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Home health care structures provide cares for the elderly, people with disabilities or patients with chronic conditions. Since the increase in demand, organizations providing home health care are eager to optimize their activities. The planning of caregivers' activities must optimize several objectives, often conflicting, that requires an extensive time to obtain a fair and valid schedule. In this paper, we address the multi-objective home health care problem with the aim of ensuring the applicability of the planning. To that end, the objectives considered in the proposed model are the minimization of the total working time of the caregivers, while maximizing the quality of service and minimizing the maximal working time difference among nurses and auxiliary nurses. A memetic algorithm for multi-objective optimization is proposed to solve the problem. Computational results on benchmark instances from the literature highlight the efficiency of the proposed algorithm in comparison with other existing metaheuristics thanks to four comparison metrics. As well, an analysis of the results exposes the trade-off between the three objectives. As a result, requiring a minimum caregivers' travel time solution leads to scarcity of the available solutions and so, cannot be demanding on the quality of the other objectives.

Introduction

Home health care (HHC) services provide nursing and general hygiene cares at patient home for people in a situation of dependency. Different types of care are performed depending on the need of the patients. The caregivers of the home health care structures are often composed of nurses and auxiliary nurses, in order to provide the full range of cares. These home health care help patients to improve their health conditions and their well-being.

Nowadays, planning of the home health care staff is performed by an experienced nurse who has the role of coordinating the workload of all caregivers. Because of the overall aging of the population and also because of the need of patients to recover at home which is possible due to technology advances as explained by [START_REF] Christensen | Ageing populations: the challenges ahead[END_REF], demand for home health care tends to grow as reported by [START_REF] Bertrand | Les services de soins infirmiers domicile en 2008[END_REF]. Consequently, this complex planning task often requires an extensive time to obtain a fair and valid schedule. As this planning activity is performed every day, home health care services are eager to optimize their activities, leading to a rising interest in research on this topic. Several literature reviews have been

Reference

Approach

Number of objectives

Patient TW Nurse's skills Synchronization [START_REF] Bertels | A hybrid setup for a hybrid scenario: 1200 combining heuristics for the home health care problem[END_REF] Linear aggregation 5 X X [START_REF] Braekers | A 1210 bi-objective home care scheduling problem: Analyzing the trade-1211 off between costs and client inconvenience[END_REF] Pareto based 2 X X [START_REF] Bredström | Combined vehicle routing and 1214 scheduling with temporal precedence and synchronization con-1215 straints[END_REF] Linear aggregation 3 X X [START_REF] Cheng | A home health care routing and scheduling problem[END_REF] Linear aggregation 2 X En-nahli et al. (2015) Linear aggregation 4 X X [START_REF] Hiermann | Metaheuristics for solving a multimodal homehealthcare scheduling problem[END_REF] Linear aggregation 13 X X [START_REF] Liu | Mathematical model and exact al-1273 gorithm for the home care worker scheduling and routing problem 1274 with lunch break requirements[END_REF] Linear aggregation 2 X [START_REF] Mankowska | The home health 1277 care routing and scheduling problem with interdependent services[END_REF] Linear aggregation 3 X X X [START_REF] Duque | Home care service planning. the case of landelijke thuiszorg[END_REF] Lexicographical order 2 [START_REF] Nickel | Mid-term and short-term 1290 planning support for home health care services[END_REF] Linear aggregation 4 X X [START_REF] Rasmussen | The 1297 home care crew scheduling problem: Preference-based visit clus-1298 tering and temporal dependencies[END_REF] Linear aggregation 3 X X Trautsamwieser et al. (2011) Linear aggregation 7 X X [START_REF] Triki | A two-phase approach for periodic home health care planning[END_REF] Linear aggregation 5 X Our approach Pareto based 3 X X X The synchronization between vehicles in order to have 124 2 two caregivers present at the patient's home simultaneously has not been studied frequently. In their work, [START_REF] Bredström | Combined vehicle routing and 1214 scheduling with temporal precedence and synchronization con-1215 straints[END_REF] have modeled this temporal constraint to ensure that the vehicles that visit the patient arrive simultaneously. In their mixed-integer programming formulation of the HHC problem, they suggest an objective function with a weighted sum of preferences, traveling time and one balancing variable. Precedences or exact operation synchronization has also been studied by [START_REF] Mankowska | The home health 1277 care routing and scheduling problem with interdependent services[END_REF] who suggested an adaptive variable neighborhood search to solve their formulation of the HHC problem, optimizing three objectives including the total distance traveled by all caregivers, the total tardiness of services that start beyond the time windows and the maximal tardiness over all operations.

As indicated by [START_REF] Fikar | Home health care routing and scheduling: A review[END_REF], most work facilitate a weighted objective function to represent different objectives of decision-makers. Indeed, multi-objective solution procedures deriving a set of Pareto optimal solutions

are not yet common in the HHC routing and scheduling.

For instance, among the 13 publications of the literature presented in the table 1, 11 of them use a weighted sum to aggregate the various objective functions, one paper uses a lexicographic ordering and only one paper uses a procedure deriving a set of Pareto optimal solutions. According to the recent literature review of [START_REF] Cissé | Or problems related to home health care: A review of relevant routing and scheduling problems[END_REF], only [START_REF] Braekers | A 1210 bi-objective home care scheduling problem: Analyzing the trade-1211 off between costs and client inconvenience[END_REF] have proposed to enumerate the entire Pareto frontier.

In the literature, almost all studies consider a weighted sum of objectives as their fitness assignments and a single solution as a result of the solving approach. In our opinion, assigning weights to different terms in the objective function brings subjectivity and can be difficult to justify. Moreover, weights have no significance, and transforming them into meaningful values can be obscure for the decision-maker as explained by [START_REF] Marler | The weighted sum method for 1280 multi-objective optimization: new insights[END_REF].

It also assumes that the decision-maker is able to provide appropriate weights for each objective. In addition, the role of the decision-maker in the decision-making process is reduced to simply defining the problem.

In this paper, the problem is modeled as a multi- The time at which a caregiver must start a visit is limited by a time window. Therefore, the patient and the home health care company agree on a time window in which care must begin. However, this time window can be partially satisfied by starting the visit shortly before or after the client's preference. Each patient time window is specific depending on the availability of the patient or the type of care to be provided. For this purpose, the level of tolerance to respect the time window is different depending on the care to be provided. Cares are performed by a single category of caregiver (for example, an injection is performed only by a nurse), therefore some visit/caregiver combinations are not valid. Some visits must be synchronized when health care needs to be done by two caregivers simultaneously. In order to penalize the potential gap in arrival time between the two staff members, we consider a fixed time window of duration zero and the quality of service decreases as the arrival times of the caregivers are different.

The quality of service is optimal if all cares begin during the patient's availability time window and the arrival times of caregivers are equal when they have to perform a synchronized visit.

Finally, the home health care company aims to improve the planning of caregivers' routes, by optimizing the three following objectives: decreasing the working time of the caregivers, providing the best quality of service to the patients and obtaining a good balance between the caregivers working time.

Model description

In this section, the mixed-integer programming formulation of the multi-objective home health care problem is presented.

Basic notation

The home health care problem is modeled on a graph G = (N, A) where N is the set of nodes and A the set of arcs. The set of visits to perform is denoted O and the set of home health care offices is denoted P . Thus, N = O ∪ P . Each visit is represented by a separated node in the graph, whether two or more visits are associated with the same physical location or not. For example, if a given client requires two visits during the day, a node will be created for each visit and they will both have the same geographical location. Using this information, the set of arcs is defined as

A = {(i, j)|i, j ∈ N, i = j}. Each arc (i, j) ∈ A has a distance d ij .
The planning horizon is denoted T. 330 To summarize, the working time balancing variables W N and W A are computed as follows :

ω k = u k -l k ∀k ∈ S (1) 
l k = min(t i -d ij -(x k ji -1) × M ) ∀i ∈ O, j ∈ P, k ∈ S, γ j k = 1 (2) u k = max(t i + c i + d ij + (x k ij -1) × M ) ∀i ∈ O, j ∈ P, k ∈ S, γ j k = 1 (3)
W N = max|ω k -ω l | ∀k, l ∈ S, k = l, η k = η l = N (4) W A = max|ω k -ω l | ∀k, l ∈ S, k = l, η k = η l = A (5)
Note that the constraints (2) to ( 5) can be linearized in order to obtain a MILP model.

Quality of service

In this section, the quality of service provided to the patients is detailed.

The quality of service is defined as the fact that a care is provided to the patient during his / her period of availability and with the number of caregivers required. Thus, two characteristics can be identified in order to evaluate the level of quality of service offered:

• care must be performed when the patient is available

• in the case of a synchronized visit, the two caregivers must be present at the same time in order to be able to carry out the necessary care

In order to evaluate the quality of service level of a solution, we define two piecewise-linear functions that will compute the penalties. The function f i computes the penalty value related to the violation of the time window for the time visit t i . Similarly, the function g ij computes the penalty associated to the time visits t i and t j .

Thus, the quality of service level is calculated as the sum of the penalties generated by the functions f i and g ij .

The best quality of service will be a solution generating no penalty.

First, we define two zones in which penalties will occur. A first zone that will occur regular penalties for each minute of violation of the soft constraints. An extra zone will occur some higher penalties for each minute of violation within this extra zone.

The time limit separating the two zones is denoted τ i in the case of time window and τ ij for the shared visits. It corresponds to a defined percentage λ of the visit duration.

The penalty function f i is defined as follows :

f i (t i ) =            v t i .(τ e- i + p t .τ e+ i ), if t i < a i -τ i v t i .τ e- i , if t i ∈ [a i -τ i , a i [ 0, if t i ∈ [a i , b i ] v t i .τ l- i , if t i ∈ ]b i , b i + τ i [ v t i .(τ l- i + p t .τ l+ i ), if t i ≥ b i + τ i 376 377
The figure (1) illustrates the value of the penalty func- 393

τ e- i = min(τ i , max(0, a i -t i )) ∀i ∈ O (6) τ e+ i = max(0, a i -t i ) -τ e- i ∀i ∈ O (7) τ l- i = min(τ i , max(0, t i -b i )) ∀i ∈ O (8) τ l+ i = max(0, t i -b i ) -τ l- i ∀i ∈ O (9)
The figure (2) illustrates the value of the penalty func-394 tion g ij depending on the arrival time of the caregivers i 395 and j.

396

About the shared visits, the penalty function g ij is 397 defined as follows : The binary parameter δ ij is used when two cares i and j need to be synchronized. δ ij = 1 if the visits i and j have to be synchronized, and 0 otherwise.

398 399 g ij (t i , t j ) =    0, if t i = t j v s ij .t s- ij , if |t i -t j | ≤ τ ij v s ij .(t s- ij + p s .t s+ ij ), if |t i -t j | > τ ij 400 401
Each minute of difference between the starting times of the synchronized visits occurs a penalty per minute of v s ij until a limit of time of τ ij . Moreover, this penalty per minute is multiplied by a factor p s in the extra zone.

The number of minutes of non-satisfaction of the synchronized visits in the first zone is denoted t s- ij . As well, the number of minutes of violations belonging to the extra zone is denoted by the variable t s+ ij .

The number of minutes of violation of the synchronized visits is determined by the following constraints :

t s- ij = min(τ ij , |t i -t j |) ∀i ∈ O, j ∈ O, δ ij = 1, i = j (10) t s+ ij = |t i -t j | -t s- ij ∀i ∈ O, j ∈ O, δ ij = 1, i = j (11)
Note that the constraints ( 6) to ( 11) are linearizable in order to obtain a MILP model.

Problem formulation

In this part, the formulation of the problem is presented.

In order to facilitate the understanding of the model, 445

f 1 = min k∈S ω k (12) f 2 = min i∈O f i (t i ) + i∈O j∈O δ ij × g ij (t i , t j )) (13) 
f 3 = min W N + W A (14) 
subject to : by [START_REF] Michalewicz | Evolution strategies and other methods[END_REF]. As a result, the initial randomly 514 generated population consists only of feasible solutions.

446 j∈N i =j k∈S x k ij = 1 ∀i ∈ O (15) j∈O x k ij = j∈O x k ji = γ i k ∀i ∈ P, k ∈ S ( 16 
) j∈N i =j x k ij = j∈N i =j x k ji ∀i ∈ N, k ∈ S (17) t j ≥ ti + c i + d ij + (( k∈S x k ij ) -1) × M ∀i ∈ O, j ∈ O, i = j (18) t i ≥ α k +d ij +(x k ji -1)×M ∀i ∈ O, j ∈ P, k ∈ S, γ kj = 1 (19) β k ≥ t i + c i + d ij + (x k ij -1) × M ∀i ∈ O, j ∈ P, k ∈ S, γ kj = 1 (20) j∈N i =j x k ij = 0 ∀i ∈ O, k ∈ S, r ∈ R, η kr = ρ ir (21) x k ij ∈ {0, 1} ∀i ∈ N, j ∈ N, k ∈ S t i ∈ T ∀i ∈ O (22)

515

Then, the operators such as crossover, mutation and lo- Step 1 : Combine parent and offspring populations and create R t = P t ∪ Q t . Perform a non-dominated sorting to R t and identify different fronts : F i , i =1,2,...,etc.

Step 2 : Set new population

P t+1 = ∅. Set a counter i=1. Until |P t+1 | + |F i | < N , perform P t+1 = P t+1 ∪ F i and i = i + 1.
Step 3 : Perform the Crowding-sort(F i , ≺ c ) procedure and include the most widely spread (N -|P t+1 |) solutions by using the crowding distance values in the sorted F i to P t+1 .

Step 4 : Create offspring population Q t+1 from P t+1 by using the crowded tournament selection, crossover and mutation operators.

The diversity among non-dominated solutions is brought by using the crowding comparison procedure which is used with the tournament selection and during the population reduction phase. As well, the elitism mechanism does not allow an already Pareto-optimal solution to be deleted.

However, the usage of the crowding distance for restricting the population size has a drawback. As mentionned by [START_REF] Deb | Multi-objective optimization using evolutionary algorithms[END_REF], "in later generations, when there are more members belonging to the first non-dominated set in the combined parent-offspring population, than the desired number of solutions in the population, some packed Pareto-optimal solutions may give their places to other non-dominated yet non-Pareto-optimal solutions".

It means that the crowding-distance procedure can exclude from the population some solutions that are Paretooptimal because they are too close in terms of crowding distance to other non-dominated solutions. These Paretooptimal solutions can be excluded in place of some other non-dominated solutions, which are not Pareto-optimal.

However, this drawback happens if F 1 > N , which may be rare.

Multi-directional local search (MDLS)

Multi-directional local search (MDLS) is a metaheuristic for multi-objective optimization introduced by Tricoire (2012).

The main idea of MDLS is to iteratively improve a non- x ← selectSolution(F )

3: G ← ∅ 4: for k ← 1 to K do 5: G ← G ∪ {LS k (x)} 6:
end for 

P 0 ← F 2: Q 0 ← ∅ 3: t ← 0 4: repeat 5: R t ← P t ∪ Q t 6: F ←fast-non-dominated-sort(R t ) 7: P t+1 ← ∅ 8: i ← 1 9: repeat 10:
crowding-distance-assignment(F i ) 11:

P t+1 ← P t+1 ∪ F i 12: i ← i + 1 13: until |P t+1 | + |F i | ≤ F max 14: crowding-sort(F i , ≺ n ) 15: P t+1 ← P t+1 ∪ F i [1 : (F max -|P t+1 |)] 16: P t+1 ←crowding-selection(P t+1 , ≺ n ) 17: Q t+1 ← crossover(P t+1 , proba C ) 18: Q t+1 ← Q t+1 ∪ mutation(P t+1 , proba M ) 19:
for x ∈ P t+1 do end for 25:

for x ∈ Q t+1 do 26: if applyLocalSearch(proba LS ) = true then 27: k ←random(K) 28: Q t+1 ← Q t+1 ∪ LS k (x) 29: end if 30:
end for 31:

t ← t + 1 32: until stopping criterion is met 33: return getParetoFront(P t ∪ Q t )
The algorithm starts with a set of feasible solutions F , 624 which can be randomly generated and are non-dominated.

625

In order to generate the set F, twice the number of the 626 maximum population size F max are randomly generated.

627

Then, the set of solutions is updated so that only the non- 

Numerical experiments

In this section, the test instances and the settings applied to the three multi-objective algorithms are presented.

Then, the metrics for comparing the performance of the algorithms are described. Then, the results obtained by MAMO are compared to the two other multi-objective algorithms. Finally, the compromise between the objectives is analyzed.

Test instances and experiments settings

The test instances are grouped into three categories depending on the number of visits. The first category contains five small-size instances of 20 visits, the second one contains three mid-size instances of 50 visits and the last category contains two instances of 80 visits.

For all instances, one day is considered to be nine hours long. Therefore, all the data related to the time in the instances have to be normalized on a daily nine-hour scale.

Moreover, in each instance, 10% of the visits are synchronized visits. As a summary, the characteristics of the test instances are presented in the table 2.

Concerning the experiments settings, the computational time allowed for each instance is defined to 30 minutes. The computational time is the same for all multi-objective algorithms in order to provide a fair comparison of their performances.

About the patient time window and synchronization soft 798 constraints, the value of the limit separating the two zones 799 of penalty denoted τ i has been set to 0.1 × c i . Similarly, 800 the time limit separating the two zones of penalty in the 801 case of synchronized visits denoted τ ij for the visits i and 802 j is set to 0.1 × c i assuming c i = c j in the experiments.

803

The aim is to strongly penalize the large violations of the i is defined as follows :

824 v t i = v s ij =    AvD 2×(bi-ai) if 2 × (b i -a i ) ≥ 1

AvD otherwise

The penalty factor for soft time windows p t is set to the Finally, MOEA/D has shown poor performance in comparison with NSGA-II in the work of [START_REF] Zhang | Moea/d: A multiobjective evolutionary algorithm based on decomposition[END_REF] on ZDT3 instance. Indeed, the poor performance is attributed to the fact that the objectives in ZDT3 instance are disparately scaled. This is also the case in our modelization of the problem where all three objectives are disparately scaled, and have very different ranges of value.

Consequently, MAMO is compared with the two algorithms from which it is inspired, NSGA-II and MDLS which is currently the only multi-objective algorithm to have been applied to the home health care problem in the literature.

Finally, experiments are performed on a computer using an Intel Xeon(R) CPU E5-1603 (@ 2.80GHz) CPU with 8 GB of RAM memory.

Metrics for algorithms comparison

In this paper, several quality measurements indicators are used to evaluate the Pareto front obtained by each algorithm.

In order to evaluate the efficiency of a multi-objective 1042

First, the table 6 aims at determining the ease of finding 
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  In the objective function, the cost associated with the the detailed formulation of the problem. However, the 86 extensive objective function may present some drawbacks 87 since the computational time needed to evaluate a single 88 solution may be significant due to the number of terms 89 included in the objective function.90In most papers, the availability of the patients to receive 91 their care is restricted by a hard or soft time window. Liu 92 et al. (2017) have defined a time window indicating the 93 earliest and latest service start times for the client. In their 94 three-index mixed integer programming model, they seek 95 to minimize the sum of the travel cost and the penalty for 96 unvisited clients, with equal weight for each objective. The 97 model is solved thanks to a branch-and-price algorithm like 98 the one that has been implemented by Rasmussen et al. some qualifications may be associated with 101 caregivers to indicate their skills to perform certain care. 102 Nickel et al. (2012) have considered this characteristic in 103 their weekly planning of the HHC problem. They seek 104 to optimize a combination of 4 objectives which are re-105 spectively the number of unscheduled tasks, the sum of 106 patient-nurse loyalty penalty, the overtime of nurses and 107 the distance traveled by all nurses. En-nahli et al. (2015) 108 have also studied the caregivers' skills by defining five lev-109 els of qualifications from usual to advanced cares. Then, 110 caregivers can only visit those patients who need a level of 111 qualification that is below or equal to the caregiver's skill 112 level. 113 Daily and weekly planning are the most frequent time 114 horizon considered for the planning of caregivers. In their 115 work, Triki et al. (2014) have considered both time hori-116 zon. While their weekly planning aim at optimizing a 117 weighted sum of 2 objectives (the routing cost and the 118 exceeding workload), their daily planning formulation con-119 sider 5 terms in the objective functions. Additional objec-120 tives are introduced for instance by replacing constraints 121 on time windows into penalties computed by a piecewise 122 linear function into the objective function.
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  objective problem and a Pareto-based optimization algorithm is used to obtain a set of tradeoff solutions. The goal is to involve the decision-maker a posteriori, by choosing the desired solution thanks to various Pareto front visualization tools such as levels diagrams suggested by[START_REF] Blasco | A new graph-1206 ical visualization of n-dimensional pareto front for decision-making 1207 in multiobjective optimization[END_REF]. However, the size of the set of Pareto-optimal solutions may become very large, making it difficult to choose a solution as explained by[START_REF] Zitzler | Evolutionary algorithms for multiobjective optimization: Methods and applications[END_REF]. To deal with this issue, several techniques have been suggested to reduce the size of the non-dominated set.[START_REF] Morse | Reducing the size of the nondominated set: Pruning 1286 by clustering[END_REF] has proposed to prune the non-dominated set by clustering it into groups of relatively homogeneous elements. Subsequently, a representative solution of each cluster can be exposed to the decision-makers in order to have a limited but representative selection of the entire Pareto frontier. As a single article has studied the HHC problem from a multi-objective perspective, there are many opportuni-182 ties to better analyze the trade-off relationship between 183 the goals of the home health care problem. In compari-184 son with the existing work of Braekers et al. (2016), we 185 consider the temporal dependencies between the visits in 186 our modeling of the problem. As well, apart from work-187 ing time and quality of service, we consider working time 188 balancing as a new objective to take into account. Indeed, 189 to ensure the applicability of the plannings obtained, the 190 balancing of working time must be absolutely taken into 191 account. Therefore, this paper considers three objective 192 functions to satisfy: minimizing the total working time of 193 the caregivers, maximizing the quality of service and mini-194 mizing the maximal working time difference among nurses 195 and auxiliary nurses. 196 As well, the objectives will be considered separately in 197 order to obtain a Pareto front of feasible solutions. Indeed, 198 assigning weights to objective functions or defining which 199 one is the most important may be impossible or confusing 200 for decision-makers who have an operational approach to 201 the problem. 202 To that end, the aim of this article is to highlight the 203 relationship between working time, quality of service and 204 route balancing for the home health care problem. This 205 approach is original to the best of our knowledge. In ad-206 dition, we suggest a novel memetic algorithm for multi-207 objective optimization in order to solve the problem. Ex-208 perimental results highlight the efficiency of the proposed 209 approach thanks to a comparison of the results with other 210 algorithms from the literature. 211 This paper is outlined as follows. In the next sec-212 tion, characteristics of the studied system are presented. 213 In Section 3, the mathematical formulation of the multi-214 objective problem is detailed. Section 4 includes a de-215 scription of some notions of Pareto-based multi-objective 216 optimization. In Section 5, the multi-objective algorithms 217 are presented, including the original memetic algorithm 218 for multi-objective optimization. Then, section 6 unveils 219 the numerical results of the experiments as well as a trade-220 off analysis between the three considered objectives. Fi-221 nally, concluding remarks, as well as perspectives on future 222 works will be drawn in the last section.223 2. System definition 224 The multi-objective home health care problem for sev-225 eral qualifications of caregivers is defined as follows. Given 226 a set of caregivers and a set of patient visits, the goal is 227 to find a valid planning for a one-day period for each care-228 giver. The resulting planning must indicate which visit 229 should be carried out by which caregiver and when the 230 visit should begin. Each caregiver has a defined work-231 ing time window, which means they only work during this 232 time. As well, caregivers have an associated home health 233 care office from which they start and end their workday. 234 Each caregiver uses the same mode of transportation (i.e.

235a

  car provided by the home health care company). Working overtime is not allowed due to increased work costs for the company. Home health care staff are either nurses or auxiliary nurses.

  In addition, the working time balancing aims to minimize the maximal working time difference among caregivers. Working time is balanced separately between nurses and auxiliary nurses. Indeed, the routes have different characteristics (number of patients treated on average, duration of cares). Consequently, the maximal working time difference among nurses is defined by the variable W N . Similarly, the maximal working time difference among auxiliary nurses is computed by the variable W A .

378Figure 1 :

 1 Figure 1: Value of the penalty function f i depending on the arrival time t i

Figure 2 :

 2 Figure 2: Value of the penalty function g ij depending on the arrival times of both caregivers.

  the notation of the parameters for the home health care problem are summarized below : N : set of nodes O : set of visits S : set of staff members P : set of home health care offices R : set of job roles Sync : set of synchronized visits 427 T : planning horizon 428 d ij : distance between the nodes i and j 429 c i : duration of the visit i 430 [α i , β i ] : working time window of the staff member i 431 [a i , b i ] : availability time window of the patient i 432 η ir : indicates if the caregiver i has the job role r 433 ρ ir : indicates if the visit i requires a caregiver with the 434 job role r 435 γ ik : association of the caregiver i to the office k 436 δ ij : indicates if i and j are synchronized visits 437 p t : coefficient value for time windows non-satisfaction 438 p s : coefficient value for synchronized visits non-

  516cal search are designed to produce only feasible solutions.517While it may require an additional computational effort 518 to guarantee the feasibility of the generated solutions, the 519 search space is restricted to feasible individuals only. 520 5. Multi-objective algorithms 521 In this section, we present three multi-objective algo-522 rithms. First, two existing algorithms from the literature 523 (NSGA-II and MDLS) are presented. Then, a third origi-524 nal algorithm resulting from the hybridization of the pre-525 vious ones is described under the name of MAMO. 526 5.1. Nondominated sorting genetic algorithm II (NSGA-527 II) 528 Nondominated sorting genetic algorithm II (NSGA-II) is 529 an elitist evolutionary multi-objective algorithm suggested 530 by Deb et al. (2002). 531 As indicated by his name, NSGA-II is an improved ver-532 sion of NSGA proposed by Srinivas and Deb (1994), which 533 aims at correcting the drawbacks of the former NSGA: 534 high computational complexity of nondominated sorting, 535 lack of elitism and need for specifying the sharing param-536 eter σ share 537 In the following, the NSGA-II algorithm is outlined step-by-step according to the procedure presented by Deb (2001). As well, the algorithm is illustrated by the figure 3.

Figure 3 :

 3 Figure 3: Schematic of the NSGA-II procedure
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  dominated set of solutions by exploring neighborhoods us-581 ing single-objective local search. 582 The algorithm starts with a set of non-dominated so-583 lutions F . At each iteration, a solution is selected from 584 this set. For each objective, a single-objective local search 585 is performed on the selected solution. The resulting new 586 solutions (as much as there are objectives) are added to 587 the set if they are non-dominated solutions. The process 588 is repeated until the stopping criterion is met, which can 589 be a time limit or a defined number of iterations. 590 The outline of MDLS, assuming a problem with K ob-Multi-Directional Local Search for K objectives Input: a set of non-dominated solutions F 1: repeat 2:

  stopping criterion is met 9: return F It should be pointed out that there are no restrictions 594 on how to select a solution x from the non-dominated set 595 of solutions F . 596 In addition, different local search operators may be used 597 to improve the selected solution on a single objective. As 598 well, while MDLS algorithm works only with feasible solu-599 tions, the local search procedures must produce only fea-600 sible solutions. 601 Finally, MDLS does not limit the size of F , which can 602 grow very large in some cases. Since the set F must be 603 updated at each iteration, it may quickly become a comis an evolutionary multi-objective algorithm 609 that we propose in this paper. 610 MAMO is a hybridization of the two algorithms pre-611 sented previously: NSGA-II and MDLS. The aim of this 612 hybridization is to take benefits of both existing algo-613 rithms. The diversity of the non-dominated set of solu-614 tions will be maintained thanks to the crowded tourna-615 ment selection. In addition, the elitism of the algorithm 616 will be brought by the local searches in various directions 617 performed during an improvement phase. 618 To this end, MAMO is considered as a memetic algo-619 rithm using the NSGA-II structure as a population-based 620 approach and enriched by the distinct individual learning 621 provided by multi-directional local searches. 622 Algorithm 2 presents the structure of MAMO. 623 Algorithm 2 Memetic Algorithm for Evolutionary Multiobjective Optimization for K objectives Input: a set of solutions F , the population size F max and probabilities to apply crossover proba C , mutation proba M and local search proba LS 1:

P

  t+1 ← P t+1 ∪ LS k (x)

628

  dominated solutions are kept. If the size of the resulting 629 set is below or equal F max , the set is used as it is. If 630 the size of the resulting set is above F max , some of the 631 solutions are randomly removed in order to obtain exactly 632 F max solutions. Finally, the resulting set is used as an 633 input of the algorithm. 634 The non-dominated sorting is then performed similarly 635 to the NSGA-II algorithm. To draw a parralel between 636 the algorithm 2 and the description of NSGA-II in section 637 5.1, the lines 5-6 corresponds to the step 1, the lines 7-13 638 corresponds to the step 2, the lines 14-15 corresponds to 639 the step 3 and the lines 16-18 corresponds to the step 4. 640 In addition, the crowding-sort(F i , ≺ n ) is a procedure 641 used to calculate the crowding distance of each point in 642 the set F i . As explained by Deb (2001), "the crowding-643 sorting of the solutions of front is performed by using a 644 crowding distance metric [...] The population is arranged 645 in descending order of magnitude of the crowding distance 646 values". 647 In addition, the crowded-comparison operator (≺ n ) 648 guides the selection process at the various stages of the 649 algorithm toward a uniformly spread-out Pareto-optimal 650 front. As explained by Deb et al. (2002), assuming that 651 every individual i in the population has two attributes : 652 his nondomination rank (i rank ) and his crowding-distance 653 (i distance ), we now define a partial order ≺ n as : 654 i ≺ n j if (i rank < j rank ) 655 or ((i rank = j rank ) and (i distance > j distance ) 656 All details and algorithmic description of the crowding-657 sort and crowding-comparison can be found in the work of 658 Deb (2001); Deb et al. (2002).

659

  figure 4). A synchronized pair of visits (x,y) on both parents organism strings is selected. Since synchronized visits consist of actually two visits with a desired similar arrival time, the following process is repeated for each visit of the pair. A one-point crossover is processed with the synchronized visits as a crossover point. The crossover is applied not on the full parent organism but only on the routes which contain the crossover point. The routes which do not contain the synchronized visits are not impacted. If some visits become unrouted in the resulting children, they are added following their least cost insertion. Route mix crossover operator works as follows (see figure 5). As long as the child is not valid, the routes of both parents are gathered and sorted by ascending fitness. The first route of the list (i.e. the best one) is added to the child's routes. The visits contained in the added route are removed from the set of remaining routes to add in order to avoid adding twice the same visit. If some visits become unrouted when the required number of routes is reached, they are added following their least cost insertion. Mutation operators are essentials to preserving the genetic diversity of the population. They can change significantly a solution from its initial state and greatly help the algorithm to escape from a local optimum. Mutation operators are applied to the selected individual according to a pre-defined probability proba M . If a solution is selected for the mutation process, then any of the three following mutation operators will be applied to it randomly. The mutation operators that have been implemented are the node exchange operator, node relocation operator, and arrival time shift operator. While the first two operators will focus on the routing part (either exchanging or relocating some randomly chosen visits), the arrival time shift operator focus on the scheduling of the solution by updating
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 4 Figure 4: Illustration of the synchronization breakpoint crossover process

Finally

  , in order to cover the different time window possibilities, five groups of time window restrictions have been created respectively fixed time window (F), small time window (S), medium time window (M), large time window (L) and no time window restrictions (A).

  the penalty value for soft patients 806 time window non-satisfaction v t i depends on the average 807 distance between all patient locations AvD and on the 808 time window length of the visit. If the time window of the 809 patients is small, they have some important impediments 810 that prevent them from being available for a longer time. 811 Consequently, the more the patient time window is small, 812 the greater the penalty value is. 813 In addition, the more the average distance between pa-814 tient locations is important and the greater the value of the 815 penalty will be. Since a high value of AvD tends to induce 816 a high value of the total travel time needed by the staff 817 members (that is to say the objective function), the value 818 of the penalty has to be proportional to the total travel 819 time of the staff members in order to have a roughly similar 820 impact on the penalization of the objective function. 821 Consequently, the penalty value for each minute of non-822 satisfaction of the patients soft time window v t i for the visit 823

prob

  LS has been set to 10%, 50% and 90% in order to analyze the performance of MAMO on different configurations. The results presented are the average results obtained among 5 runs on each instance. The results of MAMO are compared with NSGA-II and MDLS in an upcoming section. It should be highlighted that the suggested algorithm is not compared with any decomposition-based approach such as MOEA/D proposed by Zhang and Li (2007). Eventhough the main drawback of the dominance-based framework is that it is not suitable for many-objective optimization as explained by Trivedi et al. (2017), our work focuses on the home health care routing and scheduling problem which considers only three objectives. As a result, dominance-based algorithm remains efficient for this kind of optimization problem, and does not strengthen the use of dominationbased approches. In addition, the MAMO algorithm is compared with the MDLS algorithm, which has already proved to obtain results of competitive quality in comparison with MOEA/D as explained by Tricoire (2012).

  889 algorithm, the comparison operator must compare the set 890 of solutions provided by the algorithms, and not only one 891 solution per algorithm. As well, indicators must return 892 a value indicating the evaluation of the algorithm perfor-893 mance on the studied criteria. All these indicators are usu-894 ally computed on normalized objective values so that all 895 objectives take values within the same range when consid-896 ering the whole Pareto front. A review of the performance 897 indicators for multi-objective optimization is presented by 898 Riquelme et al. (2015).899 Four quality measurements indicators are used in this 900 paper to assess the quality of the algorithms, which have 901 been chosen among the most frequently used. Each mea-902 surement has drawbacks that prevent us from using it as 903 the only quality measurement. A meaningful evaluation 904 of the algorithm is possible only if all measurements are 905 considered at the same time. 906 The hypervolume indicator (I H ), introduced by Zitzler 907 and Thiele (1999), measures the size of the objective space 908 covered by a set of solutions. A reference point is necessary 909 to compute the hypervolume. For minimization problem, 910 it is common to set the reference point to the value (1,1,1). 911 Since the three objectives considered in the home health 912 care problem do not have the same scale, objectives values 913 for each solution are normalized into the range [0, 1] be-914 fore computing the hypervolume indicator. Larger values 915 indicate better results for this indicator. In order to com-916 pute the hypervolume of a set of solutions, the algorithm 917 proposed by Fonseca et al. (2006) has been used in the 918 following part.919 The set coverage (I C ), also introduced by Zitzler and 920 Thiele (1999), compares the convergence of two different 921 solution sets. This indicator can be used to show that the 922 solutions set of one algorithm dominates the outcomes of 923 another algorithm, even though it does not tell how much 924 better it is. Considering two solution sets A and B, the 925 set coverage is computed as follows : 926 I C (A, B) = |{b ∈ B : ∃a ∈ A, a ≺ b}| |B| (23) The multiplicative unary epsilon indicator (I ), intro-927 duced by Zitzler et al. (2003), indicates on how far from a 928 reference set R is an approximation set A. For a minimiza-929 tion problem, the indicator computes the smallest factor 930 by which each point in the reference set R can be mul-931 tiplied such that it becomes weakly dominated by the set 932 A. A smaller value indicates better performance. As ex-933 plained by Lian et al. (2016), multiplicative unary epsilon 934 indicator is computed as follows: 935 I (A, R) = inf {∀r ∈ R, ∃a ∈ A : = 1, ..., M, a i ≤ .r i (25) Finally, the last measurement indicator is the number 938 of solutions contained in the Pareto-front. The cardinality 939 of the Pareto front |F | represents the number of alterna-940 tive solutions which are given to the decision-maker. More 941 efficient solutions mean giving the decision maker more 942 choices. Therefore, higher values indicate better perfor-943 mance. However, as explained by Kovacs et al. (2015), 944 this measurement ignores the quality of the set of nonsettings previously defined, MAMO is 949 compared to the NSGA-II and MDLS algorithms on the 950 multi-objective home health care problem.

  (a) Average values for the hypervolume indicator depending on the time window restriction -Larger values indicate better results (b) Average values for the set coverage indicator depending on the time window restriction -Larger values indicate better results (c) Average values for the unary epsilon multiplicative indicator depending on the time window restriction -Lower values indicate better results (d) Average values for the Pareto front size indicator depending on the time window restriction -Larger values indicate better results
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 6 Figure 6: Comparison of algorithms performance over 4 indicators
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 7 figure shows the ease of obtaining a solution with a high-1068

  1088 and 11.26% for the objective f 3 . Therefore, the scarcity 1089 of very good solutions for the objective f 1 may partly ex-1090 plain the difficulty of finding solutions with a compromise 1091 involving good performance for the objective f 1 . 1092 In addition, Blasco et al. (2008) have developed a new 1093 graphical representation, called Level Diagrams, for n-1094 dimensional Pareto front analysis. It is based on the clas-1095 sification of the Pareto front approximation according to 1096 the proximity to the ideal point (a point with the mini-1097 mum value of the Pareto front at each objective as defined 1098 by Kaisa (1999)). A norm is applied to evaluate the dis-1099 tance to the ideal point. In this study, the distance of a 1100 point to the ideal point is computed using the Euclidean diagrams are used in this study to graphi-1103 cally represent the quality of available solutions when im-1104 posing a quality constraint on one of the objectives. Ac-1105 cordingly, figures 8, 9 and 10 represent the level diagrams 1106 respectively when considering that the objectives f 1 , f 2 1107 and f 3 must be in the top 1% of their value range ob-1108 tained from experiments. The x-axes indicate the normal-1109 ized value of the considered objective. The y-axes indicate 1110 the euclidean norm of the solutions to the ideal point. 1111 The results highlight different behaviors depending on 1112 which objective is concerned with the quality constraint. 1113 Indeed, when imposing an objective value for the objective 1114 f 1 in its top 1% (see figure 8), it is then impossible to 1115 obtain a solution with a value for the objective f 2 in the 1116 top 10% as well as a solution with a value for the objective 1117 f 3 in the top 30%. As well, it is noticeable that the solution 1118 involving the shortest distance to the ideal point when the 1119 value of the objective f 1 is in its top 1% while the value 1120 for the objectives f 2 and f 3 are around 31% and 28% of 1121 the objectives value range.

  9). Many solutions are available with a value for the goal 1126 f 1 starting above the top 10 % of the value range of the 1127 objective. As well, there are no significant restrictions on 1128 the goal f 3 as it is possible to find solutions for all possible 1129 levels of quality. 1130 Similar comments can be made when considering a con-1131 straint of quality involving the objective f 3 to be in its 1132 top 1% (see figure 10). The objective f 1 remains the most 1133 difficult to minimize in order to obtain quality solutions 1134 concerning this objective whereas it is always possible to 1135 find any type of solution concerning the objective f 2 . 1136 Finally, among all solutions obtained by the 50 Pareto 1137 fronts, the solution with the shortest distance to the ideal 1138 point has a value for the objectives f 1 , f 2 and f 3 respec-1139 tively at 6.4%, 3.7% and 2.2% of the objectives value range. 1140 As well, the results highlight the difficulty of minimiz-1141 ing the objective f 1 . Consequently, a high level of quality 1142 concerning this objective will imply a scarcity of solutions 1143 respecting the desired compromise in the Pareto front ob-

Figure 8 :

 8 Figure 8: Euclidean norm Level Diagrams of Pareto fronts involving the objective f 1 in the 1% of its value range. X-axes indicate the normalized value of the considered objective. Y-axes indicate the euclidean norm of the solutions to the ideal point.

Figure 9 :

 9 Figure 9: Euclidean norm Level Diagrams of Pareto fronts involving the objective f 2 in the 1% of its value range. X-axes indicate the normalized value of the considered objective. Y-axes indicate the euclidean norm of the solutions to the ideal point.
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 1 Constraints and assumptions considered in multi-objective home health care problems lem as a vehicle routing problem with time windows
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(VRPTW), many depots and compatibility information.

k and u k respectively represent the time 326 the caregiver k leaves from the home health care office and

  The set of caregivers is denoted S. For each caregiver i ∈ S, a working hard time window [α i , β i ] is known. The set R = {r 1 = N , r 2 = A} represents the possible job role

	289	
	290	that can have caregivers. Nurses have the job role N and
	291	the auxiliary nurses have the job role A. The association
	292	of a job role to a staff member i is defined by the binary
	293	parameter η ij . The parameter η ij is equal to 1 if the staff
	294	member i has the role r j and 0 otherwise.
	295	The home health care offices are located in different
	296	places and therefore have different locations. The binary
	297	parameter γ ik = 1 if the staff member i is associated with
	298	the home health care office k, and zero otherwise.
	299	Moreover, for each visit i ∈ O at the patient's home,
	300	a duration c i represents the time needed to perform the
	301	care. A soft time window [a i , b i ] represents the availability
	302	of the patient to receive a care. The binary parameter δ ij
	303	is used when two visits i and j are synchronized. δ ij = 1
	304	if the visits i and j are synchronized, and 0 otherwise.
	305	As well, the staff member qualification needed to per-
	306	form the job i is defined by ρ ij . If the visit requires a
	307	caregiver with the job role r j , ρ ij = 1, and 0 otherwise.
	308	Finally, the decision variable x k ij = 1 if the caregiver
	309	k travels from i to j, and zero otherwise. As well, the
	310	variable t i defines the starting time of the visit i.
	311	3.2. Working time definition and balancing
	312	In this part, the working time of the caregivers and its
	313	balancing are detailed.
	314	The working time ω k of a caregiver k is defined as the
	315	interval of time between he or she leaves the home health
	316	care office and the time returning to it. The possible wait-
	317	ing times on his/her route are also considered as being part
	318	of working time.
	319	Therefore, while the time spent on providing cares are
	320	not reducible, the objective is to minimize the traveling
	321	and idle times of all the caregivers. The idle time of a
	322	caregiver is the part of his working time where he is neither
	323	driving or providing a care. Idle time may be produced
	324	when caregivers wait to match patients' time window of
		availability.
	327	
	328	the time he/she returns to it.
	329	To summarize, the working time ω k of a caregiver k is
		computed as follows :

325

The variables l

Table 2 :

 2 Bredström and Rönnqvist test instances. The columns are : the number of visits |O|, the number of routes |S|, the number of synchronized visits |Sync|, the average distance between the visits AvD and the last five columns are the average time window size for each category

	832	
	833	crossover and mutation operators as presented in sec-
	834	tion 5.3 are used for the NSGA-II algorithm. Similarly,
	835	the same local search operators are used for MAMO and
		MDLS algorithms.
	837	
	838	MAMO algorithms is set to 100 individuals.
	839	About the implementation of the MDLS framework, the
		multi-directional local search is applied first for each solu-
	848	

825

same value than the penalty factor for synchronized visits 826 p s . Consequently in the experiments, p t = p s = 2.

827

Similarly, the same penalty value (i.e. penalty applied 828 for each minute of non-satisfaction of the soft constraint) 829 is used for the soft time window and synchronization con-830 straints non-satisfaction. As a result, for a job i, v t i = v s ij . 831 Concerning the multi-objective algorithms, the same 836 As well, the population size F max for the NSGA-II and 840 tion of F , where the resulting solutions are stored in G. 841 Then, the sets of F and G are merged and only the non-842 dominated solutions are kept in the resulting set F . The 843 authors chose this strategy in order to avoid updating the 844 set of non-dominated solutions at each iteration. 845 Furthermore, experiments have been conducted with 846 different probabilities to apply local search procedure in 847 MAMO algorithm. Thus, the local search probability

Table 3 :

 3 Comparison of the results of the multi-objective algorithms with 10% probability to apply local search procedure for MAMO

	951	
	952	The tables 3, 4 and 5 present the results with various
	953	probabilities to apply local search for MAMO, respectively
	954	10%, 50% and 90%.
	955	For each result table, the results of the 50 instances are
	956	aggregated by the size of the patient time window restric-
	957	tion (see Table 2). Therefore, each line corresponds to an
	958	average obtained by the results of 5 sets of experiments
	959	over the 10 instances that apply the time window restric-
	960	tion.
	961	In addition, the best value for each metric is highlighted
	962	in gray to distinguish the algorithm providing better re-
	963	sults.
	964	From the results obtained, MAMO obtains higher val-
	965	ues (i.e. better results) concerning the hypervolume indi-
	966	cator than the other algorithms (see figure 6a), no mat-
	967	ter the probability of applying local search. For instance,
	968	the hypervolume indicator for MAMO with 50% proba-
	969	bility to apply local search is 0.9051 while the NSGA-II
	970	algorithm obtains only 0.7815 and the MDLS algorithm
	971	obtains a value of 0.8106. As an average over all exper-
	972	iments, MAMO significantly improves NSGA2 results by
	973	15.11% and MDLS results by 11.56% concerning the hy-
	974	pervolume indicator.

Table 4 :

 4 Comparison of the results of the multi-objective algorithms with 50% probability to apply local search procedure for MAMO

	Instance type	MAMO	Hypervolume NSGA2	MDLS	MAMO. NSGA2	Set coverage NSGA2. MAMO MAMO. MDLS	MDLS. MAMO	Unary epsilon multiplicative MAMO NSGA2	MDLS	MAMO	Pareto front size NSGA2	MDLS
	F	0.8941	0.7359	0.7718	0.1533	0.1226	0.5932	0.0895	1.1568	1.1596	1.3355	101.6	18.9	60.8
	S	0.9082	0.7782	0.8106	0.2123	0.1453	0.6458	0.0910	1.1522	1.1590	1.3078	103.2	26.0	53.3
	M	0.9073	0.7871	0.8195	0.2180	0.1765	0.6644	0.0817	1.1595	1.1632	1.2966	94.3	27.8	49.8
	L	0.9142	0.7839	0.8182	0.2043	0.1891	0.7265	0.0564	1.1536	1.1722	1.3007	92.1	30.3	42.7
	A	0.8966	0.8463	0.8274	0.1222	0.2501	0.7312	0.1233	1.1876	1.1456	1.2808	51.4	23.9	33.9
	Average	0.9041	0.7863	0.8095	0.1820	0.1767	0.6722	0.0884	1.1619	1.1599	1.3043	88.5	25.4	48.1
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 5 Comparison of the results of the multi-objective algorithms with 90% probability to apply local search procedure for MAMO

  Consequently, if the decision-makers are willing to ob-1071 tain a high-quality value for the objective f 1 , they should of the value range of the objective f 2 . Thus, 1083 the results highlight the hardness to obtain high-quality 1084 solutions for the objective f 1 in particular. Indeed, only 1085 2.75% of solutions among all the ones obtained are in the 1086 top 1% of the value range of the objective f 2 . In oppo-1087 site, this proportion rises to 18.25% for the objective f 2

	1072	
	1073	not be demanding about the quality of other objectives
	1074	because there will be few solutions corresponding to their
	1075	expectations.
	1076	This outcome is also supported by the results of the
	1077	table 7. The table 7 indicates among the 5489 solutions
	1078	obtained from the 50 Pareto front, the proportion of so-
	1079	lutions which are below a certain level of quality of the
	1080	value range obtained, considering one objective at a time.
	1081	As an example, the value "18.25%" indicates that 18.25%
	1082	of all the solutions obtained (i.e 1002 out of 5489) are in
		the top 1%

Table 7 :

 7 Percentage of solutions below a certain level of quality for each objectiveOn the other hand, applying a quality constraint on the 1123 goal f 2 does not affect the results as much as the possibility 1124 of finding good solutions for the other objectives (see figure

	1122