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Abstract 

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique 

increasingly used to modulate neural activity in the living brain. In order to establish the 

neurophysiological, cognitive or clinical effects of tDCS, most studies compare the effects of 

active tDCS to those observed with a sham tDCS intervention. In most cases, sham tDCS 

consists in delivering an active stimulation for a few seconds to mimic the sensations observed 

with active tDCS and keep participants blind to the intervention. However, to date, sham-

controlled tDCS studies yield inconsistent results, which might arise in part from sham 

inconsistencies. Indeed, a multiplicity of sham stimulation protocols is being used in the tDCS 

research field and might have different biological effects beyond the intended transient 

sensations. Here, we seek to enlighten the scientific community to this possible confounding 

factor in order to increase reproducibility of neurophysiological, cognitive and clinical tDCS 

studies.  
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Text 

 

In light of increasing interest surrounding reproducible transcranial direct current stimulation 

(tDCS) studies, guidelines have emerged specifically pointing to the importance of blinding [1–

3]. Blinding, or masking, is a cornerstone of randomized controlled trials and is especially 

challenging to be obtained for non-pharmacological interventions [4]. It consists of a set of 

procedures designed to keep participants (single blind procedure) and experimenters (double 

blind procedures) unaware of the administered intervention (active or sham) and thus avoid bias 

and unrelated observable effects. For subject blinding, the sham method most commonly used in 

tDCS studies is based on mimicking typical initial sensations of active tDCS underneath the 

electrode sites (e.g., tingling, itching). For experimenter blinding, allocation concealment is 

achieved by entering numeric codes [5] assigned to waveform arms (e.g. sham, active) or a 

toggle (A/B mode). In addition, some devices adjust an impedance display on the device screen 

that also mimics impedance changes expected in the “active” functioning of the device and 

detect loss of electrode contact [5]. 

Thus, sham procedures in non-invasive brain stimulation trials are fundamental due to the 

placebo response observed in non-invasive brain stimulation trials [6] and the fact that non-

blinded trials overestimate the effects of subjective and objective outcomes [7]. However, the 

neurobiological effect of sham tDCS remains an under-addressed notion in the literature and can 

be subdivided into two types of effects: 1) the direct neurobiological effects, specifically the 

results of the type of sham used, in this case weak electrical currents; 2) the indirect 

neurobiological effects, that are seen across studies, e.g. general ‘placebo/nocebo’ or ’non-
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specific’ effects. These would be independent of the type of sham used. With this in mind, as 

other interventional tools, sham tDCS has two important problematic and competing aspects. 

 

Firstly, the blinding efficacy of current sham tDCS protocols is non-optimal and can be 

improved depending on blinding objectives [8–10], especially in cross-over studies. In this line, 

recent “active” sham protocols, based on modeling and leveraging multichannel tDCS, have been 

developed to mitigate the subject blinding problem [11,12]. For example, an approach could be 

to use multi-electrode montages, optimized to create skin sensations and effects while keeping 

cortical electric fields close to zero [11], using realistic head models and multichannel 

optimization algorithms [13]. This technique provides a way to control both objective and 

subjective sensation factors for double blinding in experiments and can be made even more 

precise when based on personalized realistic head modeling. Another possibility, put forward by 

recent studies [14,15], is the use of topical pretreatments to reduce erythema and minimise 

paraesthesia in both the active and sham group. Therefore, if successful, this would render the 

“active” stimulation in the sham group unnecessary and the sham group would only control for 

indirect neurobiological effects. More generally, while current density in the skin is always 

higher than in the brain, the ratio can vary by several orders of magnitude depending on the 

montage [16]. Moreover, blinding of the experimenters could also be improved. Indeed, skin 

redness after tDCS was reported to affect the blinding efficacy [17]. Therefore, regardless of the 

protocol used, it is critical to systematically collect data assessing the quality of the blinding. 

This can be as simple as asking participants what they believe they received (sham or active) and 

their confidence in this assessment. We recommend scientists and clinicians use the standardized 

questionnaire validated and published recently by Antal and colleagues (2017) [18]. The 
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documents can be downloaded from the website: http://www.neurologie.uni-

goettingen.de/downloads.html. 

 

Secondly, sham tDCS might have biological effects beyond the intended transient sensations 

[19]. In most cases, sham tDCS consists in delivering a short period of active stimulation at the 

beginning of the stimulation session (e.g., 10 s at 0.1 mA [20] , 120 s at 1 mA [21]) followed by 

no stimulation for a total duration equal to the duration of the active stimulation [22]. It is usually 

assumed that sham stimulation controls any potential effects unrelated to the direct cortical 

stimulation itself. Based on studies using tDCS and transcranial magnetic stimulation (TMS) 

over the motor cortex, sham stimulation is unlikely to produce lasting changes in cortical 

excitability after a single session [23]. However, several studies have investigated tDCS effects 

with parameters similar to those of sham parameters (i.e., short stimulation duration), with mixed 

findings [24–29]. Placebo-controlled studies report a differential effect of the sham stimulation, 

some reporting no effect of 30 s stimulation (15 s ramp-up to 2 mA, 15 s ramp-down [30]; 10 s 

ramp-up/down, 30 s stimulation at 1 mA [31]; 15 s ramp-up/down, 30 s stimulation at 2 mA 

[32]) while others finding an effect on different neurophysiological parameters (10 s ramp-up to 

1 mA, 60 s ramp-down to 0.034 mA and continuous 13 min 50 s at 0.034 mA [33]; 30 s ramp-up 

to 2 mA, 30 s ramp-down, at the start and end of the stimulation [34]). One tDCS study 

investigating the neurobiological effects of parameters used in sham conditions as the primary 

objective reported that a single session of 15 min sham tDCS (i.e., 10 s ramp-up to 1 mA, 60 s 

ramp-down to 0.034 mA and continuous 13 min 50 s at 0.034 mA) had similar effects to 1 or 2 

mA of 15 min stimulation [33] and different than 0 mA stimulation on an event-related EEG 

component (P3 amplitude). According to this study, although no behavioral effects were 
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observed, a single session of “sham” intervention could exert neuromodulatory effects for some 

outcomes. Such a result could be explained by skin sensations intentionally produced in the sham 

arm (ramp up/down) or cortical modulation by the micro-ampere-scale current. The potential 

physiological effects of non-invasive micro-ampere-scale currents remain to be established, 

requiring effects at electric fields two orders of magnitude below those established effective in 

animal models [35–37]. This could be also related to the stochastic resonance model predicting 

that small amounts of noise injected into a system promote low-level signals leading to enhanced 

functions within this system [38–40]).  

 

As with other therapeutic tools, the possible effects of sham tDCS itself could be enhanced when 

repeated sessions are delivered. Indeed, repeated-sessions of tDCS is a promising therapeutic 

intervention to decrease symptoms and improve cognition in neuropsychiatry. Some of the 

variability in study outcomes [22] might arise from sham inconsistencies. Indeed, since the first 

sham-controlled clinical study, numerous sham parameters have been described. For example, 

recent studies investigating the clinical impact of tDCS in patients with major depression were 

assessed from a systematic literature search using the following terms: (“tDCS” AND 

(“depression” OR “MDD”) AND (“2018” OR “2017”). From the 106 eligible studies identified 

in September 2018, we focused on the 4 randomized controlled trials (RCT) [41–44]. 

Interestingly, sham parameters of these studies differ (current was turned off automatically after 

30 s of 2 mA stimulation [41]; 30 s of 0.5 mA stimulation [42]; ramp-up 30 s/ ramp-down 15 s, 

30 s of 2 mA stimulation [43]; constant current of 0.034 mA + 2 ramps throughout sham 

intervention up to 1 and 0.5 mA (10 s ramp-up, 60 s ramp-down) [44]). Aside from this example 

from recent studies of tDCS in major depressive disorder, the use of different sham parameters in 



 

 8 

clinical studies reveals significant variations of the injected electric charge from 15 [42] to 109 

[33] mC. Another point to consider in these clinical studies is the potential impact of repeated 

low-intensity sham stimulations, which could produce behavioral changes in the control 

condition that confound detection of therapeutic responses to the active arm. Thus, sham 

methodology could be an important parameter among others (session duration, total number of 

session, number of sessions a day, duration between two sessions, current intensity, site of 

stimulation) in the design of tDCS clinical studies, not only for blinding, but also to investigate 

potential specific neuromodulatory effects linked to the sham stimulation itself. 

 

Several sham protocols for tDCS have been reported in the literature (Figure 1). Based on a 

recent review [3], 84 % of 173 studies report using similar approaches as reported in an early 

study by Gandiga et al. [45]. However, the original protocol (i.e., 10 s ramp-up followed by 30 s 

of active stimulation at 1 mA before manually turning off the stimulator, Figure 1A) has been 

modified, adjusting (1) the intensity and duration of active current being delivered (from “no 

current” to 2 min at 1 mA), (2) the duration of ramp-in and ramp-out phases (e.g., 5-30 s), and 

(3) the number of ramps done throughout the stimulation. Indeed, a newer sham protocol 

proposed 2 periods of active stimulation, including ramps up/down with 10-30 s of stimulation in 

between, over the first and last seconds of the stimulation [46] (Figure 1B).  

 

INSERT FIGURE 1 ABOUT HERE 

 

In order to help practitioners deliver adequate and reproducible sham treatment interventions, 

several commercial stimulators include a ‘double blind study mode’, which delivers a built-in-
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sham mode. However, sham-placebo modes vary across stimulator brands, which could be a 

confounding factor when comparing studies and in multicenter studies using various devices 

across centers (Table 1). In addition, it should be noted that these sham parameters can also be 

adapted upon request to the companies. 

 

INSERT TABLE 1 ABOUT HERE 

 

Thus, we urge scientists and clinicians to be aware of the sham parameters they used and 

accurately report them in scientific literature, including when not using the preprogrammed built-

in ‘double blind study mode’. This is particularly critical for studies that use devices not 

designed for tDCS (e.g., iontophoresis devices such as the Intelec Advanced Therapy System, 

Chattanooga, USA). 

With this in mind, we have detailed in Supplementary Material 1 the sham-controlled studies 

using bifrontal (F3/F4/FP1/FP2) and fronto-temporal montages (F3FP1/T3P3) based on recent 

major reviews [22,47,48] and divided them depending on their sham parameters described 

(device “turned off”, short stimulation) and looked the impact on their primary outcome. We 

report that out of 103 studies, only 14 studies do not report a short active stimulation (only 

ramps), 51 studies report using ramp-down before turning off the device and 44 studies report 

shutting off the device after the active stimulation. Of those 103 studies, 46 were excluded from 

further investigation due to missing information concerning the sham parameters used. With the 

remaining 57 studies, we were able to investigate if the total charge in the sham arm had an 

effect (Yes or No) on the primary outcome (Supplementary Material 2). From this analysis, the 

total charge delivered doesn’t seem different when comparing studies showing no effect of active 
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tDCS compared to sham tDCS (n=6; 94 mC (+/-115)), compared those showing an effect (n=51; 

73 mC (+/-69)). This should be taken with caution, as very few negative studies (n=6) could be 

analyzed. Thus, to date, no recommendation can be made regarding a specific sham protocol and 

none seem to be more rigorous than another. Further studies are needed to assess the direct and 

indirect effects of sham protocols.   

 

Choosing the optimal control condition is another important issue to consider. The field has 

mainly focused on “active sham” control conditions mimicking stimulation sensations as 

realistically as possible. This approach has partly been chosen because “placebo” control 

conditions have been strongly criticized in TMS and drug research [49–53] and because “active 

sham” control conditions could improve the blinding effect. Remarkably, systematic assessment 

of blinding has been more often reported in brain stimulation trials compared to drug trials [54]. 

Moreover, control groups or waiting lists, used in psychotherapy and mindfulness research for 

example, do not allow true double-blind trials [55,56]. A final complicating factor is the growing 

body of research suggesting that control conditions themselves may be capable of meaningfully 

modulating relevant brain regions/networks [57].  Realistic and elaborate sham tDCS protocols 

could invoke strong therapeutic expectations and thus induce particularly large placebo effects. 

This relates to the notions of ‘differential placebo effects’, the concept that different types of 

placebos (e.g. inert pill versus sham device) may yield different magnitudes of placebo response 

[58–60]. This is a topic that has been studied for decades, but becomes paramount as 

sophisticated medical technologies require elaborate placebo controls to maintain blinding 

integrity. 
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Thus, several promising research avenues can be put forward with regard to decreasing the 

influence of sham tDCS, with the main aim of keeping the balance between maintaining 

participant blinding and limiting the development of sham into an ‘active control’ condition. One 

the one hand, with the perspective of using tDCS in clinical settings, the use of an “active 

control”, i.e. stimulating a region considered inactive with regard to the main question, as with 

TMS [61], could be recommended in some cases, however, with the risk of including an active 

control with unknown neurophysiological effects. Alternatively, the use of “active controls” 

based on realistic head modeling with multi-electrode montages exploiting scalp shunting 

mechanisms can be explored as discussed above [11]. On the other hand, sham tDCS conditions 

could also be reduced to a minimum of active components, even going as far as no active 

components, when using protocols with topical pretreatments [14,15]. Furthermore, new 

protocols could be developed in order to dectect the dissociation between direct and indirect 

neurobiological effects, as done in other research fields (e.g. neurofeedback, [62]). 

In summary, the use of different sham stimulations can be a confounding factor in reconciling 

results across clinical, cognitive, and neurophysiological studies of tDCS. Indeed, when 

functional neuroimaging, at different spatial and temporal levels (biological, functional and 

structural) is used to gain new useful information for inferring the mechanisms of action of tDCS 

(e.g., [63,64]) conclusions are drawn based on comparison between active and sham 

interventions. Questions that should be further explored include whether certain modalities of 

sham tDCS have a neurobiological effect, and if so, which ones.  In addition, the cumulative 

clinical effects of low-intensity, repeated sham tDCS should be further investigated, as a recent 

controlled trial suggested that it could have meaningful antidepressant effects [44].  Ultimately, 

more research is necessary to ascertain the direct neurobiological effects of sham tDCS protocols 



 

 12 

and evaluate their reliability [65, but see 66]. It should be underscored that simply “turning off” 

the tDCS device could harm blinding, therefore overestimating the signal of active stimulation. 

In addition, accurately reporting sham interventions is crucial to help increase reproducibility in 

the tDCS research field (sham should be reported with the same rigor as any stimulation dose; 

[67]). Future meta-analyses could also include investigating pre-post effect sizes of all sham 

conditions across studies (e.g. larger effect size for ‘ramp-up-ramp-down’ vs ‘constant low 

intensity’ shams?), as done in a recent meta-analysis looking specifically at the effects of sham 

tDCS on corticospinal excitability [68]. Nevertheless, in parallel to a reliable sham arm, other 

aspects should be considered in order to have reproducible tDCS studies, such as better training 

of practitioners and reporting of the electrode preparation (e.g. saline quantity, re-use, cleaning 

method...) and placement [2].  Our hope is that a better understanding of these neurobiological 

processes can decrease the noise in controlled trials, ultimately clarifying tDCS efficacy.  
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Figure captions 

Figure 1 – Illustration of different sham protocols used in tDCS studies – A) Original 
Gandiga sham protocol: 10s ramp-up, 30s stimulation, turn off the stimulator. B) Adapted 
tDCS protocols: The stimulation period is the same for both active and sham interventions. 
Depending on studies, sham tDCS consists in either 1 or 2 ramps per session (beginning, middle 
or/and end) with different duration of ramps (5, 8, 10, 15, 30 s). Different durations of active 
stimulation are delivered at the beginning and/or end of the stimulation period (DurationSham = 
5, 8, 10, 15, 20, 30, 40, 60, 120 s). The period of active stimulation reaches the same or reduced 
peak intensity compared to the intensity delivered in the active intervention. Lastly, some studies 
report a constant low intensity stimulation (0.016 or 0.034 mA) [33,44].  
 
Table 1 – Main parameters of the different built-in-sham modes from commonly used 
commercial stimulators, as described in their manuals. Constant intensity for each stimulator 
was reported for the current available devices. It should be kept in mind that analogue electronic 
of the current source could have a ‘noise’ of equal or below 0.010mA. Y=Yes; N=No 
 
Supplementary Material 1 – Sham controlled-studies using bifrontal (F3/F4/FP1/FP2) and 
fronto-temporal montages (F3FP1/T3P3), including the details of the sham parameters, 
primary outcome and effect reported when comparing the active arm to the sham arm. 
 
Supplementary Material 2 – Boxplot exploring the difference in the total charge delivered in 
the sham arm depending on the effect on the primary outcome of the study, when comparing 
the active arm and sham arm. Y=Yes; N=No 
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