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Abstract

Network Function Virtualization (NFV) orchestration and management have attracted a lot of attention in
recent years as it provides new opportunities regarding performance and deployment. In particular, several
models have attempted to capture the behavior of such systems under various restricted assumptions. However,
previously proposed mathematical models can only handle problems of fairly small size. This paper proposes
a Mixed Integer Linear Programming (MILP) model for the resource utilization problem in an NFV dynamic
context with several enhancements regarding the state of the art. We include the utilization of flow constraints
to ensure the order of functions in a service chain. By systematic generation of Flow Cover inequalities,
significant improvements in processing time are obtained with a standard MILP solver to compute exact
optimal solutions. We also propose three efficient heuristics (two MILP-based heuristics) to find high-quality
feasible solutions for large-scale systems within reduced execution time. We also carry out a set of experiments
to evaluate the proposed algorithms and provide valuable guidelines for the efficient design of such systems.
The results show that our approach is capable of handling large size instances of the NFV deployment problem
involving up to 200 nodes and 100 demands.

Keywords: Network Function Virtualization (NFV), Resource allocation, Network performance analysis,
NFV dynamic system, Flow Covers, Placement

1. Introduction

Thanks to virtualization technology, Network Func-
tion Virtualization (NFV) offers a new way to de-
sign, deploy and manage a network and its services.
NFV decouples the network functions, such as Fire-
wall and Load Balancing from proprietary hardware
appliances and moves them to virtual servers. These
functions can be managed within a network on de-
mand and scaled up and down as needed, without
the delay and cost of installing new hardware devices.
However in case of high demands, some resources end
up being over-utilized, resulting in higher latency and
SLA degradation, whilst for low demands waist of re-
sources may occur. In such circumstances and in or-
der to meet the performance and energy objectives,
the Vitual Network Function (VNF) instances need
to be dynamically located on the network. Hence, the
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placement of VNF is a central issue in the NFV de-
ployment stage. An essential step in connection with
this issue is to develop efficient tools for NFV place-
ment and routing, to optimize the resource utilization
on both nodes and links.

NFV placement has been extensively investigated
in the literature as reported e.g. in the survey pa-
pers [1], [2]. Proposed mathematical models take into
account various constraints such as the amount of
available resources on nodes and links or the order of
VNFs in a chain. However, in order to keep the model
tractable, most existing works rely on simplifying im-
portant assumptions. For instances, they consider
that a set of possible paths between any pair of nodes
is known or that the placement of functions is fixed.
More importantly, the solution methods available in
the existing literature are only capable of handling
small size instances.

The present paper provides a mathematical model
to the joint problem of VNFs placement and routing
path selection, for chaining them upon service request

Preprint submitted to Computer Networks October 12, 2018

© 2018 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1389128618302287
Manuscript_e6ca38aeb657c17b8a95792faff94bdd

http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1389128618302287
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1389128618302287


from users. The routing paths will be steered through
a number of VNFs, with the goal of executing the
network service in the required order of functions.
Our model uses flow constraints to ensure that the
functions in a service chain are processed in the right
order whilst keeping the model simple and tractable.
We note here that, the principle of flow constraints
has already been suggested in [3], [4] but in these
references, the MILP models do not appear to lend
themselves to efficient exact solutions. Moreover, the
applications investigated in [3], [4] significantly differ
from those addressed in the present paper. In [3], the
allocation of a specific Service Chaining apply-
ing load balancing is considered. For each time step,
they run the model to solve with only one connection
(one demand). In [4], the general resource allocation
problem for user requests in cloud computing is con-
sidered, but without taking into account the place-
ment of each VNF on the substrate network. We also
note that in contrast with [3] and [4], the approach of
the present work includes the admission control deci-
sion of Service Providers either to serve a demand or
to reject it.

The main contributions of the present paper are
the following:

• We define and formulate the static version of
the resource utilization problem as a Mixed In-
teger Linear Programming (MILP) problem. A
distinctive feature of our model contrasting with
most existing work is that the model is linear
and can find the optimal solution for configu-
rations of fairly large size. Thus the model can
also be applied in the context of operating a
dynamic system in order to minimize the re-
source utilization and maximize the number of
accepted demands.

• We propose an innovative method for generat-
ing some valid inequalities (Flow Covers) to im-
prove efficiency of the solution process. The
method allows us to report on experiments in-
volving large instances of the problem. To the
best of our knowledge, this is the first time Flow
Cover inequalities are used in the context of op-
timizing NFV systems.

• We propose three powerful heuristics, where there
are two MILP-based heuristics, to find accu-
rate feasible solutions for larger instances of the
problem.

• We evaluate the proposed model and solution
methods on realistic network topology using an
event-driven simulation to run our model in a
dynamic scenario. We also evaluate the distri-
bution of VNFs on a new data centre architec-
ture (a Leaf-Spine topology) and suggest that
VNFs should be located on Leaf-Layer rather
than a Spine-Layer.

The rest of the paper is organized as follows. In
Section 2, we discuss the relevant literature and con-
tributions. Section 3 presents our MILP model. The
improvement in solution efficiency via generation of
Flow Cover inequalities is in Section 4. Three heuris-
tic algorithms for approximately solving larger in-
stances are proposed in Section 5 and in Section 6.
Results of simulation carried out on a number of net-
work instances (up to 200 nodes, 100 demands and
5 functions) in Section 7. Finally, conclusions and
perspective are presented in Section 8.

2. Overview of Related Work

The problem of resource allocation in NFV Infras-
tructure has been extensively studied and surveys of
models and solutions method are provided in [1], [2].
The placement problem is known to be NP Complete
[5] and various mathematical models have been pro-
posed in [6], [7], [8], [9], [10] and [11]. In particular,
in [6], Lukovszki et al. formulated the offline (SCEP:
Service Chain Embedding Problem) and online prob-
lems (OSCEP: Online SCEP). They assumed that a
list of all potential paths, that can be used for routing
through VNFs chaining for each demand, is available.

Li et .al [7] and Papagianni [4] addressed the op-
timal allocation of Virtual Resources in Cloud Com-
puting Networks. They proposed methods for general
efficient mapping of user requests (virtual resources)
to a shared substrate interconnecting network. They
did not take into account the placement of VNFs
on the substrate network. In [8], Elias et al. for-
mulated the centralized version of VNF-Forwarding
Graph Embedding (VNF-FGE) as a non-linear in-
teger optimization model assuming that the place-
ment of functions is fixed. They derived the best
solution for each individual Virtual Operator. In
other words, these model solved with only one re-
quest (one demand) for each running time. Also, as
above mentioned, in [3], Leivadeas proposed the al-
location model of a specific Service Chain applying
load balancing.
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Recently, Sun et al. [11] investigated the offline
and online solutions for the VNF placement prob-
lem with the aim of minimizing the deployment cost.
The chaining of VNFs is taken into account but a
pre-defined set of paths for routing the demands is
assumed.

Ma et al. [12] proposed a non-linear model for
the network function virtualization problem depend-
ing on the dynamic requirements of the network but
do not solve their model exactly. An algorithm based
on Min-Max routing algorithm is proposed. Liu et
al. [13] also jointly optimized the deployment of new
users’ Service Function Chains (SFCs) and the read-
justment of in-service users’ SFCs while considering
the trade-off between resource consumption and oper-
ational overhead. They formulated a path-based ILP
model to solve the problem assuming that a set of pre-
defined paths between any pair of nodes is known and
given. An approximate algorithm based on Column
Generation (CG) model is also developed but the ap-
proach can only solve small instances such as 6-nodes
topology and 14-nodes NSFNET topology.

In [14], Addis et al. defined the generic VNF
chain routing optimization problem and proposed a
mixed integer linear programming formulation. Their
model took into consideration specific NFV forward-
ing models (standard and fast path modes) as well
as flow bit-rate variations that make the allocation of
edge demands over VNF chains unique yet complex.
However, they did not solve the model exactly but
only approximately via a math-heuristic resolution
method.

Recently, Kuo et al. [15] studied the joint prob-
lem of VNF placement and path selection to better
utilize the network. They studied the relation be-
tween the path length and the virtual machine reuse
factor. However, they only proposed a chain deploy-
ment heuristic to find a solution whose path length
and reuse factor approximately meet given target val-
ues.

Leivadeas et al. [3] studied the problem of de-
ploying service chains on an SDN enabled data cen-
ter network. A mixed integer linear programming
model is proposed but the latter does not appear to
lend itself to efficient resolution using standard MILP
solvers, and no exact solution is reported in the pa-
per. Heuristic algorithms are used to recalculate the
routing paths in order to adjust to dynamic traffic.
Moreover, the size of instances used in their computa-

tional experiments are fairly small (a fat tree topology
k = 4 with 28 nodes).

In connection with the resource distribution prob-
lem in cloud radio access network, Hui et al. [16], [17]
studied the multi-dimensional resources integration
(MDRI) for service provisioning. The proposed ar-
chitecture was experimentally verified on OpenFlow-
based enhanced SDN testbed in terms of resource uti-
lization, path blocking probability, network cost, and
path provisioning latency. However, they are differ-
ent from the original NFV placement problem when
requests are only considered as network flows trans-
ferring from source to destination with the needed
network and processing resources, but without the
order requirement of nodes on network paths.

In contrast to existing works, the present paper
provides a new efficient MILP formulation for the
static version of NFV placement and routing problem
considering the order of VNF in a chaining. A novel
feature of this formulation is the systematic genera-
tion of valid inequalities referred to as Flow Cover in-
equalities, thus greatly improving the efficiency of the
solution process. Our model does not restrict routing
to a predetermined set of paths. The model not only
can find an exact optimal solution to large instances
of the static version of the problem but can also be
applied in the analysis of a dynamic scenario by tak-
ing into account the decision of Service Providers to
serve a demand or reject it. For handling instances
of larger size, for which finding exact optimal solu-
tion would be computationally too expensive, several
heuristic solution algorithm are proposed to provide
satisfactory trade-offs between solution qualify and
computational efficiency.

3. Problem Formulation

3.1. System Description

In our system, we distribute resources of the phys-
ical network to virtualized network functions. Each
VNF must be mapped to a physical node equipped
with sufficient resources to host the VNF. In addition,
the logical links between VNFs must be mapped to
physical paths so that all physical links on the paths
have sufficient bandwidth to accommodate the logical
links.

We model a network as an edge-weighted vertex-
weighted directed graph G = (V,E), in which wu,v is
the link capacity of each edge (link) (u, v) ∈ E and
cv is the number of resources (i.e. virtual machines
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(VMs)) that can be hosted on each vertex (server)
v ∈ V .

A virtual network function is defined through var-
ious characteristics such as the input data rate that
it has to handle and its output interfaces, based on
the forwarding rules. In this paper, we assume that
the data rate of the flows does not change when pro-
cessed through network functions. Hence, a VNF is
characterized by its processing requirement (qf ) for
each f ∈ F .

A demand (or request) d is defined by a source
sd, a destination td, the bandwidth requirement bd,
a chaining of ordered VNFs (F d) through which the
flow has to be processed in the right order.

In this paper, we focus on solving the dynamic
problem characterized by the fact that demands can
occur at any time. In particular, in the situation of
heavy load, it is critical to provide a model capable
to decide which demand will be served and how to al-
locate efficiently resources to demands. After a time
period δ (depending on the system configuration), we
collect demands that arrive in the time slot [t− δ, t[,
where t is the current time. We also update the avail-
able system resources to take into account possible
completion of demands in this time period. We call
D(t) the set of demands arriving between t− δ and t.
G(t) = (V (t), E(t)) is defined a the current state of net-
work G at time t. The current network state at time
t includes the set of available resources of the system
after time t − δ and the set of resources released by
demands completed during the period [t− δ, t[.

We aim to optimize the location of functions and
demand routing in a typical time interval [t − δ, t[.
This is the basic sub-problem to be solved in any
time steps for operating a complex dynamic system.
The goal of the formulation is to obtain an efficient
placement of VNFs and routing of the flows without
violating the constraints induced by the available re-
sources on nodes and links. The objective function
aims at minimizing the utilization of the links and
nodes, thus maximizing the number of accepted de-
mands.

3.2. Mixed Integer Linear Programming Formulation

3.2.1. Notation

We define the outputs of our problem as a set of
decision variables.

• xdfv: a binary variable that equals to 1 if and
only if node v hosts function f of demand d

• yduv: a binary variable that equals to 1 if and
only if demand d uses link (u, v)

• ϕfi,du,v , i = 0..ld + 1 equals to 1 if and only if
(u, v) is used in a path between two succes-
sive functions fi−1, fi for demand d, where ld is
the number of functions required by demand d.
Especially, ϕf0,du,v represents the case of a path
between the source and the first function f0,

whilst ϕ
fld+1,d
u,v stands for the case of a path be-

tween the last function fld and the destination.

• zd equals to 1 if and only if demand d is served

We aim at minimizing the maximum resource uti-
lization and maximize the acceptance ratio. The re-
source utilization includes the utilization on nodes
and links.

U (t) = α ∗

∑
d∈D(t)

zd

|D(t)|
− β ∗ (L(t) +N (t)) (3–1)

where:

L(t) = Max
(u,v)∈E(t)


∑

d∈D(t)

bdyduv

wuv

 (3–2)

N (t) = Max
v∈V (t)


∑

d∈D(t),f∈F d

qfx
d
fv

cv

 (3–3)

The choice of the two design parameters α and β
influences the way our system serves customers. The
basic principle is that we want to serve as many de-
mands as possible (the first term) or we will reject
demands that will consume too much resources pro-
portionally (the second term, including the resources
on nodes and links). For example, in our simulation,
with |D(t)| = 100 we use α = 10 and β = 1 to assure
that a demand is served if the amount of resources
it needs is reasonable (typically less than 10% of the
available resources on both nodes and links of the
system).

3.2.2. Mathematical Model

(P): Maximize U (t)
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Subject to:∑
d∈D(t),f∈F d

xdfvqf ≤ N cv ∀v ∈ V (t) (3–4)

∑
d∈D(t)

yduvb
d ≤ Lwuv ∀u, v ∈ V (t) (3–5)

yduv + ydvu ≤ 1 ∀u, v ∈ V (t), d ∈ D(t)

(3–6)

∑
v∈V (t)

xdfv =

{
zd if f ∈ F d

0 otherwise
∀d ∈ D(t)

(3–7)

∑
v∈V (t)

yduv −
∑
v∈V (t)

ydvu =


zd if u = sd

−zd if u = td

0 otherwise

∀d ∈ D(t)

(3–8)

ϕdfuv ≤ yduv ∀u, v ∈ V (t), d ∈ D(t), f ∈ F d

(3–9)

A ∗ ϕdfi = xdfi−1
− xdfi ∀d ∈ D

(t) (3–10)

yduv ≤ zd ∀u, v ∈ V (t), d ∈ D(t)

(3–11)

ϕdfuv ≤ zd ∀u, v ∈ V (t), d ∈ D(t), f ∈ F d
(3–12)

xdfv ∈ {0, 1}, yduv ∈ {0, 1}, ϕdfuv ≥ 0 (3–13)

Constraint (3–4), (3–5) ensure that the node ca-
pacity and link capacity are not exceeded. Constraint
(3–7) states that a required function is only processed
one time for each demand. Constraint (3–6) means
that for each demand we avoid to transfer a demand
back on a path. Constraint (3–8) expresses flow con-
servation at each node. Constraints (3–9) and (3–10)
enforce the order of function in VNFs chaining.

In (3–10), A denotes the node-arc incidence ma-
trix of the network, xdfi is defined for each demand d
as an n-dimensional integral vector, n is the number
of nodes and its components are xdfiv. More precisely,

for each demand d, xdf−1
is the n-dimensional vec-

tor with all components be 0 except component of
its source that equals to 1. Similarly, xdfld+1

is the

n-dimension vector with all components be 0 except
component of its destination that equals to 1.

The joint effect of constraints (3–8), (3–9) and
(3–10) is to guarantee that for each demand d, the
corresponding functions are indeed located on the el-
ementary path from its source to its destination in the
solution. As a result, the ordering constraints will be
correctly expressed.

Constraints eqs. (3–11) and (3–12) take into ac-
count the decision of Service Providers to accept or
reject a demand in a dynamic system. For instance,
if demand d is blocked (that means zd = 0), we do
not allocate any resource to this demand (yduv = 0

and ϕdfuv = 0 with ∀u, v ∈ V, f ∈ F, d ∈ D).

4. Flow Cover Inequalities

The mathematical model above is a Mixed Integer
Linear Programming problem that can be solved by
MILP based branch-and-bound algorithms. Here, we
use GUROBI 6.52 optimization software to compute
the solution. However, with the academic version
of Gurobi, the efficient algorithms for finding strong
valid inequalities that cut off fractional solutions to
MILP relaxations are limited. Moreover, without ad-
dition of valid inequalities, the relaxations are not
strong enough to efficiently prune the nodes. There-
fore, the problem is hard to solve for large instances.
The purpose of this section is to present strong valid
inequalities for the above model that can be used suc-
cessfully in reducing the size of the branch-and-bound
tree. Our inequalities are derived from the flow cover
inequalities that were introduced by Padberg et al.
[18] and Van Roy et al. [19, 20, 21].

Consider the set of feasible points for a linear in-
teger programming given by:

Y = {yduv ∈ {0, 1} :
∑
d∈D(t)

yduvb
d ≤ wuv ∀u, v ∈ V (t)}

Here {hduv = bd ∗ yduv} is the used bandwidth on
link (u, v) of demand d. We have:

∑
d∈D(t)

hduv ≤ wuv ∀u, v ∈ V (t)

hduv ≤ bd ∗ yduv yduv ∈ {0, 1} , hduv ≥ 0
(4–1)

We consider (4–1) as a single-node flow model
with exogenous supply wuv and |D(t)| outflow arc (see
Figure 1)

For each demand d ∈ D(t), the flow hduv on the
dth arc is bounded by the capacity bd > 0 if the arc
is open. Note that yduv equals 1 if (u, v) is used by
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Figure 1: An example for a single-node flow model

demand d, and equals 0 otherwise. Hence, we have:
bd ≤ wuv, ∀(u, v) ∈ E(t).

Definition 1. A set S is called a flow cover, with
respect to link (u, v) ∈ E(t), if

∑
d∈S

bd > wuv

Initially, we consider the subset of Y with yduv =
ηd, i.e, ηd is fixed at one of its bounds, for d ∈ D(t)\D0

given by:

Y 0 = {yduv ∈ {0, 1} :
∑
d∈D0

yduvb
d ≤ ξ ∀u, v ∈ V (t)}

where ξ = wuv −
∑

d∈D(t)\D0

ηdbd

The flow cover inequalities in the context of our
model are then expressed as:

0 ≤ wuv −
∑
d∈S

yduvb
d −

∑
d∈S+

(bd − ρ)(1− yduv) (4–2)

where ρ =
∑
d∈S

bd − wuv, S+ = {d ∈ S, bd > ρ}

We now need to find cover sets S leading to strong
inequalities of the form (4–2). We propose below
a cover set selection strategy that uses knowledge
from previous nodes on the branch-and-bound tree.
In each new node in the branch-and-bound tree, we
know fractional solutions of MILP relaxation, namely
the values of yduv, denoted by yduv.

Considering each link (u, v) successively, we know
a set of values yduv with d ∈ D(t). In order to find
S0 ⊂ D(t) such that

∑
d∈S0

bd > wuv, we sort demands

in D(t) according to ascending order of the values
|yduv − 1

2 |. Based on this ordered list, we then select a
valid cover set S0 by picking up the k−first demands
in the list such that the sum of their bandwidth re-
quirement exceeds wuv and k is minimum. Now we
have to check the violation of (4–2) with the current
solution before deciding to add this cover. A flow
cover inequality is added only if it is violated by the
current solution yduv. Therefore, in order to increase

the opportunity of finding flow cover inequalities vi-
olated by the current fractional solution, we apply
an enumeration process to extend the cover set ob-
tained by adding τ more demands from the sorted
list (beginning at (k + 1)th demand) to the current
cover set S0. We now have an extended cover set Se

having k+ τ demands. Note that a cover S is valid if∑
d∈S

bd > wuv. Therefore we then enumerate all valid

covers from the extended cover set Se. As a result, we
get at most Ckk+τ cover sets where k <= |D(t)|. For
each cover set, the corresponding flow cover inequal-
ity is generated and appended to the model whenever
it is violated by the current solution y.

Lemma 1. If a set S is a Flow Cover, selected by the
above procedure, with respect to link (u, v) then the
inequalities (4–2) is violated by the current solution
yduv

Proof. It follows from Definition 1 that S is a Flow
Cover, we have

∑
d∈S

bd > wuv and bd−ρ > 0, ∀d ∈ S+.

Hence, ρ =
∑
d∈S

bd − wuv > 0. Assume that yduv is the

current solution of P, clearly yduv ≤ 1 and it holds
that:

Wuv = wuv −
∑
d∈S

ȳduvb
d −

∑
d∈S+

(bd − ρ)(1− ȳduv)

< wuv −
∑
d∈S

ȳduvb
d −

∑
d∈S+

bd(1− ȳduv)

< wuv −
∑

d∈S\S+

ȳduvb
d −

∑
d∈S+

bd

< wuv −
∑
d∈S

bd +
∑

d∈S\S+

bd −
∑

d∈S\S+

ȳduvb
d

< (wuv −
∑
d∈S

bd) +
∑

d∈S\S+

bd(1− ȳduv)

< −ρ+
∑

d∈S\S+

bd(1− ȳduv)

Following the procedure that we pick demands
to add to the cover set, we have selected demands
whose |ȳduv − 1/2| is near to 0, in other hand ȳduv ≈
1/2. With d ∈ S\S+, we have bd ≤ ρ. Hence,∑
d∈S\S+

bd(1− ȳduv) < ρ/2. So Wuv < −ρ/2 < 0 with

ρ > 0. That violates the inequalities (4–2).
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In our simulation, we use the optimization tool
(GUROBI optimization [22]) for solving the MILP
problem P. In the implementation of our model, we
do not use GUROBI’s default parameter as we aim
to estimate the efficiency of our proposed flow covers
when compared to using the default parameters of
the optimization tool. Using the Gurobi callback rou-
tines, we stop at every new node on the branch-and-
bound tree (that means, at those nodes, the problem
found the fractional solution and we can obtain those
values), we then insert our own code to include our
solution inside the optimization tool (GUROBI). In
particular, we generate some strong flow covers as
discussed above and add them to our current model.
The optimization process continues until it can find
an optimal solution. That reduces the size of the
branch-and-bound tree quickly if the flow covers are
strong enough. More details regarding the efficiency
of our solution will be found in the computational
Section 7.

In the following section, we propose three efficient
heuristics to find a feasible solution within reduced
computation time.

5. MILP based Heuristics

In this section, we propose two approximate solu-
tion procedures based on our MILP model.

5.1. Node-Sub-Optimal Algorithm (NOSO)

The NOde-Sub-Optimal Algorithm consists in first
determining the optimal solution of the sub-problem
obtained by imposing integrality on the x variables
only and relaxing the other binary variables (y-variables)
into continuous variables. After obtaining the solu-
tion from this relaxed version of our model, we set
the x-variables at their optimal values for this sub-
problem. The remaining problem is then solved to op-
timally enforcing integrality of the variables y. There-
fore the problem space is decreased significantly. Fi-
nally, we solve this problem with those binary vari-
ables (y) by using the MILP solver GUROBI to ob-
tain the final heuristic solution.

5.2. Path-Sub-Optimal Algorithm (PASO)

This seconde heuristic is very similar to the pre-
vious one, except for interchanging the roles of the x
and y variables.

More precisely, in PASO, we consider another sub-
problem by keeping the y-variables as only binary

variables while relaxing x-variables as the continuous
variables. The binary y-variables are then fixed at
the values that we attain when dealing with this sub-
problem. We then solve equations (3–4) to (3–13)
with binary variables x. The problem space is now
smaller and we can get the final solution easier by
using the MILP solver GUROBI.

The computational results obtained with NOSO
and PASO are displayed in Table 4 and 5 and com-
pared with the exact optimal solutions. Both heuris-
tics are shown to produce approximate solutions close
to optimal. In terms of computation time, PASO ap-
pears to be significantly less time consuming than
NOSO.

6. Minimum Spanning Tree based Heuristic
Algorithm (MSTH)

The idea of the Minimum Spanning Tree based
Heuristic Algorithm is to avoid using too much re-
sources on some nodes and links, especially in case
of small capacity. The aim is to limit the possibil-
ity of using unnecessary bottleneck links and nodes,
thus improving network utilization according to our
problem objective.

6.1. Route Selection

In this section, we consider the problem of select-
ing the route that carries the traffic for each demand.
Assume that we need to select a route and provision
resources for a new demand d ∈ D(t) between source
node s and destination node t. The main intuition be-
hind the route selection algorithm is to find a route
that (a) has enough capacity to host VNFs (Section
6.2) and (b) keeps the more critical links available for
future demands.

The problem now can be stated as finding an
optimal Max-Min path from s to t where σ(µ) =
Min{ws,i1 , wi1,i2 , .., wik,t} is maximized for each de-
mand. This problem is recognized as the Maximum
Capacity Path Problem [23] and is efficiently solved
using a variant of Dijkstra’s algorithm.

However, the above basic Maximum Capacity Path
Problem only focuses on the utilization on paths or
links (condition (b)). It is easy to realize that by us-
ing σ(µ), the obtained routing path can violate con-
dition (a) if we do not take into account the process-
ing capacities on nodes. So, we propose to use the
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following costs in extended Maximum Capacity Path
Problem:

auv = wuv ∗
cv
C

(6–1)

where C = max
u∈V (t)

cu

In summary, in the route selection section, we
solve the extended Maximum Capacity Path Prob-
lem by using a modified Dijkstra algorithm to find a
shortest path from sd to td for each demand d in the
network where each link is assigned a link weight auv,
see detail in [23].

6.2. VNFs Distribution

After obtaining a set of paths Π = {P1, P2, ...P|D(t)|}
to route for demands, the last important step is how
to distribute VNFs on those to minimize the node uti-
lization. In this section, we will present a procedure
to distribute efficiently VNFs on given paths. The
principle is to put VNFs one by one on a path and
consider the residual capacity of nodes on this path.
The ideal distribution is that all needed resources for
VNFs are shared equally for nodes on all paths. That
means the ideal node utilization is computed by:

Nideal =

∑
d∈D(t)

∑
f∈F d

qf∑
i=1..|D(t)|

∑
v∈Pi

cv
(6–2)

We consider the paths one by one. In particular,
given demand d, we start from the first node on the
path Π, and then put function fi : fi ∈ F d on node
v ∈ Π if

qfi/cv ≤ Nideal (6–3)

and next to the succeeding node otherwise. Finally
we locate the remaining functions on the destination
of the path even if this is violated by equation (6–3).

Once the routes have been selected for each de-
mand, it is possible that a given node (shared node)
appears on r multiple paths. In this case, we would
like to share fairly the capacity of this shared node
on the r paths in order to avoid a poor utilization of
the shared nodes. Therefore, we have:

• For each shared node v that appears at r paths,
i.e. Pi1 , ..Pir , we set temporarily the available
capacity of v on each path to c′v = cv/r.

• However, as we consider each path sequentially,
it remains possible that the resource reserved on
a shared node is not used in a given path if no

Table 1: Network parameter values for the case of unlim-
ited resources and the case of limited resources.

Topology
Unlimited Resources Limited Resources
W C W C

Abilene 200 300 100 150

Nobel-eu 150 180 70 80

Nobel-germany 200 350 100 200

Test50 200 150 90 70

Test100 180 100 90 50

Test200 150 90 75 40

VNF is assigned to this shared node. Therefore,
whenever we finish distributing resources for a
demand (in the list of demands), we have to
check if the capacity of any shared node has not
been used (satisfying the in-equation (6–3)) and
then add its shared capacity fairly to this shared
node on the remaining paths, to serve future
demands. This step can improve significantly
both the node utilization and the acceptation
ratio of demands in our system.

Summary, the MSTH algorithm first finds the max-
imum capacity path with large node capacity for each
demand. It then distributes efficiently VNFs on the
resulting paths.

7. Performance Evaluation

In this section, we evaluate the performance of
our proposed model via simulation. The experiments
are executed in a Java based environment that allows
running the simulation and optimization tool (Gurobi
optimization [22]).

7.1. Simulation

In our simulations, we use real networks from
SNDlib database [24]. Topologies (Test50, Test100,
Test200) are generated by BRITE topology genera-
tion tool [25] using Waxman model with parameters
αw = 0.15, βw = 0.2,mw = 2. The VNFs can be
hosted at any node in the network. All nodes have
the same capacity C. The capacity of the links was
set to W . For each topology, we have considered two
values for the pair (C,W ), which we refer to as un-
limited and limited resources, as listed in Table 1.

There are a set of F = 10 VNFs available, each
VNF requires a computation capacity qf = {1, 2, .., 10}.
Demands require to run service chains composed of 5
VNFs from F . For each demand, its source and des-
tination are generated uniformly at random from all
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Table 2: The Solution Efficiency with and without Flow Covers for various values of τ in case of unlimited resources

Instances |F | |D(t)| n τ
Obj

Value
Link load

(L)
Node Load

(N )
|S0|

Number of
generated

flow covers
GAP AcceptNo

Time of
MILP solver

Abilene 5 100 12

8.88 0.33 0.7800 Without flow covers 0.00 100 16.47
1 8.88 0.33 0.78 46 1953 0.00 100 12.85
2 8.88 0.33 0.78 46 31032 0.00 100 13.32
3 8.88 0.33 0.78 46 424358 0.00 100 24.01
4 8.88 0.33 0.78 46 3831782 0.00 100 187.38

Nobel-eu 5 100 28

9.09 0.34 0.56 Without flow covers 0.00 100 4000.00
1 9.09 0.34 0.56 30 1675436 0.00 100 4000.00
2 9.09 0.34 0.56 30 6030415 0.00 100 4000.00
3 9.08 0.34 0.57 30 24725614 0.00 100 4000.00
4 9.06 0.34 0.58 30 20373253 0.00 100 4000.00

Nobel-germany 5 100 17

9.38 0.28 0.33 Without flow covers 0.00 100 181.84
1 9.38 0.28 0.33 37 156 0.00 100 70.34
2 9.38 0.28 0.33 38 795 0.00 100 76.44
3 9.38 0.28 0.33 38 6285 0.00 100 95.20
4 9.38 0.28 0.33 38 39099 0.00 100 147.05

Test50 5 100 50

9.15 0.57 0.27 Without flow covers 0.00 100 9.40
1 9.15 0.57 0.27 32 509 0.00 100 8.65
2 9.15 0.57 0.27 32 7379 0.00 100 10.91
3 9.15 0.57 0.27 32 62335 0.00 100 16.30
4 9.15 0.57 0.27 32 669444 0.00 100 51.79

Test100 5 100 100

8.75 0.96 0.28 Without flow covers 0.00 100 745.33
1 8.75 0.96 0.28 25 1619 0.00 100 1133.28
2 8.75 0.96 0.28 25 12376 0.00 100 1958.50
3 8.74 0.96 0.29 25 352334 0.00 100 4000.00
4 8.74 0.96 0.29 25 2869554 0.00 100 4000.00

Test200 5 100 200

9.11 0.56 0.32 Without flow covers 0.00 100 47.16
1 9.11 0.56 0.32 21 2709 0.00 100 42.74
2 9.11 0.56 0.32 21 37373 0.00 100 65.54
3 9.11 0.56 0.32 21 462335 0.00 100 71.95
4 9.11 0.56 0.32 21 5669438 0.00 100 48.92

possible (sd, td) pairs. Demand capacity requirements
are selected from a set bd = {1, 2, .., 10} (bandwidth
unit).

We run a first experiment to evaluate the solu-
tion efficiency of our proposed model and identify
the size of the problems that can be solved exactly.
We consider a set of demands D(t) = 100 and differ-
ent topologies. We also evaluate the improvement in
efficiency when generating flow cover inequalities as
compared to the case without flow covers.

In a second experiment, we assess various met-
rics in a dynamic system such as the blocking rate,
the resource utilization and the average length of de-
mand’s path. In our simulation, demand arrivals are
generated using a Poisson process of parameter λ cho-
sen such that the overall blocking is below 0.2. The
holding time of each demand is generated from an ex-
ponential process with an average parameter 3. We
generate 10 runs of length T = 2000 seconds each.
The results are averaged out over the runs and we

compute the 95% confidence interval for the results
using a small-sample statistic.

The simulation keeps the current state of the net-
work as a list of ongoing demands including the loca-
tion of functions and their routing path. We update
the system after a certain time depending on the sys-
tem configuration. In our simulation, we update the
system after ∆t = 3ms. Every ∆t, we first check
if any demand had terminated during the previous
inter-arrival time, remove them from the list and then
release the resources that they were holding. Then,
we run both the MILP algorithm and the heuristics to
find the solution. Depending on the algorithms un-
der evaluation, accepted demands are added to the
list of ongoing demands and the available resources
are updated simultaneously.

In the next section, we evaluate the efficiency of
our proposed algorithms in terms of input size and
network performance.
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Table 3: The Solution Efficiency with and without Flow Covers for various values of τ in case of limited resources

Instances |F | |D(t)| n τ
Obj

Value
Link load

(L)
Node Load

(N )
|S0|

Number of
generated

flow covers
GAP AcceptNo

Time of
MILP solver

Abilene 5 100 12

8.18 0.92 0.89 Without flow covers 0.00 100 12.15
1 8.18 0.92 0.89 14 6 0.00 100 14.12
2 8.18 0.92 0.89 14 13 0.00 100 12.97
3 8.18 0.92 0.89 14 43 0.00 100 15.17
4 8.18 0.92 0.89 14 113 0.00 100 13.69

Nobel-eu 5 100 28

8.30 0.80 0.90 Without flow covers 0.00 100 627.25
1 8.30 0.80 0.90 12 2343 0.00 100 245.75
2 8.30 0.80 0.90 12 10340 0.00 100 350.36
3 8.30 0.80 0.90 12 29849 0.00 100 337.34
4 8.30 0.80 0.90 12 69312 0.00 100 375.48

Nobel-germany 5 100 17

8.48 0.72 0.79 Without flow covers 0.00 100 140.57
1 8.48 0.72 0.79 19 310 0.00 100 119.28
2 8.48 0.72 0.79 20 1658 0.00 100 126.89
3 8.48 0.72 0.79 20 7341 0.00 100 89.84
4 8.48 0.72 0.79 20 34128 0.00 100 69.78

Test50 5 100 50

6.37 0.52 1.00 Without flow covers 0.02 79 4000.00
1 6.37 0.52 1.00 14 974137 0.02 79 4000.00
2 6.37 0.52 1.00 14 6968816 0.02 79 4000.00
3 6.35 0.54 1.00 14 28845999 0.03 79 4000.00
4 6.37 0.52 1.00 14 70807063 0.02 79 4000.00

Test100 5 100 100

7.27 0.98 0.54 Without flow covers 0.00 88 4000.00
1 7.27 0.98 0.54 11 879 0.00 88 4000.00
2 7.27 0.98 0.54 11 4964 0.00 88 4000.00
3 7.27 0.98 0.54 11 123489 0.00 88 4000.00
4 7.23 0.98 0.58 11 868324 0.00 88 4000.00

Test200 5 100 200

7.87 1.00 0.62 Without flow covers 0.00 95 4000.00
1 7.87 1.00 0.62 12 1257 0.00 95 4000.00
2 7.87 1.00 0.62 12 3806 0.00 95 4000.00
3 7.87 1.00 0.62 12 147960 0.00 95 4000.00
4 7.87 1.00 0.62 12 3580647 0.00 95 4000.00

For all the tables, “|F |” is the number of functions
and “|D(t)|” is the number of arrived demands at time
(t), the “Obj Value” is the value of the objective func-
tion computed by equation (3–1), where the “Link
Load” and the “Node Load” are defined by equation
(3–2), (3–3) respectively. Moreover, “|S0|” is the size
of cover sets, “GAP” is obtained directly from Gurobi
optimization tool, “AcceptNo” is the number of ac-
cepted demands.

7.2. The Solution Efficiency with and without Flow
Covers for various values of the parameter τ .

Tables 2 and 3 show the improvement in efficiency
by generating flow covers for solving MILP with dif-
ferent values of τ = {1, 2, .., 5} (τ is defined earlier
in Section 4). We run the MILP solver, GUROBI
[22], using the default parameter values and generat-
ing flow covers as described in Section 4 to evaluate
the efficiency of our method using Flow Covers.

We observe that generating flow covers with small
value of τ makes the solver more efficient and the op-
timal solution is obtained much faster (see the value
of objective and GAP of the MILP solver). For in-
stance, using the Abilene topology, we can get the op-
timal solution after 12.8553 seconds when generating
some flow covers, whereas we need 16.4741 seconds
without adding flow covers.

A second observation is the impact of the parame-
ter τ in the computation time of the MILP solver. As
explained in Section 4, τ is used to increase the op-
portunity of finding good flow cover cuts. The idea is
to find stronger flow cover inequalities for the MILP
solver. However, as we can see in Tables 2 and 3,
larger values of τ do not bring any benefit in the
computation time of the MILP solver. This is be-
cause when increasing the value of τ , it takes more
time to find Ckk+τ cover sets for each link (u, v) ∈ E(t)

where k <= |D(t)|. As a consequence, these extended
flow covers are not strong for the problem. In addi-
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Table 4: Comparison of the objective values obtained with the various proposed algorithms in case of unlimited resources

Instances F D n
Optimal Solution MSTH NOSO PASO with adding Flow Cover

Obj
Value

AcceptNo
CPU
Time

Obj
Value

AcceptNo
CPU
Time

Obj
Value

AcceptNo
CPU
Time

Obj
Value

AcceptNo
CPU
Time

Abilene 5 100 12 8.88 100 1345.60 8.80 100 0.15 8.88 100 80.57 8.88 100 8.64

Nobel-eu 5 100 28 9.09 100 4008.06 8.93 100 0.3 9.08 100 4013.16 9.08 100 1666.55

Nobel-germany 5 100 17 9.38 100 4005.29 9.29 100 0.26 9.37 100 1149.81 9.38 100 45.75

Test100 5 100 100 8.75 100 4031.37 8.55 100 0.23 8.75 100 211.78 8.75 100 130.79

Test200 5 100 200 9.11 100 4193.39 8.95 100 0.34 9.11 100 309.45 9.11 100 165.93

Test50 5 100 50 9.15 100 4011.21 9.08 100 0.33 9.15 100 27.79 9.15 100 17.93

Table 5: Comparison of the objective values obtained with the various proposed algorithms in case of limited resources

Instances F D n
Optimal Solution MSTH NOSO PASO with adding Flow Cover

Obj
Value

AcceptNo
CPU
Time

Obj
Value

AcceptNo
CPU
Time

Obj
Value

AcceptNo
CPU
Time

Obj
Value

AcceptNo
CPU
Time

Abilene 5 100 12 8.18 100 4003.19 8.02 100 0.33 8.18 100 235.38 8.18 100 6.33

Nobel-eu 5 100 28 8.30 100 4011.39 7.96 99 0.27 8.27 100 4062.13 8.30 100 135.71

Nobel-germany 5 100 17 8.48 100 4005.79 8.35 100 0.42 8.48 100 4004.94 8.48 100 81.69

Test100 5 100 100 7.27 88 4030.55 5.02 69 0.23 7.27 88 5042.80 7.27 88 3664.51

Test200 5 100 200 7.87 95 4214.60 5.13 71 0.43 7.87 95 4583.08 7.87 95 3296.22

Test50 5 100 50 6.37 79 4012.06 5.77 78 0.35 6.37 79 4614.23 6.37 79 3720.65
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Figure 2: The average running time per demand vs λ

tion, a few additional computation time is required
to find cover sets with large value of τ .

Clearly, the more flow covers are generated, the
stronger the linear relaxation. However generating
flow covers requires significant time to find cover sets
that relates directly to the parameters k and τ . Note
that the value of k is computed in Section 4 depending
on the system parameters such as the link capacity
wuv and the bandwidth requirement of demands bd.
Determining good values of τ can only be done on
an experimental basis. From our experiments, it is
observed that the best value of τ in our simulation is
1.

7.3. Comparison of the Objective Value of the Vari-
ous Proposed Heuristics

Tables 4 and 5 compare the objective value of the
proposed heuristic algorithms. It is observed that our
model can find the optimal solution for a large in-
stance, namely, up to 200 nodes and 100 demands.
The objective value obtained by both NOSO and
PASO is close to the optimal. However, PASO is ob-
served to be significantly more efficient than NOSO
in terms of computation time. Regarding MSTH, the
objective value is quite close to the optimal solution
in case of unlimited resources, see Table 4. However
the difference with the exact optimal objective values
significantly increases in case of limited resources, see
Table 5. Therefore, our MSTH heuristic turns out to
be accurate in the case of unlimited resources only. In
term of the computation time, we can realize that the
MSTH always got the highest computation efficiency
comparing with NOSO and PASO. For instance, it
can find a solution 57.33 times faster than PASO,
537.13 times faster than NOSO and 9566 times faster
than the exact approach with the unlimited resource
Abilene topology. This clearly shows the wide range
of trade-offs between optimality and computational
efficiency that can be obtained through our various
heuristics as well as our exact approach for the prob-
lem.

7.4. The improvement in the Computation Time of
using Flow Covers in PASO Heuristic Algorithm

Fig. 2 illustrates the computation time of PASO
algorithm in two cases: with adding Flow Covers and
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Figure 3: The average running time per demand vs λ

without adding Flow Covers. Obviously, adding Flow
Covers improves significantly the computation time
for the PASO algorithm, especially in a large network,
such as saving about 50 − 100 seconds in Test 100,
Test 200. It again illustrates the efficiency of our
method for generating Flow Covers to solve the MILP
problem.

7.5. The Impact of The Arrival Rate of Demands

This section evaluates the network metrics in the
dynamic scenarios. We use the largest topology (Test200 ),
and demand arrives as a Poisson process with λ =
5..30.

Fig. 3 depicts the average computation time per
demand for our three algorithms. In terms of exe-
cution time, the MILP algorithm requires about 800
seconds per demand, NOSO and PASO requires about
300 seconds, whereas MSTH requires only 0.02 sec-
onds.

Especially, considering in detail the computation
time in Tables 4 and 5, PASO (the dotted line or pink
line) run significantly faster (from 2 to 20 times) than
NOSO (the dash-dot line or green line). For exam-
ple, with Abilene instance, PASO can obtain the so-
lution after 8.641 seconds while NOSO needs 80.579
seconds. As described earlier in Section 5, the idea
of NOSO is to find the best allocations for VNFs on
network nodes before routing them satisfying the or-
der of VNFs where as PASO focuses on finding the
shortest path between the source and the destination
of demands before locating VNFs on obtained paths.
The results of Fig. 3 show that considering the PATH
optimization before the NODE -locating optimization
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Figure 4: The blocking rate vs λ

Figure 5: Typical Spine-and-Leaf Topology

makes the problem easier to solve. That is interesting
and important observation because, in the literature,
all previous heuristics solved the VNF-locating phase
before the routing phase to find the feasible solution.

Fig. 4a shows the blocking rate of the topology
Test200, for three heuristics as well as the optimal
solution obtained with the MILP algorithm. We ob-
serve that the MSTH algorithm diverges very quickly
when λ increases. However, figure 4(b) confirms that
the MILP algorithm (OPT) provides the optimal so-
lution with the smallest blocking rate and that our
NOSO and PASO are close to the optimal.

Moreover, regarding the maximum link utilization
(Fig.7) and the average path length (Fig. 8), both
PASO and NOSO yield solutions very close to the
exact optimal MILP solution.

As a consequence, the PASO algorithm appears
as the best option, however, the MSTH algorithm
provide us with a feasible solution in a very limited
time and could be considered as a candidate when a
solution need to be computed very quickly in a large
network.

7.6. The Impact of Resource Capacity on Data Cen-
tre Topology

In this section, we investigate the impact of the
resource capacity on Data Centre topology with our
proposed heuristics. We use the Leaf-Spine topol-
ogy that is a novel architecture used in virtualized
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Figure 7: The maximum link load vs λ

technologies (Fig. 5, [26]). Unlike traditional core-
aggregation-access layer network, the leaf-spine archi-
tecture has only two layers. These leaf switches are
fully meshed to a series of spine switches. The advan-
tage of this topology is the ease of adding hardware
and capacity. Moreover, latency improves and bottle-
necks are minimized. To the best of our knowledge,
this is the first attempt at exploring VNFs distribu-
tion and performance evaluation in this Data Centre
topology. In our simulation, we set the capacity of
the spine switches four times larger than those of leaf
switches.

First, we estimate the distribution of VNFs onto
the Spine Layer for this topology for our three pro-
posed heuristics (PASO, NOSO, and MSTH). Fig.6
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Figure 8: The average length vs λ

shows the VNFs percentage on the Spine Layer for
four instances of the Leaf-Spine topology with differ-
ent number of demands (10, 100 and 200 demands).
The number of Spines in these instances increase from
3 to 6, while we keep the number of Leafs constant
(equals 20). Our first observation is that the NOSO
algorithm performs poorly. Indeed, with NOSO heuris-
tic, VNF distribution equals 0 when it can not find
any solution. This is due to the fact that with NOSO,
we solve the sub-problem to find the location of VNFs
before finding the routing path for each demand. There-
fore, there exist some cases where we can not find any
path satisfying the resource constraints. In addition,
the figures show that for all our heuristics, increasing
the number of Spines does not impact significantly
the VNF distribution on this topology. In general, the
MSTH algorithm distributes VNFs almost on Spine
Layer (75%), while the NOSO and PASO algorithms
distribute VNFs equally between the Spine Layer and
the Leaf Layer. It is a trend that VNFs should be
fairly distributed on both layers to avoid the conges-
tion on any layer.

In the second experiment, we show the impact
of adding resource capacity on this topology. We
use a Leaf-Spine topology with a number of Spines
= 3 and number of Leafs = 20 with a total capacity
= 192(units). We consider two assumptions. First,
we keep the capacity of every node on the Spine Layer
and then add more node capacity on the Leaf Layer
using a random distribution. Fig.9(a) shows the block-
ing rate for our three heuristics. We observe again
the poor performance of the NOSO algorithm that
can not find any solution in some instances (in those
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Figure 9: The blocking rate vs Resource capacity on Data
Centre Topology

cases the blocking rate equals 1). This is because
we solve the sub-problem of locating VNFs before
finding the routing path for each demand. Adding
the Leaf switches provide more opportunities to put
VNFs. However, there is no connectivity between
Leaf switches in the Leaf-Spine topology, therefore,
no path is found to route the demands through the
required VNFs hosted on those nodes. Obviously,
the blocking rate can be reduced by adding capac-
ity on the Leaf Layer. Alike for the first experi-
ment, the PASO heuristic obtains the best blocking
rate. Second, we implement a scenario where we keep
the capacity of every node on the Leaf Layer con-
stant, and increase the capacity of nodes on the Spine
Layer, see Fig.9(b). The figure shows that the PASO
heuristic always performs best in all situations. Ob-
viously, adding hardware and capacity on both layers
of the Leaf-Spine topology increases the network per-
formance (we cut the blocking rate by 10% with an
increased of 10% of the capacity).

Finally, to which layer should we add capacity in
order to get the highest benefit? Fig. 10 shows the
performance improvement of PASO when we add re-
sources on Spine Layer and Leaf Layer. As we can
see in the figure, adding resources to Spine Layer ob-
tains slightly more profit than to Leaf Layer. This
is because we have more spaces on the centre and
therefore we can reduce the congestion for the users.
However, it also increases the usage of the back-haul
links of the network.

8. Conclusions and Future Work

In this paper, we consider an NFV dynamic sys-
tem, study the optimization of its resources and pro-
vide guidelines for its design. We propose a new effi-
cient Mixed Integer Linear Programming model while
taking into account the decision of Service Providers
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Figure 10: Performance improvement of PASO when
adding resources

to serve or reject a demand. The overall solution is
enhanced by generating some strong flow covers for
the MILP solver. The main contribution, in contrast
with existing work, is that the model is linear and
can find the optimal solution for large network in-
stances, typically for systems as large as 200 nodes
and 100 demands. Furthermore, we propose three
efficient heuristics to find good quality feasible solu-
tions for larger instances with a reduced execution
time. To complete our study, we evaluate our so-
lution in various scenarios and use an event-driven
simulation to assess some realistic metrics in an NFV
dynamic system. We provide several valuable obser-
vations and guideline for the efficient design of such
systems. Future work plans to evaluate our heuris-
tics using testing facilities where we can deploy our
solution on a real environment.
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