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Abstract 

How does the brain represent and manipulate abstract mathematical concepts? Recent evidence 

suggests that mathematical processing relies on specific brain areas and dissociates from language. Here, 

we investigate this dissociation in two fMRI experiments in which professional mathematicians had to 

judge the truth value of mathematical and nonmathematical spoken statements. Sentences with 

mathematical content systematically activated bilateral intraparietal sulci and inferior temporal regions, 

regardless of math domain, problem difficulty, and strategy for judging truth value (memory retrieval, 

calculation or mental imagery). Second, classical language areas were only involved in the parsing of 

both nonmathematical and mathematical statements, and their activation correlated with syntactic 

complexity, not mathematical content. Third, the mere presence, within a sentence, of elementary 

logical operators such as quantifiers or negation did not suffice to activate math-responsive areas. 

Instead, quantifiers and negation impacted on activity in right angular gyrus and left inferior frontal 

gyrus, respectively. Overall, these results support the existence of a distinct, non-linguistic cortical 

network for mathematical knowledge in the human brain.  
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Highlights 

• Sentences with mathematical content systematically activate bilateral intraparietal sulci and 

inferior temporal regions. 

• These regions constitute a math-responsive network that dissociates from language areas. 

• The activation of classical language areas correlates with syntactic complexity, not mathematical 

content.  

• The presence of elementary logical operators within a sentence is insufficient to induce the 

activation of the math-responsive brain areas.  

  



Introduction 

How the human brain represents conceptual knowledge, especially in the domain of 

mathematics, is a long-debated issue. Brain imaging studies have associated two sets of brain areas with 

mathematical processing. Number processing and calculation have long been known to activate bilateral 

intraparietal and prefrontal areas (Dastjerdi et al., 2013; Eger, 2016), in adults, infants and even 

untrained monkeys (Hyde et al., 2010; Nieder and Dehaene, 2009), and more recently a second number-

related activation has been observed in bilateral inferior temporal regions (Daitch et al., 2016; Park et al., 

2012; Shum et al., 2013). More recently, these regions have proved to respond to algebraic 

manipulations in adults (Maruyama et al., 2012; Monti et al., 2012). Activations were also found in 

bilateral intraparietal sulci and infero-temporal regions when expert mathematicians judged the 

semantic truth value of mathematical statements, regardless of domain or subjective difficulty level 

(Amalric and Dehaene, 2016). Interestingly, even when mathematical problems were presented through 

language, they elicited activation outside of the areas classically described as participating in language 

semantics, such as the anterior temporal areas and angular gyri (Binder et al., 2009). Instead, those 

regions were activated by nonmathematical reflection more than by mathematics. The mental 

representation and manipulation of mathematical concepts thus seems to call upon a distinct set of 

brain areas, which we refer to using the descriptive term “math-responsive network”, distinct from the 

brain network for processing sentential meaning.  

Such an observation is not isolated, and similar cases of dissociation between math and linguistic 

processing have already been reported in previous studies in various domains of cognitive sciences. For 

example, when adult participants were asked to evaluate whether pairs of linguistic or algebraic 

propositions were either algebraically equivalent or grammatically well-formed (Monti et al., 2012), 

algebraic equivalence recruited bilateral intraparietal sulci, whereas linguistic equivalence recruited left 

fronto-temporal perisylvian regions. Another example comes from neuropsychology: Dehaene and 

Cohen (1997), for instance, described patients with deficits in mathematical skills but preserved language 

skills, while Klessinger et al. (2007) and Varley et al. (2005) described patients with severe aphasia but 

preserved mathematical skills (indeed, the latter pattern is frequent in progressive degenerative diseases 

such as semantic dementia; see e.g. (Cappelletti et al., 2012)). Moreover, recent studies conducted in 

pre-verbal infants, in adults without access to education and with a reduced numerical lexicon, and in a 

variety of non-human animal species, have revealed a non-verbal capacity to estimate numerosity and to 

perform simple arithmetical operations over these quantities (Cantlon and Brannon, 2005; Gelman and 



Butterworth, 2005; Izard et al., 2009; Pica et al., 2004). These results suggest that number 

comprehension arises independently of language. 

One possibility, therefore, is that the domain of mathematical concepts forms a distinct and 

neurally dissociable semantic subspace. In line with recent studies suggesting that concepts are 

organized in the brain according to semantic categories (Huth et al., 2016, 2012), such as animate versus 

inanimate (Caramazza and Shelton, 1998), or concrete versus abstract (Binder et al., 2005), we 

hypothesize that the math-responsive brain regions may provide domain-specific resources for the 

mental representation and manipulation of mathematical knowledge, which are not used for non-

mathematical knowledge of other semantic domains such as animals, plants, food, history or geography.  

This hypothesis, however, must be confronted to several potential alternatives. First, the math-

responsive network observed in (Amalric and Dehaene, 2016) overlaps with a “multiple-demand system” 

active in various effortful domain-general problem-solving tasks (Duncan, 2010; Fedorenko et al., 2013). 

Could it be that solving math problems intrinsically require more attentional and cognitive resources 

than solving nonmath problems? Second, which factors determine whether a given problem activates 

the language-semantics or the math network? Is it solely the semantic content (math versus nonmath) 

that drives the dissociation? Or are some areas of mathematics, such as algebra, inherently linked to 

language processing, as might be predicted by Hauser et al.’s (2002) hypothesis that recursive structure 

lies at the core of both domains? Conversely, would the activation of the math-responsive network be 

triggered by minimal logical or numerical operators such as numbers, quantifiers or negation, even when 

they occur in non-mathematical sentences?  

To address these issues, we performed two fMRI experiments, building upon the one proposed 

by Amalric and Dehaene (2016), in which a group of professional mathematicians judged, as quickly as 

they could, whether simple spoken mathematical and nonmathematical statements were true or false. 

By varying the content of the statements, we attempted to clarify the factors that drive the activation of 

the math-responsive network. 

Experiment 1: Simple mathematical facts 

In this experiment, we examined whether the math-responsive network would respond 

whenever subjects judge the truth value of mathematical statements, regardless of their difficulty or 

content. While our previous work (Amalric and Dehaene, 2016) used complex statements of advanced 

mathematics, that required several seconds of careful reflection, our purpose here was to select very 



simple mathematical facts that could be evaluated within one or two seconds, some of which were 

known by rote or evoked an immediate mental image of the solution.  

If our working hypothesis is correct, then all statements of mathematics, even if they are very 

simple and overlearned, should activate the math-responsive network, whereas equally simple non-math 

statements should not (Amalric and Dehaene, 2016). Alternatively, if this network forms a “multiple-

demand” system that is activated whenever a task calls for the novel, effortful coordination of multiple 

components under attentional supervision (Duncan, 2010), then some mathematical problems may 

short-circuit the math-responsive network, for at least two reasons: rote learning or visual imagery. 

First, it has been suggested that rote learning of mathematical expressions leads to their storage 

in verbal memory (Dehaene, 1992), in which case those statements would activate language-related 

areas rather than the math-responsive network. This hypothesis has plausibility given that some prior 

fMRI studies, within the domain of arithmetic, have suggested that rote arithmetical problems may rely 

more on verbal circuitry than novel problems that require an actual calculation. For instance, (Ischebeck 

et al., 2006) showed that arithmetic fact retrieval (trained multiplication) recruited the left angular gyrus 

whereas arithmetic calculation (subtraction) elicited activation in the intraparietal sulci. Moreover, 

(Delazer et al., 2005) found more activation in the intraparietal sulci when subjects learned to solve a 

complex and novel arithmetical operation using calculation strategies, while learning by drill induced 

more activation in the angular gyri.  

A second possible factor is mental imagery. If mathematical problems readily evoke a mental 

image, for instance of the unit circle, that immediately brings to mind the solution of the proposed 

problem (e.g. cos(0) = 1), then such problems may short-circuit the multiple-demand network and, 

instead activate visual areas.  

To address these issues, experiment 1 included a diversity of mathematical statements, including 

simple facts that participants knew by heart (e.g. classical algebraic identities) and simple problems that 

could be solved by visualizing the solution on the trigonometric circle. 

Methods 

A group of 14 professional mathematicians, i.e. full-time researchers and/or professors in 

mathematics participated in this study. Participants were exposed to spoken mathematical and 

nonmathematical statements and were given 2.5 seconds to classify each of them as true or false (figure 



1). They were asked to press a button in their right hand to respond “true” and in their left hand to 

respond “false”. Each trial began with a beep announcing the presentation of the statement and ended 

with a 7-second resting period.  

Five types of mathematical statements were proposed: (1) well-known facts such as classical 

algebraic identities (e.g. “(a+b)² = a²+b²+2ab”) or trigonometric formulae (“cos(a+b) = cos(a)cos(b)-

sin(a)sin(b)”) called rote facts in figure 1, (2) algebraic equations (called algebra in figure 1) that 

consisted in applications of the above identities to specific numbers and symbols (e.g. “(z-1)² = z² - 2z + 

1”), (3) trigonometric facts that could be solved by visualizing the solution on the trigonometric circle 

(“sin(x+π) = –sin(x)”), (4) statements involving complex numbers that strongly elicited visualization of the 

complex plane (e.g. “the angle between i and 1+i equals π/4”), or (5) statements concerning geometrical 

shapes (“Any equilateral triangle can be divided into two right triangles”). These statements were 

compared to nonmathematical facts about music, painting, literature or movies (e.g. “Pantomime relies 

on attitude and gesture, without speaking”; see appendix for a complete list of statements). As a low-

level control, ascending or descending series of beeps were also presented to probe activation in primary 

auditory regions. Participants were asked to classify ascending series using the right hand and 

descending series using the left hand (for more details on stimuli and procedure, see general methods). 

          

Figure 1 - Experimental paradigm. Subjects listened to a statement announced with a beep, and were asked for a speeded 

true/false response during a 2.5s period ending with a beep. Exemplar statements from each category are shown. 



Results 

Behavior. Performance (figure 2) reached 80.1 ± 4.6% correct for the math statements, and 86.3 ± 2.4% 

for the nonmath statements, a significant difference (t(13) = 2.20, p < 0.05). The easiest problems were 

the rote facts, with 90.9 ± 2.8% correct responses. 85.2 ± 2.3% of the algebraic equations and 83.3 ± 

4.4% of the problems on complex number properties were correctly classified. Performance on the 

geometrical statements reached 81.1 ± 2.4%. The trigonometric formulae were the most difficult 

statements, with an average performance of 59.9 ± 3.1% correct. Overall, an ANOVA with math problem 

type as between factor and subject as within factor revealed a significant effect of problem type (F(4,52) 

= 14.3, p < 0.001). This effect was mainly due to the trigonometric problems, given that an ANOVA 

performed on math problems excluding trigonometry did not reveal any significant effect of problem 

type (F(3,39) = 1.66, p = 0.19). Once excluding the trigonometric problems, no difference was found 

between the math and nonmath problems (t(13) = 0.41, p = 0.69; F(4,52) = 1.42, p = 0.24).  

 

Figure 2 - Behavioral results in experiments 1 and 2. Bars show the percentage of correct responses (top) and mean response 

times (bottom) per category in both experiment 1 (A) and experiment 2 (B). Error bars equal one standard error of the mean. 

Dash lines represent the chance level. Dark gray bars stand for mathematical statements and light gray bars for 

nonmathematical statements. 

On average, participants answered to the mathematical statements in 1.25 ± 0.1s, while the 

nonmathematical statements were faster, 1.11 ± 0.06s, a significant difference (t(13) = 36, p < 0.001). 



Analysis of response time confirmed that the rote facts were the easiest problems, taking only 0.88 ± 

0.07s to respond (as measured from sentence ending). The algebraic equations took 1.02 ± 0.07s; the 

trigonometric problems took 1.33 ± 0.07s; the problems on complex numbers took 1.44 ± 0.08s; and the 

geometrical problems took 1.57 ± 0.09s. Within mathematical problems, an ANOVA revealed a 

significant effect of problem type on response time (F(4,52) = 30.9, p < 0.001). Rote facts were significant 

faster than nonmath (t(13) = 2.92, p < 0.01), and trigonometry, complex numbers and geometry were 

significantly slower than nonmath (ts(13) > 3.74, ps < 0.002). 

Dissociation between brain activations to math and nonmath reflection. At the group level, pooling 

across all types of math, we first searched for activations elicited more by math than nonmath 

statements. The results revealed extensive activations in bilateral intraparietal sulci, bilateral inferior 

temporal regions, and bilateral superior, and middle frontal regions (Brodmann areas 9 and 46), at 

locations similar to Dehaene & Amalric (2016) (figure 3). These regions were systematically activated by 

all five types of math statements, as revealed by significant contrasts of each of them versus nonmath 

(figure S1). The main peaks of each contrast within each math-responsive region were remarkably close 

(figure S1). These findings are summarized in figure 3 by a conjunction analysis of each math domain 

versus nonmath (figure 3). Furthermore, plots of the average time course of activation in characteristic 

math-responsive regions (as independently defined in (Amalric and Dehaene, 2016)), showed that, for all 

five types of math statements, the BOLD signal rose quickly at the beginning of the trial and remained 

high until the end of the trial. On the contrary, no activation or even a deactivation was seen for the 

nonmath statements and the series of beeps.  

The converse contrast of nonmath versus math reflection yielded activation all along bilateral 

superior temporal sulci, in bilateral inferior frontal gyri and mesial orbital gyrus (figure 3, areas in 

yellow). From our previous study (Amalric and Dehaene, 2016), we retrieved the functional regions-of-

interests showing activation to general semantics (contrast of meaningful versus meaningless nonmath). 

Figure 3 shows the temporal profile of activation in three of these regions. In left anterior middle 

temporal gyrus (aMTG) and left angular gyrus/posterior superior temporal sulcus (AG/pSTS), the average 

fMRI signal remained sustained above zero only for the nonmath statements. For the math statements, 

the activity was either nil or transient during statement listening only. Overall, these results fully 

replicate Dehaene and Amalric (2016) and show that these results generalize to simpler facts from 5 

different areas of mathematics. 



 

Figure 3 - Dissociation between math and nonmath in experiment 1. (top) Flattened and inflated brain maps showing the 

contrasts of math > nonmath processing (red) and nonmath > math processing (yellow) (voxelwise p < 0.001 uncorrected, 

clusterwise p < 0.05 with FDR correction). (middle) Average time course of BOLD signal for each category of statements in 

representative regions-of-interest (ROIs) of the networks responsive to math and general-semantics. Left and right 

intraparietal sulci (IPS), left and right inferior temporal regions (IT), left anterior middle temporal gyrus (L aMTG), left angular 

gyrus/posterior superior temporal sulcus (L AG/pSTS) and right anterior middle temporal gyrus (R aMTG) were independently 

determined from Amalric and Dehaene (2016). (bottom) Flattened and inflated brain maps showing the conjunction of the 

five contrasts of each math category versus nonmath (voxelwise p < 0.001 uncorrected, clusterwise p < 0.05 with FDR 

correction, separately for each contrast). 

Effect of difficulty. Analysis of the participants’ accuracy and response time indicated that some math 

statements were more difficult than others. We thus searched for an effect of difficulty in brain 

responses. We first used the individual reaction times for each statement and computed their 

correlation with brain activity within each individual before computing a group-level SPM t-map. This 

whole-brain approach did not reveal any significant cluster in either direction (voxel p<0.001, clusterwise 

p<0.05, FDR corrected). We then performed a more sensitive analysis to test directly whether problem 

difficulty has an impact on the activity of math-related parietal regions that presumably overlap with 



Duncan’s multiple-demand system (Duncan, 2010). For each mathematical statement, we extracted the 

mean beta value from our bilateral intraparietal region of interests, and evaluated whether it correlated 

with the participants’ mean correct rate and response time. No such correlation was found (R(beta, % 

correct) = 0.074, n.s.; R(beta, RT) = -0.35; n.s.), therefore reaffirming that the math-responsive network 

activates independently of problem difficulty. 

 

Figure 4 - Activity differences between different domains of mathematics. From top to bottom: flattened and inflated brain 

maps of (1) the result of a global F-test comparing the five types of math statements in experiment 1; (2) activation elicited 

more by geometry than other math statements; (3) occipital responses to trigonometry more than other math categories; (4) 

additional activation in angular gyri for complex numbers compared to other math statements. All maps are threshold at 

voxelwise p < 0.001 uncorrected, clusterwise p < 0.05 with FDR correction. 

Differences between types of math statements. To test for differences in brain activation between math 

types in our experiment, we first performed an F-test on all math types. At the whole-brain level, we 

found differences in the left anterior temporal lobe (temporal pole and anterior superior temporal 

sulcus), the left inferior frontal gyrus (pars orbitalis, triangularis and opercularis), the right temporal pole, 

bilateral angular gyri, and a large mesial swath of occipital cortex from the calcarine sulcus to the cuneus 

(figure 4). We then compared each type of math statement against all others. We observed that, in 

language regions (left IFG, TP, aSTS and pSTS), activation was greater to geometry than other math 



types. This contrast of geometry > other math also revealed activation in left inferior-temporal regions 

including the fusiform gyrus (figure 4). In the converse contrast, geometry elicited less activation than 

other types of math statements in a right parietal region (figure 4). No significant clusters were found for 

rote facts or algebra compared to other math statements. Trigonometry, compared with other types of 

math statements, yielded an extensive activation in the mesial precuneus. Finally, complex numbers 

induced greater activation in regions alongside the calcarine sulcus and bilateral angular gyri relative to 

other math statements. 

To further investigate the putative impact of the strategy used to solve mathematical problems, 

we pooled together all statements related to trigonometry and complex numbers, which were designed 

to elicit mental imagery of the unit circle, and compared them to rote facts and algebra. We observed 

activation in bilateral angular gyri and at several occipital sites ranging from the calcarine sulcus to more 

dorsal mesial regions of the cuneus (figure 5). Figure 5 also displays the activation (mean beta) averaged 

on all voxels of these clusters. Interestingly, while the left calcarine region was specifically activated only 

by the two types of mathematical statements that involved the unit circle (trigonometry and complex 

numbers), the right calcarine region was activated for complex numbers but also geometry and nonmath 

statements. This cluster extended towards more dorsal sites which significantly activated for 

trigonometry alone. Finally, there was a global deactivation for all kind of statements in the right angular 

gyrus, and the left angular gyrus activated primarily to complex numbers and geometrical problems, and 

to a lesser degree to trigonometric problems (figure 5). 

  

Figure 5 – Occipital regions activated by mathematical statements involving mental imagery of the unit circle. (top) Flattened 

and inflated brain maps of the contrast complex numbers + trigonometry > rote facts + algebra. (bottom) Mean beta 

estimates extracted from the principal activated clusters.  

 



We also examined the converse contrast of rote facts and algebra (two types of math statements 

that could be expected to elicit language-like recursive codes for mathematical expressions) versus 

trigonometry and complex numbers. A single cluster of activation was found, located in the right 

posterior temporal sulcus (around [65, -37, -4]). Analysis of the betas estimates for each category of 

statements revealed that this cluster did not activate only for algebra and rote facts, but also for 

geometrical and nonmath statements and deactivated for trigonometry and complex numbers. 

Activation profile in language areas. The above analyses revealed a surprisingly greater activation to 

geometrical statements in classical language regions. We reasoned that this finding might not indicate a 

genuine contribution of these regions to geometrical thinking, and instead could be explained by the 

syntactic complexity of the geometrical statements we used. Indeed, while the statements were 

matched in length, geometrical statements contained more complex verbs and embedded clauses than 

other math statements, which all used the expression “is equal to” (e.g. compare “an equilateral triangle 

can be divided into two right triangles” versus “the cosine of x minus π is equal to the cosine of x”; see 

appendix for a complete list of statements). To further investigate the relation of math statements to 

language, we performed a sensitive analysis in 7 regions of interest associated with syntactical 

processing in previous studies: temporal pole (TP), anterior and posterior superior temporal sulcus (aSTS 

and pSTS), temporo-parietal junction (TPJ), inferior frontal gyrus pars orbitalis and triangularis (IFGorb 

and IFGtri) and Brodmann area 44 (BA 44) (Fedorenko et al., 2011; Pallier et al., 2011). We used an 

independent language localizer (see the general methods section for more details) to identify subject-

specific peaks of activation to spoken sentences relative to rest and tested the contribution of those 

language voxels to math reflection. Figure 6 shows the average beta for each type of statements in each 

region on interest. Three different patterns of activation can be seen. First, TP, TPJ and IFGorb exhibited 

no significant activation for rote facts, algebra, trigonometry and complex numbers, significantly more 

activation for geometry (except in TPJ, all ps < 0.02 with Bonferroni correction for multiple comparisons 

over the 7 regions of interest), and even significantly more activation to nonmath than to all types of 

math (except in TP for nonmath > geometry, all ps < 0.02 with Bonferroni correction). Second, in aSTS, 

pSTS and IFGtri, all categories exhibited a significant activation (all ps < 10-6 with Bonferroni correction), 

but geometry elicited systematically more activation than other math types (except for complex 

numbers in aSTS, all ps < 0.04 with Bonferroni correction) and was not significantly different from 

nonmath. Finally, BA 44 exhibited a radically different pattern of activation: geometrical statements 

induced significantly greater activation than any other category except complex numbers (all ps < 0.015 



with Bonferroni correction), and no difference was found between other math types and nonmath 

(F(4,44) = 1.6, n.s.).  

 

Figure 6 - Activation profile in auditory and language ROIs in experiment 1. (top) Axial slices showing activation in superior 

temporal auditory areas for series of beeps versus rest (left) and anatomical a-priori regions of interest in Heschl’s gyrus 

(right) from which beta estimates of each category were extracted (bar plots). (bottom) Sagittal slices showing activation for 

sentences versus jabberwocky (grammatical sentences with meaningless pseudo-words) in the language localizer (left) and 

the 7 language regions of interest defined by Pallier et al. (2011) (right), from which beta estimates of each category were 

extracted (bar plots). 

Interestingly, this analysis suggests that certain types of mathematical statements, such as rote 

facts, algebra or trigonometry, even when presented as spoken formulas, make virtually no use of the 

language areas TP, TPJ and IFGorb. As a control, we first verified that the activation differences between 

categories of stimuli were not due to low-level auditory differences. We thus probed activation to each 

category in bilateral Heschl gyri (figure 6). In both hemispheres, no difference was found between 

sentence categories (left: F(5,55) = 1.23, p = 0.31, right: F(5,45) = 1.51, p = 0.21; Note that degrees of 

freedom may vary because, for some ROIs, some participants did not exhibit a single activated voxel in 

the localizer contrast of sentences > jabberwocky). This finding indicated that the audio recordings of the 

statements were well matched. Second, to examine whether some intrinsic characteristics of the 

statements could explain our findings, we examined the activation elicited by each individual statement 



by averaging over the 7 language areas TP, aSTS, pSTS, TPJ, IFGorb, IFGtri and BA 44. Figure S2 shows the 

mean betas over these 6 regions for each statement, sorted in ascending order. We notably observed 

that statements were grouped per category: notably, the strongest activation was to nonmath 

statements, immediately followed by the vast majority of geometrical statements, then the group of 

statements related to complex numbers, the other math statements, and finally the non-linguistic beep 

control. This ordering was well predicted by the number of grammatical morphemes present in the 

statement (i.e. grammatical markers such as verb endings, plural markers, etc): R = 0.64, p = 2.10-9. 

Importantly, in language regions exhibiting significant activation to math statements (aSTS, pSTS, IFGtri 

and BA44), activation was again strongly correlated with the number of grammatical morphemes present 

in the math statement (R = 0.55, p = 6.10-6). These results suggest that the differential activation of 

language areas, and in particular their strong activation to geometrical statements, could be due to 

differences in syntactical complexity among categories of statements.  

Activation profile in math-responsive areas. We conducted a similar analysis of activation to each 

individual statement in math-responsive regions (left and right IPS, left and right IT, again a priori defined 

from (Amalric and Dehaene, 2016). This revealed a completely different ordering (see figure S3). 

Nonmath statements and series of beeps systematically deactivated these regions, while math 

statements systematically activated these regions regardless of their content. This finding was so 

reproducible that each of the 12 nonmath statements yielded a negative beta (deactivation), while every 

single of the 60 math statements yielded a positive beta (activation). Each region exhibited a significant 

activation for all categories of math (except for geometry in right IPS, all ps < 0.015 with Bonferroni 

correction for multiple comparisons over 4 regions of interest). Conversely, nonmath statements 

systematically deactivated all of these math-responsive regions (all ps < 0.05 corrected). Moreover, in 

the left and right IT, activation to all math categories was similar (left: F(4,48) = 1.44, n.s.; right: F(4,48) = 

0.74, n.s.). In the left and right IPS, rote facts, algebra, trigonometry and complex numbers elicited 

similar activation (left: F(3,36) = 1.85, n.s.; right: F(3,36) = 1.51, n.s.), and elicited more activation than 

geometry (left: ps < 0.015 corrected for algebra and complex numbers > geometry; right: all ps < 0.004 

corrected). These results may suggest that while IT activates regardless of statements format, IPS is 

sensitive to their surface form. Indeed, the amount of activation in right IPS was negatively correlated 

with the number of grammatical morphemes in the math statements (r = -0.35, p = 0.0057). 



Discussion 

Experiment 1 indicates that the math-responsive network found in our previous study (Amalric and 

Dehaene, 2016) is highly reproducible and can be activated even by simple and well-known 

mathematical facts. This network was more activated by any of the five types of math statements than 

by the nonmath statements. This finding indicates that there is a core neural substrate for math 

processing, independent of content and difficulty.  

In addition to this core finding, we also found some support for the idea that math statements differ in 

the strategy deployed. Our first hypothesis was confirmed : statements that required visual imagery of 

the unit circle in order to visualize the properties of trigonometric functions or complex numbers yielded 

more activation of mesial visual areas, compatible with a contribution of mental imagery (Albers et al., 

2013; Klein et al., 2006; Kosslyn, 2005). The results, however, disconfirmed our second hypothesis, 

derived from Hauser et al’s (2002) recursion hypothesis, according to which rote algebraic facts and 

algebra problems would cause a great activation of language areas than other problems. In fact, even 

though they were presented in spoken form, these statements induced no activation of language areas 

TP, TPJ and IFGorb, thereby confirming the strict role of these regions in combinatorial semantics and 

general non-mathematical semantic knowledge (Amalric and Dehaene, 2016; Binder et al., 2009; 

Fedorenko and Thompson-Schill, 2014; Pallier et al., 2011; Price et al., 2015). Even in areas pSTS, aSTS, 

BA44 and IFGtri, which have been hypothesized to participate in a core network for the constituent 

structure of language (Pallier et al., 2011), activation was lesser for rote algebraic facts, algebraic and 

trigonometric calculation, or complex numbers than for geometrical and nonmath statements. We could 

explain this result by examining the syntactic content of our statements: the geometrical and 

nonmathematical sentences, which caused the highest activation, were of greater syntactic complexity 

than the others, as measured by the number of grammatical morphemes. The results concur with 

previous brain-imaging and neuropsychological studies of algebraic processing in suggesting that 

“naked” expressions such as a²-b², which are devoid of lexical or referential elements, put little or no 

emphasis on language areas (Klessinger et al., 2007; Maruyama et al., 2012; Monti et al., 2012). 

Still, the presence of syntactical differences between the stimuli in experiment 1 led us to perform a 

second experiment in which we fully controlled for syntax. In experiment 2, mathematicians listened to 

mathematical and nonmathematical statements that had the same exact syntactic structure, involving a 

minimal copula relationship (x is y). 



Experiment 2: Effect of minimal combinatorial operations such as quantifiers and 

negation.  

Experiment 2 had two goals. First, we examined whether the math-responsive network 

continued to respond when extremely simple declarative statements were presented (e.g. “the sine 

function is periodical”) and contrasted with syntactically similar statements outside the mathematical 

domain (e.g. “London buses are red”). Second, we examined whether this network responds to the 

logical form of sentences, independently of its math or nonmath content. This question is motivated by 

prior studies indicating that activation of the math-responsive network can be elicited by a wide range of 

problem-solving tasks (Duncan, 2010), and in particular some simple logical reasoning tasks, even 

outside a strictly mathematical context (Goel, 2004; Goel and Dolan, 2001; Monti et al., 2007). For 

example, (Goel, 2004) suggested that the evaluation of logical deductions such as “No humans can get 

osteoporosis; Some humans are men; Some men cannot get osteoporosis”, relative to the integration of 

two related and a third unrelated statements, induced activations in bilateral superior parietal cortex. 

These results may therefore suggest that, under some conditions, logical reasoning over nonmath 

contents may activate the math-responsive network. Could logical reasoning, rather than mathematical 

content, explain our earlier results (Dehaene & Amalric, 2016; and the present experiment 1)? 

An important characteristic of logical reasoning is the presence of logical operators such as 

negation, conjunction or quantifiers.  Some recent neuroimaging studies have demonstrated a parietal 

activation in response to quantifiers (Hubbard et al., 2008; McMillan et al., 2005; Troiani et al., 2009; Wei 

et al., 2014). For example, bilateral intraparietal sulci activate to written sentences containing numerical 

quantifiers (“at least three”, “more than two”, etc…) according to (Troiani et al., 2009). While this result 

might simply be due to the presence of numbers in those statements, McMillan et al. (2005) suggested 

that all types of quantifiers, including non-numerical ones (“some”, “every”, “more than”, etc…) induce a 

shared activation in inferior parietal cortex.  

Experiment 2 therefore used a 2 x 2 x 2 factorial design in which we independently manipulated 

(1) the math or nonmath content of the statements; (2) the presence of a negation; (3) the presence of 

the quantifier “some”.  If the math-responsive network genuinely encodes mathematical concepts and 

their relationships, then it should show an effect of the first factor (math content), over and above any 

influence of the other two factors (negation and quantification). If, on the contrary, previous results are 

due to the greater need for logical reasoning for math than for nonmath statements, then we should see 



main effects of negation and quantification, regardless of the mathematical or nonmathematical nature 

of the content. 

Methods 

The same participants as in experiment 1 were exposed to a set of spoken true or false 

mathematical and non-mathematical statements (figure 1), following the same procedure. These 

statements were either declarative sentences (“The sine function is periodical”; “Londonian buses are 

red”), sentences with a quantifier some (“Some matrices are diagonalizable”; “Some ocean currents are 

warm”), a negation (“Hyperboloids are not connected”; “Orange blossom is not perfumed”), or both 

quantifier and negation (“Some order relations are not transitive”; “Some green plants are not 

climbing”). Math and nonmath statements were carefully matched for syntax within each category. 

Indeed, they were paired with the same number of words and the same grammatical categories (for 

more detailed stimuli and procedure see general methods and appendix).  

Results 

Behavior. Overall performance (figure 2) was 82.9 ± 5.5% correct (math: 90.4 ± 1.6% correct; nonmath:  

86.2 ± 2.0% correct; no significant difference). A 2 x 2 x 2 factorial ANOVA confirmed that the content 

(math/nonmath) did not have any significant effect, and revealed only a significant effect of negation 

(F(1,88) = 4.40, p < 0.05), but not of quantifiers. Furthermore, no significant interaction between the 

factors was found.  

Participants answered in average in 1.25 ± 0.05s (math: 1.21 ± 0.08s; nonmath: 1.28 ± 0.08s; no 

significant difference; figure 2.2). The presence of negation significantly lengthened the response time 

(F(1,88) = 12.65; p < 0.001), while no effect of quantifier was found. Within each condition, no difference 

was found between math and nonmath response times, except for quantified negation (t(11) = 2.52, p < 

0.05; interaction between content, negation and quantifier: F(1,88) = 4.11, p < 0.05). 

Math versus nonmath dissociation. We first searched for regions exhibiting more activation to math 

than to nonmath statements, and again found the math-responsive network: bilateral IPS and IT, as well 

as weaker superior and middle frontal activations (figure 7). Similar results were found within each 

condition (declarative, negative, quantified declarative and quantified negative) for the contrast of math 

versus nonmath (figure S4). Furthermore, the conjunction of math > nonmath contrasts in all four 

categories again revealed activation in bilateral inferior-temporal regions and the left intraparietal 

sulcus, although right IPS and dorsal frontal cortex no longer reached significance (figure 7). Plots of the 

time course of activation within a-priori math-related regions from Amalric & Dehaene (2016) revealed a 



systematic activation to mathematical statements and, contrariwise, a systematic deactivation to 

nonmath statements (figure 7). Examination of the mean activation induced by each individual 

statement, averaged over the four main math-related regions (i.e. bilateral IPS and IT), confirmed this 

result (see figure S6). Indeed, virtually all non-math statements (43/48) had negative betas while the 

majority of math statements (27/48) yielded a positive activation, and a 2x2x2 ANOVA on beta estimates 

with content, negation and quantifier as factors revealed that only the content (math/nonmath) had a 

significant effect (F(1,88) = 28.8, p < 0.001). 

 

Figure 7 - Dissociation between math and nonmath in experiment 2. (top) Flattened and inflated brain maps showing the 

contrasts of math > nonmath (red) and nonmath > math (yellow). (middle) Time course of bold signal for each category of 

statements in representative brain areas of the networks responsive to math and general-semantics. (bottom) Flattened and 

inflated brain maps showing the conjunction of the four contrasts of math > nonmath within each condition. 



  In the converse contrast, the brain regions exhibiting greater activation for nonmath than math 

statements were the bilateral superior temporal sulci and the left IFGOrb. Similar clusters of activation 

were found in bilateral superior temporal poles for nonmath > math reflection when restricting to 

declarative or quantified statements. For negative statements, only a small difference between nonmath 

and math statements in the left temporal pole was observed, and no such difference was seen for 

quantified negative statements. Note that the main contrast of nonmath versus math statements elicited 

less extended activation in semantic-related regions than the equivalent contrast in experiment 1 (figure 

S5). In particular, no activation in bilateral angular gyri was found. Examination of temporal activation in 

regions-of-interest extracted from the nonmath > math contrast in our previous study (Amalric and 

Dehaene, 2016) revealed noisy signals (figure 7), suggesting that the simpler nonmath statements used 

in the present experiment activated slightly more dorsal regions in the present experiment. Only in the 

left anterior superior temporal sulcus did activation to the nonmath statements remain sustained until 

the end of the trial, especially for the declaratives, while the math statements induced only a transient 

activation followed by a systematic deactivation (figure 7). 

Effect of quantifiers. We studied the main effect of quantification by comparing all statements that 

contained a quantifier (i.e. quantified plus negative quantified math and nonmath statements) to all 

other statements. This contrast revealed a cluster of activation in the right angular gyrus (figure 8). 

Interestingly, this activation totally spared math-related regions, as suggested by the brain map at the 

top right of figure 8, showing the non-overlap of the math > nonmath contrast and the main effect of 

quantifiers. A similar activation was found when restricting to math statements, although no significant 

effect of quantifiers was found within the nonmath statements. Plots of average betas in this cluster 

revealed that the quantified statements induced a lesser deactivation than simple declaratives or 

negatives (figure 8).  

Effect of negation. We searched for regions where activity was modulated by the presence of negation, 

regardless of the math/nonmath distinction. The comparison of all negative statements (math and 

nonmath, quantified or not) versus all other statements revealed activation in the left inferior frontal 

gyrus, in the three pars triangularis (peak at [-44 26 -1], t = 5,85), Opercularis (peak at ([-56 16 16], t = 

5,37) and Orbitalis (peak at [-51 26 -7], t = 4,90) (figure 9). When restricting to math, resp. to nonmath 

statements, a common activation was found in IFG triangularis (around [-56 16 9]). The effect of 

negation within math statement induced additional activation in IFG Orbitalis (peak at [-51 20 -5], t = 

4,29). Nevertheless, there was no whole-brain interaction between negation and content (math vs 



nonmath), and the profiles of activation (figure 8) indicated that both sites tended to show a higher 

activation whenever a statement contained a negation. 

         

Figure 8 - Main effects of quantifiers and negation. (top) Inflated brain maps showing the main effect of presence or absence 

of the quantifier “some”, pooled over both math and nonmath statements, and the effect of quantifiers within math 

statements only. The bar plot displays the mean beta values in the right angular gyrus cluster of activation. (top right) Axial 

slice showing the relative locations of the activations induced by the main effect of quantifiers (red) and by math more than 

nonmath statements (yellow). (bottom) Inflated brain maps showing the main effect of negation, pooled over math and 

nonmath statements (left) and within math and nonmath statements separately. Bar plots display the mean activation in left 

IFG clusters found in the two latter maps. 

 

Figure 9 - Activation profile in auditory and language areas in experiment 2. (top) Axial slices showing auditory anatomical 

regions of interest, i.e. Heschl gyri, from which beta estimates of activation evoked by each category of statements were 

extracted (bar plots). (bottom) Sagittal slice showing the 7 language regions of interest used to extract beta estimates 

represented in bar plots. 



Activation in auditory and language ROIs. We first checked whether auditory responses differed 

between categories in Heschl gyri, and found similar responses to all statements in the right hemisphere 

(F(7,70) = 0.44, n.s), and very small but significant differences in the left hemisphere (F(7,84) = 2.70, p = 

0.03 with Bonferroni correction over 2 regions, figure 8). We then performed an ROI analysis in the 7 

language-related ROIs that were used in experiment 1 (i.e. TP, aSTS, pSTS, TPJ, IFGorb, BA44 and IFGtri). 

Figure 8 shows the average activation elicited by each statement type within the subject-specific voxels 

identified by the language localizer within each region. All categories elicited significant activation in all 7 

regions, with the sole exception of TPJ (all ps < 0.04 corrected for multiple comparisons over 7 regions of 

interest), and ANOVAs performed in each region revealed no significant differences between categories.  

Finally, this result was confirmed by examining the activation elicited by each individual 

statement, averaged over all 7 language areas. Once sorted in ascending order, no clear segregation 

appeared (figure S6) and neither the math/nonmath content nor the presence of a negation or a 

quantifier showed a significant effect on beta estimates (main effects and interactions in a 2x2x2 

ANOVA: all Fs(1.88) < 1.32, n.s.). 

Effect of word abstractness. One could argue that non-math statements comprise more concrete words 

than math statements, and that this difference, rather than the math content, could explain our results. 

This is unlikely at face value given that previous studies of abstract versus concrete words have not 

observed effects in math-responsive areas (Wang et al., 2010). Rather, a meta-analysis of 19 fMRI studies 

assessing the difference in brain activation elicited by abstract versus concrete nouns revealed that 

“abstract concepts elicit greater activity in the inferior frontal gyrus and middle temporal gyrus 

compared to concrete concepts, while concrete concepts elicit greater activity in the posterior cingulate, 

precuneus, fusiform gyrus, and parahippocampal gyrus compared to abstract concepts” (Wang et al., 

2010). Nevertheless, to evaluate this possibility in the current context, we examined the effect of word 

abstractness on brain activation. We asked a professional mathematician to rate the level of 

concreteness of words used in math and non-math statements respectively on a scale from 0 (= very 

abstract) to 5 (= very concrete). We then used the abstractness rating of each statement as a predictor of 

brain activity, separately for math- and language-responsive regions. No significant correlation was 

found between the activity of math-responsive regions and the degree of abstractness, neither for math 

nor for non-math concepts. Only a small positive correlation was found between the level of 

abstractness of non-math concepts and the activity of the left inferior frontal region (R = 0.31, p < 0.03, 

uncorrected for multiple ROIs). As word concreteness is often related to mental imagery, we also 



examined whether the activity elicited by math and nonmath statements differed in the primary visual 

cortex. No significant difference between math and non-math statements was found.   

Discussion  

In experiment 2, all statements were extremely simple declarative copular sentences (x is y). As a 

consequence, they were well matched in syntactic complexity, and we verified that they elicited 

indistinguishable activations in classical language areas. Nevertheless, we again replicated a main effect 

of semantic content: the math statements, relative to nonmath statements, again activated bilateral 

intraparietal and inferior temporal regions. This result therefore reinforces the idea that there is a math-

responsive network in the brain constituted of bilateral IPS and IT regions that systematically processes 

math-related semantic content. 

We verified that the observed dissociation was not driven by a difference in the level of 

abstractness between math and nonmath concepts. Math responsive were not modulated by the degree 

abstractness of either math or non-math statements, and only the abstractness of non-math statements 

led to a small increase in left IFG activation, i.e. outside the math-responsive network. This conclusion 

fits with the results of many studies investigating the difference between activation elicited by abstract 

versus concrete words (Wang et al., 2010) and which again found that these contrasts modulated activity 

outside of the typical math- and semantic-related brain networks. In fact, it is likely that, for an expert 

mathematician, the subjective degree of concreteness of math and nonmath concepts may not even 

differ. In the study led by (Amalric and Dehaene, 2016), participants’ ratings of statements “imageability” 

revealed that, if anything, math concepts yielded more mental imagery than nonmath concepts in 

mathematicians. 

Finally, the presence of logical operators such as quantifiers and negation was insufficient to 

drive any change in activation in the math-responsive regions. Negation correlated with activation in the 

left IFG, suggesting a syntactical complexity effect. Quantifiers correlated with less deactivation in the 

right angular gyrus, the same region previously found by (McMillan et al., 2005). Crucially, however, our 

design revealed that this quantification site did not overlap with the parietal activation associated with 

mathematical reflection.  

General Discussion 

We start by summarizing our main findings. In two fMRI experiments with professional 

mathematicians, we replicated, with simpler math statements, the dissociation that was previously 

observed between brain circuits involved in math and nonmath reflection (Amalric and Dehaene, 2016). 



As we simplified the statements, this dissociation became even more drastic in the case of rote algebraic 

facts or algebraic calculation statements, since those problems elicited virtually no activation in language 

areas TP, pSTS and IFGorb, but continued to induce unchanged activity in bilateral parietal and inferior 

temporal math-responsive areas. Indeed, the activation of the math-responsive network was common to 

all mathematical domains, although trigonometry and complex numbers, which induced mental imagery, 

evoked additional activation in the occipital cortex. Conversely, nonmath problems did not engage the 

math-responsive regions, even when they contained logical operators such as quantifiers or negation. 

Instead, main effects of quantifiers and negation were respectively observed in the right angular gyrus 

and the left IFG. We now discuss those findings in turn. 

Our findings support the hypothesis that mathematical concepts form a domain-specific area of 

knowledge with a distinct cortical substrate. This conclusion is similar to the previously reported 

specializations that have been previously reported in the literature, for instance for semantic knowledge 

of animate vs inanimate categories (Huth et al., 2016; Mahon and Caramazza, 2009). The intraparietal 

sulci and bilateral lateral inferior temporal regions appear to constitute a core network for mathematical 

knowledge which activates whenever we access concepts of mathematics, regardless of domain or 

problem difficulty. Indeed, whether mathematical problems were easy or difficult, retrieved from 

memory, resulting from calculation or visualized, these four brain regions were systematically activated. 

This finding concurs with previous evidence for activation of these regions by the mere presentation of 

numbers, in adults without any advanced mathematical training (Daitch et al., 2016; Dehaene et al., 

2003; Eger, 2016; Pinheiro-Chagas et al., submitted) and even in preschoolers watching Sesame Street 

numeracy programs (Cantlon and Li, 2013). Furthermore, intracranial recordings (Dastjerdi et al., 2013) 

and an fMRI study of semantic networks (Huth et al., 2016) have suggested that merely listening to 

sentences that contain number words or words referring to units of measure, positions and distances 

suffices to activate bilateral parietal, inferior frontal and inferior temporal regions. 

In our previous research (Amalric and Dehaene, 2016), we had used complex mathematical 

statements that required several seconds of reflection and found additional intense and bilateral 

activations in dorsal prefrontal cortex. With the much simpler facts used in the present experiments, 

including mere definitional properties that could be responded to in ~1 second (e.g. “the sine function is 

periodical”), this frontal activation was strongly reduced (experiment 1) or even disappeared 

(experiment 2), while the activation in bilateral intraparietal and inferior temporal regions remained. Our 

findings therefore suggest that the latter region play a core role in representing mathematical concepts, 



whereas prefrontal areas may be additionally recruited when active manipulation of those concepts is 

needed. Further research should determine whether IT and IPS make distinct contributions to 

mathematical knowledge, since the present experimental manipulations were only very modestly 

successful in dissociating them. Examination of response profiles in bilateral IT did not reveal any 

significant differences between categories of math statements, while bilateral IPS, particularly in the 

right hemisphere, responded less to geometrical statements, perhaps because they involved a greater 

linguistic complexity. We also studied problems that predictably require mental imagery (particularly 

complex numbers and trigonometry, which call for a mental image of the unit circle). This factor did not 

modulate the main math-responsive network, but increased activation in mesial occipital cortex.  

The various controls that we used revealed that math-related regions appeared to be exclusively 

used for mathematical thinking in our experiments, and remained silent when processing 

nonmathematical statements, even when such statements contained minimal logical operators. Instead, 

the presence of a negation induced more activation in the left IFG (Broca’s area). This result suggests 

that negation acted primarily by increasing the syntactical or semantic complexity of sentences. This 

finding may not be surprising given that negation, at least in French, necessarily increases the number of 

words in a sentence compared to simple or quantified declaratives. 

Statements using the quantifier “some”, in turn, caused a greater activation (or more accurately, 

a lesser deactivation) than other statements in the right inferior parietal cortex. While this finding 

replicates what was reported by McMillan et al. (2005), we observed two major differences compared to 

their findings. First, inspection of the beta estimates in this region revealed no activation for statements 

that contained a quantifier, but a strong deactivation for declarative and negative statements. Second, 

McMillan and colleagues interpreted the finding of a quantifier-related activation in the inferior parietal 

lobule as reflecting the existence of a shared cortical circuit for numbers and quantifiers. However, the 

activation that they labeled as belonging to the “inferior parietal lobule” actually falls closer to the 

angular gyrus than to the intraparietal sulcus. Our results indicate that this inferior parietal region 

showing a main effect of quantifiers does not overlap with the math-responsive network. Altogether, 

these observations question the idea that the mere presence of a quantifier such as “some”, in an 

otherwise non-mathematical sentence, suffices to call upon numerical processes. 

The present study confirms that mathematical reflection does not call upon the classical areas 

involved in word- and sentence-level semantics, namely the most anterior, polar part of the superior and 

middle temporal sulcus, and the temporo-parietal junction/angular gyrus (Binder et al., 2009). We did 



observe bilateral anterior temporal activations during the processing of non-mathematical statements in 

the present experiments and in our previous study (Amalric and Dehaene, 2016), but these regions 

activated much more to nonmath than to math statements. In fact, a sensitive analysis in language-

related regions of interest extracted from a previous study by (Pallier et al., 2011), revealed that 

statements of algebra, trigonometry and complex numbers, even though they were presented verbally, 

led to virtually no activation of left TP, TPJ and IFGOrb in the first experiment of the present study.  

We also note in passing that while Ischebeck et al. (2006) found that the retrieval of rote 

arithmetic facts, compared to arithmetic calculation, involved the bilateral angular gyri, this result was 

not replicated here, as we found that even rote algebraic facts, such as knowledge that a²-b²=(a-b)(a+b), 

activated the math-responsive network. This result suggests that routinized algebraic expressions are not 

stored in rote verbal form (unlike, say, multiplication tables), but involve an actual manipulation of 

mathematical concepts – as indeed supported by the previous finding that they engage IT and IPS areas 

(Maruyama et al., 2012). 

Naturally, mathematics and language are not completely disconnected in the brain. Since both 

mathematical and non-mathematical statements were presented as spoken sentences, we expected that 

the core areas for language processing would be jointly activated. Indeed, in experiment 1, listening to 

math statements activated a core set of language areas (aSTS, pSTS, IFGTri) to an extent proportional to 

their syntactical complexity. Moreover, in experiment 2, ROI analysis indicated that the activation in 

language areas did not differ between math and nonmath statements, thus reflecting their similar 

syntactical construction. It is therefore only within areas that have been labeled as playing a semantic 

role (TP, AG) that a massive difference between math and nonmath statements is found. 

Altogether, our findings indicate a major dissociation between the brain networks for 

mathematical and nonmathematical semantics. They confirm and extend previously reported 

dissociations between the recognition of letters versus numbers in the ventral visual pathway (Abboud 

et al., 2015; Park et al., 2012; Shum et al., 2013), between algebraic versus linguistic processing in brain-

lesioned patients and brain-imaging studies (Klessinger et al., 2007; Maruyama et al., 2012; Monti et al., 

2012), and between advanced mathematical versus semantic processing in professional mathematicians 

(Amalric and Dehaene, 2016). Mathematics in the broadest sense of the term (including elementary 

numerical and spatial processing) may thus constitute a distinct subsystem within the realm of human 

conceptual knowledge. 



 

General methods 

1.1. Ethics statement 

All experiments were approved by the regional ethical committee for biomedical research, and 

subjects gave informed consent after they read consent information.  

1.2. Stimuli 

All statements were recorded using Audacity software by a female native French speaker who was 

familiar with mathematical concepts. Within each experiment, the math and nonmath statements from 

the different categories were matched in duration (Experiment 1: math: 4.15 ± 0.46s; nonmath: 3.98 ± 

0.45s; no significant difference; Experiment 2: math: 4.47 ± 0.57s; nonmath: 4.48 ± 0.36s; no significant 

difference). A complete list of stimuli can be found in appendix.  

1.3. Procedure 

In both experiments, a white fixation cross was presented on a black background, which 

participants had to fixate continuously. Each trial started with a beep and a color change of the fixation 

cross (which turned to red), announcing the onset of the statement. Participants were then asked to 

answer as quickly as they could, and within 2.5 seconds of sentence ending. This response period ended 

with a beep, and was signaled by the fixation cross turning to green. Subjects gave their evaluation of the 

sentence (true, false) by pressing a button held in the right hand for true, and in the left hand for false. 

Each trial ended with a 7-second resting period (figure 2.1).  

Experiment 1 was divided into 7 runs of 12 statements each, including at least one exemplar of 

each category (rote facts, algebra, trigonometry, complex numbers, geometry, nonmath and beeps), 

randomly picked among all possible statements. Experiment 2 was divided into 3 runs of 32 statements 

each, including exactly two exemplars of each sub-category (math/nonmath x true/false x 

declarative/quantified/negative/negative quantified), again randomly picked among all statements. 

1.4. Language localizer 

At the end of the fMRI exam, participants performed a language localizer. In a unique run of 14 

minutes, participants listened to correct sentences, jabberwocky sentences (i.e. sentences composed of 

pseudo-words with preserved grammatical markers), and jabberwocky in random order (i.e. pseudo-

sentences with degraded grammatical structure). At the beginning of each trial, they heard a target word 

or pseudo-word, and had to decide whether the following sentence or pseudo-sentence contained this 



target. Trials ended with a 7-second resting period. When present (90% of trials), targets always 

appeared in the last third of sentences in order to maintain participants’ concentration until the end of 

the trial. Sentences and pseudo-sentences contained 14 words and used complex syntax, including 

relative clauses. They were all recorded using Audacity software, and were matched in duration 

(sentences: 4.84 ± 0.54s; jabberwocky: 5.16 ± 0.50s; random order: 5.11 ± 0.44s; F(2,57) = 2.44; n.s.).   

1.5. fMRI data acquisition and analysis 

We used two 3-Tesla whole body systems (Prisma) with high-resolution multiband imaging 

sequences developed by the Center for Magnetic Resonance Research (CMRR) (Xu et al., 2013) 

(multiband factor = 4, Grappa factor = 2, 80 interleaved axial slices, 1.5 mm thickness and 1.5 mm 

isotropic in-plane resolution, matrix = 128x128, TR = 1500 ms, TE = 32 ms), with 64 channel head-coil.  

Using SPM8 software, functional images were first corrected for slice timing, realigned, 

normalized to the standard MNI brain space, and spatially smoothed with an isotropic Gaussian filter of 2 

mm FMWH. A two-level analysis was then implemented in SPM8. For each participant, fMRI images were 

high-pass filtered at 128s. Then, time series from experiment 1 and experiment 2 were modelled 

separately. For both experiments, time series was modelled using a single regressor per statement, with 

a kernel corresponding to statement presentation plus the mean reaction time for that subject. We then 

defined subject-specific contrasts by comparing the activation evoked by two subsets of sentences 

during the reflection period. Regressors of non-interest included the six movement parameters for each 

run. Within each auditory run, additional regressors of non-interest were added to model activation to 

the auditory beeps and to the button presses.  

For the second-level group analysis, individual contrast images for each of the experimental 

conditions relative to rest were smoothed with an isotropic Gaussian filter of 5 mm FWHM, and entered 

into a second-level whole-brain ANOVA with stimulus category as within-subject factor. All brain 

activation results are reported with a clusterwise threshold of p < 0.05, corrected with false-detection-

rate (FDR) for multiple comparisons across the whole brain, using an uncorrected voxelwise threshold of 

p < 0.001. 
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