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Abstract 

Purpose: This work presents our contribution to one of the data challenges organized by the 

French Radiology Society during the Journées Francophones de Radiologie. This challenge 

consisted in segmenting the kidney cortex from coronal computed tomography (CT) CT 

images, cropped around the cortex. 

Materials and methods: We chose to train an ensemble of fully-convolutional networks and 

to aggregate their prediction at test time to perform the segmentation. An image database was 

made available in 3 batches. A first training batch of 250 images with segmentation masks 

was provided by the challenge organizers one month before the conference. An additional 

training batch of 247 pairs was shared when the conference began. Participants were ranked 

using a Dice score. 

Results: The segmentation results of our algorithm match the renal cortex with a good 

precision.  Our strategy yielded a Dice score of 0.867, ranking us first in the data challenge.  

Conclusion: The proposed solution provides robust and accurate automatic segmentations of 

the renal cortex in CT images although the precision of the provided reference segmentations 

seemed to set a low upper bound on the numerical performance. However, this process should 

be applied in 3D to quantify the renal cortex volume, which would require a marked labelling 

effort to train the networks. 

Keywords: Renal cortex; Image segmentation; Artificial intelligence (AI); Computed 

tomography (CT) 

Introduction 

Renal diseases are often associated with cortical morphological changes, such as volume 

reduction or notch defect. All these features are considered as surrogate markers of renal 

diseases and can be visible on imaging examinations, such as ultrasound, magnetic resonance 

imaging (MRI), or computed tomography (CT) [1, 2]. Despite a well-established qualitative 

assessment of the renal cortex with these modalities, a quantitative approach helps improve 

the diagnostic work-up of renal diseases [3]. However, to date quantitative assessment of 

renal cortex is hampered by complex and time-consuming analyses such as semi-automated 

segmentations based on a pixel value threshold algorithm, region growing, appearance models 

combined with graph cuts or random forests [4-8]. The recent development of convolutional 
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neural networks (CNN), as well as the access to very large imaging databases, could help 

overcome these limitations. Very promising results have recently been obtained in several 

applications such as the segmentation of cardiac chambers, and the brain [9, 10]. However, 

the appropriate artificial intelligence (AI) tools for kidney analysis still need to be developed.  

 Fully-convolutional networks have drastically improved the state-of-the-art in image 

segmentation [11]. U-Nets are currently a standard approach for two-dimensional (2D) or 

three-dimensional (3D) medical image segmentation problems [12-18].  

 The Journées Francophones de Radiologie was held in Paris in October 2018. For the 

first time this year, the French Society of Radiology organized an AI competition. Teams of 

industrial researchers, students, and radiologists were invited to take part in five data 

challenges. In this paper, we present our approach to address the kidney cortex segmentation 

challenge aiming at segmenting the renal cortex on 2D coronal CT images. 

Method 

Kidney cortex segmentation challenge 

An image database was made available in 3 batches. A first training batch of 250 images with 

segmentation masks was provided by the challenge organizers one month before the 

conference. An additional training batch of 247 pairs was shared when the conference began. 

Two days later, the teams were ranked on a test batch of 299 images.  

 CT images in the coronal plane, cropped and resized around the kidney (192 × 192 

pixels with a pixel size of 1 × 1 mm and intensity in Hounsfield units [HU]) were provided 

(Figure 1). The reference segmentation was provided as a binary mask for each image of the 

training set. Due to the usual difficulties of manual segmentation, in particular for irregularly 

shaped objects such as the renal cortex, several reference segmentations were debatable or 

even erroneous. We observed that a proportion of the pixels at the edge of the cortex were 

either left out when they should not have been, or mislabeled as cortex while clearly outside 

(Figure 1c). Moreover, blood vessels inside the kidney were occasionally included in the 

reference segmentation, but this was inconsistent throughout the dataset (Figure 1d). In fact, it 

can be hard to distinguish actual renal columns from some blood vessels. We clipped the 

image intensity values between -150 HU and 200 HU and rescaled them between 0 and 1. 

This range has been chosen manually to contain all the renal cortex dynamic and limit the 
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influence of high values in the image, corresponding to bones, and very low values, 

corresponding to air. 

 To address the specific difficulties of this challenge, such as the imprecision of the 

reference segmentations, we adopted several popular strategies such as artificial data 

augmentation, meta parameter optimization, pre-training and post-processing with connected 

components analysis [19-22]. We also used ensemble aggregation, a standard machine 

learning technique frequently applied to deep learning [12, 22, 23]. 

Network architecture 

We chose a U-Net architecture with 5 levels of depth, residual blocks, and rectified linear 

units (ReLU) activation functions, and added convolutions on the skip connections (Figure 2) 

[18, 24, 25, 26]. We set the meta-parameters using a Bayesian optimization approach [19, 20]. 

We used artificial data augmentation during training to limit overfitting, by randomly 

applying translations, rotations, zooms, noise, brightness and contrast shifts to the input 

samples. The training was performed until convergence and lasted between one and two 

hours. We used Adam optimizer with a learning rate of 1.10 − 4 on batches of 10 images. 

Weight initialization and pre-training 

Considering the low amount of data available for training following the popular practice 

initiated in [21], we considered that pre-training the network on a large and publicly-available 

dataset would be advantageous. We therefore pre-trained our U-Nets to segment persons, the 

common objects in context (COCO) dataset [26].  We compared training experiments using 

randomly initialized weights or pre-training (Fig. 3). Although the final score was similar, the 

training converges faster using a pre-trained network, and was more stable overall. Therefore, 

we used pre-trained networks. 

Post-processing and ensemble aggregation 

We noticed that networks trained on different folds of the training database behave 

differently, especially on ambiguous pixels (Fig. 4). To improve the robustness and reduce the 

variability, we used ensemble aggregation.  

 We trained five networks on random folds of the training dataset, and two others on 

the complete training dataset. For each image at test time, we thus obtained seven 
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segmentation masks taking pixel values in the interval “[0, 1]”. In each mask we only kept the 

largest connected component in order to remove obvious false positives (see, for instance 

Figure 4, top middle: a blob is falsely labeled positively by one of the networks). Finally, we 

aggregated the results by taking the median value for each pixel, as it has shown to produce 

better results than the mean, by reducing the influence of extreme or outlier values. 

Results 

Participants were ranked using a Dice score: � = 	
�|�∩�|

|�|	|�|
, where P is the predicted mask and T 

is the reference mask. We obtained a score of 0.867 on the test dataset and won the challenge 

by a narrow margin. The slight improvement obtained by the ensemble aggregation enabled 

us to win this challenge, as the second ranked team scored higher than our best network. 

 The segmentation results of our algorithm match the renal cortex with a good 

precision (Fig. 5). However, some of the flaws of the provided reference segmentations 

remain, such as the large clusters of renal columns, or when parts of the cortex are too widely 

segmented and join each other. Nonetheless, our algorithm seems to be less imprecise than the 

provided annotation, especially at the boundary of the cortex (Fig. 6).  

Discussion 

The state-of-the-art in image segmentation has improved greatly during the past five years, 

thanks to the progress accomplished in Deep Learning, to the point that some segmentation 

problems, which would have been considered a challenge ten years ago, now seem easy [27, 

28]. This is the case of renal cortex segmentation, where one can quickly achieve good results 

by training a UNet with any recent architecture found in the literature [18]. To the best of our 

knowledge, all the contestants chose a deep learning approach and the gap between 

participants was less than 0.03 Dice points.  

 The precision of the reference segmentations provided for this challenge seemed to set 

a low upper bound on the performance, as corroborated by the narrow gap between the first 

and second place (< 0.003 Dice points), and the gap between all the candidates (< 0.03 Dice 

points). As a consequence, the performance gain achieved by each of our algorithm details 

(image intensity scaling, data augmentation, pre-training, meta-parameter optimization, 

connected components analysis and ensemble aggregation) was difficult to quantify and 



 5

barely significant if at all when considered alone, but enabled us, when added together, to 

improve the overall performance and win the challenge.  

 In conclusion, although 3D segmentation is useful clinically, the choice of 2D makes 

sense for a data challenge as it simplifies data collection, annotation, and storage [13, 15-17]. 

Future research is needed to address the problem of renal cortex segmentation in 3D volumes. 
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Figure legends 

 

Figure 1. CT images of the kidney from the training set provided by the data challenge 

organizers. The reference segmentation is overlapped in blue. (a), Image only. (b), Correct 

segmentation. (c) Inaccurate segmentation and renal column clusters (arrow). (d), Blood vessels 

included in the segmentation (arrow). 

Figure 2. Selected network architecture to achieve the segmentation task. Green boxes are 

residual blocks, blue boxes are simple convolutional layers with ReLU activation. Batch 

normalization is applied after convolution and before activation  

Figure 3. Impact of pre-training on the training procedure. (a) Evolution of the Dice score on the 

validation set during training (red is pre-trained, green is not). (b) Evolution of the binary cross-

entropy on the training set (blue is pre-trained, pink is not). The x-axis represents the number of 

training steps.   

Figure 4. Top line: segmentation achieved by three networks trained on three different folds of 

the training database (each output is displayed on a different color channel, so that white 

represents a consensus for positively labeled regions. We observe inconsistencies on the inner 

parts of the renal columns, and to a lesser extent on the outermost edge of the renal cortex). 

Bottom line: corresponding input CT images. 

Figure 5. Illustration of automatic segmentation results obtained with the proposed approach 

(overlapped in blue on the input CT image). (a) Correct segmentation. (b) Cluster of renal 

columns. (c) Overextended segmentation.   

Figure 6. Illustration of test cases where the automatic segmentation results (blue) seem more 

accurate than the provided reference segmentation (red). Intersection in pink. (a) Vessels 

included in the reference mask but not in automatic segmentation result. (b) Reference 

segmentation obviously too wide. 

 
















