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Abstract 

A robust method for characterizing the mineralogy of suspended sediment in continental 

rivers is introduced. It encompasses 3 steps: the filtration of a few milliliters of water, 

measurements of X-ray energy dispersive spectra using Scanning Electron Microscopy 

(SEM), and robust machine learning tools of classification. The method is applied to 

suspended particles collected from various Amazonian rivers. A total of more than 204,000 

particles were analyzed by SEM-EDXS (Energy Dispersive X-ray Spectroscopy), i.e. about 

15,700 particles per sampling station, which lead to the identification of 15 distinct groups of 

mineralogical phases. The size distribution of particles collected on the filters was derived 

from the SEM micrographs taken in the backscattered electron imaging mode and analyzed 

with ImageJ freeware. The determination of the main mineralogical groups composing the 

bulk sediment associated with physical parameters such as particle size distribution or aspect 

ratio allows a precise characterization of the load of the terrigenous particles in rivers or lakes. 

In the case of the Amazonian rivers investigated, the results show that the identified 

mineralogies are consistent with previous studies as well as between the different samples 

collected. The method enabled the evolution of grain size distribution from fine to coarse 

material to be described in the water column. Implications about hydrodynamic sorting of 

mineral particles in the water column are also briefly discussed. The proposed method appears 

well suited for intensive routine monitoring of suspended sediment in river systems. 
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1. Introduction 

Understanding and quantifying the processes controlling the production, transportation, and 

deposition of sediment in watersheds is a major issue for both river geomorphology and river 

management. Considering that sediment, and especially clay minerals, are key indicators of 

various environmental processes (Moriarty, 1977; Naidu & Mowatt, 1983; Petschick et al., 

1996; Roddaz et al., 2005; Washner et al., 1999), knowledge of suspended sediment 

composition as well as its temporal and spatial variability in the river, provides significant 

insight about the evolution of watersheds. Conventional analytical procedures for water 

analysis such as spectrophotometry, chromatography, or spectrometry as Inductively Coupled 

Plasma - Atomic Emission Spectroscopy (ICP-AES) and Inductively Coupled Plasma - Mass 

Spectroscopy (ICP-MS) involve a heavy protocol of sample preparations and data analysis. 

The development of simple and efficient tools to characterize the bulk of suspended sediment 

in rivers is, thus, particularly needed by water agencies and the scientific community to 

identify any change in the distribution and in the nature of the material transported within the 

catchment during the hydrological cycle. 

Such a need is particularly relevant in large river basins, such as the Amazon River basin, 

where the amount and the nature of suspended sediment may impact the environment at 

various scales, from global (Gibbs, 1977; Ludwig & Probst, 1998; Milliman & Meade, 1983; 

Syvitski et al., 2003) to local (Armijos et al., 2013; Guyot et al., 2005; Meade et al., 1985). 

Most often, high frequency monitoring is associated with a rough characterization of 

suspended sediment. The solid discharge of the Amazon River is now systematically 

monitored every 10 days at various sampling stations by the Observation Service program 

HYBAM, providing both estimates of Andean erosion rates and of the total amount of 

sediment transported through the Amazon River basin to the Atlantic Ocean (Filizola et al., 

1999; Filizola, 2003; Guyot et al., 1988; Laraque et al., 2004; Martinez et al., 2009; Molinier 
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et al., 1996; Safran et al., 2005). On the other hand, there is a significant body of literature 

reporting detailed chemical characterizations of the particulate or dissolved load in the 

Amazon basin on a one time basis only (Bouchez et al., 2011; Gaillardet et al., 1997; Guyot et 

al., 1996; Guyot et al., 2007; Irion, 1983; Johnsson & Meade, 1990; Martinelli et al., 1993; 

Moquet et al., 2011; Sondag et al., 2010; Stallard & Edmond, 1983; Tardy et al., 2005), and it 

is now envisaged to perform a large analysis of their variations amongst the different sub-

basins, using a unique, simple, and robust method. 

Scanning Electron Microscopy coupled with automated Energy Dispersive X-ray 

Spectroscopy (SEM-EDXS) and image analysis, simultaneously provide both the size 

characteristics and the chemical analysis of thousands of particles. Such a method has 

previously been used to characterize the occurrence of heavy metal bearing mineral phases in 

polluted soils and sediments (de Boer & Crosby 1995; El Samrani et al., 2004) or to support  

the analysis of light-scattering features of particles in water bodies (Peng et al., 2009; Pinet et 

al., 2017). 

The aim of this paper is to introduce a method that determines the mineralogical composition 

of suspended sediment in continental waters. This method involves a simple sampling 

protocol combined with the robustness of powerful statistical techniques, making it an ideal 

tool for processing a significant amount of water samples collected across a watershed. The 

main purpose is to take advantage of the expertise in mineralogical determination, then to 

reinforce it by the ability of machine learning tools to identify statistical patterns in large 

datasets, and finally to supply an efficient tool to characterize suspended sediment in lakes or 

rivers. In the current paper, the method is fully illustrated for suspended sediment sampled in 

the Amazon basin, where many one-time analyses are already available in the literature. 

 

2. Materials and methods 

2.1. Sampling 
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Three sampling campaigns were done between March 2013 and December 2014 by the 

Service National d’Observation (SNO) HYBAM network and its national partners. Water 

samples were taken from the surface [0-30 cm] and at various depths in rivers belonging to 

the Amazon basin. Eight liters of water were collected at each sampling depth, using a bucket 

for the surface samples and a specific depth sampler (Callède, 1994) in the water column. 

Turbidity was measured with a turbidity meter (Hach 2100Q) giving for each sample a proxy 

of the sediment load. Depending on the turbidity values, from 1 ml of water (for the samples 

with the highest turbidity) to 6 ml (for the samples with the lowest turbidity) were collected 

with a micropipette (Eppendorf), and filtered through 0.4 µm pore sized polycarbonate 

membrane filters (GE Osmonics). The filters were then dried and kept in PetriSlides 

(Millipore) until further processing in the laboratory. 

 

2.2. Scanning electron microscopy (SEM) 

After preliminary examination with a binocular microscope, a piece of membrane filter was 

selected, mounted on an aluminum stub using carbon double-sided conductive tape, and 

coated with carbon. SEM observations were done with a Jeol JSM 6363LV microscope 

equipped with a silicon drift detector (SDD) PGT operating at 20 kV for chemical analysis. 

The backscattered electron imaging mode was used to identify the mineral particles from the 

membrane filter (Fig. 1). A series of SEM images was randomly collected at 400x 

magnification, taking care not to superimpose successive images. Each identified particle was 

analyzed by Energy Dispersive X-ray Spectroscopy (EDXS) to determine its elemental 

composition. To obtain the mineralogical composition of classified groups, the stoichiometric 

ratios were calculated from the atomic percentages given by the EDXS analysis, and were 

then compared with known mineralogical compositions. 

SEM images were also used to determine the size distribution of the suspended solids using 

the ImageJ freeware (National Institutes of Health, Bethesda, MD, U.S.) in order to compare 
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the size distribution of the samples. Projected area, perimeter, and shape descriptors were 

automatically determined for each particle with ImageJ, while excluding any particle touching 

the edge of the image. The equivalent diameter, Deq, of each particle was calculated according 

to Saleh and Guigon (2009) (after Allen, 1975) as: 

Deq = (S / π) ½   (1) 

where S is the projected area of the particle in µm2. The particle size distribution (PSD) was 

then determined both for each sampling station and for each mineral phase identified, using 

Junge’s power-law distribution (Junge, 1963): 

N(D) = K x D – J  (2) 

where N(D) represents the number of particles of diameter D, K is the concentration of 

particles and the exponent J is the slope of the distribution. The size bins range from 0.14 to 

550 µm. However, because of the low magnification used to acquire the SEM images, only 

the size classes greater than 1 µm were taken into account for the calculation of the exponent 

J. An aspect ratio (AR) was also obtained from the ratio between the major axis and the minor 

axis of the best-fit ellipse around each particle. An AR equal to 1 is a circle, whereas an AR 

greater than 1 indicates elongated particles. 

 

2.3. Machine learning 

The particles were partitioned into homogeneous groups based on their elemental composition 

using the Partitioning Around Medoids (PAM) unsupervised classification (Kaufman & 

Rousseeuw, 1987). The PAM method is based on a simple to use k-medoids algorithm that 

does robust classifications (Breitkreutz & Casey, 2008). The elemental content of particles 

representing 99% of the total of elements detected by the EDXS analysis was considered to 

derive the mineralogical groups. These elements are sodium (Na, 2.2%), magnesium (Mg, 

2.7%), aluminum (Al, 25.7%), silicon (Si, 57.7%), potassium (K, 2.8%), calcium (Ca, 0.7%), 

titanium (Ti, 1.2%), and iron (Fe, 6.9%). 
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The randomForest supervised learning classification algorithm (Breiman, 2001) was applied 

on the same training dataset to test the robustness of the groups and to be compared with the 

classification resulting from the PAM method. The randomForest classification was then used 

on all the remaining sampling stations to extend the mineralogical determination. The 

randomForest classification computes hundreds of classification trees, selecting randomly m 

variables (i.e. elements) that lead to the split of the dataset at each tree node. A ‘vote’ is 

assigned to each tree built during the classification process, and then the majority vote over 

the set of trees built in the process designates the most consistent and recurrent classification 

as the final result. In the current study, the package used was “randomForest” ported in R by 

Liaw and Wiener (2002) from the original Fortran program by Breiman and Cutler (available 

at http://www.stat.berkeley.edu/users/breiman/). The sampling stations used for the training 

and the validation of the two classifications are described in Table 1 by their dates, locations, 

depth, and the corresponding numbers of SEM images and particles analyzed. 

Building only two mineralogical groups would determine a minimum error rate in the 

classification, since if one particle does not fit in a group, it necessarily belongs to the other 

group. However, in that case the consistency within each group is likely to be quite poor, e.g., 

the intra-group variability of the particle types will be much too high to identify the resultant 

dominant mineralogy. In contrast, a very high number of groups would correctly classify the 

particles according to their chemical analysis, but the similarity between those groups would 

be too close, and the mineralogy would be difficult to assess and misclassification would be 

frequent. Therefore, the optimal number of groups achieved by the classification was 

investigated in order to obtain the best consistency (i.e. a single mineralogy) for each group 

while keeping a reasonable number of groups and minimizing the possible randomForest 

misclassifications. Such tests required an expertise in earth sciences in support of the 

statistical analysis of the classification results that was accomplished in collaboration with 

mineralogists. In order to reach the best agreement between PAM and randomForest 
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classifications, various parameterizations for the randomForest classification were tested on 

the training dataset. 

  

Fig. 1. Imaging procedure and data processing from SEM micrographs of suspended particles: 

(left) image used in grain size analysis and (right) the same image with the particles analyzed 

by EDXS and manually tagged using green numbers. 

 

2.4. Study area 

The Amazon River basin is the most important watershed in the world, both in terms of 

drainage area (6.1 x 106 km², Goulding et al., 2003) spreading from the Andes to the Atlantic 

Ocean through a major part of South America, and in terms of water discharge (on average 

208 x 103 m3 s-1, Callède et al., 2010) (Fig. 2). The region is characterized by a humid tropical 

climate (average rainfall = 2,015 ± 112 mm yr-1, Espinoza Villar et al., 2009) with contrasted 

seasonal rainfall patterns depending on the latitude. The Amazon River main stream is known 

as the Solimões River from the border between Peru and Brazil until downstream of the Rio 

Negro confluence near Manaus. The Madeira River is the third main tributary of the Amazon 

River, 200 km downstream from the confluence between the Negro River and Solimões 

River, and drains the southeast part of the Amazon River basin (Fig. 2). 

 

 

Fig. 2. Location of the sampling stations in the Amazon River basin (source Google Earth). 

 

Most sediment transported by the Amazon River originates from the Andean mountains 

which are composed of highly erodible rocks (Dunne et al., 1998; Filizola & Guyot, 2009). 

Such hydro-morphological characteristics induce massive erosion processes at a large scale in 

Ecuador, Peru, and Bolivia (Aalto et al., 2006; Guyot, 1993; Masek et al., 1994); as a result, 
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the Amazonian basin is one of the most important contributors in the world in terms of 

sediment input to the ocean (average = 800 x 106 t yr-1, Martinez et al., 2009). The Solimões, 

Madeira, and Amazon rivers are classified as white rivers (Gibbs, 1967; Sioli, 1957) because 

of their high sediment load, originating mainly from the erosion of the Andes, but also coming 

from tributaries, river bank erosion, and remobilization of the older sediments trapped in the 

floodplains (Dunne et al., 1998). These sediments correspond mainly to quartz and 

assemblages of various clays. 

 

3. Results 

3.1. Unsupervised PAM classification 

The training of the classifications was done using samples from the Solimões, Madeira and 

Amazon rivers during the March 2013 sampling campaign (Table 1, Fig. 2), representing 

various water types and various terrigenous origins of suspended particles. 

 

Table 1. Description of the sampling stations used in this study - Ni stands for the number of 

SEM images, and Np for the number of particles analyzed by the machine learning process - 

Samples used for the PAM classification and the randomForest training are marked with *. 

Date Station Depth (m) Ni Np 

March 9, 2013 Manacapuru 0 13 1,141* 

- Foz de Madeira 0 10 1,971* 

- Amazonas 0 14 1,525* 

- Manacapuru 10 21 1,729* 

April 3, 2014 Belém 0 13 1,481 

April 6, 2014 Fonte Boa 0 16 1,154 

- - 10 12 1,478 

- - 20 8 1,603 

- - 30 14 1,236 

April 11, 2014 Itapeua 0 14 1,390 

- - 25 12 1,787 

- - 35 8 1,720 

April 13, 2014 Manacapuru 0 16 1,874 

- - 30 14 1,902 
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December 15, 2014 Careiro 0 16 2,291 

 

The unsupervised PAM and the supervised randomForest were both built from the chemical 

analyses of 6,366 particles sampled during this campaign. The resulting randomForest 

classification was then used on the stations of the Solimões River sampled during the other 

field sampling trips (Table 1). The sampling campaigns corresponding to the period of April 

and December 2014 were not used in the PAM classification procedure. The classification 

process involved a trial-and-error phase in the choice of the number of groups. The 

consistency of each group was evaluated through the dispersion of the elementary contents (in 

percent). The average standard deviation of the total classification was, thus, calculated and 

compared with classifications built with a number of groups ranging from 2 to 20. A value of 

less than 3% expressing a great consistency within the different groups built by the PAM 

classification was first reached for a minimum of 15 groups. Table 2 lists the mean 

elementary composition of the 15 groups obtained after the PAM classification based on the 

6,366 particles sampled in March 2013. 

 

Table 2. Mean values and standard deviations of the elementary contents (in %) of each 

group representing 99% of the bulk particle composition and built from the unsupervised 

PAM classification of 6,366 suspended particles.  

  Na Mg Al Si K Ca Ti Fe 

Group 1 
Mean 0.04 0.01 0.06 99.79 0.00 0.00 0.01 0.07 

St. dev. 0.33 0.14 0.35 0.59 0.03 0.05 0.11 0.30 

Group 2 
Mean 1.34 11.21 26.35 35.00 1.08 0.59 0.47 21.48 

St. dev. 2.32 7.21 5.75 6.31 1.85 1.23 2.35 7.47 

Group 3 
Mean 1.60 2.30 36.02 49.23 8.01 0.06 0.09 2.64 

St. dev. 1.80 1.29 2.49 2.67 2.04 0.23 0.47 1.41 

Group 4 
Mean 1.38 3.34 30.34 54.39 3.22 0.98 0.18 5.47 

St. dev. 2.27 1.91 2.85 2.24 2.11 1.48 0.62 2.09 

Group 5 
Mean 2.39 0.45 20.90 60.18 14.16 0.09 0.04 0.76 

St. dev. 3.10 1.09 3.42 3.33 4.40 0.40 0.22 1.75 

Group 6 Mean 18.94 0.36 21.45 56.35 0.75 1.38 0.03 0.54 
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St. dev. 4.02 0.85 3.14 3.33 1.60 2.13 0.26 1.10 

Group 7 
Mean 0.82 2.26 25.39 63.65 1.73 0.62 0.16 4.75 

St. dev. 1.68 2.55 4.40 4.28 1.96 1.26 1.02 4.10 

Group 8 
Mean 2.06 5.36 29.71 47.13 2.62 1.39 0.90 9.73 

St. dev. 2.40 3.45 3.66 3.55 2.11 3.90 3.86 3.87 

Group 9 
Mean 1.31 118 40.90 50.22 0.96 0.17 0.13 2.74 

St. dev. 2.27 1.40 6.04 6.66 1.36 0.47 0.70 1.91 

Group 10 
Mean 2.08 14.88 10.00 43.35 0.52 11.47 2.03 8.92 

St. dev. 2.63 11.57 7.46 11.24 1.00 13.53 6.16 7.34 

Group 11 
Mean 1.16 1.40 15.20 76.31 1.61 0.28 0.47 2.96 

St. dev. 2.32 1.54 4.85 4.23 1.65 1.89 3.21 3.77 

Group 12 
Mean 1.30 2.28 11.34 18.22 0.77 1.27 2.26 57.64 

St. dev. 3.19 4.41 6.59 9.66 2.02 2.55 5.85 15.27 

Group 13 
Mean 0.64 0.65 8.11 87.61 0.83 0.07 0.17 1.71 

St. dev. 1.25 1.04 2.17 2.72 0.80 0.47 1.07 1.84 

Group 14 
Mean 0.48 0.97 9.61 13.32 0.33 0.21 69.75 4.28 

St. dev. 1.58 1.79 5.22 7.57 0.65 0.69 16.59 5.96 

Group 15 
Mean 0.19 0.05 4.02 94.93 0.16 0.00 0.04 0.55 

St. dev. 0.69 0.28 1.20 1.79 0.41 0.07 0.26 0.80 

 

This statistical consistency of the classification was confirmed by the expertise of 

mineralogists and enabled the association of a unique mineralogy to each group. Two 

different groups may, however, be attributed to the same mineralogy as natural particles such 

as clays can occur in a range of elemental compositions. These 15 groups represent the 

reference from which the remainder of the statistical procedure was applied (i.e. the training 

of the randomForest classification). The classification reveals an increase in the Al/Si ratio 

from group 1 (defined as pure quartz with Al/Si close to 0) to the most developed and mature 

sediments of group 9 (defined as kaolinite with Al/Si close to 1). The classification also 

detected two poorly represented groups that were very distinct from the others, with major 

contents in iron or titanium (respectively, iron oxides, and titanium dioxides). Except for these 

two groups representing less than 3% of the dataset, the classification distinguished 8 groups 

of clays (represented by chlorite, smectite, illite, and kaolinite) corresponding to 65% of the 

classified particles, 3 groups of quartz (22% of the dataset) and 2 groups of feldspars 

(orthoclase and albite, 3% and 7% of the dataset, respectively). The same mineralogies were 
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established for different groups expressing either a chemical variability within a group of 

minerals (e.g., the 3 groups of smectite), or the mixing of different particles signatures by the 

SEM-EDXS measurements (e.g., the 3 groups of silica particles). 

 

3.2. Supervised randomForest classification 

By varying the number of trees, Ntree, built during the classification and the number of 

variables, Nvar, sampled at each split, the minimum error rate was obtained for Ntree = 500 and 

Nvar = 2. The most representative tree of the forest having the majority ‘votes’ and 

corresponding to the best split of the dataset is shown in Fig. 3. This tree highlights the 

importance of Si, Al, K, Fe, and Na contents in the classification process. On the other hand, 

the 3 remaining elements (Mg, Ti, and Ca) did not significantly contribute to the repartition of 

the chemical analyses into distinct groups. These results were confirmed by the internal 

calculations of variables importance of randomForest called MeanDecreaseAccuracy and 

MeanDecreaseGini (Breiman, 2002), which assign the lowest values (i.e. the minimum 

contribution) to Mg, Ti, and Ca, and the highest values to the Si content. 

 

Fig. 3. The classification tree resulting from the randomForest process and the splitting 

criterion used to separate the dataset at each node of the tree. Bold numbers on the terminal 

nodes represent the corresponding classification group. 

 

3.3. Comparison of the classifications 

The resulting tree and the corresponding supervised randomForest classification were 

compared to the PAM partitioning. Table 3 shows a confusion matrix where the 

misclassification between PAM and randomForest are detailed and quantified via the 

classification error rate. The entire process was repeated because of the random aspect of the 

variables used during the classification. All the confusion matrices thus obtained showed 
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similar results, and the classification error rate between both classification methods was 

always lower than 4% using the combined (Ntree = 500 and Nvar = 2) parametrization. The 

randomForest classification was used on the remaining dataset, which included stations 

sampled during the campaigns of April and December 2014 (i.e., 17,916 particles). The 

mineralogical content of each Solimões River station were then determined from the number 

percentage of particles associated with the different groups (Fig. 4). 

 

Table 3. Example of a confusion matrix among the different groups classified by the PAM 

and the randomForest machine learning. 

  Supervised randomForest classification Class 

error   G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 

U
ns

up
er

vi
se

d 
P

A
M

 c
la

ss
ifi

ca
tio

n
 

G1 662 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.00150 

G2 0 399 1 0 0 0 1 12 3 2 0 2 0 0 0 0.05000 

G3 0 0 596 17 0 0 0 8 9 0 0 0 0 0 0 0.05396 

G4 0 0 5 1120 0 5 11 13 7 0 0 0 0 0 0 0.03531 

G5 0 0 0 1 174 1 3 0 0 3 1 0 0 0 0 0.04918 

G6 0 0 0 0 2 436 1 0 0 0 1 0 0 0 0 0.00909 

G7 0 0 0 20 0 0 400 1 0 0 4 0 0 0 0 0.05882 

G8 0 4 4 16 0 0 0 588 7 1 0 0 0 0 0 0.05161 

G9 0 0 6 6 0 0 0 7 467 0 0 0 0 0 0 0.03909 

G10 0 4 0 0 0 1 0 4 0 109 1 0 0 0 0 0.08403 

G11 0 0 0 0 1 3 8 0 0 4 234 0 3 0 0 0.07509 

G12 0 3 0 0 0 0 0 0 0 0 0 163 0 0 0 0.01807 

G13 0 0 0 0 0 0 0 0 0 1 7 0 301 0 4 0.03833 

G14 0 1 0 0 0 0 0 0 0 0 0 1 0 60 0 0.03225 

G15 1 0 0 0 0 0 0 0 0 0 0 0 9 0 415 0.02352 

 

As illustrated in Fig. 4, the Solimões River samples exhibit a very similar pattern in 

mineralogical composition, with a maximum standard deviation of σ = 2.5%. The comparison 

between Solimões River and Madeira River stations exhibits contrasting dissimilarities, 

highlighting the differences in mineralogical composition of the suspended sediments 

collected during the March 2013 sampling trip and used for the training of the randomForest 

classification. For all the Solimões River stations, the smectite content (sum of groups 3, 4, 
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and 10) represents the main component of the mineralogical assemblage (33.01% on average). 

Group 4 is especially dominant representing on average 19.12% of all particles analyzed by 

SEM. The remainder of the particles occurs as other clay minerals (illite, chlorite, and 

kaolinite, on average 19.74, 7.38, and 6.78%, respectively), quartz (on average 19.17%) and 

feldspars (orthoclase and albite, on average 3.03 and 6.87%, respectively). Finally, the less 

frequent types of particles are iron oxides and titanium dioxides (on average 2.90 and 1.12%, 

respectively).  

 

Fig. 4. Distribution of the mineralogical groups from 1 to 15 at 3 different stations on the 

Solimões River sampled in a) March 2013, c) April 2014, and d) December 2014, and a 

Madeira River station b) also sampled in March 2013. 

 

The average Pearson’s correlation coefficients between Solimões River sampling stations 

taken two by two reached 0.90, but reached only 0.73 when comparing Madeira River and 

Solimões River stations. After combining the groups showing analogous mineralogies (e.g., 

groups 1, 13, and 15 representing quartz), the correlation coefficients are even higher, 

increasing to 0.97 on average for the Solimões River stations. The mineralogical similarities 

evidenced in Fig. 4 between Solimões River sampling stations were confirmed by variance 

analysis, which showed no statistical difference between the randomForest classifications of 

the Solimões River stations (mean adjusted p-value = 0.96), but established a statistical 

distinction between the Madeira and the Solimões sampling stations (mean adjusted p-value = 

0.48). 

 

3.4. Particle Size Distribution 

A total of more than 204,000 particles were scanned by SEM to analyze their size, which 

represents more than 15,700 particles per station on average. Contrasted types of particles 
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were examined with projected areas ranging between 0.062 and 25,204 µm² (5.78 µm² on 

average) and perimeters ranging between 0.70 and 1,874 µm (6.02 µm on average). The 

resulting equivalent diameters were calculated and ranged between 0.14 and 69.57 µm (0.76 

µm on average) (Fig. 5a), which led to the calculation of the grain size distribution of the 

particles for each station (Fig. 5b), following the least-squares fitting method. The smallest 

value of the slope exponent was obtained for the suspended particles taken at a 30 m depth at 

Manacapuru (J = 2.54) and the highest value was for the surface sample of Fonte Boa station 

(J = 3.36). As expected, a decrease of J was observed with sampling depth in the water 

column, thus, showing an increase of the coarser fraction of the particles (Fig. 5c). As an 

example, at the Itapeua station, J is 3.14 at the surface level, 2.96 at a 25 m depth, and is only 

2.62 at a 35 m depth. On average, the J value for surface samples is about 3.15, but only 

reached 2.84 for samples collected at depth. The particle size distribution of each 

mineralogical group was examined. J values ranging from 2.48 for group 14 to 3.43 for group 

4 were obtained. Similar J values (3.31) characterized the smectite groups (including groups 

3, 4, and 11), the lowest J values were obtained for iron oxides (2.60, group 12) and with 

titanium dioxides (2.48, group 14), whereas the other groups (quartz, chlorite, illite, 

orthoclase, albite, and kaolinite) exhibited a Junge’s exponent close to 3 (3.01 on average). 

The majority of particles showed aspect ratios in the [1 – 2] range, which reveals that most of 

the particles were significantly rounded. Such a result was confirmed by the calculation of the 

circularity coefficient, C (included in the [0 – 1] range) that corresponds to the ratio between 

the projected area S and the squared value of perimeter P of each particle (C = 4π x S / P²). 

More than 45% of the particles showed a C value equal to 1, thus, indicating a spherical 

particle, and it increased to more than 59% for C values higher than 0.9. Those quasi-

spherical particles showing an AR value of 1 were characterized by small dimensions with a 

maximum area of 2 µm² (0.11 µm² on average) and a maximum perimeter of 4.83 µm (0.90 

µm on average). 
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Fig. 5. Grain size distribution of the particles analyzed by SEM: a) histogram of the calculated 

equivalent diameters; b) particle number/size distribution at each sampling station (for D > 1 

µm); c) corresponding Junge’s distribution exponent, J, values at various depths (black and 

white triangles represent Manacapuru station sampled in 2013 and 2014, respectively. Black 

and white circles represent Fonte Boa station and Itapeua station, respectively. Black and 

white squares represent Belém station and Careiro station, respectively). 

 

4. Discussion 

With more than 96% of particles getting a correct assignment (Table 3), the supervised 

randomForest classification ensures great consistency with the groups built from the 

unsupervised PAM method. The relative importance of the mineralogical groups, thus, 

obtained compares favorably with those inferred by X-ray diffraction in Guyot et al. (2007), 

at similar locations in the Amazon basin (including the Solimões River). These authors used a 

semi-quantitative method to manually identify the clay minerals present in each sample 

collected from the banks of the different rivers. In the Brazilian floodplain, Guyot et al. 

(2007) found approximatively 25% by weight (wt.) for the illite/chlorite assemblage, 10% wt. 

for kaolinite, and 65% wt. for the smectite/mixed layers assemblage for the Solimões River. 

In the current case, excluding quartz from the analysis, the composition of the same 

assemblages are on average 33.55, 8.39, and 58.06% (percent in number), respectively. The 

clay content in the Solimões River retrieved by the two methods are very close, the smectite 

content being predominant, and the amount of kaolinite, which indicates the presence of 

mature sediments, being significant. Despite the analysis of more than 200,000 particles, the 

initial sampling protocol and the magnification used for the SEM observations preclude the 

consideration of large particles in the size distribution. Indeed, very few particles larger than 
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10 µm² and almost none larger than 20 µm² were collected, thus, leading to an overestimation 

of the J exponent of Junge’s law which describes the particle size distribution. The absence of 

the coarse size classes may smooth the differences in the PSD between samples collected at 

different depths within the water column. Nevertheless, such underestimation of large 

particles does not conceal the decrease in Junge’s parameter, J, with increasing depth at a 

given sampling site, either considering every size class greater than 1 µm, or just taking into 

account size classes between 1 and 10 µm. In other words, an increasing proportion of coarse 

sedimentary materials is observed with increasing depth, as illustrated in Fig. 6. 

 

 

Fig. 6. Two SEM images (x400 magnification) corresponding to the Manacapuru station 

sampled at the same scale in April 2014, a) at the water surface and b) at 30 m deep. 

 

On the other hand, the analysis of the PSD of the various mineralogical groups showed more 

contrast. Indeed, iron oxides and titanium dioxides are characterized by coarse material, 

whereas smectites, and especially those associated with group 4, are mainly composed of 

small particles. Such results are consistent with Chipera and Bish (2001), who showed that, 

among various types of clays, smectite represented the finest size fraction. However, there 

was no significant difference between the other groups in terms of particle size distribution. 

Slight variations were observed, but the general pattern led to a J value of approximately 3. 

Regarding the aspect ratio analysis, Li et al. (2016) have revealed that particles from deep 

rivers are generally characterized by a regular shape, with slight roughness. The current 

results in terms of sediments shape, with more than 59% of particles characterized by a 

roundness coefficient typical of a quasi-spherical shape, are consistent with that study. It is 

worth noting that the sphericity index of particles is inferred from projected surfaces and not 

from direct volume measurements. Thus, taking into account that clays occur as flake-shaped 
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particles, it is expected that clay minerals present a less spherical shape compared with that of 

other silicates, such as quartz or feldspar. These differences in mineral shapes are likely to be 

magnified for coarser materials (Krinsley & Smalley, 1973). It will induce de facto an 

increasing dissociability of the number of particles and associated volume between clays and 

quartz sediments when considering deeper samples in the water column. It then becomes 

obvious that the absolute content in Si will increase with depth even if the relative number 

percentage of quartz particles remains unchanged. On the contrary, the volume percent 

occupied by clays will decrease with depth, considering that quartz minerals occupy more 

volume than clay minerals. Thus, using the Al/Si ratio, Bouchez et al. (2011) showed profiles 

describing a direct relation between depth and mineralogical composition, and suggested that 

coarser materials are Si enriched. In contrast, the current results indicate that, considering the 

composition of single particles instead of the bulk composition of suspended sediment, there 

is no significant pattern between Al/Si ratio and depth (Fig. 7a). In addition, no specific trend 

allows the description of a split between the different mineralogies based on sampling depth 

(Figs. 7a and 7b).  

 

 

Fig. 7. Mineralogical composition of suspended sediments of the Solimões River stations at 

various depths: a) the Al/Si ratio, illite, chorite, kaolinite and orthoclase contents; b) the 

smectite, quartz, albite, iron oxide and titanium oxide contents. 

 

The Si content is then truly higher and the Al content is indeed lower as the sampling depth 

increases, but this should not be related to an increased proportion of quartz or feldspar 

particles compared with clay minerals. Obviously, the latter result is somehow related to the 

range of particle size explored in the current study by SEM, and should be confirmed by 

extending the investigation to both finer and coarser materials. Nevertheless, it should be 
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pointed out that the levels of turbulence (and, thus, of vertical mixing) were likely different in 

stations sampled by Bouchez et al. (2011) and in the current study. Such a parameter may be 

estimated in future sampling to support the analysis of vertical profiles (e.g., Lefebvre et al., 

2012). 

 

5. Conclusions 

The new PAM-randomForest procedure presented in this paper shows robust results and 

offers an easy method to characterize suspended sediments. The determination technique of 

the mineralogical assemblages in rivers is highly representative of the total sediment, even 

though just a few milliliters of water were sampled. It remains a powerful procedure even in 

the presence of a large dataset, which is essential in a spirit of maximum representativeness of 

the measurements. It also allows a more precise characterization of the suspended sediment 

sampled compared with an estimate of the total mass of the bulk particles. This method is 

particularly interesting for intensive sampling programs, where a series of samplings are made 

and where it is easier to keep filters instead of several litters of water or kilograms of 

sediments. Complementary analyses have to be made to confirm the distribution of the 

different mineralogies within the water column for larger grain sizes. However, as part of a 

long term monitoring program, this technique could be routinely used and would provide 

important information on the sediment content and its variability in large river basins. 
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