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Abstract

A GPU-based tool to generate realistic phantoms of the brain microstructure is presented. Using a spher-
ical meshing technique which decomposes each microstructural item into a set of overlapping spheres, the
phantom construction is made very fast while reliably avoiding the collisions between items in the scene.
This novel method is applied to the construction of human brain white matter microstructural components,
namely axonal fibers, oligodendrocytes and astrocytes. The algorithm reaches high values of packing density
and angular dispersion for the axonal fibers, even in the case of multiple white matter fiber populations and
enables the construction of complex biomimicking geometries including myelinated axons, beaded axons,
and glial cells. The method can be readily adapted to model gray matter microstructure.

Keywords: GPU, Phantom generation, White matter, Diffusion MRI

1. Introduction

One key objective of non-invasive medical imag-
ing techniques, such as diffusion MRI, is the ability
to relate the measured macroscopic signal to the
underlying microscopic properties of the observed
tissue. Several analytical approaches have been de-
veloped in the past, leading to the modeling of tis-
sue cellular environments using simple glyphs, such
as cylinders and ellipsoids, which are not represen-
tative of actual tissues. The main reason for keep-
ing such over-simplistic geometries is that analyt-
ical solutions of the diffusion equation only exist
for a limited number of geometries (Neuman, 1974;
Vangelderen et al., 1994; Sen and Basser, 2005).

The popularization of high performance comput-
ing, either based on the use of GPU or multi-core
CPU, pushed the community to go beyond ana-
lytical models by considering in silico approaches.
Simulations offer a unique opportunity to enhance
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the realism of tissue modeling, using computa-
tional frameworks that more robustly capture the
mapping between features derived from diffusion-
weighted MR signals and ground truth microstruc-
ture parameters (Nedjati-Gilani et al., 2017).

To tackle the particularly ill-posed problem of
tissue-to-signal relationship, the use of virtual his-
tology seems to be a credible approach: if the geo-
metrical properties of the generated numerical tis-
sues are well known and controlled, the synthesis
of the associated signal -using, in the case of diffu-
sion MRI, Monte-Carlo simulations of the diffusion
process- for a wide range of different geometries will
provide a valuable set of data that could be used to
model this relationship, with the help of machine
learning techniques. Of course, the new problem
posed by virtual histology is to design a generative
model creating realistic numerical scenes that rep-
resent sufficiently well the biological environment.

In the particular field of brain microstructure,
several tools have been proposed to construct nu-
merical phantoms of gray and white matter (Balls
and Frank, 2009; Budde and Frank, 2010; Fiere-
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mans et al., 2010; Harkins and Does, 2016; Ne-
her et al., 2014; Landman et al., 2010; Lin et al.,
2016; Liu et al., 2004; Stanisz et al., 1997; Szafer
et al., 1995; Rensonnet et al., 2018; Van Nguyen
et al., 2018). The AxonPacking simulator (Min-
gasson et al., 2017) performs 2-dimensional random
disks packing to generate white matter substrates,
thus not enabling to model 3-dimensional effects
such as local and global angular dispersion of ax-
ons, as well as axonal swelling or beading. The
CAMINO simulator (Hall and Alexander, 2009) en-
ables the construction of white matter phantoms
including regularly-packed cylinders, crossing cylin-
ders, irregularly-packed cylinders with distributed
radii and mesh substrates. The generation of ge-
ometries from scratch (i.e. without any histological
input) is thus limited to straight cylinders, with at
most two fiber populations, which is not sufficient
to fully represent the complexity of white matter.

The Diffusion Microscopist Simulator (Yeh et al.,
2013) (DMS) has recently been improved and in-
cludes, besides all the tools provided by CAMINO,
the possibility to model any number of fiber pop-
ulations, add global angular dispersion, tortuosity
and beading to axons as well as myelin and Ran-
vier nodes (Ginsburger et al., 2018). However, the
generative model employed in DMS, which is sim-
ilar to CAMINO, is mainly based on the represen-
tation of axonal fibers as cylinders, which consid-
erably limits the values of angular dispersion and
packing densities that can be achieved with this
type of algorithm. Moreover, neither CAMINO
nor DMS have yet provided a tool to create syn-
thetic glial cells, such as oligodendrocytes and as-
trocytes, which are prevalent in white matter and
might thus have an important impact on the ob-
served diffusion-weighted MRI signal (Marco et al.,
2017).

Several frameworks have also been proposed
in recent years to create gray matter phan-
toms (Van Nguyen et al., 2015; Cuntz et al., 2010).
What seems to be an extension to CAMINO for
gray matter has recently been presented and seems
a most promising tool to generate different types of
neural cells, using a reduced set of geometrical pa-
rameters (Palombo et al., 2018). However, the pre-
sented tissue generator does not provide any pack-
ing method for the constructed digital cells while
preventing overlap between generated cells is one
of the main challenge of phantom construction.

In this work, the Microstructure Environment
Designer with Unified Sphere Atoms (MEDUSA)

is presented, which enables to represent any kind
of cellular type (axons, astrocytes and oligoden-
drocytes, neurons) using a spherical meshing tech-
nique. Since all microstructural items are repre-
sented as a set of overlapping spheres, the packing
of such items can be performed using an algorithm
which solves collisions between spheres in a generic
way that does not require to consider the particular
type of biological structure it is dealing with. Such
an algorithm, written in CUDA, enables a very fast
resolution of all collisions in each constructed scene.
This new method is applied here to construct real-
istic phantoms of white matter tissues, including all
the features already provided by DMS to create ax-
onal fibers, while reaching much higher values of an-
gular dispersion and packing density, and covering
the construction of astrocytes and oligodendrocytes
to enhance the realism of the phantoms. The puta-
tive construction of realistix gray matter phantoms
using such an approach is also illustrated.

2. Methods

2.1. The synthesis of various white matter cells.

Axonal fibers. Axonal fibers are the principal
component of white matter. In a typical imaging
voxel, complex configurations of fibers due to the
presence of several heterogeneous populations are
likely to happen. Several studies in the field of dif-
fusion MRI have reported a percentage of around
60 percent of voxels containing crossing, kissing or
splitting fibers at the conventional millimeter reso-
lution of diffusion MRI data (Behrens et al., 2007).

Each fiber population is composed of myelinated
or unmyelinated axons, which diameter distribution
can be represented by a Gamma function whose
shape and scale parameters can vary from one pop-
ulation to another (Assaf et al., 2008; Alexander
et al., 2010). Other more realistic axonal diam-
eter distributions can also be used, such as the
lognormal or generalized extreme value distribu-
tions (Sepehrband et al., 2016).

Myelinated axons are regularly interrupted
by Ranvier nodes along the axon main direc-
tion (Salzer, 1997); the internode distance d has
been extensively studied in (Rushton, 1951) lead-
ing to the maximum conduction relationship
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where D is the external diameter of the axon (in-
cluding the myelin sheath), and g is the g-ratio de-
fined as the ratio between the axonal membrane and
the external myelin sheath outer membrane diame-
ters.

The fibers of a given population depict a macro-
scopic angular dispersion that corresponds to the
global misalignment of axons, as well as a local
tortuosity- which can be defined as the ratio be-
tween the geodesic distance along the curvilinear
frame defined by the centroid axis of the axonal
fiber and the Euclidean distance between the two
extremities of the fiber.

It is not clear whether the axon diameter and
myelin sheath thickness remain constant along the
axon; several studies have assumed this absence
of variation (Beaulieu, 2002; Daducci et al., 2016)
whereas other studies tend to indicate a variation
of the axon diameter (Lee et al., 2018; Abdol-
lahzadeh et al., 2017); in particular, it is known
that membrane injury can induce axonal beading
for instance due to cytoskeletal damage (Budde and
Frank, 2010; Tang-Schomer et al., 2012).

Table 1 shows all the geometrical parameters
that can be set to construct each population of ax-
onal fibers with a controlled degree of realism using
MEDUSA. Figure 1 illustrates the influence of each
parameter.

To construct one fiber in a given population, the
algorithm draws the fiber orientation from a Wat-
son distribution (Fisher et al., 1993), whose κ pa-
rameter is set according to the desired value of
global angular dispersion and the mean value is
equal to the mean orientation of the fiber popu-
lation. Other orientation dispersion distributions
can also be used, as shown at the end of the Re-
sults section. A starting point is then drawn ran-
domly on the minimal sphere containing the scene
field of view, and a straight fiber grows in the direc-
tion of the fiber orientation, by successively adding
overlapping spheres of constant radius r in this di-
rection. The radius r of the spheres is equal to
the axonal radius. The distance ds between each
sphere center is a tradeoff between a representative
fiber structure and a treatable amount of spheres.
We typically choose ds = r/4. The fiber stops grow-
ing when it reaches the other end of the containing
sphere. Only the spheres that are inside the field of
view are kept. Fibers are created until the volume
fraction is reached for a given fiber population.

Once those straight fibers made of spheres have
been created, the addition of tortuosity is done in

a second step by randomly deforming portions of
fibers using Gaussian distribution functions, until
the required value of local angular dispersion (also
called tortuosity) has been reached, as shown in
figure 2.

Beading, consisting in local variations of the axon
diameter, can also be rendered by applying sinu-
soidal functions to the radii of spheres on some
random portions of the axonal fibers, as illustrated
in scheme 3. This feature can be used to repre-
sent swollen fiber regions due to cytoskeletal dam-
age (Budde and Frank, 2010; Tang-Schomer et al.,
2012) as well as healthy white matter tissues where
beaded regions can also be found, as demonstrated
in two recent works (Lee et al., 2018; Abdollahzadeh
et al., 2017), suggesting that modeling axons by
straight cylinders may not be accurate.

The creation of a myelin sheath and Ranvier
nodes is done only after the collision solver algo-
rithm has been applied. Indeed, the axonal fiber
spheres which have been created previously corre-
spond to the outer axonal membranes. Once the
final position of all outer axonal fiber spheres is
known, the creation of the inner axonal membrane
is done simply by duplicating all the spheres with
a smaller radius, whose value is computed using
the value of the g-ratio required by the user. The
myelin sheath consists of the space between the
spheres from the inner and the outer axonal mem-
branes.

Ranvier nodes are then added by setting the
sphere radius of external membrane spheres to the
value of the corresponding inner membrane sphere,
at regular intervals whose value correspond to the
internodal length, computed using the maximal
conduction relationship (Rushton, 1951). The cre-
ation process is explained in scheme 4.

Astrocytes. Astrocytes are the most numerous
and diverse glial cells in the central nervous system,
and they have been attributed a role in the devel-
opment of neurons e.g. formation and pruning of
synapses, as well as in the development or repair
of acute CNS trauma or chronic neurodegenerative
diseases (Lundgaard et al., 2014). We only focus
here on fibrous astrocytes, the type of astrocytes
populating white matter tissues. Experimental ev-
idence points to fibrous astrocytes as being crucial
in facilitating normal myelination during develop-
ment, maintaining the right environment for oligo-
dendrocytes and also ion buffering and metabolic
supply throughout adulthood (Lundgaard et al.,
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2014; Oberheim et al., 2009).

According to (Oberheim et al., 2009), the pro-
cesses of fibrous astrocytes are long -up to 300µm-
and their density is ∼ 200 000 cell per mm3. Their
processes are radially oriented in the direction of
the axon bundles, relatively unbranched, and ex-
tend evenly from a small cell body. The cell bod-
ies are equally spaced, probably due to the fact
that they provide a structural support for the axons
tract (Oberheim et al., 2009).

As shown in table 2, the construction of astro-
cytes requires the definition of several geometrical
parameters per astrocyte population, such as the
diameter of the astrocyte body and processes, the
total diameter of the astrocyte, the volume frac-
tion, and the balancing factor which will be defined
immediately afterwards.

The generative model used to construct as-
trocytes is inspired from the method presented
in (Cuntz et al., 2010; Palombo et al., 2018) for
the construction of neural cells. As illustrated in
scheme 5, the basic idea relies on the construction
of a minimum spanning tree (MST) from a set of
points in 3D. The distance cost function used to
compute the MST is composed of two components,
weighted by a balancing factor bf : the wiring cost,
corresponding to the Euclidean distance between
nodes of the tree, and the conduction cost, cor-
responding to the path length from the astrocyte
body to each given node. A balancing factor bf = 1
leads to a completely stellate structure, and a pro-
gressive diminution of bf leads to the apparition of
branching processes whose number can therefore be
controlled.

The 3D point cloud from which the MST is com-
puted is made of random points drawn inside a
sphere whose radius is equal to the total radius
of the astrocyte. However, in order to satisfy the
constraint that astrocyte processes are radially ori-
ented in the direction of axon bundles, 3D points
whose position differ from the main axon bundles
directions with a certain angular threshold (typi-
cally 30) are discarded. The astrocyte soma is lo-
cated at the root node of the MST.

Tortuosity is also added to the astrocyte pro-
cesses following a similar procedure as for axons,
i.e. randomly applying Gaussian deformation in a
random direction on each branch of the processes.
Finally, in order to improve the realism of the con-
structed astrocytes, the radii r of processes decrease

when the distance d to the soma increases

r = r0e
(−α.d/R) (2)

where R is the total radius of the generated as-
trocyte, and α is a tunable parameter (typically
equal to 2). Indeed, microscopic images of astro-
cytes in (Oberheim et al., 2009) strongly suggest
that the diameter of astrocyte processes decreases
with the distance to the soma. Similar observa-
tions were done for dendrite processes which were
modeled with decreasing diameters when the dis-
tance to the soma increases in (Cuntz et al., 2010).
However, equation 2 is not based on any biological
evidence and was employed for rendering purposes
only. Further investigations are needed to obtain
a more biologically relevant equation to model the
decreasing radius of astrocyte processes.

Oligodendrocytes. Oligodendrocytes are glial
cells with fewer processes than astrocytes. The
main function of oligodendrocytes is the produc-
tion of myelin which insulates axons in the central
nervous system. Oligodendrocytes were first
described in (del Ŕıo-Hortega, 1928), where these
cells were classified into four main phenotypes.
We here focus on type II oligodendrocytes, which
are very similar to type I oligodendrocytes with a
small rounded body producing four to six primary
processes, which branch and myelinate 10 to 30
thin (diameter < 2µm) axons, each secondary
process forming a single internodal myelin segment
of approximately 100 − 200µm length. Type II
oligodendrocytes are predominant in white matter,
where they are the primary cell type.

As shown in table 3, the construction of oligoden-
drocytes requires the definition of several geomet-
rical parameters per oligodendrocyte population,
such as the diameter of the body and processes, the
total diameter of the oligodendrocyte, the volume
fraction, and the number of processes. Similar to
astrocytes, oligodendrocytes creation also involves
the construction of a MST using the exact same
method described for astrocytes.

As shown in scheme 6, the main difference be-
tween astrocyte generation and oligodendrocyte
generation resides in the fact that oligodendrocytes
processes must be attached to the axonal outer
membrane, since they are involved in the creation
of the myelin sheath. Thus, a search radius also
has to be specified for each oligodendrocyte, which
defines the area in which the oligodendrocyte myeli-
nate axons. Depending on the number of pro-
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cesses count for each particular oligodendrocyte, a
set of spheres from the external membranes of ax-
ons present in the area are selected, which consti-
tute connection points for the oligodendrocyte. The
algorithm checks that the selected axonal spheres
are not located around Ranvier nodes, and axonal
spheres are preferentially chosen around the center
of the internode region, using a Gaussian distribu-
tion. This particular connection feature of oligo-
dendrocytes has required the creation of a look-up-
table that identifies all the external axonal spheres
present in a given sub-region of the scene field of
view.

2.2. A generic approach to generate packings of
non-colliding cells using spheres.

The main objective of the presented phantom
generation approach is to be able to represent a
wide variety of cell types present in the human
brain while being able to solve the collisions be-
tween the generated structures using one simple
packing algorithm. To this end, the use of overlap-
ping spheres of varying sizes is particularly suitable
for packing, since it only involves the computation
of distances between spheres, thus decreasing com-
putational complexity with respect to classical tri-
angular mesh approaches, while maintaining a high
representational power.

The idea to represent fibers as chains of spheres,
which is here generalized to any kind of cell type,
was first considered in (Altendorf and Jeulin, 2011).
The essential idea is the force-biased spheres pack-
ing algorithm, whose implementation is explained
here.

Repulsion forces. Let us consider that, in the
first step of the phantom generation framework, a
set of microstructural items I has been created,
according to a set of geometrical parameters pro-
vided by the user. Those items belong to one or
several cell populations, such as axonal fibers, as-
trocytes or oligodendrocytes. Each microstructural
item i ∈ I is made of overlapping spheres and since
the collision solver has not yet been used, there ex-
ists some overlapping between spheres of different
items, which should be removed.

At this point, each sphere in the scene is repre-
sented as a simple structure comprising the position
of its center, its radius, the ID of the cell population
it belongs to, and the ID of the cell item it belongs
to (ID means here the identity of the population
or item it refers to). This set of spheres is fed into

a GPU-based collision solver (written in CUDA),
which computes and applies repulsion forces be-
tween spheres which do not belong to the same
cell item. More precisely, the repulsion force for
a pair of overlapping spheres belonging to distinct
cell items describes the necessary displacement to
make them non-penetrating.

Let s1 = (x1, r1, p1, c1) and s2 = (x2, r2, p2, c2)
be two spheres with centers in position xi, radius
ri, cell population ID pi and cell item ID ci. Two
spheres having distinct cell population ID do not
belong to the same cell population (one can belong
to an astrocyte population, the other to an axonal
fiber population for instance), while two spheres
having the same cell population ID but distinct cell
item ID belong to the same cell population (both
belong to the same axonal fiber population for in-
stance) but not to the same element within that
population (not the same axonal fiber for instance).
The overlap O between those two spheres is

O(s1, s2) = max (0, r1 + r2 − d(x1, x2)) (3)

where d(x1, x2) denotes the Euclidean distance be-
tween the two sphere centers.

The repulsion force on s1 works in the opposite
direction to s2, with a strength linearly dependent
on the overlap

F (s1, s2) =
O(s1, s2)

2

x1 − x2
|x1 − x2|

(4)

For each sphere of the scene, the repulsion force is
computed with all other spheres that do not belong
to the same item, and the total repulsion force for a
sphere s1 is cumulated over all spheres from distinct
items, whose set is denoted by S:

Ftot(s1) =
∑
s∈S

F (s1, s) (5)

The algorithm is optimized using a 1D sweep and
prune algorithm (Avril et al., 2010) that reduces the
number of collision checks by sorting the spheres in
the voxel using their position projected along an ar-
bitrary axis. This sorting-based algorithm enables
an additional ten-fold speed-up.

Stopping criterion and regularization. In or-
der to determine when the collision solver should
be stopped, a stopping criterion must be defined.
During the packing process, the repulsion forces
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decrease very fast at the beginning and converge
slowly to zero at the end (see figure 7).

As emphasized in (Altendorf and Jeulin, 2011),
the process should be stopped by a criterion which
is dependent on the repulsion forces strength. The
total repulsion forces strength is computed at each
step as the sum of the norms of each applied repul-
sion force. The algorithm terminates with a packing
solution if the total force strength falls below a cer-
tain limit αs.n, where s is the size of the bounding
box, n is the number of items in the scene and α is
an overlap tolerance provided by the user, typically
equal to 0.002.

Of course, if the packing density is too high, it is
possible that the collision solver may not converge
due to the absence of solution to the packing prob-
lem. This case is managed with an additional stop
criterion based on the maximal number of steps.
This maximal number of steps depends on the com-
plexity of the packing problem, but was typically in
the range of 50− 200 iterations for the here shown
examples.

At each step of the collision solving algorithm,
once the repulsion forces between all spheres have
been applied for this given step, a regularization
procedure is performed for the spheres belonging to
a given item. The regularization consists in smooth-
ing the deformed items by computing a weighted
sum between each sphere position and the mean
position of the neighboring spheres within the item.
The degree of smoothing is controlled by the num-
ber of neighbor positions taken into account, as well
as the sum weights. It is important to note that the
stronger the smoothing, the slower the convergence
rate of the collision solver algorithm.

The particular case of glial cells. Applying re-
pulsion forces on glial cells at each step of the pack-
ing algorithm leads to problems related to the con-
servation of the branching structure, especially for
astrocytes. The regularization approach presented
in the previous section is sufficient for axonal fibers,
but additional constraints have to be added to pre-
serve the shape of each generated glial cell during
the packing process. This particular problem is ad-
dressed by identifying nodal spheres in each glial
cell item, which correspond to spheres belonging to
two or more branches of a given process, or directly
related to the soma of the cell (see figure 10).

Nodal spheres are given an additional label, and
all the spheres belonging to a branch of the process
between two nodal spheres are given the label of

their two nodal spheres. Thus, at each step of the
packing process, after the application of repulsion
forces on spheres of the glial cell processes, the po-
sition of all spheres between two nodal spheres are
regularized following the approach of the previous
section, so that each branch of a given process is
attached to its nodal spheres on both sides. It is
important to note that for each process of a given
glial cell, the sphere directly related to the soma of
the cell is not moved during the packing process.
The sphere representing the soma is not moved ei-
ther, since the algorithm takes care of avoiding the
overlap between two soma spheres when creating
the initial geometry before the collision solving pro-
cedure.

This straightforward regularization approach is
only valid if the amplitude of the repulsion forces
applied at each step of the algorithm are small
enough not to irreversibly degrade the branching
structure of the cell. This is ensured by bounding
the amplitude of each repulsion force to the diam-
eter of the sphere it is applied to.

Data and code availability statement. The
data and code that support the results of this study
are available from the corresponding author upon
request.

3. Results

3.1. Fibers, astrocytes and oligodendrocytes.

Fibers. Figure 8 shows results of the MEDUSA
framework to create white matter phantoms com-
posed of one, two or three populations of fibers,
with the same geometrical properties for each popu-
lation, and for 3 fiber volume fractions set to 0.1, 0.4
and 0.7 respectively. In figure 9, the degree of geo-
metrical complexity of a phantom with a single fiber
population is gradually increased by the successive
addition of tortuosity (LAD, see table 1), global an-
gular dispersion (GAD) and beading. Myelin and
Ranvier nodes are also represented in all configura-
tions.

Astrocytes and oligodendrocytes. Figure 10 il-
lustrates the creation of astrocytes for different val-
ues of the balancing factor BFa controlling the
amount of branching. Being able to control the
amount of branching is essential to model astro-
cytes properly. Indeed, it has been reported that
astrocyte activation due to CNS pathologies can in-
crease the amount of branching (Pekny and Nilsson,
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2005). Figure 11 shows a realistic example of as-
trocytes inside a fiber packing and figure 12 shows
a realistic example of generated oligodendrocytes,
which enables to see the connections of the oligo-
dendrocytes with the neighboring axons.

3.2. Examples of generated virtual tissues

As shown previously, the MEDUSA framework
enables the creation of distinct cell types in a
given virtual tissue. Figure 13 shows an exam-
ple of a typical virtual tissue representing a white
matter voxel comprising axonal fibers, astrocytes
and oligodendrocytes using realistic geometrical pa-
rameters. This figure illustrates the capability of
MEDUSA to create biomimicking scenes with a
high degree of realism very efficiently, without any
collision between the different items: a runtime of
56s on an NVIDIA DGX1 station was observed, for
a realistic voxel size of 100µm3 as recommended
in (Hall et al., 2017) and a total number of spheres
inside the voxel of 625000. A reduced number of 32
input parameters was sufficient to generate this vir-
tual tissue and control the geometrical properties of
interest for each cell population.

3.3. Convergence of the MEDUSA framework

Figure 4 shows the evolution of the repulsion
forces during the packing process, for an example
configuration with a single axonal fiber population,
with and without the regularization procedure, and
illustrates the impact of the smoothing procedure
on the convergence rate of the packing. The reg-
ularization has a reasonable impact on the conver-
gence and is essential to preserve the shapes of the
items while applying repulsion forces.

3.4. Packing densities limits

Figure 14 shows the maximal values of packing
densities as a function of global angular dispersion,
for one (a.), two (b.) and three (c.) fiber popula-
tions which have the same geometrical parameters.

Let n be the amount of fibers and s the size of the
bounding box, the packing procedure is considered
successful if the remaining repulsion force at the end
of runtime falls below 0.002s.n after 100 iterations,
meaning that the mean sum of necessary displace-
ment in a fiber or cell process is smaller than 0.2
percent of a unit size (Altendorf and Jeulin, 2011).

3.5. Computational efficiency

One important aspect of MEDUSA is that it can
be run efficiently on any GPU-capable computer.
Figure 15 shows the computation time in log scale
as a function of both the number of spheres in-
side the scene and the volume fraction. The mea-
sures were made using a C++/CUDA implementa-
tion of MEDUSA run on a Nvidia DGX1 station.
An approximate linear dependence is observed for
both cases, illustrating the fact that the computa-
tion time grows exponentially with the volume frac-
tion and the number of spheres inside the generated
scene.

3.6. Constructing biophysically plausible packings

The well-known Gamma distributions are em-
ployed throughout this work to model axonal di-
ameter distributions, and a large value of mean ax-
onal diameter of 2.0µm is deliberately used to im-
prove the visibility of the constructed fibers in a
typical voxel of 100µm3 in the presented figures,
for illustration purposes. However, it is known that
Gamma distributions fail to accurately describe the
main characteristics of the axon diameter distribu-
tion (Sepehrband et al., 2016), and the peak of ax-
onal diameter distributions in the human brain is
located below 1.0µm (Caminiti et al., 2009). More-
over, the standard Watson distributions are em-
ployed to model the global angular dispersion of
axons. The Watson distribution is used for the sake
of simplicity, but assumes an axially symmetric dis-
tribution of axons which is not realistic even in the
corpus callosum (Schilling et al., 2018).

Nevertheless, MEDUSA is a modular framework,
and the choice of these distributions is interchange-
able with other more realistic distributions to model
white matter axon configurations. It has been
found in (Sepehrband et al., 2016) that the gen-
eralized extreme value distribution, which has one
additional unknown parameter with respect to the
Gamma distribution, consistently fitted the mea-
sured distribution of axonal diameters from white
matter electron microscopy images better than
other distribution functions. It was also shown
that, while having the same number of unknown pa-
rameters, the lognormal and inverse Gaussian dis-
tributions outperformed the Gamma distribution.
Figure 16.a shows numerical phantoms with mean
axonal diameter of 0.4µm generated with MEDUSA
using these various distributions, illustrating the
versatility of MEDUSA regarding the choice of an
axonal diameter distribution.
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In the same vein, the existence of complex fibre
configurations, such as fanning and bending axons,
gives rise to anisotropic orientation dispersion. Fan-
ning and bending fibres have been shown to be
widespread in brain histology data (Türe et al.,
2000; Kleinnijenhuis et al., 2013; Budde and An-
nese, 2013) and diffusion MRI data (Lazar et al.,
2005; Sotiropoulos et al., 2012). It is thus essential
for MEDUSA to be able to draw axon orientations
from a distribution enabling the characterisation of
anisotropic orientation dispersion.

The well-known Bingham distribution (Bingham,
1974) has been used in previous work to model and
quantify anisotropic orientation dispersion (Tariq
et al., 2016). However, the MEDUSA framework
requires to draw the orientation of each fiber from
the chosen angular dispersion distribution. Ob-
taining random samples from the Bingham dis-
tribution and, more generally, from distributions
of the Fisher-Bingham family, requires the use of
acceptance-rejection methods (Kent et al., 2013),
which can be computationally expensive (Paine
et al., 2018) and difficult to implement. An alter-
native to the Bingham distribution is the angular
central Gaussian distribution, which has the addi-
tional advantages of being simple and fast to sim-
ulate from (Tyler, 1987; Paine et al., 2018; Mardia
and Jupp, 2009).

In particular, the elliptically symmetric angular
Gaussian distribution (ESAG) (Paine et al., 2018)
is well suited to MEDUSA needs, since it enables a
simple modeling of anisotropic orientation disper-
sion of each generated axonal population, is very
fast to simulate from, and uses only five parame-
ters. The first three parameters correspond to the
vector µ. The mean direction of the axon popu-
lation is given by µ/||µ|| and the norm of µ is a
measure of the orientation dispersion around this
direction.

Due to its ellipse-like constant density contours
inscribed on the unit sphere, the ESAG distribu-
tion has reflective symmetry about the center of
the sphere along two axes orthogonal to each other
and to its mean direction. The anisotropy along
each of these two axes is quantified by the vector
γ, thus enabling a straightforward control of the
distribution shape. Figure 16.b shows numerical
phantoms constructed using the ESAG distribution
with different levels of dispersion and directional
anisotropy, illustrating the ability of MEDUSA to
model anisotropic orientation dispersion of axons in
an efficient and user-friendly way.

4. Discussion

The MEDUSA framework provides a new way
to generate realistic numerical phantoms of the
brain white matter. One important property of
the MEDUSA paradigm, which consists in decom-
posing each cell type into a set of overlapping
spheres and applying repulsion forces between those
spheres, is that the overall structure of the cells is
preserved after the application of those forces, thus
enabling the creation of highly realistic scenes with-
out any collision. As illustrated in figure 13, the
spherical decomposition technique enables to cre-
ate all types of cells with a high degree of realism
which is equivalent to triangular mesh approaches.

4.1. MEDUSA: a novel generative framework

Controlling cell morphologies. MEDUSA rep-
resents a novel tool to perform ground-truth con-
trolled studies of brain white matter tissues and
thus better understand the particular effect of dif-
ferent geometrical properties of the white matter
tissues (beading of axons, presence of astrocytes
and oligodendrocytes) on the observed diffusion
MRI signal using Monte-Carlo simulations of the
diffusion process (Hall and Alexander, 2009; Yeh
et al., 2013). The synthesis of diffusion MRI signals
from the generated geometries can also be used to
assess the validity of white matter multicompart-
ment models (Zhang et al., 2012; Jespersen et al.,
2007; Dyrby et al., 2013; Alexander et al., 2010; As-
saf and Basser, 2005; Assaf et al., 2008) and the ro-
bustness of their parameter estimation when intro-
ducing finer degrees of structural complexity in the
phantoms, such as the tortuosity of axons, which is
not accounted for in current analytical models.

The fact that the MEDUSA framework enables
the fast creation of a realistic tissue, with a re-
duced set of parameters giving a full control over
the geometrical properties of the generated tissue,
paves the way to the construction of a dictionary
of white matter geometrical configurations. Such a
dictionary would include millions of geometries rep-
resenting all possible white matter geometrical con-
figurations over a wide range of realistic parameter
values. Computing the diffusion MRI signal associ-
ated to each of these geometries using Monte-Carlo
simulations would enable to use machine learning
techniques to model the relationship between the
measured diffusion MRI signal and the underlying
tissue properties, thus creating a DW-NMR signa-
ture of corresponding microstructural features.
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While the efficiency of such an approach is still
putative, being able to fastly generate realistic nu-
merical phantoms of white matter and their asso-
ciated diffusion-weighted signals will at least prove
useful to optimize diffusion-weighting sequence pa-
rameters, in order to increase sensitivity to certain
biophysical properties of interest, such as axon di-
ameter or myelin thickness.

High packing densities. In the presence of
global angular dispersion and multiple fiber pop-
ulations, the MEDUSA framework enables to reach
much higher values of fiber packing densities than
previous frameworks such as the latest version of
DMS (Ginsburger et al., 2018). We observe in fig-
ure 14 that in the case of a single fiber population,
small values of global angular dispersion (GAD) en-
able to reach a high volume fraction of approxi-
mately 0.72. This low value of angular dispersion
is equivalent to the z-axis preferred orientation dis-
tribution which yielded the highest volume fraction
in (Altendorf and Jeulin, 2011).

Still in the case of a single fiber population, an in-
creasing GAD yields to a diminution of the highest
achieved volume fraction, which is consistent with
observations in (Altendorf and Jeulin, 2011) and is
due to the fact that increasing GAD shifts the pack-
ing procedure from a random packing of 2D discs
when GAD = 0 degree, for which the maximal vol-
ume fraction can reach up to 0.78 (Altendorf and
Jeulin, 2011), to a general 3D packing problem.

On the contrary, a positive effect of increas-
ing GAD is observed in figure 14 on the highest
achieved volume fraction in the case of multiple
fiber populations, due to the fact that the introduc-
tion of GAD diminishes the discrepancy between
the direction of the fibers of different populations.

However, while the two populations case still en-
ables to reach high volume fractions up to 0.71,
the highest achieved volume fraction with three
populations goes down to 0.57. This is still a
huge improvement with respect to previous ap-
proaches (Ginsburger et al., 2018).

Convergence. As explained before, the packing
algorithm terminates with a valid solution if the
total repulsion force strength falls below a certain
limit αn, where n is the number of items in the
scene and α is an overlap tolerance provided by the
user. This convergence rule is somehow arbitrary
and, by definition, does not guarantee the absence
of overlap if a non null tolerance value is provided.

To ensure a non-overlapping system, a final step
could be added, as mentioned in (Altendorf and
Jeulin, 2011), where the radius of each sphere is re-
duced according to the maximal overlap with other
spheres. In this case however, the axon radius does
not remain constant along the fiber centroid.

4.2. Outlook

Creating dictionaries of virtual tissues and
their DW-NMR signatures. The MEDUSA
framework is particularly adapted to the creation of
a dictionary of synthetic white matter geometries,
due to several advantages:

• its ability to reach high values of packing den-
sity even at high values of global angular dis-
persion of the axonal fibers

• the modeling of advanced properties of ax-
onal fibers such as tortuosity, beading, myelin
sheath and Ranvier nodes, and the ability to
represent various type of white matter cells (as-
trocytes and oligodendrocytes)

• the low computation time for each phantom
(see figure 15 for typical computing times on a
Nvidia DGX1 station)

In the prospect of creating a dictionary of synthe-
sized diffusion MRI signals associated to each gen-
erated geometry, the sphere decomposition is also
very convenient. Indeed, when performing Monte-
Carlo simulations of the diffusion process in the
generated phantoms, the decomposition of objects
into spheres enables a diminution of the computa-
tional time (measured up to 70%), due to the fact
that the collision checking between diffusing parti-
cles (spins) and the cell membranes is more efficient
with spheres than with a triangular mesh. Provided
that a one-to-one mapping exists between each gen-
erated substrate and the corresponding synthesized
signal in the diffusion MRI space, which notably
depends on the employed diffusion-weighting MRI
sequence, such a dictionary-based machine learn-
ing approach could prove useful to inversely de-
code white matter microstructure. While remain-
ing very challenging, such an approach is one of
the main motivations and potential outlooks of the
MEDUSA framework.

3D-PLI as a use case beyond diffusion MRI.
Due to their high degree of realism, the virtual tis-
sues generated with MEDUSA could also be used
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to simulate light microscopic measurements, such as
3D Polarized Light Imaging (3D-PLI) (Axer et al.,
2011a,b; Larsen et al., 2007; Zilles et al., 2016). 3D-
PLI is a technique for analyzing the fiber architec-
ture of myelinated axons in unstained histological
brain sections at the micrometer level. The regu-
larly arranged lipids in the myelin sheaths induce
optical birefringence, which allows to extract the
local orientation of myelinated axons similar to dif-
fusion MRI but at much higher resolution.

Simulations of 3D-PLI measurements (Dohmen
et al., 2015; Menzel et al., 2015b) require tissue
phantoms that define the local optical properties,
i.e. the local optic axis (Dohmen et al., 2015; Men-
zel et al., 2015b) or refractive indices (Dohmen
et al., 2015; Menzel et al., 2015a) which can easily
be assigned to the different neuronal components
(e.g. axon, myelin, extracellular space) generated
by MEDUSA. Using the same virtual tissues with
different imaging techniques, such as diffusion MRI
and 3D-PLI, could enable to better understand the
relationship and complementarity between images
obtained from these two modalities. This latter as-
pect will be addressed in future studies.

Towards gray matter virtual tissues. The
MEDUSA framework was here presented as a tool
to create realistic phantoms of the brain white mat-
ter. However, the generic approach shown here,
relying on the sphere decomposition and the appli-
cation of repulsion forces to avoid collision between
objects, can be adapted to construct gray matter
phantoms.

The construction of a wide variety of different
neural cell types, as was done in (Cuntz et al., 2010;
Palombo et al., 2018), is out of the scope of this
work. However, in order to illustrate the ability
of the MEDUSA framework to adapt to gray mat-
ter, an example phantom comprising simple stellate
cells at a packing density of 0.32 is shown in fig-
ure 17. The employed algorithm to generate such
cells is similar to the one used to construct as-
trocytes, based on the computation of a minimum
spanning tree as explained earlier.

The adaptation of MEDUSA to more complex
neural cell shapes, such as Purkinje or pyramidal
cells, only necessitates to modify the algorithm cre-
ating the node points from which the minimum
spanning tree is computed, using for instance a
preliminar tree generation algorithm as described
in (Palombo et al., 2018). The ability of MEDUSA
to generate astrocytes with controlled geometrical

properties could also be used to model activated
gray matter astrocytes (due to plasticity for in-
stance) whose shapes are modified during activa-
tion, with an observed increase in the number of
processes and in their perimeter and volume (Theo-
dosis et al., 2008; Blumenfeld-Katzir et al., 2011).

4.3. Limitations and future work

Biophysical realism. The high representational
power of MEDUSA enables to construct a large va-
riety of cell shapes while ensuring the absence of
collision in a given voxel, thus fulfilling all the es-
sential requirements to obtain realistic white mat-
ter substrates. However, the actual realism of the
substrates still depends on the exactness of the as-
sumptions used for the characterization of the gen-
erated white matter tissues. To this end, the on-
going field of research of 3D axonal morphome-
try (Xu et al., 2018; Lee et al., 2018; Abdollahzadeh
et al., 2017) is essential to improve our knowledge
of the axonal shape and the fiber orientation dis-
persion. In particular, the assumption of circu-
lar axonal cross-sections used in this paper might
not stand, as suggested in (Xu et al., 2018; Ab-
dollahzadeh et al., 2017; Lee et al., 2018), where
elliptical cross-sections have been considered more
plausible. Similarly, the use of elliptically symmet-
ric angular Gaussian distributions proposed in this
work to improve the realism of axonal orientation
dispersion modelling with respect to Watson distri-
butions has to be carefully validated with the help
of 3-dimensional histology.

Boundary conditions. MEDUSA generates 3-
dimensional packings with geometrical discontinu-
ities over the boundaries, which could introduce an
additional restricted diffusion effect corresponding
to the box size when using a periodic boundary con-
dition as in (Hall and Alexander, 2009). We thus
recommend to employ a mirroring (or reflective)
boundary condition at the bounding box when per-
forming Monte-Carlo simulations using MEDUSA
phantoms. However, while preventing microstruc-
tural discontinuity over the boundary (Fieremans
et al., 2010), mirroring may result in increased fiber
orientation dispersion, which needs to be quantified
in future work.

Vascular compartment. The presence of vascu-
lar compartments in white matter is neglected in
the generated substrates. While these vascular
compartments are invisible at high b-values, they
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contribute to the IVIM signal at low b-values (Four-
net et al., 2017; Li et al., 2012). Including such
compartments would require an hybrid branching
algorithm, similar to the one used for astrocytes
creation, and allowing to control the distribution of
diameters of generated vessels, arteries and capillar-
ies. Microvascular networks adapted from (Novikov
et al., 2018) or (Gagnon et al., 2015) could also be
used.

Packing-induced tortuosity. On another front,
the fact of using a set of spheres instead of a cylin-
der to represent a fiber gives a lot more degrees of
freedom to solve the packing problem. It is however
worth noting that the proposed packing algorithm
yields the creation of a certain amount of tortuos-
ity among axonal fibers, induced by the application
of repulsion forces. While such a phenomenon is
not a problem itself since similar effects can be ob-
served in actual white matter axonal packings (Nils-
son et al., 2012), the detrimental effect is that the
obtained value of tortuosity for a given fiber pop-
ulation differs from the value required by the user
when constructing the virtual scene.

While this effect is quite negligible at small vol-
ume fractions, it can significantly alter the obtained
value of tortuosity at high volume fractions: for in-
stance, a tortuosity of 12 degrees is induced by the
sole application of repulsion forces at a volume frac-
tion of 0.7 for a single fiber population with a global
angular dispersion of 10 degrees.

If the tortuosity value required by the user is big
enough to ”absorb” this induced tortuosity, this ef-
fect is corrected for by diminishing the amount of
tortuosity induced by applying Gaussian deforma-
tions to the fibers. In the event that the actual value
of tortuosity differs from the input value required
by the user, the amount of tortuosity is computed
again at the end of the phantom generation proce-
dure and potential discrepancies are noted by the
algorithm.

5. Conclusion

The MEDUSA framework enables the fast
generation of realistic phantoms of white matter,
comprising different types of cells, while efficiently
avoiding collisions thanks to a spherical decompo-
sition of the shapes. The presented approach can
be generalized to any type of cells in the white
and gray matter, and is an important step in the
investigation of the microstructure of brain tissues.

Since MEDUSA enables to control the geometrical
properties of the generated phantoms, it is indeed
an efficient tool to generate a wide variety of
configurations, which can be seen as a dictionary
of all possible samples of brain tissues in a given
voxel. Future work will consist in widening the
MEDUSA framework to a larger variety of brain
cells, such as specific types of neurons, and creating
phantoms of multiple voxels catching the structure
and organization of the brain at a mesoscopic scale.
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Lundgaard, I., Osório, M.J., Kress, B., Sanggaard, S., Ned-
ergaard, M., 2014. White matter astrocytes in health and
disease. Neuroscience 276, 161–173.

Marco, P., Clemence, L., Edwin, H.G., Julien, V., 2017. Can
we detect the effect of spines and leaflets on the diffusion
of brain intracellular metabolites? NeuroImage .

Mardia, K.V., Jupp, P.E., 2009. Directional statistics. vol-
ume 494. John Wiley & Sons.

Menzel, M., Axer, M., De Raedt, H., Michielsen, K.,
2015a. Finite-difference time-domain simulation for three-
dimensional polarized light imaging, in: International
Workshop on Brain-Inspired Computing, Springer. pp.
73–85.

Menzel, M., Michielsen, K., De Raedt, H., Reckfort, J.,
Amunts, K., Axer, M., 2015b. A jones matrix formalism
for simulating three-dimensional polarized light imaging
of brain tissue. Journal of The Royal Society Interface 12,
20150734.

Mingasson, T., Duval, T., Stikov, N., Cohen-Adad, J., 2017.
Axonpacking: an open-source software to simulate ar-
rangements of axons in white matter. Frontiers in neu-
roinformatics 11, 5.

Nedjati-Gilani, G.L., Schneider, T., Hall, M.G., Cawley, N.,
Hill, I., Ciccarelli, O., Drobnjak, I., Wheeler-Kingshott,
C.A.G., Alexander, D.C., 2017. Machine learning based
compartment models with permeability for white matter
microstructure imaging. NeuroImage 150, 119–135.

Neher, P.F., Laun, F.B., Stieltjes, B., Maier-Hein, K.H.,
2014. Fiberfox: facilitating the creation of realistic
white matter software phantoms. Magnetic resonance in
medicine 72, 1460–1470.

Neuman, C., 1974. Spin echo of spins diffusing in a bounded
medium. The Journal of Chemical Physics 60, 4508–4511.

Nilsson, M., Latt, J., Staahlberg, F., Westen, D., Hagslatt,
H., 2012. The importance of axonal undulation in diffu-
sion mr measurements: a monte carlo simulation study.
NMR in Biomedicine 25, 795–805.

Novikov, D.S., Reisert, M., Kiselev, V.G., 2018. Effects of
mesoscopic susceptibility and transverse relaxation on dif-
fusion nmr. Journal of Magnetic Resonance 293, 134–144.

Oberheim, N.A., Takano, T., Han, X., He, W., Lin, J.H.,
Wang, F., Xu, Q., Wyatt, J.D., Pilcher, W., Ojemann,
J.G., et al., 2009. Uniquely hominid features of adult
human astrocytes. Journal of Neuroscience 29, 3276–3287.

Paine, P., Preston, S.P., Tsagris, M., Wood, A.T., 2018.
An elliptically symmetric angular gaussian distribution.
Statistics and Computing 28, 689–697.

Palombo, M., Alexander, D.C., Zhang, H., 2018. A genera-
tive model of realistic brain cells with application to nu-
merical simulation of diffusion-weighted mr signal. arXiv
preprint arXiv:1806.07125 .

Pekny, M., Nilsson, M., 2005. Astrocyte activation and re-
active gliosis. Glia 50, 427–434.

Rensonnet, G., Scherrer, B., Girard, G., Jankovski, A.,
Warfield, S.K., Macq, B., Thiran, J.P., Taquet, M., 2018.
Towards microstructure fingerprinting: Estimation of tis-
sue properties from a dictionary of monte carlo diffusion
mri simulations. NeuroImage .
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Geometrical characteristics Control parameter names Parameters description

Axon diameter distribution
u Mean orientation of the population

Φf Target volume fraction of the population
< Df > Axon diameter mean value
σDf

Axon diameter standard deviation
Global angular dispersion GAD Target global angular dispersion

Local tortuosity LAD Additional angular dispersion due to tortuosity

Ranvier nodes
< R > Mean ratio (internodal length) / (node width)
σR Ratio standard deviation

Beading

< BS > Beading spacing mean value
σBS Beading spacing standard deviation

< BA > Beading amplitude mean value
σBA Beading amplitude standard deviation

Myelin sheath
< g > Mean g-ratio value
σg g-ratio standard deviation

Table 1: List of control parameters used to generate populations of axonal fibers in the phantom generation algorithm.

Geometrical characteristics Control parameters names Parameters description

Astrocyte distribution
Φa Volume fraction

< Dat > Total diameter mean
σDat Total diameter standard deviation

Astrocyte body
< Dab > Body diameter mean
σDab

Body diameter standard deviation

Astrocyte processes
< Dap > Processes diameter mean
σDap

Processes diameter standard deviation
BFa Balancing factor
ATa Angular threshold

Table 2: List of control parameters used to generate populations of astrocytes in the phantom generation algorithm.

Geometrical characteristics Control parameter names Parameters description

Oligodendrocyte distribution
Φo Volume fraction

< Dot > Total diameter mean
σDot

Total diameter standard deviation

Oligodendrocyte body
< Dob > Body diameter mean
σDob

Body diameter standard deviation

Oligodendrocyte processes
< Dop > Processes diameter mean
σDop

Processes diameter standard deviation
Sr Axons search radius
Pc Processes count
BFo Balancing factor

Table 3: List of control parameters used to generate populations of oligodendrocytes in the phantom generation algorithm.
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Figure 1: Illustration of the axon creation procedure. The shown parameters correspond to table 1.

16



Figure 2: [IN COLOR] Illustration of the induction of tortuosity within axonal fibers. A Gaussian deformation is applied at a
randomly selected sphere, in a random direction orthogonal to the main fiber orientation.

Figure 3: [IN COLOR] Illustration of the induction of beading within axonal fibers. Fiber spheres are swollen according to a
sinusoidal or bell-shaped function to locally increase axonal diameter.
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Figure 4: [IN COLOR] Illustration of the creation of a myelin sheath and Ranvier nodes on axonal fibers. The spheres from
inner axonal membrane (in red) are created after the collision solver. Their diameter is computed using the g-ratio and the
outer axonal diameter.
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Figure 5: [IN COLOR] Illustration of the astrocyte creation procedure. The scheme shows that each astrocyte is created from
a random point cloud. Euclidean minimum spanning trees created at different values of the balancing factor are shown, ranging
from perfect minimum spanning trees to almost direct connections to the root node. The function used to model processes
diameter is also shown here in 2D.
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Figure 6: [IN COLOR] Illustration of the oligodendrocyte creation procedure. Each oligodendrocyte searches candidate outer
axonal membrane spheres within a search area, and connects to one of these. The connection algorithm employs a look-up
table to make the search procedure efficient.
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Figure 7: [IN COLOR] Evolution of the total repulsion forces (a.u.) during the packing process for an example configuration
with a single axonal fiber population with mean diameter 2.0µm and volume fraction 0.7, with and without the regularization
procedure.
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Figure 8: [IN COLOR] Example phantoms containing 1, 2 and 3 fiber populations at volume fractions of 0.1, 0.4 and 0.7. A
mean diameter of 2.0µm was employed for each population. The voxel size is 100µm3.
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(a) Myelin/ Ranvier nodes / LAD

Figure 9: [IN COLOR] Axonal fibers (1 population) generated with the MEDUSA framework with different microstructural
details (see table 1). A mean diameter of 2.0µm was employed and the voxel size is 100µm3.
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(a) BF=0.3

Figure 10: [IN COLOR] Astrocytes generated with the MEDUSA framework at 3 values of the balancing factor (BF) are
shown. An example astrocyte skeleton (before the application of tortuosity to the processes) illustrating the concept of nodal
spheres is also shown. Each branch of an astrocyte process corresponds to a green segment between two nodal spheres.
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Figure 11: [IN COLOR] Realistic scene generated with the MEDUSA framework with astrocytes and fibers. For illustration
purposes, a small volume fraction of 0.3 was employed and 200 astrocytes were generated. A mean diameter of 2.0µm was used
for axonal fibers, and the voxel size is 100µm3.
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Figure 12: [IN COLOR] Realistic scene generated with the MEDUSA framework with oligodendrocytes and fibers. For
illustration purposes, a small volume fraction of 0.05 was employed and 5 astrocytes were generated. A mean diameter of
2.0µm was used for axonal fibers, and the voxel size is 100µm3.
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Figure 13: [IN COLOR] Realistic scene generated with the MEDUSA framework with astrocytes (in green), oligodendro-
cytes (in purple) and fibers. For illustration purposes, a small volume fraction of 0.3 was employed and 200 astrocytes and
oligodendrocytes were generated. A mean diameter of 2.0µm was used for axonal fibers, and the voxel size is 100µm3.
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Figure 14: [IN COLOR] Maximum achieved volume fraction (or packing density) as a function of the global angular dispersion,
for 1, 2 and 3 fiber populations with the same geometrical properties. The theoretical limit corresponds to the case of random
packing of 2D discs (Altendorf and Jeulin, 2011).
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(a)

(b)

Figure 15: [IN COLOR] Computation time of an example packing containing fibers, astrocytes and oligodendrocytes (volume
fraction of 0.65) in seconds, as a function of the number of spheres (a) and the achieved volume fraction (b), with or without
using the smoothing of objects between each application of the repulsion forces.
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(a)

(b)

Figure 16: [IN COLOR] a. Example MEDUSA phantoms with mean axonal diameter of 0.4µm, packing density of 0.5, using
various axonal diameter distributions in a voxel of 20µm3. b. MEDUSA phantoms at various levels of orientation dispersion
anisotropy, constructed using the elliptically symmetric angular gaussian distribution (ESAG) to draw axon orientations. The
mean direction of the axon population is given by µ/||µ|| and the norm of µ is a measure of the orientation dispersion around
this direction. The anisotropy along each of the symmetry axes is quantified by the vector γ, thus enabling a straightforward
control of the distribution shape.
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Figure 17: [IN COLOR] Example phantom containing stellate neural cells at a volume fraction of 0.32, showing the potential
application of the MEDUSA framework to gray matter phantom generation.
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