, the question
is to select the proper subtree of T̂max, the maximal tree obtained once the previous step of the CART
procedure has stopped, with some “optimal” number of leaves, which is the objective of the pruning step
described in Section 2.3.2.

As seen in Theorem 1 Equation (8), the stochastic part of the error put to the square increases
proportionally to K. This is closely related to the natural inflation of the log-likelihood (which is locally
quadratic) when the number of leaves increases, justifying a penalty proportional to K, as in [Breiman
et al., 1984, Gey and Nedelec, 2005]. The aim of Theorem 3 is to corroborate this choice.

Let K∗ denote the optimal number of leaves, that is

K∗ = min

{
arg min

K=1,...,Kmax

E
[
φ(Y − u,θ∗K(X))1Y >u

]}
.

In words, T ∗ = T ∗K∗ is the subtree of T ∗max that achieves the closest proximity to the objective function
x→ θ∗(x) in the sense that it maximizes the expectation of the (pseudo)-log-likelihood.

Second of all, as explained in Section 2.3.2, the selected number of leaves is defined by

K̂ = arg min
K=1,...,Kmax

{
1

kn

K∑
`=1

n∑
i=1

φ(Yi − u, θ̂K(Xi))1Yi>u1Xi∈T` + λK

}
,

and T̂ = TK̂ the corresponding selected tree.
The following Theorem 3 shows that the pruning methodology selects a tree T̂ which approximately

achieves the same rate of convergence as T̂K∗ , even if K∗ is unknown, provided that the penalty constant
λ belongs to some reasonable interval.

In Theorem 3, ∆L(T ∗, T ∗K) denotes the expectation of the difference of the likelihoods associated with
the trees T ∗ and T ∗K (for a formal definition see Section A.5).
Theorem 3. Let D = infu infK<K∗ ∆L(T ∗, T ∗K) and suppose that there exists a constant c2 > 0 such
that the penalization constant λ satisfies

c2{log kn}1/2k−1/2
n ≤ λ ≤ D− 2c2{log(kn)}1/2k−1/2

n ,

assuming that the right-hand side is positive. Then, under Assumptions 1 and 2, for all u ∈ [umin, umax],

E
[
‖T̂ − T ∗‖22

]
≤ C5K

∗(log kn)2

kn
,

where C5 is a constant depending on T ∗.
The proof is given in Section A.5.

4 Simulation study and real data analysis
This section is devoted to the illustration of the GP regression procedure on simulated data (Section 4.1)
and on a real dataset (Section 4.2).

For both the simulations and the real data application, we used the R package rpart package for
the GP CART procedure. The function rpart allows to fix the tuning parameter minbucket, which
represents the minimal number of observations allowed in each leaf, that is the stopping rule. This
tuning parameter was set to 50 for the simulations and 20 for the real data applications.
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4.1 Simulations
In this section, we assess the performance of the GP regression procedure on simulated data and compare
it with the competing approach proposed by Chavez-Demoulin et al. [2015]. They propose a semi-
parametric framework to separate the smooth covariates from the discrete ones. Smoothing splines are
used to estimate non-parametrically the smooth part, while the influence of discrete covariates is captured
by a parametric function. This framework relies on a stronger assumption on the shape of the function
θ0.

We now describe the two cases considered in the simulation framework and then discuss the experi-
ments results. In both cases, conditionally on the covariates X = x, the response variable Y is assumed
to be distributed according to a Burr distribution of parameters (σ0(x), γ0(x)) whose survival function
is given by

F (y | x) =
1

1 + (y/σ0(x))1/γ0(x)
,

with σ0(x) > 0 and γ0(x) > 0 for all x. Note that F (· | x) satisfies Property (3).

Step-wise case In this first case, X is assumed to be an one-dimensional variable uniformly dis-
tributed on [0, 1], the function γ0 is taken as

γ0(x) =


0.8 if 0 ≤ x < 0.3

0.4 if 0.3 ≤ x < 0.7

0.2 if 0.7 ≤ x ≤ 1,

and then we consider two settings for the function σ0(x):

1. σ0(x) = 1− γ0(x). This guarantees that the mean of the GP distribution is constant.

2. σ0(x) = (2γ0(x) − 1)/γ0(x), here the median of the GP distribution is constant.

For some x, the function γ(x) exceeds 0.5, which corresponds to the case where the conditional
variance is not defined. This case is important for risk management: if the variable Y corresponds to the
loss associated to a given risk, the mean-variance paradigm traditionally used by risk managers does not
hold.

Smooth case In this second case, X is no longer assumed to be an one-dimensional variable uniformly
distributed on [0, 1], we consider a two-dimensional variable X = (X(1), X(2)). The functions γ0 and σ0

are then taken as

γ0(x) = 1 +
tanh(10(x− 1/4))

4
+

tanh(10(x− 3/4))

4

σ0(x) =

{
1 if x ≤ 0.5

0.5 if x > 0.5

where x = tx(1) + (1− t)x(2) for t ∈ [0, 1].
We simulate 1,000 replicates of samples of size n, with n =1,000; 2,500; 5,000; 10,000 and 25,000

according to the described framework for all the cases. For each sample, we consider the excesses above
the threshold u =0.90-empirical quantile, which corresponds to kn =100; 250; 500; 1,000 and 2,500
excesses above u. For each simulated sample, we compute the regression tree procedure (GP CART),
and the method based on generalized additive model (GAM) proposed by Chavez-Demoulin et al. [2015].
Next, we compare the models by computing the three different empirical root-mean-square errors (RMSE)
obtained by averaging the following quantities over the 1,000 replicates.

1. for the estimation of θ0(x) = (σ0(x), γ0(x))t, that is(∫ {
(σ̂(x)− σ0(x))2 + (γ̂(x)− γ0(x))2} dx

)1/2

Results are shown in Table 1 and the corresponding boxplots in Figures 1, 2, 3.
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Table 1: Empirical RMSE for the estimation of θ(x) for the GP regression tree procedure (GP CART), and
the GAM model for different values of kn for a) the step-wise case with the constant mean (setting 1), b)
the step-wise case with the constant median (setting 2), and c) the smooth case.

kn 100 250 500 1,000 2,500
GP CART 0.8101 0.8058 0.8032 0.8026 0.8021

GAM 0.8054 0.7777 0.7618 0.7541 0.7484

a)

kn 100 250 500 1,000 2,500
GP CART 0.8099 0.8058 0.8032 0.8026 0.8021

GAM 0.8051 0.7777 0.7618 0.7541 0.7484

b)

kn 100 250 500 1,000 2,500
GP CART 1.2029 1.2615 1.2345 1.2081 1.1971

GAM 1.2546 1.2768 1.2736 1.2220 1.2417

c)

2. for the conditional survival function F (Y | x), that is(
1

kn

kn∑
i=1

(
Fu(Zi | xi)−H(Zi; σ̂(xi), γ̂(xi))

)2)1/2

Results are shown in Table 2 and the corresponding boxplots are presented in Section A of the
supplementary material.

3. for the estimation of 0.95-quantile q0.95(x), that is(∫
(q̂0.95(x)− q0.95(x))2dx

)1/2

Results are shown in Table 3 and the corresponding boxplots are presented in Section A of the
supplementary material.

Tables 1, 2 and 3 show that the GAM and the GP CART procedures present similar results. Results
on the RMSE for the estimation of θ0(x) and of 0.95-quantile q0.95(x), the GAM procedure seems to
perform slightly better in the step-wise case and the GP CART in the smooth case while results for
the conditional survival function, the GP CART seems to have a better performance in the step-wise
case and the GAM procedure in the smooth case. The boxplots on the quadratic errors present the
same conclusion. The simulation study shows that the GP CART procedure can be applied in various
situations, is thus very flexible and an easy interpretation of the results.

4.2 Prediction of the cost of flooding events in France
In order to improve the knowledge and the management of natural catastrophes, France Assureurs (FA,
French Federation of Insurance) is interested in the prediction of the cost of such events, especially of the
most severe ones, shortly after their occurrence. These catastrophic events present some heterogeneity
in their intensity depending on their characteristics, such as the affected meteorological region or the
number of individual houses in flood risk area. The prediction of their cost thus becomes a challenging
task. In this section, we illustrate how the GP regression tree procedure can be used to gain further
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Table 2: Empirical RMSE for the conditional survival function for the GP regression tree procedure (GP
CART), and the GAM model for different values of kn for a) the step-wise case with the constant mean
(setting 1), b) the step-wise case with the constant median (setting 2), and c) the smooth case.

kn 100 250 500 1,000 2,500
GP CART 0.5186 0.5180 0.5182 0.5180 0.5182

GAM 0.5191 0.5196 0.5189 0.5192 0.5200

a)

kn 100 250 500 1,000 2,500
GP CART 0.4891 0.4881 0.4883 0.4881 0.4883

GAM 0.5191 0.5196 0.5189 0.5192 0.5200

b)

kn 100 250 500 1,000 2,500
GP CART 0.1179 0.1330 0.1308 0.1288 0.1273

GAM 0.0949 0.1091 0.1149 0.1162 0.1170

c)

Table 3: Empirical square root mean squared errors for the estimation of the 0.95-quantile q0.95(x) for the
GP regression tree procedure (GP CART), and the GAM model for different sample sizes for a) the step-wise
case with the constant mean (setting 1), b) the step-wise case with the constant median (setting 2), and c)
the smooth case.

kn 100 250 500 1,000 2,500
GP CART 0.382 0.382 0.382 0.382 0.382

GAM 0.378 0.374 0.373 0.371 0.371

a)

kn 100 250 500 1,000 2,500
GP CART 0.382 0.382 0.382 0.382 0.382

GAM 0.378 0.374 0.373 0.369 0.369

b)

kn 100 250 500 1,000 2,500
GP CART 1.382 1.414 1.360 1.311 1.285

GAM 1.622 1.526 1.469 1.338 1.261

c)
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Figure 1: Boxplots (in logarithm scale) of the quadratic errors for the estimation of θ for each model in the
step-wise case (setting 1) for a) 100 b) 250 c) 500 d) 1,000 and e) 2,500 excesses.
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Figure 2: Boxplots (in logarithm scale) of the quadratic errors for the estimation of θ for each model in the
step-wise case (setting 2) for a) 100 b) 250 c) 500 d) 1,000 and e) 2,500 excesses.
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Figure 3: Boxplots (in logarithm scale) of the quadratic errors for the estimation of θ for each model in the
smooth case for a) 100 b) 250 c) 500 d) 1,000 and e) 2,500 excesses.
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insight in this heterogeneity. The ability of the procedure to design classes of events that are more
homogeneous (in view of analyzing the tail of their distribution) is an appealing property in view of
operation applications in insurance.

The database we consider was obtained through a partnership with the FA, in particular with one of
its dedicated technical body, the association of French insurance undertaking for natural risk knowledge
and reduction (Mission Risques Naturels, MRN). It consists of all 4,300 flooding events that have been
granted the status of natural catastrophe in France from 1999 to 2021 (let us note that the status "natural
catastrophe" is a French specificity, with some legal consequences when an event receives this label [see
Charpentier et al., 2021, MRN, 2016]). This database is fed by 12 contributors including the major
French insurance companies, allowing this database to cover 70% of French non-life insurance market.
The database gathers information regarding each flooding event (its cost, the meteorological region, the
season, the number of affected hydrological regions, the number of individual houses and the number of
professional business premises in flood-risk area). Note that, since the purpose of this database is the
fast prediction of the cost of a flooding event (as soon as possible after its occurrence), the variables that
are registered correspond to quantities that are available before the event, or soon after it.

The variable of interest, the total cost of a flooding event, is highly volatile. Indeed, it ranges between
0 and 394, 376, 000 euros with an empirical variance equal to 1.77e + 14. Figure 4 shows the average of
the costs of the 10% most onerous flooding events within each meteorological region. This highlights the
heterogeneity of the severity of the most severe events. Furthermore, the top ten most onerous events
represent 43% of the total cost of this database and the top hundred 80%.

Figure 4: Cartography of the cost of flooding events in France from 1999 to 2019. For each meteorological
region, the average of the costs of the 10% more onerous events is shown. The lighter red color suggesting a
small cost while a darker color suggests a large cost.

Now, let us recall that our goal is to understand the heterogeneity of the total cost of the most severe
flooding events, that is of extreme flooding events. As explained in Section 2.1, the definition of extreme
events consists in choosing a threshold u, which should be chosen as a bias-variance trade-off. We chose
a value of u = 100, 000 based practical considerations and validated by sensitivity analyses (shown in the
supplementary material, Section D). This yields 1,100 extreme events, that is for which the cost is larger
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than u.
The GP regression tree was performed on the database corresponding to the flooding events extracted

from the original database for which the total cost is larger than u (=100 000 euros). The variables of
this database and their characteristics are summarized in Table 4. Again, it can be noticed that the cost,
the variable of interest, is highly volatile.

Table 4: List of quantitative and categorical variables in the database and their characteristics. For the
quantitative variables, Table a) shows the minimum, the first quartile, the median, the mean, the third
quartile and the maximum, and for the categorical variables, Table b) the number of observations per
category.

Variable Min 1st Q Median Mean 3rd Q Max
Cost (in euros) 100,093 199,287 477,943 6,066,835 1,941,047 380,487,161
Number of affected hy-
drological regions 1 1 2 4 4 35

Number of individual
houses in flood risk
area

0 5,874 20,692 92,477 71,094 4,097,075

Number of professional
business premises in
flood risk area

0 2,230 8,163 44,830 26,321 2,050,165

a)

Variable Category Number of observations

Meteorological regions

Center 60
North West 85

North 135
North-East 87

East 96
South 209
West 30

South West 121

Seasons

Spring 272
Summer 279
Autumn 187
Winter 85

b)

The tree obtained from GP regression procedure is shown in Figure 5 (the quantile-quantile plots of
the GP fit in each leaf are shown in the supplementary material, Section C). The tree is composed of 6
leaves, with separations according to 3 criteria, the number of individual houses in flood risk area, the
number of professional business premises in flood risk area, and the number of affected hydro-ecoregions.
This seems consistent because the first two covariates represent the exposure to flooding but also the
population density of the affected area, the third covariate captures the perimeter of the event. The
most extreme case corresponds to the far right leaf, with a shape parameter of 0.92, it contains 7% of the
events. It corresponds to an important number of affected individual houses and to a large area. Table 5
presents for each leaf the empirical median and mean of the costs and the theoretical median and mean
of the corresponding GP distribution. Let us recall that for a GP distribution with a scale parameter σ
and a shape parameter γ, the theoretical median is given by σ(2γ − 1)/γ and the theoretical mean by
σ/(1−γ) for γ < 1 and∞ for γ ≥ 1. First of all, for every leaf, the median is much smaller than the mean
suggesting that we are indeed dealing with extreme events. Then, the empirical and theoretical medians
and means are of the same order for each leaf, and it appears that we have a good fit, especially for the
median. To address the uncertainty concerning parameters estimation, we present in Table 6 the 95%
confidence intervals for the shape parameter γ and in Table 7 the 95% confidence for scale parameter σ.
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Figure 5: GP regression tree obtained for flooding events. For each leaf, the value of the shape parameter γ
(first line) and the scale parameter σ at 10−5 (second line) are given. Percentage of observations affected to
each leaf is mentioned.

Leaf Shape parameter Empirical Median Theoretical Median Empirical Mean Theoretical Mean
1 0.54 161,694 157,697 239,923 249,456
2 0.47 226,196 234,764 399,274 410,387
3 0.72 455,663 419,978 1,439,087 1,390,099
4 0.93 950,181 902,387 4,144,876 11,877,446
5 0.34 4,215,647 4,140,879 7,982,445 8,009,145
6 0.92 15,555,487 15,090,137 52,203,995 281,103,859

Table 5: Empirical median and mean, and theoretical median and mean for each leaf (in euros).

Leaf Shape parameter estimate Lower CI upper CI
1 0.54 0.27 0.82
2 0.47 0.21 0.73
3 0.72 0.50 0.95
4 0.93 0.67 1.19
5 0.34 0.03 0.67
6 0.92 0.38 1.46

Table 6: 95% confidence intervals for the shape parameter γ

5 Conclusion
In this paper, we investigated the consistency of Generalized Pareto regression trees, applied to extreme
value regression. The results that we derive are non-asymptotic, and allow to justify the consistency of
the pruning methodology used to select a proper subtree. Let us note that the conditions under which
our results hold are relatively weak, in the sense that they hold even if the tail index γ is arbitrary close
to zero (the special case γ = 0 is excluded) or large. Moreover, no regularity assumptions on the target
parameters is required, due to the flexibility of the regression tree procedure.
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Leaf Scale parameter estimate Lower CI upper CI
1 0.68 0.47 0.90
2 1.64 1.15 2.14
3 3.55 2.66 4.44
4 8.24 6.06 10.42
5 51.54 31.36 71.53
6 154.0 69.51 238.33

Table 7: 95% confidence intervals for the scale parameter σ

Through the simulation study and the real data analysis, we investigated the practical performances
of the methodology. The regression tree approach can be applied in various situations, and still provides
interpretability of the results. On the other hand, regression trees may be unstable, since quite sensitive
to some changes on the data that have been used to fit them. Hence, this work is a first step into the
direction of studying other relied methodologies, like random forests [see for example Breiman et al.,
1984] in this field of extreme value regression.

A Proofs
In this Section, we present in details the proof of the results presented throughout the paper. Concen-
tration inequalities required to obtain the results are presented in Section A.1. These inequalities are
used to obtain deviation bounds in Section A.2, which are the key ingredients of the proof of Theorem
1 (Section A.3), Corollary 8 (Section A.2), and Theorem 3 (Section A.5). Section B shows some results
on covering numbers that are required to control the complexity of some classes of functions considered
in the proofs. Some technical lemmas are gathered in Section C.

A.1 Concentration inequalities
The proofs of the main results are mostly based on concentration inequalities. The following inequality
was proved initially Talagrand [1994], [see also Einmahl et al., 2005].

Proposition 4. Let (Vi)1≤i≤n denote i.i.d. replications of a random vector V, and let (εi)1≤i≤n denote
a vector of i.i.d. Rademacher variables (that is, P(εi = −1) = P(εi = 1) = 1/2) independent from
(Vi)1≤i≤n. Let F be a pointwise measurable class of functions bounded by a finite constant M0. Then, for
all t,

P

(
sup
ϕ∈F

∥∥∥∥∥
n∑
i=1

{ϕ(Vi)− E[ϕ(V)]}

∥∥∥∥∥
∞

> A1

{
E

[
sup
ϕθ∈F

∥∥∥∥∥
n∑
i=1

ϕ(Vi)εi

∥∥∥∥∥
∞

]
+ t

})

≤ 2

{
exp

(
−A2t

2

nvF

)
+ exp

(
−A2t

M0

)}
,

with vF = supϕ∈F Var(‖ϕ(V)‖∞), and where A1 and A2 are universal constants.

The difficulty in using Proposition 4 comes from the need to control the symmetrized quantity
E
[
supϕθ∈F

∥∥∑n
i=1 ϕ(Vi)εi

∥∥] . Proposition 5 is due to Einmahl et al. [2005] and allows this control via
some assumptions on the considered class of functions F.

We first need to introduce some notations regarding covering numbers of a class of functions. More
details can be found for example in [van der Vaart, 1998, Chapter 2.6]. Let us consider a class of functions
F with envelope Φ (which means that for (almost) all v, ϕθ ∈ F, |f(v)| ≤ Φ(v)). Then, for any probability
measure Q, introduce N(ε,F,Q) the minimum number of L2(Q) balls of radius ε to cover the class F.
Then, define

NΦ(ε,F) = sup
Q:Q(Φ2)<∞

N(ε(Q(Φ2)1/2),F,Q).

Proposition 5. Let F be a point-wise measurable class of functions bounded by M0 with envelope Φ such
that, for some constants A3, α ≥ 1, and 0 ≤

√
v ≤M0, we have
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(i) NΦ(ε,F) ≤ A3ε
−α, for 0 < ε < 1,

(ii) supϕ∈F E
[
ϕ(V)2

]
≤ v,

(iii) M0 ≤ 1

4α1/2

√
nv/ log(A4M0/

√
v), with A4 = max(e,A

1/α
3 ).

Then, for some absolute constant A5,

E

[
sup
ϕθ∈F

∥∥∥∥∥
n∑
i=1

ϕ(Vi)εi

∥∥∥∥∥
]
≤ A5

√
αnv log(A4M0/

√
v).

A.2 Deviation results
We first introduce some notations that will be used throughout Sections A.2 to B. In the following, ϕθ

is a function indexed by θ = (σ, γ)t denoting either φ(·,θ), ∂σφ(·,θ), or ∂γφ(·,θ).
We consider in the following the class of functions F defined as

F = {y 7→ ϕθ(y − u)1y≥u1x∈T` , θ ∈ Θ, u ∈ [umin;umax], ` = 1, ...,K} . (10)

By Lemma 11, the functions y 7→ ∂σφ(y − u,θ) and y 7→ ∂γφ(y − u,θ) are uniformly bounded
(eventually up to some multiplication by a constant) by Φ(y) = log(1 + wy), where w = γmax/σmin. On
the other hand, y 7→ φ(y − u,θ) is bounded by log σn + Φ(y) = O(log(kn)) + Φ(y).

Next, for ` = 1, . . . ,K, and θ = (σ, γ)t ∈ Θ, let

L`n(θ, u) =
1

kn

n∑
i=1

φ(Yi − u,θ)1Yi>u1Xi∈T` ,

be the (normalized) negative GP log-likelihood associated with the leaf ` of a tree TK with set of K leaves
(T`)`=1,...,K . Let L`(θ, u) = E[L`n(θ, u)]. The key results behind Theorems 1 and 3 relies on studying
the deviations of the processes, indexed by θ, u and `,

W`
0(θ, u) = L`n(θ, u)− L`(θ, u),

W`
1(θ, u) = ∇θL

`
n(θ, u)−∇θL

`(θ, u).

Let Mn = β log kn ≤ βa1 log(n) with β > 0 and a1 > 0 (with a1 defined in Assumption 1). We
study the deviations of these processes by decomposing W`

i (θ, u), for i = 0, 1, (which is a sum of i.i.d.
observations) into two sums.

• the first one gathers observations smaller than some bound (more precisely, such that Φ(Yi) ≤Mn),
which is considered in Theorem 6. Since these observations are bounded (even if this bound in fact
depends on n and can tend to infinity when n grows), we can apply a concentration inequality such
as the one of Section A.1. Let us stress that supϕθ∈F ‖ϕθ(y)1Φ(y)≤Mn‖∞ ≤Mn;

• in the second one (Theorem 7), we consider the observations larger than this bound, and control
them through the fact that the function Φ has finite exponential moments (see Lemma 11).

Corollary 8, which provides deviation bounds for estimation errors in the leaves of the tree, is then a
direct consequence.

Theorem 6. Let

Z(Mn) = sup
ϕθ∈F

∣∣∣∣∣ 1

kn

n∑
i=1

(
ϕθ(Yi)1Φ(Yi)≤Mn − E

[
ϕθ(Yi)1Φ(Yi)≤Mn

])∣∣∣∣∣ .
If kn = O(na1) with a1 > 0 (Assumption 1), then, for t ≥ c1(log kn)1/2k

−1/2
n ,

P (Z(Mn) ≥ t) ≤ 2

(
exp

(
− C1knt

2

β2(log kn)2

)
+ exp

(
− C2knt

β log kn

))
. (11)
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Proof. From Proposition 4,

P

(
Z(Mn) ≥ A1

{
E

[
sup
ϕθ∈F

1

kn

∣∣∣∣∣
n∑
i=1

ϕθ(Yi)1Φ(Yi)≤Mnεi

∣∣∣∣∣
]

+ t

})
(12)

≤ 2

(
exp

(
−A2k

2
nt

2

nvF

)
+ exp

(
−A2knt

Mn

))
,

with vF = supϕ∈F Var (|ϕ(Y )|). From Lemma 12, vF ≤M2
nknn

−1, which shows that the first exponential
term on the right-hand side of (12) is smaller than

exp

(
−A2knt

2

M2
n

)
. (13)

We can now apply Proposition 5 (combined with Lemma 10) to this class of functions with v = M2
nknn

−1

and M0 = Mn. Hence,

E

[
sup
ϕθ∈F

1

kn

∣∣∣∣∣
n∑
i=1

ϕθ(Yi)1Φ(Yi)≤Mnεi

∣∣∣∣∣
]
≤ A6

kn

√
nvsn = A6

s
1/2
n

k
1/2
n

,

where A′6 > 0 and sn = log(σαnK
4(d+1)(d+2)n/kn) (α > 0 being defined in Lemma 10). From Assumption

1, we see that sn = O(log(kn)) (let us recall that K is necessarily less than n). Whence, if c1 = 2A1A
′
6,

for t ≥ c1 {log (kn)}1/2 k−1/2
n ,

P (Z(Mn) ≥ t) ≤ P

(
Z(Mn) ≥ A1

{
E

[
sup
ϕθ∈F

1

kn

∣∣∣∣∣
n∑
i=1

ϕθ(Yi)1Φ(Yi)≤Mnεi

∣∣∣∣∣
]

+
t

2A1

})
.

Equation (11) follows from (12) and (13) with C1 = A2A
−2
1 /4 and C2 = A2A

−1
1 /2.

Theorem 7. Let

Z(Mn) = sup
ϕθ∈F

∣∣∣∣∣ 1

kn

n∑
i=1

(
f(Yi)1Φ(Yi)>Mn

)
− E

[
ϕθ(Yi)1Φ(Yi)>Mn

]∣∣∣∣∣ .
If kn = O(a1) with a1 > 0 (Assumption 1), then there exists ρ0 > 0 (Lemma 11) such that for βa1 ≥
10/ρ0, and t ≥ c2k

−1/2
n ,

P
(
Z(Mn) ≥ t

)
≤ C3

k
5/2
n t3

. (14)

Proof. Let β′ = βa2. Z(Mn) is upper-bounded by

1

kn

n∑
i=1

{
Φ(Yi)1Φ(Yi)≥Mn1Yi≥umin + E

[
Φ(Y )1Φ(Y )≥Mn1Y≥umin

]}
.

A bound for E1,n = E
[
Φ(Y )1Φ(Y )≥Mn1Y≥umin

]
is obtained from Lemma 13, and nE1,n/kn ≤ e1k

−1/2
n

if β′ ≥ 2/ρ0.
Next, from Markov inequality,

t3P

(
1

kn

n∑
i=1

Φ(Yi)1Φ(Yi)≥Mn1Yi≥umin ≥ t

)
≤ nE3,n

k3
n

+
n(n− 1)E2,nE1,n

k3
n

+
n(n− 1)(n− 2)E3

1,n

k3
n

.

From Lemma 13, we get

nE3,n

k3
n

≤ e3n
−(ρ0β

′/4−1/2)

k
5/2
n

,

n(n− 1)E2,nE1,n

k3
n

≤ e2e1n
−(ρ0β

′/2−3/2)

k
5/2
n

,

n(n− 1)(n− 2)E3
1,n

k3
n

≤ e31n
−(ρ0β

′/4−5/2)

k
5/2
n

.
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Each of these terms is bounded by max(e3, e2e1, e
3
1)k
−5/2
n for β′ ≥ 10/ρ0. Thus, for t ≥ 2e1k

−1/2
n and

β′ ≥ 10/ρ0,

P
(
Zn ≥ t

)
≤ P

(
1

kn

n∑
i=1

Φ(Yi)1Φ(Yi)≥Mn1Yi≥umin ≥
t

2

)
+ P

(
E
[
Φ(Y )1Φ(Y )≥Mn1Y≥umin

]
≥ t

2

)
≤ 8 max(e3, e2c1, e

3
1)

t3k
5/2
n

We now apply these results to deduce deviation bounds on the estimators θ̂` in the leaves of the tree.

Corollary 8. Under the assumptions of Theorems 6 and 7 and Assumption 2, for t ≥ c3(log kn)1/2k
−1/2
n ,

P

 sup
`=1,...,K,

umin≤u≤umax

‖θ̂K` − θ∗K` ‖∞ ≥ t

 ≤ 2

(
exp

(
− C4knt

2

β2(log kn)2

)
+ exp

(
− C5knt

β log kn

))

+
C6

k
5/2
n t3

.

Proof. For 1 ≤ ` ≤ K and umin ≤ u ≤ umax, let θ = (s, γ)t and, for ` = 1, . . . ,K, θ∗K` = (s∗K` (u), γ∗K` (u))t,
and let

∇θL
`(θ, u) = E

[(
∂σφ(Y − u,θ)
∂γφ(Y − u,θ)

)
1Y≥u1X∈T`

]
.

From Taylor series,

∇θL
`(θ, u) = E

[
H`

(σ̃1,γ1),(σ1,γ̃1),(σ̃2,γ2),(σ2,γ̃2)(Y − u)1X∈T`

]
(θ − θ∗K` )t,

for some parameters σ̃j (resp. γ̃j) between σ and σ∗K` (u) (resp. γ and γ∗K` (u)). From Assumption 2, we
get, for all ` = 1, . . . ,K,

n

kn
‖∇θL

`(θ, u)‖∞ ≥ C1‖θ − θ∗K` (u)‖∞.

Hence, for all ` = 1, . . . ,K,

P
(
‖θ̂K` − θ∗K` ‖∞ ≥ t

)
≤ P

(
n

kn
‖∇θL

`(θ̂K , u)‖∞ ≥ C1t

)
.

Since for all ` = 1, . . . ,K, ∇θL
`
n(θ̂K) = 0, W`

1(θ̂K(u), u) = − n
kn
∇θL

`(θ̂K , u). Hence,

P

 sup
`=1,...,K,

umin≤u≤umax

‖θ̂K` − θ∗Kl (u)‖∞ ≥ t

 ≤ P

 sup
`=1,...,K,

umin≤u≤umax

‖W`
1(θ̂K(u), u)‖∞ ≥ C1t

 ,

and the right-hand side is bounded by

P
(
Z(Mn) ≥ C1t

2

)
+ P

(
Z(Mn) ≥ C1t

2

)
.

The result follows from Theorem 6 and 7.
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A.3 Proof of Theorem 1
The proof of the first part of Theorem 1 then consists in gathering the results on the leaves obtained in
Corollary 8. Let umin ≤ u ≤ umax,

‖T̂K − T ∗K‖22 ≤
K∑
`=1

‖θ̂K` − θ∗K` ‖2∞ ≤ K sup
`=1,...,K

‖θ̂K` − θ∗K` ‖2∞.

Hence

P

(
sup

umin≤u≤umax

‖T̂K − T ∗K‖22 ≥ t

)

≤ P

 sup
`=1,...,K,

umin≤u≤umax

‖θ̂K` − θ∗K` ‖∞ ≥ t1/2K−1/2

 .

The results follows from Corollary 8, and from the assumption on K ≤ Kmax = O(k3
n) (Assumption 1).

To prove the second part of Theorem 1, write

E

[
sup

umin≤u≤umax

‖T̂K − T ∗K‖22

]
=

∫ ∞
0

P( sup
umin≤u≤umax

‖T̂K − T ∗K‖22 ≥ t)dt.

Let tn = c1K(log kn)k−1
n , then

∫ ∞
0

P( sup
umin≤u≤umax

‖T̂K − T ∗K‖22 ≥ t)dt

≤ tn +

∫ ∞
tn

P( sup
umin≤u≤umax

‖T̂K − T ∗K‖22 ≥ t)dt.

We now use Theorem 1 to bound the integral on the right-hand side. Since
∫∞

0
exp(−at)dt = 1

a
,∫∞

0
exp(−a1/2t1/2)dt = 2

a
, and

∫∞
1
t−3/2dt = 2, we get

E

[
sup

umin≤u≤umax

‖T̂K − T ∗K‖22

]
≤ tn +

2Kβ2(log kn)2

C1kn
+

4Kβ2(log kn)2

C2
2kn

+
2C3K
k

5/2
n

≤ c1K log kn
kn

+
2Kβ2(log kn)2

C1kn

+
4Kβ2(log kn)2

C2
2kn

+
2C3K
k

5/2
n

≤ C4K(log kn)2

kn
.

A.4 Proof of Proposition 2
For all x,

‖θ∗(x)− θ0(x)‖∞ = ‖
Kmax∑
`=1

(θ∗` − θ0(x)) 1x∈T`‖∞ ≤
Kmax∑
`=1

‖θ∗` − θ0(x)‖∞1x∈T` .

Now, from Taylor series, for ` = 1, . . . ,K, conditionally on X ∈ T`,

∇θL
`(θ0(X), u) = E

[
H`

(σ̃1,γ1),(σ1,γ̃1),(σ̃2,γ2),(σ2,γ̃2)(Y − u) | X ∈ T`
]

(θ0(X)− θ∗` )t,

for some parameters σ̃j (resp. γ̃j) between σ0(X) and σ∗K` (u) (resp. γ0(X) and γ∗K` (u)).
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Thus, under Assumption 2,

‖θ0(X)− θ∗` ‖∞

≤ 1

C1
‖∇θL

`(θ0(X), u)‖∞

≤ 1

C1

kn
n

max (|E [∂σφ(Z,θ0(X)) | X ∈ T`]|, |E [∂γφ(Z,θ0(X)) | X ∈ T`]|) ,

where Z is a random variable distributed according to the distribution Fu defined in Section 2.1 with
σ0(X) = uγ0(X) and with

E [∂σφ(Z,θ0(X)) | X ∈ T`] = − 1

uγ0(X)
+

1

u2γ0(X)

(
1 +

1

γ0(X)

)
E
[

Z

1 + Z/u
| X ∈ T`

]
E [∂γφ(Z,θ0(X)) | X ∈ T`] = − 1

γ0(X)2
E [log(1 + Z/u) | X ∈ T`]

+
1

uγ0(x)

(
1 +

1

γ0(X)

)
E
[

Z

1 + Z/u
| X ∈ T`

]
.

Under Assumption 3, we have

Fu(z) =
(

1 +
z

u

)−1/γ0(X)
{

1 + cψ(u)

∫ 1+z/u

1

vρ−1dv + o(ψ(u))

}
.

E
[

Z

1 + Z/u
| X ∈ T`

]
=

∫ u

0

Fu

(
t

1− t/u

)
dt

=
u

1 + 1/γ0(X)

(
1 +

cψ(u)

1 + 1/γ0(X)− ρ + o(ψ(u))

)
≤ u (1 + cγ0(X)ψ(u) + o(ψ(u)))

and then

E [log(1 + Z/u) | X ∈ T`] =

∫ u

0

P
[
Z ≥ u(et − 1) | X ∈ T`

]
dt

= γ0(X)

(
1 +

cψ(u)

1/γ0(X)− ρ + o(ψ(u))

)
≤ γ0(X) (1 + cγ0(X)ψ(X)(u) + o(ψ(u))) .

Consequently,

|E [∂σφ(Z,θ0(X)) | X ∈ T`]| ≤
1

γmin

(
1 +

1

u

(
1 +

1

γmin

))
(1 + cγ0(X)ψ(u) + o(ψ(u)))

and

|E [∂γφ(Z,θ0(X)) | X ∈ T`]| ≤
1

γmin

(
1 +

1

γmin
+
γmax

γmin

)
(1 + cγ0(X)ψ(u) + o(ψ(u))) .

Hence, conditionally on X ∈ T`,

‖θ0(X)− θ∗` ‖∞ ≤ C2(u)
kn
n

(1 + cγmaxψ(u) + o(ψ(u))) ,

where C2(u) = 1
C1

1
γmin

max
(

1 + 1
u

+ 1
uγmin

, 1 + 1
γmin

+ γmax
γmin

)
.

Finally, for all x,

‖θ∗(x)− θ0(x)‖∞ ≤
Kmax∑
`=1

‖θ∗` − θ0(x)‖∞1x∈T`

≤ C2(u)
kn
n

(1 + cγmaxψ(u) + o(ψ(u)))

Kmax∑
`=1

1x∈T`

≤ C2(u)
kn
n

(1 + cγmaxψ(u) + o(ψ(u))) .
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A.5 Proof of Theorem 3
First, let us introduce some notations that are needed in the proof.

Define the log-likelihood Ln(TK , u) associated with a tree TK with K leaves (T`)`=1,...,K and with
parameters θ(u) =

(
θK` (u)

)
`=1,...,K

Ln(TK , u) =

K∑
`=1

L`n(θK` , u) =
1

kn

K∑
`=1

n∑
i=1

φ(Yi − u,θK` )1Yi>u1Xi∈T` ,

and L(TK , u) = E[Ln(TK , u)]. Finally, for two trees T and T ′, ∆Ln(T, T ′) = Ln(T, u) − Ln(T ′, u) and
similarly, ∆L(T, S) = L(T, u)− L(T ′, u).

The following lemma will be needed to prove Theorem 3.

Lemma 9. Let D = infu infK<K∗ ∆L(T ∗, T ∗K) and u ∈ [umin, umax] fixed. Suppose that there exists a
constant c2 > 0 such that the penalization constant λ satisfies

c2{log kn}1/2k−1/2
n ≤ λ ≤ (D− 2c2{log(kn)}1/2k−1/2

n )k−1
n ,

then, under Assumptions 1 and 2, for K > K∗,

P(K̂ = K) ≤ 2

(
exp

(
−C1knλ

2(K −K∗)2

β2(log kn)2

)
+ exp

(
−C2knλ(K −K∗))

β log kn

))
+

C3

k
5/2
n λ3(K −K∗)3

,

and, for K < K∗,

P(K̂ = K) ≤ 4 exp

(
−C1kn{D− λ(K∗ −K)}2

β2(log kn)2

)
+4 exp

(
−C2kn{D− λ(K∗ −K)}

β log kn

)
+

2C3

k
5/2
n {D− λ(K∗ −K)}3

.

Proof. Let u ∈ [umin, umax] fixed. If K̂ = K, this means that

∆Ln(TK , TK∗) := Ln(TK , u)− Ln(TK∗ , u) > λ(K −K∗).

Decompose

∆Ln(TK , TK0) = {Ln(TK , u)− Ln(T ∗K , u)}+ {Ln(T ∗K , u)− Ln(T ∗, u)}
+{Ln(T ∗, u)− Ln(TK∗ , u)}.

Since Ln(T ∗, u)− Ln(TK∗ , u) < 0,

∆Ln(TK , TK∗) ≤ {Ln(TK , u)− Ln(T ∗K , u)}+ {Ln(T ∗K , u)− Ln(T ∗, u)}.

For K > K∗, T ∗K = T ∗, hence,

P(K̂ = K) ≤ P (∆Ln(TK , T
∗
K) > λ(K −K∗))

≤ P (|∆Ln(TK , T
∗
K)−∆L(TK , T

∗
K)| > λ(K −K∗)) .

For K > K∗, a bound is then obtained from Theorems 6 and 7 if λ(K − K∗) ≥ c1{log(kn)}1/2k−1/2
n ,

that is λ ≥ c1{log kn}1/2k−1/2
n .

Now, for K < K∗,

∆Ln(T ∗K , T
∗) ≤ |∆Ln(T ∗K , T

∗)−∆L(T ∗K , T
∗)|+ ∆L(T ∗K , T

∗)

≤ |∆Ln(T ∗, T ∗K)−∆L(T ∗, T ∗K)| −D(K∗,K).
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where D = infK<K∗,u∈[umin,umax] D(K∗,K), Hence,

P(K̂ = K)

≤ P
(

∆Ln(TK , T
∗
K) ≥ D− λ(K∗ −K)

2

)
+P
(
|∆Ln(T ∗, T ∗K)−∆L(T ∗, T ∗K)| ≥ D− λ(K∗ −K)

2

)
≤ P

(
|∆Ln(TK , T

∗
K)−∆L(TK , T

∗
K)| ≥ D− λ(K∗ −K)

2

)
+P
(
|∆Ln(T ∗, T ∗K)−∆L(T ∗, T ∗K)| ≥ D− λ(K∗ −K)

2

)
.

These two probabilities can be bounded using Theorems 6 and 7 provided that, for all K < K∗,

D− λ(K∗ −K)

2
≥ c1{log(kn)}1/2k−1/2

n ,

that is,
λ ≤ D− 2c1{log(kn)}1/2k−1/2

n .

We are now ready to prove Theorem 3. Let u ∈ [umin, umax] fixed.

E
[
‖T̂ − T ∗‖22

]
=

Kmax∑
K=1

E
[
‖TK − T ∗‖221K̂=K

]
≤ E

[
‖TK∗ − T ∗‖22

]
+

Kmax∑
K=1,K 6=K∗

KP(K̂ = K)

+

Kmax∑
K=1,K 6=K∗

E
[
‖TK − T ∗‖221‖TK−T∗‖22>K

1K̂=K

]

≤ E
[
‖TK∗ − T ∗‖22

]
+

K∗−1∑
K=1

KP(K̂ = K)

+

Kmax∑
K=K∗+1

KP(K̂ = K)

+2

Kmax∑
K=1,K 6=K∗

E
[
‖TK − T ∗K‖221‖TK−T∗‖22>K

]

+2

Kmax∑
K=1,K 6=K∗

P(K̂ = K)‖T ∗ − T ∗K‖22.

Firstly, from Theorem 1,

E
[
‖TK − T ∗K‖221‖TK−T∗‖22>K

]
= KP

(
‖TK − T ∗K‖22 > K

)
+

∫ ∞
K

P
(
‖TK − T ∗K‖22 > t

)
dt

≤ 2K

(
1 +

β2(log kn)2

C1kn

)
exp

(
− C1kn
β2(log kn)2

)
+2K

(
1 +

2β(log kn)

C2kn
+

2β2(log kn)2

C2
2k

2
n

)
exp

(
− C2kn
β(log kn)

)
+

2C3K1/2

k
5/2
n

.
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Secondly, recall that

‖T ∗K − T ∗‖22 =

∫
‖θ∗K(x)− θ∗(x)‖2∞dPX(x) ≤ Kmax

Kmax∑
`=1

µ(T`)‖θ∗K` − θ∗` ‖2∞ ,

where µ(T`) = P(X ∈ T`). Following the same idea as in the proof of Proposition 2, from Taylor series ,
under Assumptions 2 and 3,

‖θ∗K` − θ∗` ‖2∞ ≤ C2
2(u)

k2
n

n2
(1 + cγmaxψ(u) + o(ψ(u)))2 .

Hence,

‖T ∗K − T ∗‖22 ≤ C2
2(u)

k2
n

n2
(1 + cγmaxψ(u) + o(ψ(u)))2

Kmax∑
`=1

1X∈T`

≤ C3(u)
k2
n

n2
.

Finally,

E
[
‖T̂ − T ∗‖22

]
≤ C5K∗(log kn)2

kn
,

for some constant C5. .

B Covering numbers
Lemma 10. Following the notations of the proof of Theorem 6, the class of functions F satisfies

NΦ(ε,F) ≤ C4K
4(d+1)(d+2)‖Φ‖α1

2 σαn
εα

,

for some constants C4 > 0 and α > 0 (not depending on n nor K).

Proof. Let

gθ(z) = − 1

σ
+

(
1

γ
+ 1

)
γz

σ2(1 + zγ
σ

)
,

hθ(z) = − 1

γ2
log
(

1 +
zγ

σ

)
+

(
1
γ

+ 1
)
z

σ + zγ
,

for z > 0. For θ and θ′ in S × Γ, we have (from a straightforward Taylor expansion),

|gθ(y − u)− gθ′(y − u)| ≤ C|γ − γ′|+ C′|σ − σ′|,

for some constants C and C′. More precisely, one can take

C =
6

γ2
minσmin

,

C′ =
1

σ2
min

(
1 + 3

{
1 +

1

γmin

})
.

Next, observe that
|gθ′(y − u)− gθ′(y − u′)| ≤ C′′|u− u′|,

where C′′ = 4γ2
max/[γminσ

3]. Which leads to

|gθ(y − u)− gθ′(y − u′)| ≤ Cg max(‖θ − θ′‖∞, |u− u′|),
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for some constant Cg > 0. Similarly,

|hθ(y − u)− hθ′(y − u)| ≤ C1(4 + log(1 + wy))|γ − γ′|+ C2|σ − σ′|,

Next,
|hθ′(y − u)− hθ′(y − u′)| ≤ C7|u− u′|,

where C7 = 5/(γminσmin), leading to, for some Ch > 0,

|hθ(y − u)− hθ′(y − u′)| ≤ Ch max(‖θ − θ′‖∞, |u− u′|).

On the other hand,

|φ(y − u,θ)− φ(y − u,θ′)| ≤ 1

γ2
min

(2 + log(1 + wy))|γ − γ′|+ 3

γminσmin
|σ − σ′|,

and
|φ(y − u,θ′)− φ(y − u′,θ′)| ≤ 1

σmin
|u− u′|.

Define F1 = {gθ(· − u) : θ ∈ S × Γ, u ∈ [umin, umax]}, F2 = {hθ(· − u) : θ ∈ S × Γ, u ∈ [umin, umax]},
and F3 = {φ(· − u,θ) : θ ∈ S × Γ, u ∈ [umin, umax]}. From [van der Vaart, 1998, Example 19.7], we get,
for i = 1, ..., 3,

N(ε,Fi) ≤ ϕi‖Φ‖α1
2 σα1

n ε−α1 ,

for some α > 0 and constants ϕi.
On the other hand, let

F4 = {x 7→ 1x∈T` : ` = 1, . . . ,K} ,
and

F5 = {y 7→ 1y>u : u ∈ U} .
From Lemma 4 in [Lopez et al., 2016], we have N(ε,F4) ≤ mkKα2ε−α2 , where α2 = 4(d+ 1)(d+ 2), and
where k is the number of discrete components taking at most m modalities. On the other hand, from
Example 19.6 in [van der Vaart, 1998], N(ε,F5) ≤ 2ε−2.

From [Einmahl et al., 2005, Lemma A.1], we get, for i = 1, . . . , 3,

N(ε,FiF4F5) ≤ 4mkKα2 max(Cg, Ch)‖Φ‖α1
2 σα1

n

εα1+α2+α3
.

Multiplying FiF4F5 by a single indicator function 1Φ(Yi)≤Mn does not change the covering number, and
the result follows.

C Technical Lemmas
Lemma 11. 1. The derivatives of the functions y → φ(y − u,θ) with respect to θ are uniformly

bounded by
Φ(y) = C(1 + log(1 + wy)),

where C is a constant (not depending on n), and w = γmax/σmin.

2. There exists a certain ρ0 > 0 such that

mρ0 := E [exp(ρ0Φ(Y ))] <∞.

Proof. To proof point 1, it is sufficient to derive the GP likelihood and see that they can be upper-bounded
by Φ.

Now, for point 2, note that for all x, γ(x) ≥ γmin > 0, Y is heavy-tailed random variable, then log(Y ),
and thus Φ(Y ), is a light-tailed random variable. Thus Φ(Y ) has finite exponential moments.

Lemma 12. With vF defined in Proposition 4,

vF ≤
M2
nkn
n

.
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Proof. We have

vF ≤ E
[
Φ(Y )21Y≥umin1Φ(Y )≤Mn

]
≤ M2

nP(Y ≥ umin) =
M2
nkn
n

.

Lemma 13. Define, for j = 1, 2, 3,

Ej,n = E
[
Φ(Y )j1Φ(Y )≥Mn1Y≥umin

]
.

Under the assumptions of Theorem 7,

Ej,n ≤
ejk

1/2
n

n1/2nρ0βa2/4
.

Proof. Applying twice Cauchy-Schwarz inequality leads to

Ej,n ≤ P(Y ≥ umin)1/2E[Φ(Y )2j1Φ(Y )≥Mn ]1/2 ≤ k
1/2
n

n1/2
E[Φ(Y )4j ]1/4P(Φ(Y ) ≥Mn)1/4.

Next, from Chernoff inequality,

P(Φ(Y ) ≥Mn) ≤ exp(−ρ0Mn)E[exp(ρ0Φ(Y ))] ≤ mρ0

nρ0βa2
.

R codes: Tthe R codes are publicly available at https://github.com/antoine-heranval/Generalized-Pareto-Regression-Trees-for-extreme-event-analysis.
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