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Introduction

Home health care (HHC) services provide nursing and general hygiene cares at patient home for people in a situation of dependency. Different types of care are performed depending on the need of the patients. The caregivers of the home health care structures are often composed of nurses and auxiliary nurses, in order to provide the full range of cares. Nowadays, the planning of the caregivers is performed manually by an experienced nurse who has the role of coordinator. This complex planning often requires an extensive effort and time in order to obtain a valid planning which respects all the constraints (availability of the patients, right qualification of the caregiver, ...). Since this task is performed daily, an important improvement is possible in favor of a better planning of the caregivers.

Because of the overall aging of the population and also because of the need of patients to recover at home, which is possible due to technology advances as explained by [START_REF] Christensen | 1114 Ageing populations: the challenges ahead[END_REF], the demand for home health care is rising as reported by [START_REF] Bertrand | Les services de soins infirmiers domicile en[END_REF] in France.

In the early literature related to the home health care problem, [START_REF] Begur | An integrated spatial 1097 dss for scheduling and routing home-health-care nurses[END_REF] and [START_REF] Cheng | A home health care routing and schedul-1112 ing problem[END_REF] have been developed to satisfy patient needs in specified 108 areas as presented by Siew and Ghani (2006).

109

In this study, the workload is considered equal to the As a result, many approximate methods such as particle 123 swarm optimization by [START_REF] Akjiratikarl | Pso-based algo-1091 rithm for home care worker scheduling in the uk[END_REF], variable 124 neighborhood search by [START_REF] Issaoui | New multiobjective approach for the home care service problem based on scheduling algorithms and variable neighborhood descent[END_REF], genetic al-125 gorithm by Liu et al. (2013b), tabu search by Rest and 126 Hirsch (2016), etc. have been implemented. [START_REF] Ong | Classification of adaptive memetic algorithms: a comparative study[END_REF], it belongs to the category of adaptive hyper-heuristic where the coordination of the memes is performed by means of heuristic rules, actually following a randomimzed scheme. The literature review proposed by Neri and Cotta (2012) offers an extensive study of memetic algorithms and memetic computing optimization.

Besides approximate methods, exact solution procedures have also been implemented like the branch-andprice. As mentionned by [START_REF] Riazi | De-1209 composition and distributed algorithms for home healthcare rout-1210 ing and scheduling problem[END_REF], the most successful exact algorithms for VRPTW are based on branchand-price framework, which combine column generation and branching.

In this regard, [START_REF] Rasmussen | The 1202 home care crew scheduling problem: Preference-based visit clus-1203 tering and temporal dependencies[END_REF] have modeled the problem as a set-partitioning problem with side constraints and develop an exact branch-and-price solution algorithm, as this method has previously given solid results for classical vehicle routing problems. Temporal dependencies are modelled as generalised precedence constraints and enforced through the branching.

Similarly, [START_REF] Eveborn | Laps carean operational system for staff planning of home care[END_REF] utilized an setpartitioning model and solved the master problem using a repeated matching algorithm. This is a heuristic approach which has been successfully applied to real-world home care problems.

Another branch-and-price algorithm for the home health care problem has been suggested by Yuan et al. (2015).

They studied the problem with stochastic service times.

To solve it, the authors have transformed into a master problem and a pricing sub-problem. They developed a column generation algorithm to solve the relaxation of the master problem and obtain its lower bound, and devised a label algorithm and several effective accelerating techniques to solve the pricing sub-problem. To obtain feasible solutions, their column generation procedure is embedded within a branch and bound framework. Among all the solution approaches already implemented, the ant colony optimization algorithm (ACO) has never been applied to the home health care problem to the best of our knowledge. However, ACO has been already successfully applied to similar problems such as the multiple traveling salesmen problem by [START_REF] Liu | An ant colony optimization algorithm for the multiple traveling salesmen problem[END_REF].

Thus, the aim of this paper is to evaluate the efficiency of the ACO on the home health care problem. It is an opportunity to evaluate its efficiency and compare its results with others solving methods. on the care to be provided. Cares are performed by a sin-278 gle category of caregiver (for example, an injection is per-279 formed only by a nurse). Therefore some visit/caregiver combinations are not valid. Some visits must be synchronized when health care needs to be done by two caregivers simultaneously. In order to penalize the potential gap in arrival time between the two staff members, we consider a fixed time window of duration zero and the quality of service decreases as the arrival times of the caregivers are different.

The quality of service is optimal if all cares begin during the patient's availability time window and the arrival times of caregivers are equal when they have to perform a synchronized visit.

Furthermore, the home health care company aims to improve the planning of caregivers' routes by balancing the working time among caregivers, in order to obtain a fair planning.

As a result, the home health care company seeks to optimize the three following objectives: decrease the traveling time of the caregivers, provide the best quality of service to the patients and minimize the maximal working time difference between the caregivers.

Model description

In this section, the mixed-integer programming formulation of the home health care problem is presented.

Basic notation

The home health care problem is modeled on a graph G = (N, A) where N is the set of nodes and A the set of arcs. The set of visits to perform is denoted O and the set of home health care offices is denoted P . Thus, N = O ∪ P . Each visit is represented by a separated node in the graph, whether two or more visits are associated with the same physical location or not. For example, if a given client requires two visits during the day, a node will be created for each visit and they will both have the same geographical location. Using this information, the set of arcs is defined as

A = {(i, j)|i, j ∈ N, i = j}. Each arc (i, j) ∈ A has a distance d ij .
The planning horizon is assumed to be a single day.

The set of caregivers is denoted S. For each caregiver i ∈ S, a working hard time window [α i , β i ] is known. The set R = {r 1 = N , r 2 = A} represents the possible job role of caregivers. Nurses have the job role N and the auxiliary nurses have the job role A. The assignment of a job role to a caregiver i is defined by the binary parameter ω i . The parameter ω i is equal to N if the caregiver i is a nurse and equal to A otherwise.

The home health care offices may be located in different places and therefore have different locations. The binary parameter γ ik = 1 if the caregiver i is assigned to the home health care office k, and zero otherwise. 

363

To summarize, the working time ω k of a caregiver k is 364 computed as follows:

365

ω k = u k -l k ∀k ∈ S (1) 
l k = min(t i -d ij -(x k ji -1) × M ) ∀i ∈ O, j ∈ P, k ∈ S, γ j k = 1 (2) u k = max(t i + c i + d ij + (x k ij -1) × M ) ∀i ∈ O, j ∈ P, k ∈ S, γ j k = 1 (3)
In addition, the working time balancing aims to min- 376

W N = max|ω k -ω l | ∀k, l ∈ S, k = l, η k = η l = N (4) W A = max|ω k -ω l | ∀k, l ∈ S, k = l, η k = η l = A (5)
Note that the constraints (2) to ( 5) can be linearized in 377 order to obtain a MILP model. the penalty associated to the time visits t i and t j .

396

Thus, the quality of service level is calculated as the 397 sum of the penalties generated by the functions f i and g ij .

398

The best quality of service will be a solution generating no 
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The penalty function f i is defined as follows:

409 410 f i (t i ) =            v t i .(τ e- i + p t .τ e+ i ), if t i < a i -τ i v t i .τ e- i , if t i ∈ [a i -τ i , a i [ 0, if t i ∈ [a i , b i ] v t i .τ l- i , if t i ∈ ]b i , b i + τ i [ v t i .(τ l- i + p t .τ l+ i ), if t i ≥ b i + τ i 411 412
The figure (2) illustrates the value of the penalty func-413 tion f i (t i ) depending on the arrival time of the caregiver 414 to execute the visit i.

415

We consider that τ i = λ × c i .

416

Each minute of violation within the first zone incurs a 417 penalty v t i . Moreover, this penalty per minute is multiplied 418 by a factor p t in the extra zone.

419

The number of minutes of early and late violation of the 

τ e- i = min(τ i , max(0, a i -t i )) ∀i ∈ O (6) τ e+ i = max(0, a i -t i ) -τ e- i ∀i ∈ O (7) τ l- i = min(τ i , max(0, t i -b i )) ∀i ∈ O (8) τ l+ i = max(0, t i -b i ) -τ l- i ∀i ∈ O (9)
The figure (3) illustrates the value of the penalty function g ij depending on the arrival time of the caregivers i 430 and j. About the synchronized visits, the penalty function g ij 432 is defined as follows:

433 g ij (t i , t j ) =    0, if t i = t j v s ij .t s- ij , if |t i -t j | ≤ τ ij v s ij .(t s- ij + p s .t s+ ij ), if |t i -t j | > τ ij 435 436
The binary parameter δ ij is used when two cares i and j 437 need to be synchronized. δ ij = 1 if the visits i and j have 438 to be synchronized, and 0 otherwise. 447

The number of minutes of violation of the synchronized 448 visits is determined by the following constraints:

449 t s- ij = min(τ ij , |t i -t j |) ∀i ∈ O, j ∈ O, δ ij = 1, i = j (10) t s+ ij = |t i -t j | -t s- ij ∀i ∈ O, j ∈ O, δ ij = 1, i = j (11)
Note that the constraints ( 6) to ( 11 

x k ij × d ij + i∈O f i (t i ) + i∈O j∈O δ ij × g ij (t i , t j )) + W N + W A (12)
subject to: 

459 j∈N i =j k∈S x k ij = 1 ∀i ∈ O (13) j∈O x k ij = j∈O x k ji = γ i k ∀i ∈ P, k ∈ S ( 14 
) j∈N i =j x k ij = j∈N i =j x k ji ∀i ∈ N, k ∈ S (15) t j ≥ t i + c i + d ij + (( k∈S x k ij ) -1) × M ∀i ∈ N, j ∈ O, i = j (16) t i ≥ l k + (( j∈N i =j x k ij ) -1) × M ∀i ∈ O, k ∈ S ( 
u k ≥ t i + c i + d ij + (x k ij -1) × M ∀i ∈ O, j ∈ P, k ∈ S, i = j, γ kj = 1 (18) j∈N i =j x k ij = 0 ∀i ∈ O, k ∈ S, r ∈ R, ω kr = ρ ir (19) x k ij ∈ {0, 1} ∀i ∈ N, j ∈ N, k ∈ S t i ∈ T ∀i ∈ O (20)
Objective function ( 12 Thus, even when the memetic algorithm is chosen, the pheromone matrix will also be updated, which would not have been the case in the classic version of the memetic algorithm. This continuously updated pheromone matrix will then be used by the ACO section of the hybrid algorithm when it is selected. Similarly, the local search operator specific to the memetic algorithm will also be applied even if the ACO is chosen during the current iteration, thus potentially improving some solutions of the population.

Finally, the algorithm stops when the stopping criteria have been reached, and the best solution found during the resolution is the result of the algorithm.

Numerical experiments

In this section, the test instances and the settings applied to the hybrid memetic-ant colony optimization algorithm during the experiments are presented. Subsequently, the results obtained with different settings of the MACO are analyzed.

Test instances and experiments settings

In order to evaluate the efficiency of the suggested algorithm, a set of instances from the literature on the HHC problem is used. The test instances have been suggested by [START_REF] Bredström | Combined vehicle routing and 1106 scheduling with temporal precedence and synchronization con-1107 straints[END_REF].

The test instances are grouped into three categories depending on the number of visits. The first category contains five small-size instances of 20 visits, the second one contains three mid-size instances of 50 visits and the last category contains two instances of 80 visits.

For all instances, one day is considered nine hours long.

Therefore, all the data related to the time in the instances have to be normalized on a daily nine-hour scale.

Moreover, in each instance, 10% of the visits are synchronized visits.

Finally, in order to cover the different time window possibilities, five groups of time window restrictions have been created respectively fixed time window (F), small time 777 window (S), medium time window (M), large time win-778 dow (L) and no time window restrictions (A).

779

In the tables presenting the results of the experiments, 780 the instance "3S" represents the instance 3 with small pa-781 tients time window. Similarly, the instance "8A" repre-782 sents the instance 8 with no time window restrictions.

783

As a summary, the characteristics of the test instances 784 are presented in the table 2. patients is small, they have some important impediments 812 that prevent them from being available for a longer time.

813

Consequently, the more the patient time window is small, 814 the greater the penalty value is.

815

In addition, the more the average distance between pa-816 tient locations is important and the greater the value of the 817 penalty will be. Since a high value of AvD tends to induce 818 a high value of the total travel time needed by the staff 819 members (that is to say the objective function), the value 820 of the penalty has to be proportional to the total travel 821 time of the staff members in order to have a roughly similar 822 impact on the penalization of the objective function.

823

Consequently, the penalty value for each minute of non-824 satisfaction of the patients soft time window v t i for the visit 825 i is defined as follows:

826 v t i =    AvD 2×(bi-ai) if 2 × (b i -a i ) ≥ 1

AvD otherwise

The penalty factor for soft time windows p t is set to 827 the same as the penalty factor for synchronized visits p s . Consequently in the experiments, p t = p s = 2.

828

Instance |O| |S| |Sync| AvD (h) F(h) S(h) M(h) L(h) A(

Similarly, the same penalty value (i.e. penalty applied for each minute of non-satisfaction of the soft constraint) is used for the soft time windows and the synchronization constraints non-satisfaction. As a result, for a job i,

v t i = v s ij .
Regarding the solution approach, the crossover, muta- 
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The results presented in an upcoming section are ob-896 tained among 10 runs on each instance.

In addition, the commercial optimization solver Gurobi Optimization (2016) (version 6.0.5) is used with a time limit of 2 hours to perform a comparison of the performance in front of the MACO on the home health care problem.

Finally, experiments are performed on a computer using an Intel R Core TM i7-7820HQ CPU with 16 GB of RAM memory.

Computational results

In this part, the computational results of the experiments are presented.

The results of the hybrid approach are compared to different methods to confirm the effectiveness of the proposed method. Three resolution approaches are used to compare their results with those of the hybrid algorithm. Indeed, the hybrid algorithm is compared to a memetic algorithm inspired by the work of [START_REF] Decerle | A memetic algorithm for a home health care routing and scheduling problem[END_REF], three versions of the ant colony optimization algorithm and the commercial solver Gurobi.

In addition, no experiment was carried out by previous works of the literature on the same problem so the comparison was not possible with existing results.

In order to obtain a fair comparison between the various configurations of the hybrid memetic-ant colony optimization algorithm, the average computational results over the ten runs are detailed first. Then, the best results obtained by each configuration of the MACO over the ten runs are compared with the results obtained by the commercial solver Gurobi.

First, the average computational results over the ten runs are presented in the table 4.

In each row, the lowest value is highlighted in gray to distinguish which MACO parameters provide the best results for that instance.

The "Objective function" column represents the average sum of traveling time, penalties occurred by the nonsatisfaction of the soft constraints and maximal working time difference among the ten runs. The results are presented for each MACO settings variant.

Furthermore, the column "Gap (%)" indicates the gap between the best-found solution by any variant of the MACO among "MACO v1", "MACO v2" and "MACO v3" compared to the best-found solution obtained by other solving methods such as MA and ACO. The higher the gap is, the better the hybrid MACO performs. As well, the value is highlighted in gray when the MACO obtains the best solution on the considered instance.

Consequently, the gap is computed as follows:

Gap = min(ACO,min i∈[1..3] (ACOvi))-min i∈[1..3] (M ACOvi) min i∈[1..3] (M ACOvi)
Regarding the results presented in the It should be highlighted that within its two hours time 1014 limit, the commercial solver finds the optimal solution 1015 for only four instances (the instances "1M", "2M", "1L" 

  110 working time of a caregiver, in order to obtain a similar 111 working time among all caregivers. As a result, one of 112 the objectives to optimize is to reduce the maximal work-113 ing time difference among caregivers. To the best of your 114 knowledge, there is no previous work aiming to optimize 115 the following three objectives: decrease the traveling time 116 of the caregivers, provide the best quality of service to the 117 patients and minimize the maximal working time differ-118 ence between the caregivers. 119 Regarding the solution methods used in the literature, 120 the majority of works have developed metaheuristic solu-121 tion procedures to solve the home health care problem.
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127

  As an example,[START_REF] Afifi | Heuristic solutions for 1088 the vehicle routing problem with time windows and synchronized 1089 visits[END_REF] developed a simulated 128 annealing based algorithm (SA-ILS) for a variant of the 129 vehicle routing problem with time windows and synchro-130 nized visits (VRPTWSync). 131 Matheuristics have also been used to solve the HHC 132 problem. Allaoua et al. (2013) developed a matheuristic 133 based on the decomposition of the integer linear program-134 ming formulation into two problems. The first one is a set 135 partitioning like problem and it represents the rostering 136 part. The second problem consists in the routing part.

137

  This latter is equivalent to a multi-depot traveling sales-138 man problem with time windows (MTSPTW) 139 In addition, memetic algorithm (MA) have also been 140 applied to the home health care problem. Memetic algo-141 rithms is a marriage between a population-based global 142 search and the heuristic local search made by each of the 143 individuals according to Moscato et al. (1989). Widely ap-144 plied to numerous optimization problems, memetic algo-145 rithms have also shown theoretical excellent performances 146 in solving some machine learning and data mining tasks, 147 such as pruning of Pareto optimal solutions ensemble by 148 Qian et al. (2015) and influence maximization by Qian 149 et al. (2018). 150 As defined by Neri et al. (2012), memetic computing 151 is a broad subject which studies complex and dynamic 152 computing structures composed of interacting modules 153 (memes) whose evolution dynamics is inspired by the dif-154 fusion of ideas. Memes are simple strategies whose har-155 monic coordination allows the solution of various prob-156 lems. Towards this end, Ong et al. (2010) have related 157 that the earliest and fasted growing areas of memetic com-158 puting research is memetic algorithm (MA). It is indeed ing the optimization process. Following the classification suggested by

  As well, a hybrid memetic-ant colony optimization algorithm (MACO) is suggested in this paper.MACO is a hybridization of two algorithms: memetic algorithm and ant colony optimization algorithm. In previous work, Decerle et al. (2018) have suggested an efficient memetic algorithm for the home health care problem with soft time window and synchronization constraints. Since previous works on the hybridization of these two algorithms have shown their efficiency on other applications, the authors have decided to evaluate this hybrid algorithm on the home health care problem. 225 To the best of our knowledge, this is the first work on 226 memetic computing applied to the home health care prob-227 lem that combines ant colony optimization and memetic 228 algorithms. As well, both structures share the same pop-229 ulation of solutions and update the pheromone matrix. 230 To summarize, the main contributions of this paper are 231 as follows. First, this work studies a variant of the home 232 health care problem with soft time window and synchro-233 nization constraints, and working time balancing. Sec-234 ondly, a hybrid memetic-ant colony optimization algo-235 rithm is suggested to tackle the proposed problem. Lastly, 236 the performances of the memetic, ant colony optimization 237 and the hybrid of the previous two algorithms are evalu-238 ated on benchmark instances from the literature. Results 239 are compared with best solutions obtained by a commer-240 cial solver. 241 This paper is outlined as follows. In the next section, 242 characteristics of the studied system are detailed. In sec-243 tion 3, the mixed-integer programming formulation of the 244 home health care problem is presented with a description 245 of the various parameters, variables, and constraints taken 246 into account. In Section 4, a description of the three solu-247 tion approaches including the hybrid memetic-ant colony 248 optimization algorithm is provided. The description of the 249 test instances, experiments settings and an analysis of the 250 computational results is presented in Section 5. Finally, 251 some concluding remarks, as well as some perspectives on 252 future works, will be drawn in the last section.

  care problem is defined as follows.255Given a set of caregivers and a set of patient visits, the 256 goal is to find a valid planning for a one-day period for each 257 caregiver. The resulting planning must indicate which visit 258 should be carried out by which caregiver and when the 259 visit should begin. Each caregiver has a defined work-260 ing time window, which means they only work during this 261 time. As well, caregivers have an assigned home health 262 care office from which they start and end their workday. 263 Each caregiver uses the same mode of transportation (i.e.

264a

  car provided by the home health care company). Work-265 ing overtime is not allowed due to increased work costs for 266 the company. Home health care staff are either nurses or 267 auxiliary nurses. 268 The time at which a caregiver must start a visit is lim-269 ited by a time window. Therefore, the patient and the 270 home health care company agree on a time window in 271 which care must begin. However, this time window can 272 be partially satisfied by starting the visit shortly before or 273 after the patient's preference. Each patient time window is 274 specific depending on the availability of the patient or the 275 type of care to be provided. For this purpose, the level of 276 tolerance to respect the time window is different depending
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366Figure 1 :

 1 Figure 1: Illustration of the home health care problem

  , the quality of service provided to the 380 patients is detailed.381The quality of service is defined as the fact that a care 382 is provided to the patient during his / her period of avail-383 ability and with the number of caregivers required. Thus, 384 two characteristics can be identified in order to evaluate 385 the level of quality of service offered: 386 • care must be performed when the patient is available 387 • in the case of a synchronized visit, the two caregivers 388 must be present at the same time in order to be able 389 to carry out the necessary care 390 In order to evaluate the quality of service level of a so-391 lution, we define two piecewise-linear functions that will 392 compute the penalties. The function f i computes the 393 penalty value related to the violation of the time window 394 for the time visit t i . Similarly, the function g ij computes 395

  define two zones in which penalties will oc-401 cur. A first zone that will occur regular penalties for each 402 minute of violation of the soft constraints. An extra zone 403 will occur some higher penalties for each minute of viola-404 tion within this extra zone. 405 The time limit separating the two zones is denoted k i in 406 the case of time window and k ij for the shared visits. It 407 corresponds to a defined percentage λ of the visit duration.

420Figure 2 :

 2 Figure 2: Value of the penalty function f i depending on the arrival time t i
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Figure 3 :

 3 Figure 3: Value of the penalty function g ij depending on the arrival times of both caregivers.

439

  Each minute of difference between the starting times of440 the synchronized visits occurs a penalty per minute of v s ij 441 until a limit of time of τ ij . Moreover, this penalty per 442 minute is multiplied by a factor p s in the extra zone. 443 The number of minutes of non-satisfaction of the syn-444 chronized visits in the first zone is denoted t s- ij . As well, 445 the minutes of violations belonging to the extra zone is 446 denoted by the variable t s+ ij .

  ) are linearizable in 450 order to obtain a MILP model. 451 3.4. Problem formulation 452 In this part, the formulation of the problem is presented. 453 In order to facilitate the understanding of the model, 454 the notation of the parameters for the home health care 455 problem is summarized in the table 3.4. 456 The mixed-integer programming modelization of the 457 home health care problem is formulated as follows: 458 min i∈N j∈N k∈S

  ) minimizes the sum of total traveling time of the caregivers, the patients' time window nonsatisfaction and the synchronized visits non-respect and the maximal working time difference among caregivers. Constraint (13) makes sure that each visit is done by one caregiver. Constraint (14) ensures the departure and arrival of the caregivers to their assigned home health care office. The flow conservation is guaranteed by constraint (15). Constraint (16) verifies that caregivers have enough time between two consecutive visits to perform the first one and then go to the next patient's home. In addition, caregivers are allowed to work only during a hard time window as guaranteed by the constraints (17) and (18). In addition, constraint (19) ensures that caregivers have 473 the requested qualification to perform the health cares 474 planned in their route. 475 Finally, the constraint (20) defines the domain of the 476 variables.

478

  In this section, we present three algorithms for solving 479 the home health care problem. First, a memetic algorithm 480 from the literature is presented. Then, an ant colony op-481 timization algorithm is detailed. Finally, a hybridization 482 of the two previous solutions approaches is presented as a 483 hybrid memetic-ant colony optimization algorithm.

Figure 4 :

 4 Figure 4: Structure of the memetic algorithm

Figure 5 :

 5 Figure 5: Structure of the ant system

Figure 6 :

 6 Figure 6: Structure of the hybrid memetic-ant colony optimization algorithm

680

  Crossover operators aim at creating new offspring so-681 lutions from population's genetic information analogously 682 to reproduction. Crossover operators are applied to the 683 selected individuals according to a pre-defined probability 684 proba C . The three operators used in the algorithm are 685 presented here after. 686 One-point crossover operator randomly selects a 687 crossover point and the tails of its two parents are 688 swapped to get new off-springs 689 Two-point crossover works similarly except that two 690 crossover points are chosen and the inner segment be-691 tween the two crossover point is swapped to get new 692 off-springs 693 One path exchange crossover exchanges one randomly 694 chosen path between the two candidate solutions to 695 create off-springs 696 Mutation operators are essentials to preserving the ge-697 netic diversity of the population. They can change signifi-698 cantly a solution from its initial state and greatly help the 699 algorithm to escape from a local optimum. Mutation op-700 erators are applied to the selected individual according to 701 a pre-defined probability proba M . If a solution is selected 702 for the mutation process, then any of the three following 703 mutation operators will be applied to it randomly. The 704 mutation operators that have been implemented are the 705 node exchange operator, node relocation operator, and ar-706 rival time shift operator. While the first two operators will 707 focus on the routing part (either exchanging or relocating 708 some randomly chosen visits), the arrival time shift oper-709 ator focus on the scheduling of the solution by updating 710 the arrival times of the visits within a certain interval of 711 time. 712 Finally, the local search operators apply local changes 713 iteratively to the solution in order to improve the objective 714 function. Local search operators are applied to the selected 715 individual according to a pre-defined probability proba LS . 716 The local search operators implemented for the experi-717 ments are a combination of 2-opt and 2-opt* operators, a 718 node exchange operator and a node relocation operator. 719 The same operator combines the 2-opt procedure with the 720 2-opt* procedure (suggested by Potvin et al. (1996)) since they work similarly except that 2-opt* performs changes 722 on different routes. It is particularly effective on the home 723 health care problem since it is hardly possible for the 2-opt operator to find an improvement because of the preserved order of visits from the time windows. In addition, the node exchange operator and node relocation operator respectively exchange two visits with each other or relocate a visit to a different position in the same or another route. During the local search process, each operator is applied once. For each operator, the first feasible improvement is performed and the procedure keeps going until no improvements are possible. Once each solution is evaluated, the pheromones are updated on all edges, according to the rule explained in the section 4.2. This hybridization of the two algorithms, which share the same population, must allow the algorithm to obtain better solutions by taking advantage of the characteristics and specificities of the two algorithms taken individually.

785

  Concerning the experiments settings, each parameter 786 has been set empirically since it showed good performance 787 during the experiments. However, it should be pointed 788 out to the reader that the algorithms are sensitive to the 789 parameter settings. Therefore, results of the experiments 790 may change with different parameters settings. 791 The computational time allowed for each instance is de-792 fined to 10 minutes. It represents the maximal allowed 793 running time by Bredström and Rönnqvist (2008) who ini-794 tially proposed the instances. In addition, the same com-795 putational time has been allowed regardless of the instance 796 size since in practice, the coordinating nurse will have no 797 more or less available time depending on the number of 798 patients and caregivers to determine the schedule. 799 About the patient time window and synchronization soft 800 constraints, the value of the limit separating the two zones 801 of penalty denoted τ i has been set to 0.1 × c i . Similarly, 802 the time limit separating the two zones of penalty in the 803 case of synchronized visits denoted τ ij for the visits i and 804 j is set to 0.1 × c i assuming c i = c j in the experiments. 805 The aim is to strongly penalize the large violations of the 806 soft constraints. 807 The computation of the penalty value for soft patients 808 time window non-satisfaction v t i depends on the average 809 distance between all patient locations AvD and on the 810 time window length of the visit. If the time window of the 811

  tion and local search operators presented in section 4.1 are used for the hybrid memetic-ant colony optimization algorithm. Similarly, the edge selection and pheromone update rules in section 4.2 are used by the MACO. Concerning the settings of the crossover and mutation processes, the parameters proba C and proba M have been respectively defined to 1 and 0.1. As well, the population size F max of the MACO is set to 20 individuals since it shows a good balance during the experiments between the solution accuracy and the computational time needed to perform one iteration of the algorithm. The use of larger populations would increase the needed computational resources. In regard to the pheromone update, the parameter Q influencing the amount of pheromone deposited on an edge is set to 1. As well, the coefficient of pheromone evaporation defined by the parameter ρ is set to 0.1. Consequently, only 10% of the previously deposited pheromones remains at each iteration. In addition, experiments have been performed with different levels of probability to apply either MA or ACO at each iteration of the MACO algorithm. As a result, the parameter proba ACO is set to either 0, 0.5 or 1 depending on the experiment. If proba ACO = 0, it means that the ACO part of the MACO is never applied. In opposite, if proba ACO = 1, then the MA part of the MACO is never executed. As well, various values for the parameters α and β are used to control the relative influence of the intensity of the pheromone and the visibility of an edge. A high value of α increases the importance of the pheromone in the edge selection rule. Similarly, a high value of β increase the importance of the visibility of an edge (i.e. the visibility of an edge is inversely proportional to the travel time of 869 the edge). 870 In the experiments, the parameters α and β are defined 871 with different values to identify a possible combination 872 with better results. 873 For each experiment using the version "v1", the value of 874 α and β are equally set to one meaning that the influence 875 of the intensity of the pheromone and the visibility of an 876 edge is the same to determine the next edge. In the version 877 "v2", ten times more influence is given to the visibility of 878 an edge compared to the intensity of the pheromone while 879 the version "v3" does the opposite case.

  1013

  1016and "2L"). Compared to the previous work of Decerle 1017 et al. (2018) who studied a similar problem except that 1018 the working time balancing was not part of the objective 1019 function, they showed that the same commercial solver 1020 was able to find the optimal solution in 13 out of the 50 1021 instances of the benchmark suggested by Bredström and 1022 Rönnqvist (2008), and only with a time limit of one hour. 1023 Consequently, the addition of working time balancing to 1024 the objective function has substantially complicated the 1025 problem. 1026 Finally, the hybrid memetic-ant colony optimization al-1027 gorithm presented in this paper shows great efficiency com-1028 pared to memetic and ant colony optimization algorithms 1029 by obtaining for most instances the lowest average value 1030 for the objective function. As well, the suggested MACO 1031 maintains a low gap compared to the commercial opti-1032 mization solver on benchmark instances. It should also be 1033 pointed out that these good results are valid, regardless of 1034 the setting applied to the MACO during the experiments. , we have studied a variant of the 1037 home health care problem with soft time window and syn-1038 chronization constraints, as well as working time balanc-1039 ing. The problem is modeled in order to decrease the trav-1040 eling time of the caregivers, to provide the best quality 1041 of service to the patients and to minimize the maximal 1042 working time difference between the caregivers. Indeed, 1043 a balanced working time between caregivers is essential to 1044 obtain fairness and ensure the applicability of the resulting 1045 planning. 1046 In addition, we propose a novel hybrid memetic-ant 1047 colony optimization algorithm (MACO) in order to solve 1048 this problem. The algorithm is compared with a memetic 1049 algorithm from the literature as well as an ant colony op-1050 timization algorithm, which is for the first time applied on 1051 the home health care problem to the best of our knowledge. 1052 In order to evaluate the efficiency of the proposed algo-1053 rithm, best results from the experiments are also compared 1054 with the commercial optimization solver Gurobi. Exper-1055 iments are conducted on benchmark instances from the 1056 literature. 1057 The results clearly show the efficiency of our hybrid 1058 memetic-ant colony optimization algorithm. Indeed, the 1059 MACO obtains the lowest average objective function for 1060 most instances. As well, no matter which settings are used, 1061 the average value obtained among all instances is lower 1062 than the average value using the memetic or ant colony op-1063 timization algorithms. However, it should be pointed out 1064 that the ACO provides the worst results with the highest 1065 average value for the objective function. 1066 In addition, the MACO performs well overall when com-1067 paring the best result obtained with the commercial solver. 1068 Indeed, the deviation ratio remains low for small size in-1069 stances where it remains below 7-8% for most instances. 1070 In addition, when the size of the problem increases, the 1071 commercial solver becomes unable to find even one feasi-1072 ble solution for most instances while the MACO finds a 1073 feasible solution for each instance. 1074 In future works, other real-life characteristics could be 1075 addressed in the model such as patient preference for a 1076 given caregiver or the continuity of care by considering a 1077 longer planning horizon. In addition, we plan to extend 1078 our work by adjusting dynamically the probability to ap-1079 ply either ACO or MA during the execution of the hybrid 1080 algorithm. Similarly, the optimal value of ACO related 1081 parameters may be determined by a sensitivity analysis.

  Moreover, for each visit i ∈ O at the patient's home, a duration c i represents the time needed to perform the care. A soft time window [a i , b i ] represents the availability of the patient to receive a care. The binary parameter δ ij 333 is used when two visits i and j are synchronized. δ ij = 1 334 if the visits i and j are synchronized, and 0 otherwise.

	335	
	336	As well, the caregiver qualification needed to perform
	337	the job i is defined by ρ i . If the visit requires a nurse,
	338	ρ i = N , otherwise the visit requires an auxiliary nurse
	339	and ρ i = A.
	340	Finally, the decision variable x k ij = 1 if the caregiver
	341	k travels from i to j, and zero otherwise. As well, the
	342	variable t i defines the starting time of the visit i.
	343	In order to illustrate our problem, the figure 1 depicts a
	344	situation where there is one home health care office, thir-
	345	teen patients and four caregivers. Among the caregivers,
	346	the paths colored in blue represent the routes of the nurses
	347	and the path in red is performed by an auxiliary nurse. In
	348	this case, the patient 6 requires two caregivers. As a result,
	349	both cares are synchronized so that the nurse and the aux-
	350	iliary nurse arrive simultaneously. Another example, the
	351	patient 8 is served by a nurse. As a result, ρ 8 = N . In
	352	opposite, ρ 5 = A.
	353	3.2. Working time definition and balancing
	354	In this part, the working time of the caregivers and its
	355	balancing is detailed.
	356	The working time ω k of a caregiver k is defined as the
	357	interval of time between the time he or she leaves the home
	358	health care office and the time he or she returns to it. The
	359	possible waiting times on his/her route are also considered
	360	as being part of working time. The variables l k and u k
	361	respectively represents the time the caregiver k leaves from
		the home health care office and the time he/she returns to

362

it.

Table 1 :

 1 17) Description of the sets, parameters and variables used in the mathematical model

	Sets

Table 2 :

 2 Bredström and Rönnqvist test instances. The columns are: the number of visits |O|, the number of routes |S|, the number of synchronized visits |Sync|, the average distance between the visits AvD and the last five columns are the average time window size for each category

	h)

Table 3 :

 3 Experimental settings applied to the hybrid memetic-ant colony optimization algorithmPlease note in table 3 that when proba ACO = 0, the

	880			
	881	A summary of the settings applied to the MACO for
	882	each experiment is presented in the table 3.
		Experiment version proba ACO	α	β
		MA	0	-	-
		ACO v1	1	1	1
		ACO v2	1	0.1	1
		ACO v3	1	1	0.1
		MACO v1	0.5	1	1
		MACO v2	0.5	0.1	1
		MACO v3	0.5	1	0.1
	883			
	884	pheromones are not used during the execution of the algo-
	885	rithm. Therefore, the value of the parameters α and β are
	886	not indicated because in this case.	
	887	As a result, the settings applied to the first experiment
	888	correspond to the behavior of a memetic algorithm as pre-
	889	sented in section 4.1. Experiments "ACO v1", "ACO v2"
	890	and "ACO v3" reproduce an ant colony optimization algo-
	891	rithm including an extra step of the local search. Finally,
	892	experiments "MACO v1", "MACO v2" and "MACO v3"
	893	correspond to the MACO where memetic and ant colony
		optimization algorithm have equal probabilities to be ap-

894

plied at each iteration.

table 4

 4 8% for most instances. In addition, when the size of the 1009 problem increase (instances 6-8 and 9-10), the commercial 1010 solver becomes unable to find even one feasible solution for 1011 most instances while the MACO finds a feasible solution

	, the hy-

971

Overall, the computational results highlight the effi-972 ciency of the hybrid memetic-ant colony optimization al-973 gorithm. The proposed algorithm provides better results

974

than the memetic algorithm and the ant colony optimiza-975 tion algorithm, which for the first had very good results in 976 a previous work by

[START_REF] Decerle | A memetic algorithm for a home health care routing and scheduling problem[END_REF]

. As well, it can 977 be emphasized that the ACO provides the worst results

978

with the highest average value for the objective function.

979

Finally, it should be noted that among the three configura-980 tions of the

MACO (v1, v2, and v3)

, there is no particular 981 configuration that stands out, and all provide good results. 982 Secondly, the best results obtained by the MACO algo-983 rithm for each experiment over the tens runs are presented 984 in the table 5. Best results are compared with the best 985 solution obtained by the commercial optimization solver 986 Gurobi Optimization (2016). 987 In the column "Objective function (m)", the best solu-988 tions obtained by the MACO algorithm out of the ten runs 989 are presented and the results obtained by the optimization 990 solver are given by the column "MIP". A star mark (*) 991 is used in the column "MIP" to indicate that the solution 1003 Gap = min i∈[1..3] ( M ACOvi-M IP M IP ) 1004 Regarding the computational results, the hybrid 1005 memetic-ant colony optimization algorithm provides good 1006 results. Indeed, the deviation ratio remains low for small 1008 1012 for each instance.

Table 5: Best results obtained by the hybrid memetic-ant colony optimization algorithm compared to the optimization solver -Bredström and Rönnqvist (2008) benchmark