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Introduction

Renal diseases are often associated with cortical morphological changes, such as volume reduction or notch defect. All these features are considered as surrogate markers of renal diseases and can be visible on imaging examinations, such as ultrasound, magnetic resonance imaging (MRI), or computed tomography (CT) [START_REF] Van Den Dool | Functional renal volume: quantitative analysis at gadolinium-enhanced MR angiography--feasibility study in healthy potential kidney donors[END_REF][START_REF] Gandy | A clinical MRI investigation of the relationship between kidney volume measurements and renal function in patients with renovascular disease[END_REF]. Despite a well-established qualitative assessment of the renal cortex with these modalities, a quantitative approach helps improve the diagnostic work-up of renal diseases [START_REF] Grantham | Volume progression in polycystic kidney disease[END_REF]. However, to date quantitative assessment of renal cortex is hampered by complex and time-consuming analyses such as semi-automated segmentations based on a pixel value threshold algorithm, region growing, appearance models combined with graph cuts or random forests [START_REF] Chen | An automatic method for renal cortex segmentation on CT images: evaluation on kidney donors[END_REF][START_REF] Halleck | Volume matters: CT-based renal cortex volume measurement in the evaluation of living kidney donors[END_REF][START_REF] Jin | 3D fast automatic segmentation of kidney based on modified AAM and random forest[END_REF][START_REF] Pohle | A new approach for model-based adaptive region growing in medical image analysis[END_REF][START_REF] Torimoto | Renal perfusional cortex volume for arterial input function measured by semiautomatic segmentation technique using MDCT angiographic data with 0.5-mm collimation[END_REF]. The recent development of convolutional neural networks (CNN), as well as the access to very large imaging databases, could help overcome these limitations. Very promising results have recently been obtained in several applications such as the segmentation of cardiac chambers, and the brain [START_REF] Akkus | Deep learning for brain MRI segmentation: state of the art and future directions[END_REF][START_REF] Avendi | Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach[END_REF]. However, the appropriate artificial intelligence (AI) tools for kidney analysis still need to be developed.

Fully-convolutional networks have drastically improved the state-of-the-art in image segmentation [START_REF] Shelhamer | Fully convolutional networks for semantic segmentation[END_REF]. U-Nets are currently a standard approach for two-dimensional (2D) or three-dimensional (3D) medical image segmentation problems [START_REF] Chen | Hippocampus segmentation through multi-view ensemble ConvNets[END_REF][START_REF] Christ | Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks[END_REF][START_REF] Çiçek | 3D U-Net: learning dense volumetric segmentation from sparse annotation[END_REF][START_REF] Dong | Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks[END_REF][START_REF] Erden | 3D convolutional neural network for brain tumor segmentation[END_REF][START_REF] Milletari | V-Net: Fully convolutional neural networks for volumetric medical image segmentation. 3D Vision[END_REF][START_REF] Ronneberger | U-Net: convolutional networks for biomedical image segmentation[END_REF].

The Journées Francophones de Radiologie was held in Paris in October 2018. For the first time this year, the French Society of Radiology organized an AI competition. Teams of industrial researchers, students, and radiologists were invited to take part in five data challenges. In this paper, we present our approach to address the kidney cortex segmentation challenge aiming at segmenting the renal cortex on 2D coronal CT images.

Method

Kidney cortex segmentation challenge

An image database was made available in 3 batches. A first training batch of 250 images with segmentation masks was provided by the challenge organizers one month before the conference. An additional training batch of 247 pairs was shared when the conference began.

Two days later, the teams were ranked on a test batch of 299 images.

CT images in the coronal plane, cropped and resized around the kidney (192 × 192 pixels with a pixel size of 1 × 1 mm and intensity in Hounsfield units [HU]) were provided (Figure 1). The reference segmentation was provided as a binary mask for each image of the training set. Due to the usual difficulties of manual segmentation, in particular for irregularly shaped objects such as the renal cortex, several reference segmentations were debatable or even erroneous. We observed that a proportion of the pixels at the edge of the cortex were either left out when they should not have been, or mislabeled as cortex while clearly outside (Figure 1c). Moreover, blood vessels inside the kidney were occasionally included in the reference segmentation, but this was inconsistent throughout the dataset (Figure 1d). In fact, it can be hard to distinguish actual renal columns from some blood vessels. We clipped the image intensity values between -150 HU and 200 HU and rescaled them between 0 and 1. This range has been chosen manually to contain all the renal cortex dynamic and limit the influence of high values in the image, corresponding to bones, and very low values, corresponding to air.

To address the specific difficulties of this challenge, such as the imprecision of the reference segmentations, we adopted several popular strategies such as artificial data augmentation, meta parameter optimization, pre-training and post-processing with connected components analysis [START_REF] Bertrand | Hyperparameter optimization of deep neural networks: combining hyperband with bayesian model selection[END_REF][START_REF] Bertrand | Classification of MRI data using deep learning and Gaussian process-based model selection[END_REF][START_REF] Oquab | Learning and transferring mid-level image representations using convolutional neural networks[END_REF][START_REF] Rokach | Ensemble-based classifiers[END_REF]. We also used ensemble aggregation, a standard machine learning technique frequently applied to deep learning [START_REF] Chen | Hippocampus segmentation through multi-view ensemble ConvNets[END_REF][START_REF] Rokach | Ensemble-based classifiers[END_REF][START_REF] Marmanis | Semantic segmentation of aerial images with an ensemble of CNNs[END_REF].

Network architecture

We chose a U-Net architecture with 5 levels of depth, residual blocks, and rectified linear units (ReLU) activation functions, and added convolutions on the skip connections (Figure 2) [START_REF] Ronneberger | U-Net: convolutional networks for biomedical image segmentation[END_REF][START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Peng | Large kernel matters improve semantic segmentation by global convolutional network[END_REF][START_REF] Lin | Microsoft COCO: common objects in context[END_REF]. We set the meta-parameters using a Bayesian optimization approach [START_REF] Bertrand | Hyperparameter optimization of deep neural networks: combining hyperband with bayesian model selection[END_REF][START_REF] Bertrand | Classification of MRI data using deep learning and Gaussian process-based model selection[END_REF].

We used artificial data augmentation during training to limit overfitting, by randomly applying translations, rotations, zooms, noise, brightness and contrast shifts to the input samples. The training was performed until convergence and lasted between one and two hours. We used Adam optimizer with a learning rate of 1.10 -4 on batches of 10 images.

Weight initialization and pre-training

Considering the low amount of data available for training following the popular practice initiated in [START_REF] Oquab | Learning and transferring mid-level image representations using convolutional neural networks[END_REF], we considered that pre-training the network on a large and publicly-available dataset would be advantageous. We therefore pre-trained our U-Nets to segment persons, the common objects in context (COCO) dataset [START_REF] Lin | Microsoft COCO: common objects in context[END_REF]. We compared training experiments using randomly initialized weights or pre-training (Fig. 3). Although the final score was similar, the training converges faster using a pre-trained network, and was more stable overall. Therefore, we used pre-trained networks.

Post-processing and ensemble aggregation

We noticed that networks trained on different folds of the training database behave differently, especially on ambiguous pixels (Fig. 4). To improve the robustness and reduce the variability, we used ensemble aggregation.

We trained five networks on random folds of the training dataset, and two others on the complete training dataset. For each image at test time, we thus obtained seven segmentation masks taking pixel values in the interval "[0, 1]". In each mask we only kept the largest connected component in order to remove obvious false positives (see, for instance Figure 4, top middle: a blob is falsely labeled positively by one of the networks). Finally, we aggregated the results by taking the median value for each pixel, as it has shown to produce better results than the mean, by reducing the influence of extreme or outlier values.

Results

Participants were ranked using a Dice score:

= | ∩ | | | | |
, where P is the predicted mask and T is the reference mask. We obtained a score of 0.867 on the test dataset and won the challenge by a narrow margin. The slight improvement obtained by the ensemble aggregation enabled us to win this challenge, as the second ranked team scored higher than our best network.

The segmentation results of our algorithm match the renal cortex with a good precision (Fig. 5). However, some of the flaws of the provided reference segmentations remain, such as the large clusters of renal columns, or when parts of the cortex are too widely segmented and join each other. Nonetheless, our algorithm seems to be less imprecise than the provided annotation, especially at the boundary of the cortex (Fig. 6).

Discussion

The state-of-the-art in image segmentation has improved greatly during the past five years, thanks to the progress accomplished in Deep Learning, to the point that some segmentation problems, which would have been considered a challenge ten years ago, now seem easy [START_REF] Garcia-Garcia | A review on deep learning techniques applied to semantic segmentation[END_REF][START_REF] Lecun | Deep learning[END_REF]. This is the case of renal cortex segmentation, where one can quickly achieve good results by training a UNet with any recent architecture found in the literature [START_REF] Ronneberger | U-Net: convolutional networks for biomedical image segmentation[END_REF]. To the best of our knowledge, all the contestants chose a deep learning approach and the gap between participants was less than 0.03 Dice points.

The precision of the reference segmentations provided for this challenge seemed to set a low upper bound on the performance, as corroborated by the narrow gap between the first and second place (< 0.003 Dice points), and the gap between all the candidates (< 0.03 Dice points). As a consequence, the performance gain achieved by each of our algorithm details (image intensity scaling, data augmentation, pre-training, meta-parameter optimization, connected components analysis and ensemble aggregation) was difficult to quantify and 
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 1 Figure 1. CT images of the kidney from the training set provided by the data challenge organizers. The reference segmentation is overlapped in blue. (a), Image only. (b), Correct segmentation. (c) Inaccurate segmentation and renal column clusters (arrow). (d), Blood vessels included in the segmentation (arrow).
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 23 Figure 2. Selected network architecture to achieve the segmentation task. Green boxes are residual blocks, blue boxes are simple convolutional layers with ReLU activation. Batch normalization is applied after convolution and before activation

Figure 4 .

 4 Figure 4. Top line: segmentation achieved by three networks trained on three different folds of the training database (each output is displayed on a different color channel, so that white represents a consensus for positively labeled regions. We observe inconsistencies on the inner parts of the renal columns, and to a lesser extent on the outermost edge of the renal cortex). Bottom line: corresponding input CT images.

Figure 5 .

 5 Figure 5. Illustration of automatic segmentation results obtained with the proposed approach (overlapped in blue on the input CT image). (a) Correct segmentation. (b) Cluster of renal columns. (c) Overextended segmentation.

Figure 6 .

 6 Figure 6. Illustration of test cases where the automatic segmentation results (blue) seem more accurate than the provided reference segmentation (red). Intersection in pink. (a) Vessels included in the reference mask but not in automatic segmentation result. (b) Reference segmentation obviously too wide.

  

barely significant if at all when considered alone, but enabled us, when added together, to improve the overall performance and win the challenge.

In conclusion, although 3D segmentation is useful clinically, the choice of 2D makes sense for a data challenge as it simplifies data collection, annotation, and storage [13,[15][16][17].

Future research is needed to address the problem of renal cortex segmentation in 3D volumes.

Conflict of interests

The authors declare that they have no conflicts of interest concerning this article.