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Abstract

A robust method for characterizing the mineralodysospended sediment in continental
rivers is introduced. It encompasses 3 steps: iltration of a few milliliters of water,
measurements of X-ray energy dispersive spectraguSicanning Electron Microscopy
(SEM), and robust machine learning tools of clasaifon. The method is applied to
suspended particles collected from various Amazoniners. A total of more than 204,000
particles were analyzed by SEM-EDXS (Energy DisperX-ray Spectroscopy), i.e. about
15,700 particles per sampling station, which leathe identification of 15 distinct groups of
mineralogical phases. The size distribution of ipk$ collected on the filters was derived
from the SEM micrographs taken in the backscattetedtron imaging mode and analyzed
with ImageJ freeware. The determination of the nraineralogical groups composing the
bulk sediment associated with physical parametech as particle size distribution or aspect
ratio allows a precise characterization of the lohathe terrigenous particles in rivers or lakes.
In the case of the Amazonian rivers investigatdw tesults show that the identified
mineralogies are consistent with previous studesvall as between the different samples
collected. The method enabled the evolution ofrgsake distribution from fine to coarse
material to be described in the water column. logilons about hydrodynamic sorting of
mineral particles in the water column are alsoflyrigiscussed. The proposed method appears

well suited for intensive routine monitoring of peaded sediment in river systems.



1. Introduction

Understanding and quantifying the processes cdimtgothe production, transportation, and
deposition of sediment in watersheds is a majareiger both river geomorphology and river
management. Considering that sediment, and eslyeciall minerals, are key indicators of
various environmental processes (Moriarty, 1977idMa& Mowatt, 1983; Petschick et al.,
1996; Roddaz et al., 2005; Washner et al., 1998pwkedge of suspended sediment
composition as well as its temporal and spatialabdity in the river, provides significant
insight about the evolution of watersheds. Conwerati analytical procedures for water
analysis such as spectrophotometry, chromatograptgpectrometry as Inductively Coupled
Plasma - Atomic Emission Spectroscopy (ICP-AES) kndictively Coupled Plasma - Mass
Spectroscopy (ICP-MS) involve a heavy protocol aiple preparations and data analysis.
The development of simple and efficient tools tareltterize the bulk of suspended sediment
in rivers is, thus, particularly needed by wateerages and the scientific community to
identify any change in the distribution and in tfeure of the material transported within the
catchment during the hydrological cycle.

Such a need is particularly relevant in large rigasins, such as the Amazon River basin,
where the amount and the nature of suspended sedima&y impact the environment at
various scales, from global (Gibbs, 1977; Ludwid’&bst, 1998; Milliman & Meade, 1983;
Syvitski et al., 2003) to local (Armijos et al., ) Guyot et al., 2005; Meade et al., 1985).
Most often, high frequency monitoring is associaweith a rough characterization of
suspended sediment. The solid discharge of the AmaRiver is now systematically
monitored every 10 days at various sampling station the Observation Service program
HYBAM, providing both estimates of Andean erosiamtes and of the total amount of
sediment transported through the Amazon River besthe Atlantic Ocean (Filizola et al.,

1999; Filizola, 2003; Guyot et al., 1988; Laraquale 2004; Martinez et al., 2009; Molinier
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et al., 1996; Safran et al., 2005). On the otherdh#ghere is a significant body of literature
reporting detailed chemical characterizations & ffarticulate or dissolved load in the
Amazon basin on a one time basis only (Bouchet,e2@l1; Gaillardet et al., 1997; Guyot et
al., 1996; Guyot et al., 2007; Irion, 1983; Johms&oMeade, 1990; Matrtinelli et al., 1993;
Moquet et al., 2011; Sondag et al., 2010; StakkaiEdmond, 1983; Tardy et al., 2005), and it
is now envisaged to perform a large analysis oir thariations amongst the different sub-
basins, using a unique, simple, and robust method.

Scanning Electron Microscopy coupled with automat&tergy Dispersive X-ray
Spectroscopy (SEM-EDXS) and image analysis, simattasly provide both the size
characteristics and the chemical analysis of thwidseof particles. Such a method has
previously been used to characterize the occurrehbeavy metal bearing mineral phases in
polluted soils and sediments (de Boer & Crosby 1#55amrani et al., 2004) or to support
the analysis of light-scattering features of p&tidn water bodies (Peng et al., 2009; Pinet et
al., 2017).

The aim of this paper is to introduce a method tleermines the mineralogical composition
of suspended sediment in continental waters. Thighad involves a simple sampling
protocol combined with the robustness of powerfatistical techniques, making it an ideal
tool for processing a significant amount of watemgples collected across a watershed. The
main purpose is to take advantage of the expeirtisaineralogical determination, then to
reinforce it by the ability of machine learning ®do identify statistical patterns in large
datasets, and finally to supply an efficient tabtharacterize suspended sediment in lakes or
rivers. In the current paper, the method is fullystrated for suspended sediment sampled in

the Amazon basin, where many one-time analysealaady available in the literature.

2. Materials and methods

2.1. Sampling



Three sampling campaigns were done between Mardl3 2did December 2014 by the
Service National d’Observation (SNO) HYBAM netwoakd its national partners. Water
samples were taken from the surface [0-30 cm] dndaidous depths in rivers belonging to
the Amazon basin. Eight liters of water were ca#elcat each sampling depth, using a bucket
for the surface samples and a specific depth sani@lalede, 1994) in the water column.
Turbidity was measured with a turbidity meter (H&300Q) giving for each sample a proxy
of the sediment load. Depending on the turbiditjues, from 1 ml of water (for the samples
with the highest turbidity) to 6 ml (for the sampleith the lowest turbidity) were collected
with a micropipette (Eppendorf), and filtered thgbuO0.4 pm pore sized polycarbonate
membrane filters (GE Osmonics). The filters werenthdried and kept in PetriSlides

(Millipore) until further processing in the labooay.

2.2. Scanning electron microscopy (SEM)

After preliminary examination with a binocular noscope, a piece of membrane filter was
selected, mounted oan aluminum stub using carbon double-sided condrdiape, and
coated with carbon. SEM observations were done witheol JSM 6363LV microscope
equipped with a silicon drift detector (SDD) PGTeagiting at 20 kV for chemical analysis.
The backscattered electron imaging mode was usateimify the mineral particles from the
membrane filter (Fig. 1). A series of SEM imagesswandomly collected at 400x
magnification, taking care not to superimpose ss&ive images. Each identified particle was
analyzed by Energy Dispersive X-ray SpectroscopipXE) to determine its elemental
composition. To obtain the mineralogical compositad classified groups, the stoichiometric
ratios were calculated from the atomic percentagiesn by the EDXS analysis, and were
then compared with known mineralogical compositions

SEM images were also used to determine the sizebdigon of the suspended solids using

the ImageJ freeware (National Institutes of Hedltbthesda, MD, U.S.) in order to compare
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the size distribution of the samples. Projectechaperimeter, and shape descriptors were
automatically determined for each particle with ¢@a, while excluding any particle touching
the edge of the image. The equivalent diam&gy,of each particle was calculated according
to Saleh and Guigon (2009) (after Allen, 1975) as:

Deq = (S /7) * (1)

whereSis the projected area of the particle inquffhe particle size distribution (PSD) was
then determined both for each sampling stationfan@ach mineral phase identified, using
Junge’s power-law distribution (Junge, 1963):

N(D)=KxD™’ (2)

where N(D) represents the number of particles of diamé&gK is the concentration of
particles and the exponedis the slope of the distribution. The size binsgeafrom 0.14 to
550 um. However, because of the low magnificatisaduto acquire the SEM images, only
the size classes greater than 1 um were takeraatimunt for the calculation of the exponent
J. An aspect ratio (AR) was also obtained from t#iteorbetween the major axis and the minor
axis of the best-fit ellipse around each partiéle.AR equal to 1 is a circle, whereas an AR

greater than 1 indicates elongated particles.

2.3. Machine learning

The particles were partitioned into homogeneousgsdased on their elemental composition
using the Partitioning Around Medoids (PAM) unsupsed classification (Kaufman &
Rousseeuw, 1987). The PAM method is based on alesitnpise k-medoids algorithm that
does robust classifications (Breitkreutz & Case§0&). The elemental content of particles
representing 99% of the total of elements detebtethe EDXS analysis was considered to
derive the mineralogical groups. These elementssadtum (Na, 2.2%), magnesium (Mg,
2.7%), aluminum (Al, 25.7%), silicon (Si, 57.7%ptassium (K, 2.8%), calcium (Ca, 0.7%),

titanium (Ti, 1.2%), and iron (Fe, 6.9%).



The randomForest supervised learning classificaigorithm (Breiman, 2001) was applied
on the same training dataset to test the robustfets® groups and to be compared with the
classification resulting from the PAM method. TlamdomForest classification was then used
on all the remaining sampling stations to extend thineralogical determination. The
randomForest classification computes hundredsaxfsdfication trees, selecting randonfy
variables (i.e. elements) that lead to the splithef dataset at each tree node. A ‘vote’ is
assigned to each tree built during the classificaprocess, and then the majority vote over
the set of trees built in the process designatesribst consistent and recurrent classification
as the final result. In the current study, the paekused was “randomForest” ported in R by
Liaw and Wiener (2002) from the original Fortramgram by Breiman and Cutler (available

at http://www.stat.berkeley.edu/users/brein)aiifhe sampling stations used for the training

and the validation of the two classifications aesatibed in Table 1 by their dates, locations,
depth, and the corresponding numbers of SEM imagdgarticles analyzed.

Building only two mineralogical groups would deténe a minimum error rate in the
classification, since if one particle does notitita group, it necessarily belongs to the other
group. However, in that case the consistency wigaich group is likely to be quite poor, e.g.,
the intra-group variability of the particle typedivioe much too high to identify the resultant
dominant mineralogy. In contrast, a very high numdfegroups would correctly classify the
particles according to their chemical analysis, thet similarity between those groups would
be too close, anthe mineralogy would be difficult to assess andciasssification would be
frequent. Therefore, the optimal number of groupkieved by the classification was
investigated in order to obtain the best consistdne. a single mineralogy) for each group
while keeping a reasonable number of groups andmmiimg the possible randomForest
misclassifications. Such tests required an experiis earth sciences in support of the
statistical analysis of the classification resuhat was accomplished in collaboration with

mineralogists. In order to reach the best agreentamtiveen PAM and randomForest
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classifications, various parameterizations for idmedomForest classification were tested on

the training dataset.

Fig. 1. Imaging procedure and data processing from SEMagiephs of suspended particles:
(left) image used in grain size analysis and ()itfie same image with the particles analyzed

by EDXS and manually tagged using green numbers.

2.4. Study area

The Amazon River basin is the most important wéiedsin the world, both in terms of
drainage area (6:10° km2, Goulding et al., 2003) spreading from the ésitb the Atlantic
Ocean through a major part of South America, anteims of water discharge (on average
208x 10° m® s, Calléde et al., 2010) (Fig. 2). The region israkterized by a humid tropical
climate (average rainfall = 2,015 + 112 mniyEspinoza Villar et al., 2009) with contrasted
seasonal rainfall patterns depending on the laitlitie Amazon River main stream is known
as the Solimdes River from the border between BaduBrazil untildownstream of the Rio
Negro confluence near Manaus. The Madeira Rivérashird main tributary of the Amazon
River, 200 km downstream from the confluence beitwde Negro River and Solimbes

River, and drains the southeast part of the Am&dwar basin (Fig. 2).

Fig. 2. Location of the sampling stations in the AmazoweRbasin (sourc&oogle Earth.

Most sediment transported by the Amazon River patgs from the Andean mountains
which are composed of highly erodible rocks (Duebel., 1998; Filizola & Guyot, 2009).
Such hydro-morphological characteristics inducesivaserosion processes at a large scale in

Ecuador, Peru, and Bolivia (Aalto et al., 2006; Gy1993; Masek et al., 1994); as a result,
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the Amazonian basin is one of the most importamttrdautors in the world in terms of
sediment input to the ocean (average =8a0° t yr’, Martinez et al., 2009). The Solimdes,
Madeira, and Amazon rivers are classified as winters (Gibbs, 1967; Sioli, 1957) because
of their high sediment load, originating mainlyrrdhe erosion of the Andes, but also coming
from tributaries, river bank erosion, and remohitian of the older sediments trapped in the
floodplains (Dunne et al., 1998). These sedimeragespond mainly to quartz and

assemblages of various clays.

3. Results

3.1. Unsupervised PAM classification

The training of the classifications was done usagples from the Solim&es, Madeira and
Amazon rivers during the March 2013 sampling camppgiTable 1, Fig. 2), representing

various water types and various terrigenous origfrsuspended particles.

Table 1. Description of the sampling stations used in $tugly - N stands for the number of
SEM images, and Nor the number of particles analyzed by the magh#arning process -

Samples used for the PAM classification and thewoarf-orest training are marked with

Date Station Depth (m) iN N,
March 9, 2013 Manacapuru 0 13 1,141*
Foz de Madeira 0 10 1,971*
Amazonas 0 14 1,525*
Manacapuru 10 21 1,729*
April 3, 2014 Belém 0 13 1,481
April 6, 2014 Fonte Boa 0 16 1,154
10 12 1,478
20 8 1,603
30 14 1,236
April 11, 2014 ltapeua 0 14 1,390
25 12 1,785
35 8 1,720
April 13, 2014 Manacapuru 0 16 1,874
30 14 1,902



December 15, 2014 Careiro 0 16 2,291

The unsupervised PAM and the supervised randomFare® both built from the chemical

analyses of 6,366 particles sampled during this peagm. The resulting randomForest
classification was then used on the stations ofSbkmdes River sampled during the other
field sampling trips (Table 1). The sampling cangpai corresponding to the period of April
and December 2014 were not used in the PAM claasifin procedure. The classification
process involved a trial-and-error phase in theicghaf the number of groups. The
consistency of each group was evaluated througditipersion of the elementary contents (in
percent). The average standard deviation of the tdassification was, thus, calculated and
compared with classifications built with a numbégmups ranging from 2 to 20. A value of
less than 3% expressing a great consistency wittendifferent groups built by the PAM

classification was first reached for a minimum d froups. Table 2 lists the mean
elementary composition of the 15 groups obtainéer dhe PAM classification based on the

6,366 particles sampled in March 2013.

Table 2. Mean values and standard deviations of the eleangnbntents (in %) of each
group representing 99% of the bulk particle compmsiand built from the unsupervised

PAM classification of 6,366 suspended particles.

Na Mg Al Si K Ca Ti Fe
Mean 0.04 001 006 99.79 0.00 0.00 0.01 o0.07
Group 1
St.dev. 033 014 035 059 003 005 011 0.30
G ) Mean 134 1121 26.35 3500 1.08 059 047 2148
rou
P St.dev. 232 721 575 631 1.8 123 235 747
Mean 160 230 36.02 49.23 8.01 0.06 0.09 264
Group 3
St.dev. 180 129 249 267 204 023 047 141
G 4 Mean 138 334 3034 5439 322 098 0.18 547
rou
P St.dev. 227 191 285 224 211 148 0.62 2.09
Mean 239 045 2090 60.18 14.16 0.09 0.04 0.76
Group 5

St.dev. 310 1.09 342 333 440 040 022 175
Group6  Mean 1894 036 2145 5635 0.75 138 0.08.54
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St.dev. 4.02 085 314 333 160 213 026 110
Mean 082 226 2539 6365 173 062 016 475

Group 7
St.dev. 168 255 440 428 196 126 1.02 4.10
Mean 206 536 29.71 4713 262 139 090 9.73
Group 8
St.dev 2.4 3.4F 36€ 35t 211 39C 38 3.87
G 9 Mean 131 118 4090 5022 096 017 013 274
rou
P St.dev. 227 140 6.04 666 136 047 070 191
Mean 2.08 14.88 10.00 4335 052 1147 2.03 8.92
Group 10
St.dev 2.6 1157 7.4€¢ 11.2¢ 1.0 135: 6.1€ 7.34
Mean 116 140 1520 76.31 161 0.28 0.47 2.96
Group 11
St.dev. 232 154 485 423 165 189 321 377
Mean 130 228 11.34 1822 0.77 127 226 57.64
Group 12
St.dev. 3.19 441 659 9.66 202 255 585 1527
Mean 064 065 811 8761 0.83 0.07 0.17 171
Group 13

St.dev. 125 1.04 217 272 080 047 107 184

G " Mean 048 097 961 1332 033 021 69.75 4.28
rou
P St.dev. 158 179 522 757 065 069 1659 5.96

G 15 Mean 0.19 005 402 9493 0.16 0.00 0.04 055
rou
P St.dev. 069 028 120 179 041 0.07 026 0.80

This statistical consistency of the classificatiomas confirmed by the expertise of
mineralogists and enabled the association of auenimineralogy to each group. Two
different groups may, however, be attributed togame mineralogy as natural particles such
as clays can occur in a range of elemental composit These 15 groups represent the
reference from which the remainder of the statistprocedure was applied (i.e. the training
of the randomForest classification). The classiiareveals an increase in the Al/Si ratio
from group 1 (defined as pure quartz with Al/Sisddo 0) to the most developed and mature
sediments of group 9 (defined as kaolinite withSAl€lose to 1). The classification also
detected two poorly represented groups that werg distinct from the others, with major
contents in iron or titanium (respectively, irondes, and titanium dioxides). Except for these
two groups representing less than 3% of the datdsetlassification distinguished 8 groups
of clays (represented by chlorite, smectite, illaed kaolinite) corresponding to 65% of the
classified particles, 3 groups of quartz (22% of ttataset) and 2 groups of feldspars

(orthoclase and albite, 3% and 7% of the datasspectively). The same mineralogies were
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established for different groups expressing eitnethemical variability within a group of
minerals (e.g., the 3 groups of smectite), or tirdng of different particles signatures by the

SEM-EDXS measurements (e.g., the 3 groups of gilicticles).

3.2. Supervised randomForest classification

By varying the number of trees, & built during the classification and the number of
variables, Ny, sampled at each split, the minimum error rate e#ained for e = 500 and
Nvar = 2. The most representative tree of the forestingathe majority ‘votes’ and
corresponding to the best split of the dataseth@wve in Fig. 3. This tree highlights the
importance of Si, Al, K, Fe, and Na contents in ¢hessification process. On the other hand,
the 3 remaining elements (Mg, Ti, and Ca) did mgriiicantly contribute to the repartition of
the chemical analyses into distinct groups. Thesalts were confirmed by the internal
calculations of variables importance of randomFodled MeanDecreaseAccuracgnd
MeanDecreaseGin{(Breiman, 2002), which assign the lowest values. (the minimum

contribution) to Mg, Ti, and Ca, and the highedtiea to the Si content.

Fig. 3. The classification tree resulting from the random&st process and the splitting
criterion used to separate the dataset at eachaofdbe tree. Bold numbers on the terminal

nodes represent the corresponding classificationmr

3.3. Comparison of the classifications

The resulting tree and the corresponding supervisedlomForest classification were
compared to the PAM partitioning. Table 3 shows @nfasion matrix where the
misclassification between PAM and randomForest detailed and quantified via the
classification error rate. The entire process vegeated because of the random aspect of the

variables used during the classification. All thenfusion matrices thus obtained showed
11



similar results, and the classification error ra@etween both classification methods was
always lower than 4% using the combined, ¥ 500 and N, = 2) parametrization. The
randomForest classificatiowas used on the remaining dataset, which includatioss
sampled during the campaigns of April and Decentt@t4 (i.e., 17,916 particles). The
mineralogical content of each Solimbes River statiere then determined from the number

percentage of particles associated with the diffiegeoups (Fig. 4).

Table 3. Example of a confusion matrix among the differgmaups classified by the PAM

and the randomForest machine learning.

Supervised randomForest classification Class
Gl G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G145 Glerror

Gl |66z O 0 0 0 0 0 0 0 0 0 0 0 0 1 0.0015(
G2 0 399 1 0 0 12 3 2 0 2 0 0 0 0.05000
G3 0 0 59 17 0 0 8 9 0 0 0 0 0 0 0.05396
.§ G4 0 0 5 1120 O 5 11 13 7 0 0 0 0 0 0 0.03531
é G5 0 0 0 1 174 1 3 0 0 3 1 0 0 0 0 0.04918
.2 G6 0 0 0 0 2 436 1 0 0 0 1 0 0 0 0 0.00909
; G7 0 0 0 20 0 0 400 1 0 0 4 0 0 0 0 0.05882
E G8 0 4 4 16 0 0 0O 588 7 1 0 0 0 0 0 0.05161
2 G9 0 0 6 6 0 0 0 7 467 0 0 0 0 0 0 0.03909
g G10| O 4 0 0 0 1 0 4 0 109 1 0 0 0 0 0.08403
qg)- Gl11| O 0 0 0 1 3 8 0 0 4 234 0 3 0 0 0.07509
g Gi12| O 3 0 0 0 0 0 0 0 0 0 163 0 0 0 0.01807
G13| O 0 0 0 0 0 0 0 0 1 7 0 301 0 4 0.03833
Gl14| O 1 0 0 0 0 0 0 0 0 0 1 0 60 0 0.03225
G15 1 0 0 0 0 0 0 0 0 0 0 0 9 0 415 0.02352

As illustrated in Fig. 4, the SolimGes River samsplexhibit a very similar pattern in
mineralogical composition, with a maximum standaediation ofc = 2.5%. The comparison
between Solimbes River and Madeira River statiorlibi#s contrasting dissimilarities,
highlighting the differences in mineralogical corsfiimn of the suspended sediments
collected during the March 2013 sampling trip asddifor the training of the randomForest
classification. For all the Solimbes River statiotie smectite content (sum of groups 3, 4,

12



and 10) represents the main component of the nogcal assemblage (33.01% on average).
Group 4 is especially dominant representing onanerl9.12% of all particles analyzed by
SEM. The remainder of the particles occurs as otli@y minerals (illite, chlorite, and

kaolinite, on average 19.74, 7.38, and 6.78%, wi@dy), quartz (on average 19.17%) and
feldspars (orthoclase and albite, on average 3@36a87%, respectively). Finally, the less
frequent types of particles are iron oxides arahtitm dioxides (on average 2.90 and 1.12%,

respectively).

Fig. 4. Distribution of the mineralogical groups from 116 at 3 different stations on the
Solimbes River sampled in a) March 2013, c) Apdl2, and d) December 2014, and a

Madeira River station b) also sampled in March 2013

The average Pearson’s correlation coefficients detwSolimdes River sampling stations
taken two by two reached 0.90, but reached onl® &fen comparing Madeira River and
Solimdes River stations. After combining the grogpswing analogous mineralogies (e.qg.,
groups 1, 13, and 15 representing quartz), theeladion coefficients are even higher,
increasing to 0.97 on average for the Solim@es Ritations. The mineralogical similarities
evidenced in Fig. 4 between Solimdes River sampditagions were confirmed by variance
analysis, which showed no statistical differencevieen the randomForest classifications of
the Solimbes River stations (mean adjusted p-vau@.96), but established a statistical
distinction between the Madeira and the Solimdesptiag stations (mean adjusted p-value =

0.48).

3.4. Particle Size Distribution
A total of more than 204,000 particles were scanmg®SEM to analyze their size, which

represents more than 15,700 particles per statioaverage. Contrasted types of particles
13



were examined with projected areas ranging betvw862 and 25,204 um?2 (5.78 pm?2 on
average) and perimeters ranging between 0.70 &itd Jym (6.02 um on average). The
resulting equivalent diameters were calculatedramged between 0.14 and 69.57 um (0.76
um on average) (Fig. 5a), which led to the calemtabf the grain size distribution of the
particles for each station (Fig. 5b), following tleast-squares fitting method. The smallest
value of the slope exponent was obtained for tlspesuded particles taken at a 30 m depth at
ManacapuruJ = 2.54) and the highest value was for the suréareple of Fonte Boa station
(J = 3.36). As expected, a decreaseJolvas observed with sampling depth in the water
column, thus, showing an increase of the coarsatitm of the particles (Fig. 5¢). As an
example, at the Itapeua statidns 3.14 at the surface level, 2.96 at a 25 m deptH is only
2.62 at a 35 m depth. On average, dhealue for surface samples is about 3.15, but only
reached 2.84 for samples collected at depth. Theiclea size distribution of each
mineralogical group was examinellvalues ranging from 2.48 for group 14 to 3.43dmup

4 were obtained. Similar values (3.31) characterized the smectite groupsu@ing groups

3, 4, and 11), the lowestvalues were obtained for iron oxides (2.60, gra2p and with
titanium dioxides (2.48, group 14), whereas theeptlgroups (quartz, chlorite, illite,
orthoclase, albite, and kaolinite) exhibited a Risgxponent close to 3 (3.01 on average).
The majority of particles showed aspect ratiohm|[tl — 2] range, which reveals that most of
the particles were significantly rounded. Suchsultewas confirmed by the calculation of the
circularity coefficient,C (included in the [0 — 1] range) that correspondthoratio between
the projected are& and the squared value of perimed®eof each particleG = 4z x S / P3.
More than 45% of the particles showedCavalue equal to 1, thus, indicating a spherical
particle, and it increased to more than 59% @walues higher than 0.9. Those quasi-
spherical particles showing an AR value of 1 weraracterized by small dimensions with a
maximum area of 2 umz2 (0.11 um?2 on average) andvanmum perimeter of 4.83 um (0.90

Lm on average).
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Fig. 5. Grain size distribution of the particles analybydSEM: a) histogram of the calculated

equivalent diameters; b) particle number/size ithistion at each sampling station (for D > 1
um); ¢) correspondingunge’s distribution exponeri, values at various depths (black and

white triangles represent Manacapuru station saiipl@013 and 2014, respectively. Black
and white circles represent Fonte Boa station tapkla station, respectively. Black and

white squares represent Belém station and Cartitiors, respectively).

4. Discussion

With more than 96% of particles getting a corressignment (Table 3), the supervised
randomForest classification ensures great consigtemith the groups built from the
unsupervised PAM method. The relative importanceth&f mineralogical groups, thus,
obtained compares favorably with those inferredXbray diffraction in Guyot et al. (2007),
at similar locations in the Amazon basin (includthg Solimdes River). These authors used a
semi-quantitative method to manually identify thleycminerals present in each sample
collected from the banks of the different rivers. the Brazilian floodplain, Guyot et al.
(2007) found approximatively 25% by weight (wt.) tbe illite/chlorite assemblage, 10% wt.
for kaolinite, and 65% wt. for the smectite/mixeyérs assemblage for the Solimbes River.
In the current case, excluding quartz from the ymisl the composition of the same
assemblages are on average 33.55, 8.39, and 5§@8%ent in number), respectively. The
clay content in the SolimBes River retrieved by tilve methods are very close, the smectite
content being predominant, and the amount of k@elirwhich indicates the presence of
mature sediments, being significant. Despite thayais of more than 200,000 particles, the
initial sampling protocol and the magnification dder the SEM observations preclude the

consideration of large patrticles in the size distion. Indeed, very few particles larger than
15



10 pm? and almost none larger than 20 pum? wereaelfll, thus, leading to an overestimation
of theJ exponent of Junge’s law which describes the garsize distribution. The absence of

the coarse size classes may smooth the differandde PSD between samples collected at
different depths within the water column. Neverdssl such underestimation of large
particles does not conceal the decrease in Jumpgeameter,), with increasing depth at a

given sampling site, either considering every sizss greater than 1 pum, or just taking into
account size classes between 1 and 10 um. In wiirels, an increasing proportion of coarse

sedimentary materials is observed with increasemld as illustrated in Fig. 6.

Fig. 6. Two SEM images (x400 magnification) correspondmghe Manacapuru station

sampled at the same scale in April 2014, a) awtier surface and b) at 30 m deep.

On the other hand, the analysis of the PSD of #r@us mineralogical groups showed more
contrast. Indeed, iron oxides and titanium dioxides characterized by coarse material,
whereas smectites, and especially those assoocidtbdgroup 4, are mainly composed of
small particles. Such results are consistent whip&a and Bish (2001), who showed that,
among various types of clays, smectite represetitedinest size fraction. However, there
was no significant difference between the otheupgsoin terms of particle size distribution.

Slight variations were observed, but the genertttpaled to al value of approximately 3.

Regarding the aspect ratio analysis, Li et al. @20iave revealed that particles from deep
rivers are generally characterized by a regulapeshavith slight roughness. The current
results in terms of sediments shape, with more t%@¥% of particles characterized by a
roundness coefficient typical of a quasi-sphergl@pe, are consistent with that study. It is
worth noting that the sphericity index of particlesnferred from projected surfaces and not

from direct volume measurements. Thus, taking atoount that clays occur as flake-shaped
16



particles, it is expected that clay minerals préseless spherical shape compared with that of
other silicates, such as quartz or feldspar. Thd&erences in mineral shapes are likely to be
magnified for coarser materials (Krinsley & Smalley973). It will inducede factoan
increasing dissociability of the number of particknd associated volume between clays and
guartz sediments when considering deeper sampldiseirwater column. It then becomes
obvious that the absolute content in Si will in@eavith depth even if the relative number
percentage of quartz particles remains unchangedth® contrary, the volume percent
occupied by clays will decrease with depth, consmgethat quartz minerals occupy more
volume than clay minerals. Thus, using the Al/SioreBouchez et al. (2011) showed profiles
describing a direct relation between depth and ralngical composition, and suggested that
coarser materials are Si enriched. In contrastctineent results indicate that, considering the
composition of single particles instead of the bedknposition of suspended sediment, there
is no significant pattern between Al/Si ratio arepth (Fig. 7a). In addition, no specific trend
allows the description of a split between the défé mineralogies based on sampling depth

(Figs. 7a and 7h).

Fig. 7. Mineralogical composition of suspended sedimehth® Solimdes River stations at
various depths: a) the Al/Si ratio, illite, choriteaolinite and orthoclase contents; b) the

smectite, quartz, albite, iron oxide and titaniuxide contents.

The Si content is then truly higher and the Al emtisindeed lower as the sampling depth
increases, but this should not be related to are@ased proportion of quartz or feldspar
particles compared with clay minerals. Obvioushge tatter result is somehow related to the
range of particle size explored in the current wtbgg SEM, and should be confirmed by

extending the investigation to both finer and ceanmmaterials. Nevertheless, it should be
17



pointed out that the levels of turbulence (andstlai vertical mixing) were likely different in
stations sampled by Bouchez et al. (2011) andercthrent study. Such a parameter may be
estimated in future sampling to support the anslg$ivertical profiles (e.g., Lefebvre et al.,

2012).

5. Conclusions

The new PAM-randomForest procedure presented B phper shows robust results and
offers an easy method to characterize suspendechesats. The determination technique of
the mineralogical assemblages in rivers is higklyresentative of the total sediment, even
though just a few milliliters of water were samplédremains a powerful procedure even in
the presence of a large dataset, which is essem@aspirit of maximum representativeness of
the measurements. It also allows a more precisectesization of the suspended sediment
sampled compared with an estimate of the total nohtske bulk particles. This method is
particularly interesting for intensive sampling grams, where a series of samplings are made
and where it is easier to keep filters instead efesal litters of water or kilograms of
sediments. Complementary analyses have to be nwma®rfirm the distribution of the
different mineralogies within the water column farger grain sizes. However, as part of a
long term monitoring program, this technique cobkl routinely used and would provide

important information on the sediment content aadariability in large river basins.
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