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Abstract 

Hydraulic components are coated by thermal spraying to protect them against cavitation erosion. 

These coatings are built up by successive deposition of single splats. The behavior of a single 

splat under mechanical loading is still very vaguely understood. Yttria-stabilized zirconia (YSZ) 

and stainless-steel splats were obtained by plasma spraying onto stainless steel substrates. The 

velocity and temperature of particles upon impact were measured and the samples were 

subsequently exposed to cavitation erosion tests. An acoustic cavitation simulation estimated the 

water jet velocity and hammer stresses exerted by bubble collapse on the surface of the specimen. 
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Although the results suggested that high stress levels resulted from cavitation loading, it was 

clear that weak adhesion interfaces played a crucial role in the accelerated cavitation-induced 

degradation. 

Keywords: cavitation erosion, plasma spraying, single splat, numerical modelling, adhesion, 

cohesion  

1. Introduction 

Hydraulic machinery such as valves, propellers, impellers, pumps and turbines [1–4] suffers from 

severe cavitation erosion, causing life shortening and maintenance problems. Cavitation erosion 

is a surface degradation process caused by the repeated collapse of cavitation (vapor/gas) bubbles. 

Collapsing cavities induce shock waves and liquid impinging on the adjacent surface [5], 

increasing the local pressure up to 1 GPa [6]. This process repeats thousands times a second [7] 

resulting in material fatigue and considerable mass removal up to 200 kg in large-scale 

components (such as hydraulic turbines) after serving for a few years [8]. As a consequence, 

material removal from the surface leads to poor performance of the components. Although 

significant efforts have been made to minimize cavitation erosion by improving the design of 

hydraulic plants [9], in practice cavitation erosion cannot be avoided [10].  

Generally, materials with high cavitation erosion resistance are chosen as the building materials 

of hydro machinery. Martensitic stainless steels are among them because of their corrosion 

resistance, acceptable resistance against cavitation erosion, moderate cost, and welding suitability 

[4, 11]. Moreover, surface engineering is usually used to further improve the cavitation resistance 

of hydro plants. Welding and thermal spraying are the most commonly used surface techniques to 

coat a protective layer on the metallic surface for protection against cavitation erosion.  



Welding is often used to repair cavitation erosion damage. The affected area is first removed then 

welded with martensitic stainless steel fillers [12]. However, surface preparation of the eroded 

(hydraulic) profiles after welding is time-consuming. In addition, extensive welding results in 

large heat input and can damage the base metal [13]. Therefore, applying a wear resistant layer 

by thermal spraying has attracted increasing attention as a means of protection against cavitation 

erosion. Hard-facing materials such as Stellite 6, Tribology T-400 [13] and WC-Co [14] have 

been used as thermally sprayed protective coatings due to high hardness and corrosion resistance. 

In addition, thermally sprayed NiTi coatings exhibit an excellent performance against cavitation 

erosion due to their reversible stress-induced martensitic phase transformation [1,15,16]. YSZ 

Ceramic material is also considered as interesting candidates for resisting cavitation based on 

stress-induced tetragonal-monoclinic martensitic transformation under cavitation conditions [17]. 

However, the cavitation properties of YSZ degrade when they are thermally sprayed.  

The failure mechanism of plasma sprayed YSZ coatings has been discussed by Wang et al. [18]. 

According to this study, the initial defects inside the as-sprayed coatings such as cracks, pores, 

splashes and incomplete contact interfaces contribute to the early damage of YSZ coating under 

cavitation impact. A thermal spray coating is built by the successive deposition of droplets. 

Different splats stages (molten or half molten) lead to quite different coating microstructures and 

properties [19]. For example, thermal spraying of completely molten YSZ particles (generally 

disk-shaped splats) results in an improved microstructure of the coating with well-adhered splats, 

decreased porosity, higher thermal conductivity and elastic modulus [20]. Therefore, it is 

essential to understand the cavitation erosion behaviour of a single splat in order to study the 

cavitation erosion of a thermal sprayed coating. In the present study, 8 wt% YSZ and 304 

stainless steel (304SS) single splats were plasma sprayed onto stainless steel substrates. To 

investigate the mechanical behaviour of cavitation-induced erosion in a thermal sprayed single 



splat, the samples were subjected to cavitation in water. The stresses exerted by bubble collapse 

were numerically investigated. 

2. Methodology 

2.1. Coatings preparations and characterizations 

YSZ (Saint Gobain, France) and 304 SS (LTS Research Laboratories, USA) powders were 

plasma sprayed on 304 stainless steel substrates. Their size distributions were determined by laser 

diffraction (Mastersizer 2000, Malvern, England). An average size of 26.8 µm was found for 

YSZ with D10 = 15.7 µm, D50 = 25.3 µm and D90 = 40.3 µm. The D10, D50 and D90 labels 

represent that the volumetric percentage of particles with diameter less than the stated diameter in 

the subscript. For example, D10 = 15.7 µm means that 10% of the total volume of particles have a 

diameter smaller than 15.7 µm. The average size of 304SS is 38.1 µm and D10, D50 and D90 are 

19.4 µm, 35.3 µm and 61.1 µm respectively (Figure 1). Materials properties of YSZ and 304SS 

are presented in Table 1.  

 

Figure 1: Size distribution of the powders 



Table 1: Material properties of YSZ and 304SS 

Properties Density  

(g cm-3) 

Melting 

point (°C) 

0.2% Yield 

stress 

(MPa) 

Thermal 

conductivity 

(W m-1 K-1) 

Young’s 

modulus 

(GPa) 

Poisson’s 

ratio 

YSZ ~6.1 2800 - ~1.5 40_50 0.22 

304SS 8.03 ~1400 290 ~13 190_200 0.29 

Single splats deposition was carried out employing a Sulzer-Metco F4 plasma gun. The 

experimental set-up of plasma spraying is shown in Figure 2. Table 2 shows the spray conditions. 

The parameters were chosen based on previous experiments [18]. The substrates were mirror 

polished and preheated to 180 °C before deposition and placed upon a rotating table (500 rpm, 

corresponding to a liner spraying velocity of 5 m s-1), in order to get single deposition splats. 

 

Figure 2: Schematic of experimental set-up on plasma spraying 

 

 

 

 

 



Table 2: Spray conditions 

Parameters YSZ 304SS 

Electric arc current (A) 620 600 

Electric arc voltage (V) 60 56 

Plasma gas (SLPM*) Ar   35 50 

Plasma gas (SLPM) H2 11 6 

Carrier gas (SLPM)  1.8 2.2 

Liner speed (m s-1) 5 5 

Stand-off distance (mm) 110 125 

*SLPM: standard liter per minute 

A DPV 2000 sensor measured in-flight temperature, velocity and size of particles upon impact 

(Tecnar automation Ltee, St-Bruno, Canada). The sensing head is located in the spray plume. A 

785 nm laser is used to radiate the particles passing the optical sensor. The measurement of velocity and 

temperatures is based on the analysis of the reflected light [21]. More than 2000 particles were 

detected to calculate the average values. Scanning Electron Microscopy (JEOL, JSM-5800LV, 

Japan) was used to characterize the morphology of initial powders and microstructures of the 

single splats (with and without cavitation erosion).  

2.2. Cavitation erosion tests 

Cavitation erosion tests were conducted according to the main guidance of ASTM G32 with a 

frequency adjusted to 20 kHz maintaining a peak-to-peak amplitude of 45 µm for 2 min. A 

stepped titanium sonotrode with 13 mm (VC300, Sonics, USA) diameter tip immersed 12 mm in 

the water below the free surface introduced vibrations in the liquid medium. The set-off distance 

between the sonotrode tip and undergoing coating was 0.5 mm (Figure 3). Steel samples were 



mounted on the bottom of a transparent tank with diameter of 60 mm filled with 2 L of distilled 

water. Cavitation created by the small horn generated a gradual damage that was useful for 

studying the mechanisms of cavitation erosion, while the energy released by cavitation did not 

significantly affect the water temperature that was maintained at 22 ±1 °C. 

 

Figure 3: (a) Cavitation erosion test device (b) Castellated mesh of horn, test specimen, and 

supporting stand in the computational domain 

 

2.3. Numerical analysis 

The pressure exerted by bubble collapse on the surface of the specimen was evaluated using 

Lebon’s et al. numerical model of acoustic cavitation [22]. Coupled equations of mass 

conservation, momentum conservation, and bubble dynamics are solved for using a high-order 

finite difference method for the partial differential equations and an explicit version of the 4th 

Merson method for the ordinary differential equation: 

(a) 

(b) 
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where � is the acoustic pressure, �� are the velocity components, 	 is the (pure) liquid density, 

and 
 ≡ ���/�	 is the speed of sound in the liquid. � =  �!"#�� is the bubble phase fraction, 

where "# is the number of bubbles, each of radius �, per unit volume. The acoustic velocity 

sources are prescribed in the momentum source term �� . 
�������  accounts for acoustic energy 

dissipation due to viscosity. �$ = �%&'( + �� − �*+ −  ,+�+ − �&'(. �% = �-,# /+0+ 1�2 is the pressure 

inside the bubble, with �-,# being the gas pressure at the equilibrium radius �#. 3 = 0.14 is the 

polytropic exponent. �� is the bubble vapour pressure. 8 is the surface tension between the liquid 

and the bubble gas. 9 is the dynamic viscosity of the liquid. 

 

A 3D model was run based on the experimental setup (Figure 3) allowing a complete 

representation of the impact pressures acting on the surface. Detailed information of pressure 

solver can be found elsewhere [22,23]. In summary, the equations governing sound propagation 

are coupled with a model representing the dynamics of individual bubbles. The initial pressure 

and velocity components in the liquid are set to zero. The liquid is assumed to contain 1011 

bubbles per m3, each of the average radius 10 µm. All solid surfaces are assumed perfectly 

reflective to sound waves. The free surface is approximated by fixing pressures above the water 

level to 0 Pa. The solution to these equations requires a high-order discretization method that 

minimizes numerical dispersion. In our implementation, a castellated uniform mesh of the 



geometry illustrated in Figure 3 is used as the discretization method requires a uniform grid in 

each coordinate direction. 

The collapsing bubble velocity jet ��:� is estimated taking into account the bubble asymmetry 

adjacent to a solid surface [24,25] using equation (4)  

 ��:� = 4.6	=�>�?�@ 																							  (4) 

Maximum erosion damage due to velocity jets occurs when the initial distance from the surface is 

around 0.75 of the bubble radius.   

The pressure � is obtained by solving the wave equation in bubbly media as described in [21, 22] 

where �� and 	A are the vapour pressure and density of water, respectively. 

This jet velocity is used as a parameter in equation (2), which is based on the physical description 

of collapsing of the cavitating bubble cloud in order to predict the velocity and local pressure [26] 

The water hammer stress applied on the specimen surface (�BCDD:E) is estimated as: 

	�BCDD:E ≈	0.6��:�	A
A		 (5) 

where 
A is velocity of sound in pure water.  

Deformation occurs when �BCDD:E	is larger than a critical pressure above which plastic flow of 

the material occurs. Therefore, to reach the yield stress of the material, a critical velocity (�GE��) 
has to be reached [27]. 

�GE�� =	H�I	A J1 − /1 + �IK 1
>�LM																										&6( 

where �I represents the yield stress of material, B=300 MPa and n=7 

�N:O ≈ �N:O	A
A = P0.6��:� − �GE��Q	A
A  (7) 

where �N:O and �N:O are the deformation pressure and the deformation velocity, respectively. 



3. Results  

3.1. In-flight particle temperature and velocity 

Measurements of the in-flight particle temperature and velocity are shown in Figure 4. The 

abscissa corresponds to the vertical positions at off-set distance. The temperatures of 304SS 

particles are 2230_2390 °C, with a standard deviation around 100 °C. The temperature of 304SS 

particles is seemingly less dependent on the detected position. The temperature is above the 

melting point of 304SS (~ 1400 °C). The highest velocity detected is 218 ± 9 m s-1. It varies from 

170 m s-1 to 218 m s-1 in different positions. For YSZ particles, plasma spraying leads to a 

velocity of 280 ± 20 m s-1 and a temperature value of 2880 ± 80 °C for the smallest particle with 

an average size of 25.3 µm and a velocity of 176 ± 15 m s-1 and a temperature value of 2550 ± 

99 °C for the largest particle with an average size of 30.6 µm. The melting point of the YSZ 

particles is around 2700 °C meaning that the in-flight YSZ particles consist of some un-melted 

and half-melted particles. Both temperature and velocity values of YSZ particle are higher than 

those of 304SS particle in the same detected position. Generally, the velocity of particles 

decreases with an increase in diameter during the plasma spraying process because of the higher 

inertia of larger particles. In this study, the 304SS particles have a larger size than that of the YSZ 

(Figure 1) along with a higher density (304SS ~ 8.03 g cm-3) > (YSZ ~ 6.1 g cm-3). Moreover, 

the maximum temperature of an argon-hydrogen plasma jet is normally reached at the end of the 

plasma core, which is almost 50 mm downstream of the nozzle exit [28]. Thus, the particles begin 

to decelerate and cool down during the following step of flight. However, the thermal 

conductivity (~1.5 W m-1 K-1) of YSZ particle is lower than that of 304SS (~13 W m-1 K-1) 

resulting in a higher temperature of YSZ particles (Table 1). 



 

Figure 4: Velocity and temperature of impinging particles 

3.2. Cavitation erosion  

Both initial YSZ and 304SS single splats are observed with disk-shaped (Figure 5a and c) 

patterns. Only few short ejections of materials were found near the periphery of the 304SS and 

YSZ splats (indicated by yellow arrow in Figure 5c). They are usually observed during splat 

impact (occurring in few microseconds). These ejections lead to the poor adhesion of the splat to 

the substrate. The ejections are removed firstly after 2 min cavitation erosion (Figure 5.b and d). 

Unfortunately, it is still not understood how and when they are generated during splat formation. 

Crack networks on the YSZ splats are formed because of the relaxation of the quenching stresses 

along with the brittle behavior of YSZ. Some wave-like morphology (indicated by black arrow in 

Figure 5c) is found at the edge of the 304SS splat. This morphology can be explained by uneven 

solidification across the splat. The lower first part contacting with the substrate solidifies rapidly, 

while the upper parts remain liquid. The momentum of the splat caused the liquid to spread 

resulting in the wave-like morphology at the edges of splat [29]. Upon impact, a particle 

undergoes flattening and solidification in less than 1.5 µs [30]. Then, the particle kinetic energy is 

partly consumed to overcome viscous resistance and partly converted into viscous energy, surface 



energy and heat flow. Preheating is beneficial for evaporating adsorbents before deposition. It 

promotes disk-shaped single splats [29,31].  

The morphology of the single splat after 2 min of cavitation erosion is shown in Figure 5b and d. 

Some pieces of fragments are delaminated from the periphery of YSZ splat as shown with arrows 

in Figure 5b. The projections around the 304SS and YSZ splats are removed. Moreover, typical 

cavitation pits are observed on the surface of 304SS splat (see yellow arrows on Figure 5d). 

They indicate the plastic deformation of the surface due to multiple micro-jet surges as shown in 

[6]. According to Tzanakis et al. [32], accumulation of the pits should be considered for the 

period of time during which destruction of engineering surfaces, such as the splats, occurs. It is 

obvious that the delamination dominates YSZ (Figure 5b) while fragmentation due to cavitation 

pits initiation as zoomed in red in Figure 5d and further cracks formation and growth governs the 

erosion mechanism in 304SS.  

 

Figure 5: Morphology of single splats for (a) YSZ without cavitation, (b) YSZ after cavitation for 
2 min, (c) 304SS without cavitation, and (d) 304SS after cavitation for 2 min  



3.3. Stresses exerted by bubble collapsing 

During cavitation erosion tests, ultrasound induces a cavitation cloud that consists of numerous 

bubbles of different sizes. Upon collapsing, bubbles are compressed resulting in high local 

pressures and temperatures. The centroid moves towards the boundary wall, producing a hollow 

vortex ring. During the rarefaction phase, the bubble  expands and may reach a critical radius, the 

so-called resonance radius [33]. The bubble then becomes unstable and collapses violently 

reaching a minimum size. Subsequently, liquid micro-jets followed by powerful shock waves are 

generated in front of the solid surface and the repeated interaction of these jets and shock-waves 

with the solid boundary leads to localized degradation of the surface [10]. The bubble cloud 

exhibits the collective behavior of all these effects with enhanced mechanical interaction with the solid 

boundary compared with an isolated bubble [34]. The cloud causes more material damage than the 

collapse of individual bubbles within the cloud. This is because the collapse of a bubble cloud at the 

minimum volume concentrates the collapsing energy in the centre of the cloud, therefore, generating 

extreme local pressure [35]. On the other hand, shielding and scattering effects related to the formation of 

bubbly clouds significantly disturb the propagation of acoustic waves and the emitted acoustic pressure 

levels to the liquid media imposing restrictions to cavitation development [36,37] Thus, the effectiveness 

of bubbly cloud collapse is a trade-off between the aggressiveness of cloud collapses and shielding effects 

(indicate strong nonlinear bubble dynamics effects). Nevertheless, cavitating bubble clouds are essential 

for ultrasound material erosion in high intensity sonicated environments [38,39] As the numerical 

results show in Figure 6, high pressures induced by bubble collapse are not spread uniformly 

everywhere on the surface of specimen, but are concentrated at localized points. This agrees with 

[40] where severe cavitation was identified in specific areas across the specimen and not across 

the entire surface. The cavitation impacts start from the periphery of the sample and then, 

progress towards the center, which agrees well with the experimental findings in Figure 5. The 



mean highest water hammer pressure is up to 1 GPa that agrees well with the numerical 

predictions of Chahine et al. [41]. This pressure is far above the yield stress of materials and 

produces localized cavitation damages [18,42]. Stronger jet results in higher hammer stresses 

(Figure 7), and this is considered to be the main mechanism for cavitation damage [6]. The water 

jet from the bubble collapse impinges on the solid surface of the specimen at a velocity around 

100-600 m s-1 which are of similar order of magnitudes to estimates in the literature [6,43] 

leading to an instantaneous local hammer pressure of around 0.1-1.0 GPa.  

Based on recent reports [44], when metallic systems are subjected to stresses such as cavitation 

impacts, the main mechanism during the first stage of damage is particle fracture. The stress can 

reach locally up to 16 GPa for a defect free surface to start plastic deformation. Moreover, areas 

with defects also require high local stress impacts in the range of 1 GPa. Therefore, and 

according to [34], it is apparent that a high impact pressure in the range of GPa should be reached 

to cause material fracture. This is in good agreement with current results where kinetic energy 

from jet impingement is partly converted towards the plastic deformation condition of the studied 

materials (Figure 8).  

 

Figure 6: Hammer pressure contour on the surface of specimen at t = 26 µs and t = 32 µs  



 

Figure 7: Mean hammer pressure and jet velocity at different cavitation times 

 

Figure 8: Transient evolution of mean deformation pressures for 304 and YSZ  

4. Discussions 

4.1. Shear stress during cavitation erosion  



Using a sonotrode operating at 20 kHz and with an amplitude of 75 um, Vyas and Preece [45] 

measured an average compressive stress of 890 MPa in solid surfaces due to cavitation. The 

stress induced by vapor bubble collapse impacts the solid surface of a single splat from all the 

directions. Assuming that the stress distribution is uniform across the surface of the splat (Pi = 

890 MPa), a 2D single stress on the surface of a splat unit can be described by the equations (5) 

and (6):  

8�R = 8� + 8I2 − 8� − 8I2 cos 2W + X�I sin 2W														&5( 
X�\I\ = −8� − 8I2 sin 2W + X�I cos 2W 																											&6( 

where 8�\ and X�\I\ represents the normal stress and shear stress in a coordinate system, α is the 

included angle between axis x´ and x (in the original coordinate system) where in this case was 

taken at 45° as the maximum shears stress is of interest as shown in Figure 9. The principal 

normal and shear stresses are calculated using equations (7) and (8): 

8DC� = 8� + 8I2 + H/8� − 8I2 1� + X�I�																				&7( 

XDC� = H/8� − 8I2 1� + X�I�																																								&8( 
With principal stresses being at 1235 MPa and 890 MPa respectively that exceeds the yield stress 

of most engineering materials. The single splat is fractured and the splat pieces detach due to 

weak adhesion between the splat and substrate interfaces. For the YSZ splat, the initial network 

promotes delamination under such value of shear stress.  



 

Figure 9: Stress analysis during cavitation erosion 

However, cavitation erosion is a time-dependent degradation process initiated by a severe plastic 

deformation in ductile metals and cracks growth in ceramic materials. Such degradation takes 

place not only on the surface but also underneath it. The energy released from bubble collapse is 

transmitted by shock waves several micrometers beyond the surface. The attenuation of acoustic 

pressure and shock waves during propagation is significant. More than 50% the initial energy was 

lost by absorption during the first 25 µm of its propagation leading to a modification of the 

pressure profile during propagation [46]. Similar results were reported by Brujan et al. [47], the 

pressure was 1.3 ± 0.3 GPa at 68 µm from the bubble wall with the pressure acting on the bubble 

wall calculated to be as high as 7.7 ± 1.6 GPa. As observed in Figure 5 and Figure 6, large 

pressure impacts in the center of the specimen do not directly lead to damage. This also explains 

the time-dependent nature of the cavitation erosion process despite the massive pressures exerted 

from the bubble collapse as shown by high-speed camera observations in [48]. The first mass loss 

occurs when both surface and underlying material reach a critical damage condition with cracks 

large enough to remove the material. Thus, although the calculated stress could exceed the yield 

strength of most materials on the surface, mass removal does not take place immediately, as was 

demonstrated for several low resistance metals and alloys [49–51]. These materials also exhibit 



incubation periods because the underneath layers must undergo cyclic deformation before 

fracture. 

4.2. Cavitation damage of a thermally sprayed coating 

Generally, two kinds of coating failures are considered during exposure to cavitation erosion: 

adhesive and cohesive failures. Adhesion can be understood as the connection between the 

coating and substrate or between two different splats. On the other hand, the cohesion is 

commonly referred to the strength forces inside a coating.  

 

Figure 10: Bonding strength of different thermal sprayed coatings: A [52]: plasma sprayed 
hydroxyapatite, B [53]: plasma sprayed YSZ, C [54]: plasma sprayed Ni20Cr, D [55]: HVOF 
sprayed Fe-based amorphous composite, E [54]: plasma sprayed Ni20CrMo and F [56] plasma 
sprayed Al-Si and B4C composite 

If a good adhesion on the surface of a relatively thick coating is obtained, coatings could show a 

cohesive failure meaning that fragmentation occurs due to cavitation pits initiation and further 

cracks propagation within the splat as shown in Figure 5d and the cumulative erosion-time curve 

could exhibit an appearance like that produced in bulk materials (case of 304SS). In these cases, 

microstructural evidence would show a progressive loss of material produced by mechanical 

degradation because cavitation energy is effectively transmitted into the underlying layers of the 



coating. Actually, the bonding strength of a thermally sprayed coating is below 100 MPa (see 

Figure 10) demonstrating that the adhesion between dissimilar surfaces with or without different 

chemical composition, such as adjacent splats in plasma sprayed coatings, is frequently 

considered as the weakest bonding of the system. Hence, a dominant adhesive failure is expected 

along with an early detachment of chunks and peripheral ejections as shown in the case of YSZ.  

 

5. Conclusions 

The cavitation erosion behaviors of YSZ and 304SS single splats obtained by plasma spraying 

are studied in this paper. Prior to the cavitation test, in-flight particles temperature and velocity 

were measured. The mechanism of cavitation erosion of the splats was investigated and discussed 

using experimental observations and numerical modelling. The main conclusions are summarized 

as follows: 

1. The in-flight particle temperature measurements indicate that 304SS particles are fully molten, 

while YSZ particles consist of un-melted and half molten particles with a temperature around 

2600 °C, which is lower than the melting point of YSZ (~2700 °C). This suggests that the 

304SS particles adhere better to the substrate than the YSZ particles.  

2. Cavitation induced erosion via detachment of large chunks initiates at the periphery of the 

YSZ splats and progresses towards the center (i.e. delamination) highlighting adhesive failure. 

For 304SS splats, fragmentation is caused by cavitation pit initiation, and crack formation and 

propagation (cohesive failure).  



3. Numerical results showed that extreme localized pressures in the range of 1 GPa are induced 

by bubbles collapsing. These extreme pressures damage the studied surfaces at various 

locations in due time. 

These findings suggest that collapsing cavitation bubbles lead to localized pressures and gradual 

erosion on the studied splat surfaces. Cavitation damage was in the form of material detachment 

for YSZ, and pitting, cracks formation for 304SS particles respectively. Mechanical stresses from 

cavitation impacts and the weak adhesion at the splats interfaces contributes to the early damage 

of a thermal sprayed coating. Therefore, to improve cavitation resistance, it is crucial to increase 

the adhesion of individual thermally-sprayed splats by increasing the temperature of the particles 

during spraying. 
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