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Abstract

The popularity of smart things constructs sensing networks for the Internet

of Things (IoT), and promotes intelligent decision-makings to support indus-

trial IoT applications, where multi-attribute query processing is an essential

ingredient. Considering the huge number of smart things and large-scale of the

network, traditional query processing mechanisms may not be applicable, since

they mostly depend on a centralized index tree structure. To remedy this issue,

this article proposes a multi-attribute aggregation query mechanism in the con-

text of edge computing, where an energy-aware IR-tree is constructed to process
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query processing in single edge networks, while an edge node routing graph is

established to facilitate query processing for marginal smart things contained in

contiguous edge networks. This decentralized and localized strategy has shown

its efficiency and applicability of query processing in IoT sensing networks. Ex-

perimental evaluation results demonstrate that this technique performs better

than the rivals in reducing the traffic and energy consumption of the network.

Keywords: Multi-attribute aggregation query, Energy-aware IR-tree, Edge

node routing graph, Edge computing.

1. Introduction1

With the popularity of smart things being ubiquitously deployed, adopting2

smart things to facilitate industrial applications becomes a reality nowadays.3

Intuitively, smart things in the Internet of Things (IoT) include sensors, ac-4

tuators, and smart embedded devices [1], and they can provide sensory data5

to promote the validity and applicability of a proper decision-making. Due to6

the fact that smart things are mostly scarce in their computational, commu-7

nication, and energy resources, aggregating sensory data of certain IoT smart8

things, and functional combination and collaboration [3], requires to reduce the9

amount/size of data packets to be transmitted in the network, and thus, to10

decrease the energy consumption. With the swift growth of the number of s-11

mart things being deployed in tremendous fields, traditional centralized sensory12

data gathering mechanisms through constructing routing trees may not be an13

appropriate strategy, when sensory data of smart things located within a cer-14

tain sub-region are interested. Instead, sensory data should be gathered, and15

processed whenever possible, in a localized fashion, while only the result should16

be aggregated and routed to the centre for further exploration. We argue that17

this strategy is proper, especially when sensory data, like multimedia data, are18

large in volume. Due to this concern, edge computing [2, 4] has been proposed19

in recent years as the complement of cloud computing [32], where industrial20

IoT applications should be processed in a distributed and localized fashion as21
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much as possible [5]. It is worth noting that sensory data query processing is22

an essential ingredient of typical industrial IoT applications [6]. Considering23

the functional diversity of smart things and the complexity of potential events24

to be studied, this article aims to explore the query processing, where vari-25

ous kinds of smart things contained in a certain sub-region in an IoT sensing26

network [7] are necessary to cooperate and collaborate for environment moni-27

toring and potential event detection. Taking the assumption that the kind of28

smart things corresponds to a certain sensing attribute into consideration, an29

aggregated multi-attribute query processing mechanism is essential to support30

industrial IoT applications, where edge computing is applied to promote sensory31

data processing and aggregation at the network edge.32

Traditional techniques have been developed to study the multi-attribute33

query processing. Generally, an index tree, like an R-tree, is built to man-34

age smart things distributed in a network. Queries are processed leveraging35

this index tree, where the result can be (i) a single object, which can satisfy36

certain spatial and multi-attribute constraints [8, 9, 10, 11, 12], or (ii) a set of37

contiguous objects, which can collectively satisfy certain constraints [13, 14, 15].38

Since objects may be unevenly distributed in the network, authors adopt prop-39

er mechanisms for handling objects contained in dense and sparse sub-regions.40

Objects in dense sub-regions should be prone to be recommended, since they41

can have more counterparts to be replaced when found improper [16]. Note42

that objects in certain directions may be more appropriate in certain settings,43

and thus, a direction-aware spatial keyword query method is proposed to satisfy44

direction-aware requirements [17]. Generally, these techniques construct a sin-45

gle index tree to support the query of spatial objects, where a single or multiple46

attribute(s) is/are to be examined. This centralized query processing strategy47

may not be appropriate when an IoT sensing network is large in scale, and48

things are huge in quantity. Besides, the network greenness requires to reduce49

the traffic and energy consumption of the network. Consequently, sensory data50

should be processed in a localized and distributed fashion when possible. In51

recent years, techniques have been developed to enable the search of IoT things,52
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where a single thing is mostly interested [18, 19]. Other techniques explore the53

network communication topology [20], an effective collection [21], management54

[22], and aggregation [23] of sensory data, a load-balancing routing [24], and55

the prolonging of network lifetime [25, 26]. To the best of our knowledge, a dis-56

tributed and localized mechanism has not been explored extensively to support57

the multi-attribute query processing in IoT sensing networks.58

To address this challenge, this article proposes a M ulti-attribute Aggregation59

Query (MAQ) processing technique in edge computing. In this context, the net-60

work is divided into sub-regions, where these sub-regions, corresponding to the61

regions of edge networks, are regulated by respective edge nodes. Generally,62

an edge network can have one edge node. Queries are processed firstly at the63

network edge by edge nodes, and the results are aggregated and routed to the64

centre afterwards. It is worth emphasising that smart things regulated by con-65

tiguous edge nodes may satisfy the requirement in a collective fashion, which66

requires the examination of sensory data provided by marginal smart things67

contained in contiguous edge networks. Major contributions of this article are68

summarized as follows:69

• Query processing in single edge networks. An Energy IR-tree (i.e., EIR-70

tree) is constructed to facilitate the query processing of smart things con-71

tained in a single edge network. Besides the inverted files specified upon72

the R-tree for indexing attributes of smart things, an energy factor is73

adopted to estimate the amount of energy consumption with respect to74

the number and density of smart things in certain sub-regions.75

• Query processing for marginal smart things in contiguous edge networks.76

Considering the amount of sensory data generated by smart things in the77

marginal sub-region of contiguous edge networks, a packet transmission78

graph is constructed upon edge nodes, in order to decrease the network79

traffic. Sensory data packets are transmitted between edge nodes, only80

when these sensory data are examined highly possible to benefit the query81

answering. The results with respect to independent and marginal edge82
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networks are assembled and aggregated for processing this query.83

Extensive experiments are conducted to evaluate the efficiency and applica-84

bility of our technique. The results demonstrate that this technique performs85

better than the rivals in reducing the network traffic and energy consumption86

of smart things.87

The rest of this article is organized as follows. Section 2 introduces rele-88

vant concepts and the energy model, which are used in our query. Section 389

introduces the query processing which is applied to single edge networks. Sec-90

tion 4 presents sensory data routing mechanism in edge nodes and the query91

mechanism in marginal edge networks. Section 5 shows the implementation and92

evaluates the approach developed in this article. Section 6 reviews and discusses93

related techniques. Finally, Section 7 concludes this work.94

2. Preliminaries: Concepts and Energy Model95

This section presents relevant concepts and the energy consumption model.96

2.1. Concept Definition97

In edge computing, a network region can be represented by disjoint edge98

networks, where an edge node is responsible for managing smart things in the99

respective edge network. Edge nodes can be (i) a super smart thing, which can100

have more computational, communication, and energy resources than ordinary101

smart things, or (ii) an ordinary smart thing. In this setting, smart things102

should take the role of edge nodes in a rotation manner for instance, to ensure103

the overall energy consumption of smart things as balanced somehow at the104

network level as possible. A marginal edge network of sensory data routing for105

contiguous edge nodes is defined as follows:106

107

Def. 1. Edge Node Data Routing Network. An edge node data routing108

network is defined as a tuple g = (Dgn, Rlt, Cst), where:109
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• Dgn is the set of edge nodes contained in marginal edge networks.110

• Rlt is the set of sensory data routing relationships between contiguous111

edge nodes.112

• Cst is the set of sensory data routing cost for contiguous edge nodes,113

corresponding to the weights specified on the edges in Rlt.114

In marginal edge networks, by means of edge computing, g.Dgn is respon-115

sible for data interaction transmission, which is only the result of localization116

processing. An edge node data routing network is represented in terms of a117

weighted directed graph, where the vertexes are edge nodes and the weights on118

the directed edges represent sensory data routing cost for contiguous edge n-119

odes. The edge node routing graph is stored in the form of an adjacency matrix,120

which specifies the sensory data forwarding strategy between edge nodes.121

Considering the diversity of smart things and the complexity of applications122

to be supported, various kinds of attributes are sensed by smart things. Without123

loss of generality and for simplicity, in this article we assume that a smart thing124

is relevant to a single kind of attribute. A query can be defined as follows:125

Def. 2. Multi-Attribute Aggregation Query. A multi-attribute aggrega-126

tion query is defined as a tuple q = (Rgn, Kd, Cst), where:127

• Rgn = (x, y, wdt, hgt) is a regular region of q, such that x and y are the128

top-left x - or y-coordinate, and wdt and hgt are the width and height of129

query region.130

• Kd = {k1, k2, . . . , km} is a set of attributes that are interested by q.131

• Cst is a set of constraints defined upon Kd to specify the conditions that132

should be satisfied by neighboring smart things in a collective fashion.133

Generally, q.Rgn is a rectangle and smart things are deployed in a two-134

dimensional network space. q.Rgn may be contained by an edge network, or135

by multiple contiguous edge networks. A sample multi-attribute aggregation136
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query network is presented as follows to illustrate the relationship between a137

multi-attribute aggregation query and the edge node data routing network:138

Figure 1: A sample multi-attribute aggregation query network.

A multi-attribute aggregation query q is specified in terms of three attributes139

hmt, tmp and prs, representing humidity, temperature and pressure, respec-140

tively. In Figure 1-(a), four edge networks (e.g., Rgn0, Rgn1, Rgn2, Rgn3)141

is displayed and q.Rgn are determined. Besides, the boundary range of data142

communication between edge networks is identified. In Figure 1-(b), edge net-143

works are represented in terms of a graph, where vertexes are edge nodes in144

the corresponding edge networks (e.g., v0, v1, v2, v3). Note that edge nodes145

are responsible for the propagation and localization of the query. Prior to data146

transmission, neighboring edge nodes send control packets to determine whether147

sensory data exchanges in-between are necessary or not. This strategy should148

decrease sensory data packets forwarding between neighboring edge nodes and149

thus, it can reduce the energy consumption of the query upon marginal edge150

networks. Subsequently, the edge node data routing network is built and repre-151
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Table 1: Parameters in the energy model.

Name Description

Eelec Energy consumption constant of the transmit and receiver electronics.

εamp Energy consumption constant of the transmit amplifier.

k The number of bits in one packet.

d The distance of transmission.

n The attenuation index of transmission.

ETx(k,d) The energy consumption to transmit a k bit packet with a distance d.

ERx(k) The energy consumption to receive a k bit packet.

Eij(k)
Energy consumption for transmitting a k bit packet from a smart thing SmTi to a

neighboring smart thing SmTj
.

sented as an adjacency matrix, as shown in Figure 1-(c), and 1-(d), respectively,152

where the value is either 0 or 1. Note that 0 represents no data packets to be153

sent between edge nodes, 1 represents data packet to be sent between edge n-154

odes. A query is typically injected into the network from an edge node, and this155

query should be processed by a single edge node, or through the collaboration156

of multiple edge nodes to achieve the multi-attribute aggregation in single edge157

network and marginal edge network.158

2.2. Energy Model159

This article applies the first-order radio model [27], which has been widely160

adopted in wireless sensor networks (WSNs), to calculate the energy consump-161

tion between smart things, since sensor nodes in WSNs are indeed a typical kind162

of smart things, and WSNs can be regarded as a special type of IoT sensing163

networks. Parameters of this energy model are presented in Table 1.164

Specifically, the energy consumption to transmit a k bit data packet with a165

distance d are denoted as ETx(k, d), and the energy consumption to receive a166

k bit data packet are denoted as ERx(k), which can be calculated as follows:167

ETx(k, d) = Eelec × k + εamp × k× dn (1)

ERx(k) = Eelec × k (2)
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Note that Eelec is the constant of energy consumption for transmission and168

receiver electronics, and εamp is the constant of transmission amplifier. In the169

course of transmitting a packet of k bits from one thing to another, the energy170

consumption Eij(k) is calculated as follows:171

Eij(k) = ETx(k,d) + ERx(k) (3)

where the parameter d represents the distance between one smart thing ndi172

and another ndj . Eij(k) is assumed the same as Eji(k) for smart things and173

edge nodes. The parameter n of the attenuation index for packet transmission174

depends on the surrounding environment. Generally, when smart things are175

barrier-free for forwarding data packets, n is set to 2. Otherwise, n is set to a176

value between 3 to 5.177

3. Single Edge Network Query Processing178

Leveraging an IR-tree [10], this section constructs an Energy IR-tree (EIR-179

tree) to support the multi-attribute query processing in a single edge network.180

3.1. EIR-Tree Construction181

Before presenting the construction of our EIR-tree, we briefly introduce the182

IR-tree as the background. Generally, a node in an IR-tree can be represented183

as a tuple (id, mbr, O), where (i) id is an identifier of this node, (ii) mbr is the184

M inimum Boundary Region (MBR) covered by this node, and (iii) O refers to185

the set of objects contained in mbr. A node has a pointer to an inverted file, and186

attributes sensed by objects in O are recorded in this inverted file. Leveraging187

the IR-tree structure, an EIR-tree is constructed as presented by Algorithm188

1, where the energy consumed for sensory data packets transmission between189

smart things and edge nodes is considered.190

As presented by Algorithm 1, based on the IR-tree structure, we obtain the191

mbr collection that covers smart things. These smart things in this collection192

serve as the leaf nodes of our EIR-tree (line 1). For instance, in Figure 2-(a),193

for a single edge network, ten smart things (e.g., o1, o2, . . . , o10) are displayed.194
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Table 2: Sample inverted file for the EIR-tree as shown in Figure 2.

IF Node k1 k2 k3

R1 (1,o1) null (1,o2)

R2 (1,o3) (1,o5) (1,o4)

R3 (1,o7) (1,o6) (1,o8)

R4 null (1,o10) (1,o9)

R5 (2,R1, R2) (1,R2) (2,R1, R2)

R6 (1,R3) (2,R3, R4) (2,R3, R4)

Root (3,R5, R6) (3,R5, R6) (4,R5, R6)

Algorithm 1 EIRTreeConstruction
Require:

- MBRset : the set of leaf nodes in an IR-tree

Ensure:

- tr : the root node of constructed EIR-tree

1: leaf nodes ← nodes in MBRset

2: num ← the number of nodes in MBRset

3: while num > 1 do

4: for ndi ∈ MBRset do

5: E(k) ← calculated by Eqn. 3

6: end for

7: tn ← nd1 and nd2 with the biggest E(k) in the MBRset

8: tn.mbr ← covered by nd1 and nd2

9: tn.O ← contained by nd1.O and nd2.O

10: MBRset ← MBRset - {nd1, nd2}

11: MBRset ← MBRset ∪ {tn}

12: num ← the number of nodes in MBRset

13: end while

14: tr ← MBRset

Meanwhile, according to the spatial division of [10], leaf nodes (e.g., R1, R2,195

R3 and R4) are identified. In addition, we deploy three attributes denoted as196

k1, k2 and k3, which are represented in terms of triangle, square and circular,197

respectively. An inverted file is appended to represent the attributes sensed by198

tree nodes (leaf nodes and non-leaf nodes) (denoted k), the frequency of k, and199

the list of tree nodes or smart things which have the attribute k, where each200
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tree node containing smart things as an item in the inverted file are is described201

by Table 2 (e.g., R1, R2, R3 and R4).202

In this article, high energy consumption means that the intensity of data203

packets exchange is relatively strong. When constructing an index tree, energy204

consumption is considered as an essential factor, and a fusion strategy of energy205

consumption is adopted. Specifically, given a set of tree nodes, we calculate206

the energy consumption of each tree node in the collection MBRset (lines 4-6).207

Here, the E (k) represents the energy consumption of collecting sensory data in208

each tree node, which is calculated by Eqn. 3 (line 5).209

For instance, the weight of the tree node R1, is computed as follows:

WR1(k) = 2× Eelec × k + εamp × k× dn
o1,o2

(4)

210

Note that a certain tree node in MBRset has a relatively high energy con-211

sumption, which means that the intensity of sensory data exchange is large.212

Such tree nodes are selected as a merged new tree node according to their ener-213

gy consumption. At each merging step, two tree nodes with the biggest weight214

are selected to be merged (lines 7-11). The EIR-tree is constructed through215

merging tree nodes from bottom to top, until the root node has been estab-216

lished (line 14). An example of constructed EIR-tree is shown in Figure 2-(b).217

3.2. Query Processing in Single Edge Networks218

In general, the single edge network query processing is performed by travers-219

ing EIR-tree, and the inverted file is used to check whether there is an attribute220

of interest in the edge network. By eliminating smart things that are not in the221

scope of interest for the query as early and prompt as possible, the query can222

avoid processing non-target things.223

Leveraging the EIR-tree, Algorithm 2 presents the procedure of querying224

smart things with a set of attributes. In the similar fashion, the query q in225

each single edge network is executed. Moreover, the relevant definition of the226

involved parameters in the query is presented in Section 2.1. In general, the227

query starts at the root node of EIR-tree (line 2). When the inverted file of one228
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Algorithm 2 IndexQuery
Require:

- q : the tuple (Rgn, Kd, Cst)

- tn : the tree node to launch the query, and initially set to the root node of EIR-tree

Ensure:

- Rstset : a set of collections, where each collection is associated with an attribute

1: Oset ← ∅

2: if tn 6= NULL then

3: if ∃ attribute ki ∈ Kd in tn.inverted file then

4: if tn.hasChild() then

5: IndexQuery(q, tn.leftChild)

6: IndexQuery(q, tn.rightChild)

7: else

8: Oset ← tn.getFilterObject(Cst)

9: Rstset ← Rstset ∪ Oset

10: end if

11: end if

12: end if

tree node tn contains certain attribute, the query is propagated to the tree node229

tn’s children (lines 3-7). This procedure iterates until (i) the inverted file of a230

non-leaf node does not contain any attribute, or (ii) the leaf node is reached.231

So far, we obtain a set that consists of collections, where each collection is232

associated with an attribute (lines 8-9). Consequently, via iteration, the result233

set that satisfies the query specification is constructed (lines 1-12).234

Figure 2: Query processing of the attribute k2 upon the EIR-tree.
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For instance, smart things with the attribute of k2 are to be retrieved. Based235

on the example of EIR-tree as shown in Figure 2-(b), the root node contains the236

attribute k2 from Table 2, and the child nodes R5 and R6 contain k2 as well.237

Therefore, the query is propagated to the non-leaf node R5 and R6. We also238

note that R2, a child of R5, contains k2, while another child R1 does not. At the239

same time, R3 and R4, the children of R6, contain k2. As the result, the query240

is propagated to the leaf nodes R2, R3, and R4. Specifically, from Table 2, o5241

, o6 and o10 correspond to the smart things for R2 , R3 and R4, respectively,242

contain attribute k2.243

4. Marginal Edge Network Query Processing244

To facilitate query processing leveraging smart things located in the marginal245

sub-regions of contiguous edge networks, this section constructs a packet trans-246

mission graph for specifying the sensory data forwarding strategy between edge247

nodes, and sensory data are gathered and routed along the paths in this graph248

for examining the fact that whether queries can be answered by these smart249

things in marginal edge networks or not.250

4.1. Sensory Data Routing Cost Calculation for Contiguous Edge Nodes251

A parameter is used to denote the percentage of boundary distance λ, which252

represents a range about the ratio of the distance between a smart thing and253

corresponding edge node to the length of the current region, to specify the254

number of smart things which require to transmit sensory data transmission.255

Generally, given the coordinates of a smart thing P0 (x0, y0) and an edge node256

P1 (x1, y1), they have the following relationship:257

JS =
√

(x0 − x1)2 + (y0 − y1)2 ÷ rSide (5)

where rSide refers to the size of the region in which the edge node is located.258

JS is used to judge the spatial scope of transmitted data. If the value JS is not259

more than the specified standard parameter λ, this means that the smart thing260

P0 is within the scope of interactive data.261
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Algorithm 3 CostCalculation
Require:

- λ : a parameter of percentage for boundary distance

- num : the number of edge nodes

- Rstsets : sets consists of the result set in each edge node’s region

Ensure:

- wgtmtx : a weighted adjacency matrix, whose values represent the cost of sensory data

communication energy between contiguous edge nodes

1: gnDatamtx ← ∅

2: for i = 0; i < num; i+ + do

3: for j = 0; j < num; j + + do

4: if i 6= j and gni and gnj are contiguous then

5: gnRstset ← ∅

6: while each Rstsetj ⊂ Rstsets 6= NULL do

7: Tempset ← get one attribute set from Rstsetj

8: Oset ← ∅

9: while Tempset 6= NULL do

10: if JS ≤ λ then

11: Oset ← Oset ∪ {o}

12: end if

13: end while

14: gnRstset ← gnRstset ∪ Oset

15: end while

16: gnDatamtx[i][j] ← gnRstset

17: k ← Calculate the transmission data of gnRstset

18: d ← Euclidean distance of gni and gnj

19: Eij(k) ← calculated by Eqn. 3

20: wgtmtx[i][j] ← Eij(k)

21: end if

22: end for

23: end for

The presentation of Eqn. 5 is to specify the number of smart things that262

need to transmit their sensory data. Defining boundary data transmission regu-263

lations, we can obtain the transmission data at the boundary which is delivered264

to the corresponding edge node. Edge nodes are responsible for sensory data265

transmission. Thereafter, we can use Eqn. 3 to calculate the communication266
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cost between edge nodes.267

Algorithm 3 presents the cost calculation procedure for transmitting sen-268

sory data packets between edge nodes. Based on query results of single edge269

networks, we calculate the energy consumption of communication between edge270

nodes. For each single edge network, we obtain the result set of its region by271

Algorithm 2. When a result set in a certain single edge network exists, the272

boundary data of this region is performed (lines 4-15). Based on this result set,273

we acquire the negotiated transmission smart thing data from an edge node to274

its neighbors within the specified parameter of percentage of boundary distance275

λ and JS (lines 10-12). The amount of data transmission between edge nodes is276

identified by localization processing, which consists of collections of data smart277

thing identified by each attribute (line 14). The distance between two edge n-278

odes gni and gnj is defined as a 2-d Euclidean distance (line 18). Finally, the279

cost of sensory data transmission between edge nodes is calculated by Eqn. 3280

(line 19), and the result of sensory data routing cost for contiguous edge nodes281

is stored in the form of an adjacency matrix (line 20).282

4.2. Edge Node Routing Graph Construction283

Considering the amount of sensory data generated by smart things in the284

marginal sub-region, a packet transmission graph is constructed upon edge n-285

odes, in order to decrease the network traffic. The edge node data routing286

can be modeled as an optimization problem, where the energy consumption is287

considered as the decision factor:288

Z = Σn
i=1Σn

j=1wij × cij (6)

where:289

cij =

0 otherwise

1 (wji 6= 0 and wij ≤ wji)
(7)

where wij (non-zero value) represents the energy consumption of an edge290

node to another edge node, and cij is calculated depending on the comparison291
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of the energy values between two edge nodes. By objective function, we can292

achieve a minimum of energy consumption for data communication within a293

reasonably acceptable range.294

Based on this function, a two-step strategy for graph construction is pre-295

sented as follows: (i) the filter step is to filter out sensory data packets that do296

not contribute to the query results. Some edges are filtered by heuristic greedy297

algorithm. According to the results of Algorithm 3, by traversing neighbor edge298

nodes in turn, we reserve the directed edge with the smallest energy value, so299

that the total transmitted energy is minimized in the edge node routing graph300

construction. For example, the energy consumption from an edge node gni to301

a contiguous edge node gnj is w1, and the energy consumption from gnj to gni302

is w2 (w1 ≤ w2). We naturally reserve the edge from gni to gnj , and remove303

the edge from gnj to gni. After this step of filtering, we have preserved the304

one-way transmission edge between the edge nodes. Considering the situation305

that a loop exists in the process of sensory data transmission, we propose (ii)306

the refinement step is to avoid the repeated transmission of data packets. It307

is worth noting that the graph we built is used to integrate the results of the308

query between the regions, the ring is not allowed to exist. However, in the filter309

step, we consider that there may be one ring in the filtered graph. Hence, we310

adopt a strategy as a refinement step during the construction of the edge node311

routing graph, which detects whether there is a ring in current graph. If there is312

a ring, we change the flow of data between the newly added edges. Ultimately,313

a unidirectional acyclic routing graph is constructed accordingly to represent314

edge node routing graph.315

4.3. Marginal Edge Network Query Mechanism316

Sensory data packets are transmitted between edge nodes, when these data317

are examined highly possible to benefit query answering. A pruning method is318

adopted to accelerate the query data transmission progress.319

As presented by Algorithm 4, we achieve the decrease of energy consump-320

tion. We adopt control package pruning strategy which is designed as reducing321
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Algorithm 4 MarginalRegionQuery
Require:

- drghmtx : an edge node routing graph

Ensure:

- CrsRstset : a set of numerous groups, where each group on the whole satisfies the query

1: Z ← 0; num ← drghmtx.row

2: for i = 0; i < num; i+ + do

3: for j = 0; j < num; j + + do

4: if drghmtx[i][j] 6= 0 then

5: flag ← check the data demand of neighbor node gnj

6: if flag then

7: gni transmit data to gnj

8: Z ← calculated by Eqn. 6

9: CrsRstset ← get enumeration groups

10: end if

11: end if

12: end for

13: end for

packet transmission. As the input for an edge node routing graph, we send a322

control packet to determine whether gni needs to send data to gnj (line 5). If323

the neighbor edge node needs the data, current edge node sends data (line 7).324

Otherwise, the procedure will detect the next edge node (lines 2-13). Based325

on this pruning strategy, we can calculate the optimized energy consumption Z326

(line 8) by Eqn. 6, which is greatly beneficial to improve the processing perfor-327

mance. Note that the enumeration procedure applies only to some situations328

where the number of possible solutions is not too large. Given the limited329

number of query attributes, we can take an enumeration strategy to get an enu-330

merated set of query between regions (line 9). Meanwhile, the time complexity331

of the enumeration algorithm depends on the number of loop nesting, which is332

the number of query attribute keywords.333

4.4. Query Processing334

A query, which combines the queries for single edge networks and marginal335

edge networks, is handled. The combinations of smart things, which can satisfy336
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Algorithm 5 QueryProcessing
Require:

- q : a tuple (Rgn, Kd, Cstr)

- trset : a set consists of the root nodes for each region

- drghmtx : an edge node routing graph

Ensure:

- queue : a max-priority queue, where it is ranked according to Eqn. 8

1: IntrGRstset ← ∅; ExtrGRstset ← ∅; n ← trset.size

2: for each tri ⊂ trset, where i = 0, 1,. . . , n do

3: IntrRstset ← ∅

4: IntrRstset ← IndexQuery(q, tri)

5: IntrGRstset ← get enumeration groups from IntrRstset

6: while IntrGRstset 6= NULL do

7: g ← extract certain group from IntrGRstset

8: RC(g) ← calculated by Eqn. 8

9: queue.Enqueue(g,RC(g))

10: end while

11: end for

12: ExtrGRstset ← MarginalRegionQuery(drghmtx)

13: while ExtrGRstset 6= NULL do

14: g ← extract certain group from ExtrGRstset

15: RC(g) ← calculated by Eqn. 8

16: queue.Enqueue(g, RC(g))

17: end while

certain queries in a collective fashion, can be retrieved and evaluated. Generally,337

the more cohesive the smart things in a collection are, the more appropriate338

the collection of smart things is with respect to the specification of certain339

queries. The clustering technique involving the Euclidean distance is adopted340

for evaluating the cohesive of smart things in a collection. The objective function341

is presented as followed:342

RC(g) =

K∑
i=1

dst(gc, oi)
2 (oi ∈ g) (8)

343

where K denotes the number of smart things in a collection, gc denotes the344
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geographical centre of these smart things in this collection, and dst denotes the345

Euclidean distance between the smart thing and the geographical centre of the346

collection.347

The procedure of query processing is presented at Algorithm 5. Query pro-348

cessing in single edge networks is handled as presented by Algorithm 2 (lines349

2-11). Besides, an enumeration combination method is adopted for the result350

combination of single edge networks into collections (line 5). Furthermore, E-351

qn. 8 is adopted to calculate the score for each collection in all single edge352

network result sets (lines 6-10). In addition, the query of the marginal edge net-353

work is performed by Algorithm 4 (line 12), where the same collection scoring354

rules is adopted for the data processing of marginal edge network (lines 13-17).355

A queue is used to store global query result collections, where each collection is356

arranged in the descending order (lines 9,16).357

5. Implementation and Evaluation358

The prototype has been implemented in a Java program. Experiments are359

conducted upon a desktop with an Intel i5-6500 CPU at 3.20GHz, 8-GB of mem-360

ory and a 64-bit Windows 10 system. In the following we introduce experiment361

settings and discuss evaluation results.362

5.1. Experiment Settings363

Table 3 presents the parameter settings of our experiments. Without loss of364

generality, a query is assumed to be relevant with 1 to 4 kinds of attributes, since365

queries are typically not very complex for the majority of domain applications.366

Besides, when the kinds of attributes that queries interest are large in number,367

queries should hardly be clearly explained and easily understood. The number368

of smart things ranges from 200 to 1000 with an increment of 200, and a smart369

thing is randomly assigned with a sensing attribute. Due to the fact that smart370

things may be distributed unevenly in the network, a skewness degree (denoted371

sd) is adopted to quantify this character. Intuitively, sd is calculated in terms372
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of (dn - sn) ÷ N, where (i) dn and sn refer to the number of smart things373

deployed in dense and sparse sub-regions, respectively, and (ii) N is the sum of374

dn and sn [28].375

Table 3: Parameters Settings in the Experiments.

Parameters Name Value

Network query region (m2) 200 × 200

Number of smart things 200 to 1000

Skewness degree 10% to 50%

Kinds of queried attributes 1 to 4

Percentage of boundary distance 40% to 80%

Number of bits in one pocket (k) 1

Attenuation index of transmission (n) 2

Energy consumption constants of transmit and receiver electronics (Eelec) 50 nJ/bit

Energy consumption constant for transmit amplifier (εamp) 0.1 nJ/(bit×m2)

As far as we know, this is the first technique to explore the distributed376

and localized query processing in the context of edge computing, where an IoT377

sensing network is composed by edge networks. To evaluate the efficiency of our378

technique, we have compared our technique with the LEACH routing protocol379

[29], where a routing tree is constructed to aggregate and forward sensory data380

packets to the sink. Note that in our experiments, the smart thing located in the381

network centre is selected to serve as the sink. Without loss of generality, the382

sink node is assumed to have unlimited energy. Therefore, the energy consumed383

for receiving data packets is specified as follows:384

Eij(k) =

Eelec × k + εamp × k× dn if j is SN

2× Eelec + εamp × k× dn otherwise
(9)

The results of experimental evaluation are presented and compared as fol-385

lows, where various number of attributes, various skewness degrees, and different386

percentage of smart things deployed in the marginal region of edge networks are387

the factors to be considered in experiments. To reduce the randomness caused388

by the environmental configuration, experiments with a certain parameter set-389

ting is conducted ten times, and an average value is adopted as the final result390
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as shown in the following figures.391

5.2. Evaluation Results392

This section presents and discusses the experimental results about the per-393

formance of query processing.394

5.2.1. Various Percentages of Boundary Distance and Numbers of Smart Things395

Figure 3: Energy consumption for various percentages of boundary distance and numbers of

smart things.

Figure 3 shows the comparison of energy consumption when the percentage396

of boundary distance ranges from 40% to 80% with an increment of 10%. The397

number of smart things varies from 200 to 1000, with the 40% skewness de-398

gree. The number of attributes is set to 4 in query specification. Generally, the399

percentage of boundary distance specifies the size of marginal regions in con-400

tiguous edge networks, which determines the number of smart things involved401

in marginal edge networks query processing. This figure shows that the energy402

consumption increases slightly, rather than significantly, when the percentage403

of boundary distance changes from a relatively small value to a quite large404

one, since the energy is mostly consumed by forwarding sensory data packets405

along the edge node routing graph for gathering and aggregating data in our406
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experiments. However, in the case when there are few sensory data packets are407

to be transmitted, the energy consumption should be impacted largely by the408

percentage of boundary distance.409

5.2.2. Comparison for MAQ and LEACH Considering Various Numbers of S-410

mart Things411

Figure 4: Energy consumption for MAQ and LEACH when various numbers of smart things

are deployed in the network.

Figure 4 shows the energy consumption for our MAQ and LEACH, when412

the numbers of smart things is set from 200 to 10000 with an increment of 200.413

The percentage of boundary distance is set to 80%, and the other parameters414

are set to the same values as those in Figure 3, which is convenient to eliminate415

the influence of other factors and interference on the experimental results. This416

figure shows that LEACH requires more energy consumption than MAQ. In417

fact, LEACH routes sensory data of smart things with attributes specified by418

query specifications to the centre for centralized processing. On the other hand,419

MAQ gathers sensory data of smart things in edge networks, processes these420

data in a localized fashion, and routes the result of certain edge networks to the421

centre. Note that sensory data of marginal smart things contained in contiguous422

edge networks are required to be route along the routing graph. However, the423
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amount is much smaller than that of the packets to be transmitted in LEACH.424

This figure also shows that the increase of energy consumption for LEACH425

is much larger than that for MAQ. In fact, when smart things are relatively426

larger in number, the amount of sensory data that are processed locally by edge427

networks should be larger in percentage, and hence, more energy should be428

reduced by MAQ than LEACH. This result indicates that MAQ can perform429

better than LEACH in decreasing energy consumption when the network is430

relatively large in the number of smart things.431

5.2.3. Comparison for MAQ and LEACH Considering Various Kinds of Queried432

Attributes433

Figure 5: Energy consumption for MAQ and LEACH when various kinds of attributes are

specified in query specification.

Figure 5 shows the energy consumption for MAQ and LEACH, when the434

number of attributes is set to 2, 3 or 4 in query specification. The number of435

smart things is set to 1000, and other parameters are set to the same values436

as those in Figure 4. This figure shows that the energy consumption is largely437

increased in a linear manner with respect to the increasing of the attribute438

number. This result is reasonable since the number of attributes is proportional439

to the number of smart things to be explored. On the other hand, the increasing440
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of energy consumption is much smaller in scale for our MAQ than LEACH, since441

the majority of the query processing task is conducted locally in edge networks,442

and we argue that this strategy should decrease the network traffic and energy443

consumption significantly.444

5.2.4. Comparison for MAQ and LEACH Considering Various Skewness De-445

grees446

Figure 6: Energy consumption for MAQ and LEACH when smart things are distributed in

the network with various skewness degrees.

Figure 6 shows the energy consumption for MAQ and LEACH, when the447

skewness degree is set from 10% to 50% with an increment of 20%. Other448

parameters are set to the same values as those in Figure 5. This figure shows449

that LEACH consumes much more energy than MAQ, due to the same reason450

as presented in Figure 4. Besides, the energy consumption is relatively smaller451

when the skewness degree is larger (i.e., 50%). In fact, head nodes in LEACH,452

as well as edge nodes in MAQ, are mostly chosen from sensor nodes (or smart453

things) which are located within dense sub-regions. When the skewness degree454

is large, the majority of sensory data gathering and routing tasks should be455

conducted in dense sub-regions, and this suggests that the transmission distance456

of most packets should be shorter. On the other hand, when the skewness degree457

24



is small, which means that smart things are distributed in a relatively even458

manner in the network, sensory data packets should be longer in their average459

transmission distance. Generally, MAQ is more energy efficient when smart460

things are distributed in a skewed fashion.461

6. Related Works and Comparison462

Along with the huge and increasing number of smart things deployed in IoT463

sensing networks, multi-attribute query processing is considered as fundamental464

to support domain applications. Traditional techniques have been developed to465

support the query processing in single edge networks. In [15], authors explore466

the problem of retrieving a group of spatial web objects. The group’s keywords467

require to cover the query’s keywords, and the objects in the group should be468

geographically as close as possible. A cost function is defined to evaluate the469

merits of the results, which is composed of two kinds of semantic types. One470

takes into account the sum of the distance between each object in the group and471

the query location, which may fit with applications where the objects need to472

meet at the query location, such as incident handling or the finding of project473

partners. Another type is the maximal distance between any object in the474

group and the query location, which may be understood as the situation where475

tourists plan to visit several points of interest. This query for the object groups476

inspires the research presented in this article. Note that a centralized index tree477

is constructed to support the query of object groups. This strategy should be478

applied to single edge networks, but may not be applicable to large-scale IoT479

sensing networks composed of multiple edge networks.480

In [14], authors present an R-tree-based indexing technique that stores com-481

pact histograms in node entries, while preserving reasonable node fanout. Lever-482

aging the index and histogram, a pruning strategy is implemented to prune the483

search space and guide the search while considering the factors including group484

diameter, distance, and relevance to the query. Generally, this histogram for485

pruning the search space is a promising mechanism for supporting query pro-486
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cessing. Hence, an improved pruning strategy is proposed in [16]. Since objects487

may be unevenly distributed in the network, authors adopt proper mechanisms488

for handling objects contained in dense and sparse sub-regions. Assuming there489

are two sets of groups that can satisfy the query, objects in one group is in a490

hotspot region, and objects in the other group is in a sparse region. When the491

distance cost is almost the same, objects in dense sub-regions should be prone to492

be recommended, since they can have more counterparts to be replaced when493

found improper. Therefore, dealing with spatial keyword queries, the region494

density is also a factor to be considered. Authors propose a method to calculate495

the lower bound of the density cost of a node, and to prune nodes with the lower496

bound of density cost than the past minimum cost.497

To manage objects in a network, an index tree like an R-tree is usually498

constructed to support spatial and multi-attribute query processing. An R-tree499

index is proposed in [30] to handle spatial keyword queries. In computer aided500

design and geo-data applications, the mechanism about the search of massive501

information in spatial databases is fundamental. The processing of non-zero-502

sized data in a multidimensional space can hardly be solved with the traditional503

indexing method. Therefore, authors propose an R-tree to facilitate regular504

access methods in relational databases. Generally, this technique considers the505

spatial query processing, while the text relevancy is not the focus. To remedy506

this issue, an index tree integrating the inverted file for text retrieval and R-507

tree for spatial proximity query is developed [10], such that the spatial and text508

relevance is considered with respect to query specification. Besides, a range509

region query is proposed in [31], in order to retrieve objects with keywords in a510

certain range. A direction-aware spatial keyword query method [17] is proposed511

to inherently support object query within certain directions.512

Note that searching strategy for smart things is popular nowadays. In [33],513

the concept of multi-region attribute aggregation query over sensors in skew-514

ness distribution is presented. Authors establish an energy-efficient spatial in-515

dex tree to resolve the multi-region attribute aggregation query. Generally,516

this technique constructs an index tree to support query in all region, which517
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is quite different from the aggregation query proposed in our technique. The518

processing of the multi-region attribute aggregation query inspires us to develop519

the marginal edge network query processing. With the popularity of big data520

applications [34, 35], information is no longer stored in a single region. The dis-521

tributed technology is increasingly used. In [36], interoperability is assumed as522

a challenge in implementing IoT applications.A distributed Internet-like archi-523

tecture for things is proposed for the process of large-scale expansion of IoT. In524

general, this proposed distributed architecture helps intelligent decision-making525

and enables automated service creation. It is worth noting that some service526

matching and allocation strategies [38, 39, 40] are also beneficial for searching527

objects. In [38], considering the explosion of Internet of things, big data and528

fog computing in cloud computing environment, authors explore the scheduling529

strategy of cloud and fog resources. This exploration has an enlightening effect530

on the collaboration of multiple edge nodes in the edge computing environment.531

Other techniques explore the network communication topology [20], an effective532

collection [21], management [22], and aggregation [23] of sensory data, a load-533

balancing routing [24], and the prolonging of network lifetime [25, 26], in the534

context of IoT. In [37], in order to solve the mobile environment, the data source535

can not be accessed due to the partition of the network. The author proposes536

C ontent C entric N etworks (CCN ) use in-network caching. In general, based537

on the reliable strategies in networks of [37], this work provides reliable data538

transmission and routing mechanism for us to handle queries in the marginal539

edge network. However, sensory data fusion in marginal edge network and the540

query processing mechanism in single edge networks are not explored.541

To summarize, current techniques construct a centralized index tree to sup-542

port spatial and multi-attribute objects query processing. They are inspiring543

for us when developing our technique, however we argue that they should not544

be efficient when the network is large in scale. Due to this consideration, we545

propose a distributed and localized query processing mechanism to support546

multi-attribute query processing in edge computing.547
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7. Conclusions548

With the swift growth of smart things being deployed in industrial envi-549

ronments, sensory data gathering and aggregation is fundamental to support550

IoT applications. Considering the large-scale of the network, the traditional551

centralized mechanism may not be efficient and applicable when considering552

the factors including network traffic and energy consumption, edge computing553

is adopted to promote the distributed and localized query processing. In this554

context, this article proposes a multi-attribute aggregation query mechanism in555

edge computing to support large-scale industrial IoT applications. Specifically,556

an energy-aware IR-tree is constructed to process query processing in certain557

edge networks, and an edge node routing graph is established for aggregating558

and forwarding sensory data packets between edge nodes, in order to facili-559

tate query processing for marginal smart things in contiguous edge networks.560

Extensive experiments have been conducted to evaluate the efficiency and appli-561

cability of our technique. The results demonstrate that this technique performs562

better than the rivals in reducing the network traffic and energy consumption.563

This article retrieves the set of sensory data relevant to the query specification.564

This strategy requires to examine all IoT nodes in the query sub-region. In565

fact, when IoT nodes are densely deployed in the network, partial IoT nodes566

may reflect the fact with certain accuracy and may satisfy the requirement of567

domain application. Consequently, discovering partial IoT nodes in the query568

sub-region for satisfying certain requirements is our future research challenge.569
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