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Abstract 

Multigene panel testing for breast and ovarian cancer predisposition diagnosis is a useful tool as it 

makes possible to sequence a considerable number of genes in a large number of individuals. More 

than 200 different multigene panels in which the two major BRCA1 and BRCA2 breast cancer 

predisposing genes are included are proposed by public or commercial laboratories. We review the 

clinical validity and clinical utility of the 26 genes most oftenly included in these panels. Because clinical 

validity and utility are not established for all genes and due to the heterogeneity of tumour risk levels, 

and thus the diversity of management guidelines, there is a substantial difficulty in the routine use of 

multigene panels if management guidelines and recommandations for testing relatives are not 

previously defined for each gene. Because their clinical validity and utility may strongly differ, 

management guidelines specific for each gene and often still discussed for some of them are a difficulty 

in the routine use. Multigene panel generally presented as a single test is actually a myriad of tests 

whose results are as numerous as the number of genes tested. In addition, although not specific to 

multigene panels, Besides, the classification of variant of unknown significance (VUS) is a particular 

limitation and challenge. Efforts to classify VUSs and also to identify and to combine factors that modify 

cancer risks are now needed to produce personalised risk estimates. The complexity of information, 

the capacity to come back to patients when VUS are re-classified as pathogenic, and the expected large 

increase in the number of individuals to be tested especially when the aim of multigene panel testing 

is not only prevention but also treatment are challenging both for physicians and patients. Quality of 

tests, interpretation of results, information and accompaniment of patients who made their own 

choice must be at the heart of the guidelines of the use of multigene panel testing. 
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Abstract 

Multigene panel testing for breast and ovarian cancer predisposition diagnosis is a useful tool as it makes 

possible to sequence a considerable number of genes in a large number of individuals. More than 200 

different multigene panels in which the two major BRCA1 and BRCA2 breast cancer predisposing genes 

are included are proposed by public or commercial laboratories. We review the clinical validity and clinical 

utility of the 26 genes most oftenly included in these panels. Because clinical validity and utility are not 

established for all genes and due to the heterogeneity of tumour risk levels, , there is a substantial 

difficulty in the routine use of multigene panels if management guidelines and recommandations for 

testing relatives are not previously defined for each gene. Besides, the classification of variant of 

unknown significance (VUS) is a particular limitation and challenge. Efforts to classify VUSs and also to 

identify factors that modify cancer risks are now needed to produce personalised risk estimates. The 

complexity of information, the capacity to come back to patients when VUS are re-classified as 

pathogenic, and the expected large increase in the number of individuals to be tested especially when the 

aim of multigene panel testing is not only prevention but also treatment are challenging both for 

physicians and patients. Quality of tests, interpretation of results, information and accompaniment of 

patients must be at the heart of the guidelines of multigene panel testing. 
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Introduction 

Since its emergence around 2010, next generation sequencing (NGS) has been a breakthrough for medical 

genetic laboratories. As with whole exome and whole genome sequencing, NGS through multigene panels 

makes it possible to sequence a considerable number of genes in a large number of individuals. Multigene 

panel testing is useful for diagnosis of diseases with genetic heterogeneity and for disease risk estimates 

in predictive medicine. 

In the field of cancer genetics and particularly breast cancer predisposition, panel testing has spread 

extensively and rapidly over academic and commercial laboratories. This is linked to the decision of the 

US Supreme Court in June 2013 to invalidate the patents that restricted BRCA1/BRCA2 testing [1]. Indeed, 

these two genes are the “core” of multigene panels exploring breast (and ovarian) cancer risks or more 

largely cancer risks. Invalidation of the patents resulted in decreased costs for genetic testing and more 

widespread availability to companies. In addition, the demand for breast cancer genetic testing 

worldwide has doubled since May 2013, when Angelina Jolie revealed that she is a carrier of a pathogenic 

BRCA1 variant and that she had chosen to undergo prophylactic mastectomy [2]. Another reason for the 

rise in multigene breast cancer panels is the development of targeted therapies for cancers with 

homologous recombination (HR) deficiency, which makes identification of pathogenic variants in genes 

involved in HR, particularly BRCA1 and BRCA2, a treatment prerequisite [3]. 

Multigene panel testing is time- and cost-efficient because it avoids sequential tests. It also provides 

extensive data, however, given the high number of genetic variants identified, transforming the data into 

information useful for each individual tested can prove difficult. We will review the main characteristics of 

the breast (and ovarian) cancer predisposing gene panels available, the required parameters of their 

analytical validity, clinical validity and clinical utility. The enormous capacity of gene sequencing has led 

“panel designers” to include genes whose clinical validity and utility are not established, thus producing 

“bulky” knowledge. What recommendations can be made for the use of the available breast (and ovarian) 

cancer multigene panels and for improving their clinical utility? 

 

Available Breast (and Ovarian) Cancer Multigene Panel Testing 

The latest release of the NCBI Genetic Test Registry lists more than 200 multigene panels including BRCA1 

and BRCA2 that are proposed by academic or commercial laboratories [4]. Some but not all are specific to 

breast and ovarian cancer predisposing genes. The 26 genes most frequently included in breast (and 

ovarian) cancer panels are shown in Table 1. As previously stated, BRCA1 and BRCA2 are the core genes. 

The other genes are either associated with specific phenotypes and breast cancer risks (TP53 and Li-

Fraumeni syndrome; CDH1 and lobular breast carcinoma and diffuse gastric carcinoma; PTEN and 

Hamartoma Tumour Syndrome; STK11 and Peutz-Jeghers syndrome; NF1 and neurofibromatosis type 1), 

or with ovarian cancer risks (MLH1, MSH2/EPCAM, MSH6, PMS2). They also include genes reportedly 

associated with a risk of breast cancer in case studies or case-control studies. Most are involved in DNA 

repair, some of which are reportedly partners of BRCA1 or BRCA2 (ATM, BARD1, BRIP1, GEN1, MCPH1, 

NBN, MRE11A, PALB2, RAD50, RAD51C, RAD51D, RECQL, RINT1, SLX4, XRCC2), or in cell-cycle control or 

mitotic signal transduction (CHEK1, CHEK2, PI3KCA). The list is open and grows with each new study. The 

level of the associated breast/ovarian cancer risk differs depending on the genes: some genes, or rather 

their pathogenic variants, are associated with high risk, others with moderate risk and for others the 
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reality of an increased risk has not yet been clearly established. The heterogeneity of the risk level of the 

sequenced genes and thus the diversity of management guidelines are a substantial difficulty in routine 

use of multigene panels. 

 

Analytical Validity 

In analytical validity, we include the sensitivity and specificity of variant detection and their clinical 

interpretation or classification. 

- Sensitivity and Specificity of Variant Detection 

Lincoln et al. examined, in a series of 1105 individuals, the analytical concordance of 750 different 

variants of 29 genes using NGS versus Sanger sequencing, the gold standard of sequencing methods. 

There was 99.8% net report concordance [5]. Moreover, NGS technologies showed a higher sensitivity 

than Sanger sequencing for mosaic variants, i.e. de novo variants that occur during embryonic 

development and are present in some but not all of an individual’s cells. Conventional NGS can detect 

variants at low levels, up to 1%, while the limit of detection of Sanger sequencing is about 15 to 20% [6] 

[7]. In breast cancer multigene panel testing, a low limit of detection is particularly important for TP53 

gene, which has an estimated de novo variant rate of at least 14% of TP53 pathogenic variants identified, 

and one-fifth of these de novo variants are mosaics [8]. 

However, Sanger sequencing has better specificity than conventional NGS. Using Sanger sequencing, Mu 

et al. verified 7845 non-polymorphic variants identified through 20,000 hereditary-cancer panels 

spanning 47 genes. They found 98.7% concordance of the variants between NGS and Sanger sequencing, 

1.3% were NGS false-positives. They were located in A/T- and G/C-rich regions, homopolymer stretches 

and pseudogenes. Simulation of a false-positive rate of zero by adjusting the variant-calling quality-score 

thresholds decreased the sensitivity from 100% to 97.8% and resulted in missed detection of 176 variants. 

These data illustrate the need for Sanger confirmation of NGS variants to maintain the highest possible 

sensitivity [9]. 

A great benefit of NGS is that it can most often detect both point variants and copy number variations 

(CNV) in one experiment. A recent survey examined worldwide genetic testing practices for 

BRCA1/BRCA2. Among the 86 laboratories that participated in the survey, 80 (93%) had moved towards 

NGS. Regarding detection of CNVs, 88% of laboratories in the US and 40% in Europe used NGS. It is 

expected that in the near future, NGS will also be adopted worldwide for CNV detection [10]. The same 

survey found that over half of laboratories confirmed variants (except neutral or likely neutral, see below) 

using another method, in most cases Sanger sequencing. The authors recommend that the results should 

mention such technical details as minimal read depths, analytical sensitivity and variant confirmation by 

an independent method. In order to assist clinical laboratories with analytical validation of NGS, the 

American College of Medical Genetics and Genomics (ACMG) has proposed comprehensive professional 

standards and guidelines concerning all steps in NGS, from DNA preparation and bioinformatic analysis to 

data reporting [11]. 

- Clinical Classification of Variants 
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BRCA1 and BRCA2, along with other dominantly transmitted cancer predisposing genes, are associated 

with cancer risks through protein inactivating variants and therefore often through variants introducing a 

stop codon (nonsense, frameshift, splice defect) and more rarely missense variants. The classification of 

genetic variants in coding sequences or their intron-exon junctions as pathogenic or neutral is not a new 

challenge, nor is it NGS specific, however, because NGS is identifying an increasing number of variants, 

and the proportion of annotated variants is not increasing at the same rate, there is, according to Cutting, 

an ever-increasing “interpretive gap” that reopens and broadens the challenge [12]. 

Classification of variants is a particular limitation in BRCA1/BRCA2 testing. More than 1000 pathogenic 

variants in each gene have been reported but the number of unclassified variants, variants of unknown 

significance (VUS), is double. [13]. Plon et al. have proposed a classification of variants of cancer 

predisposing genes based on 5 levels: definitely pathogenic, likely pathogenic, unknown significance, 

likely not pathogenic and not pathogenic or of no clinical significance or neutral [14]. The classification of 

variants as pathogenic is of the utmost important for the management of carriers. Guidelines for variant 

classification have also been proposed by the ACMG [15]. The classification of BRCA1/BRCA2 and more 

recently PALB2 genes is challenging and, in 2009, led to the creation of the international consortium 

“Evidence-based Network for the Interpretation of Germline Mutant Alleles”, ENIGMA [16]. ENIGMA is 

the main actor in the BRCA Challenge, proof of concept of the Global Alliance for Genomics and Health, 

GA4GH, whose aim is to facilitate sharing of international data in medical genetics to improve the quality 

of genetic diagnoses [17,18]. Classification of each known BRCA1/BRCA2 VUS based on pathogenicity 

relies on multiple approaches: higher frequency in cases than in controls, phylogenetic conservation of 

the nucleotide/amino-acid modified, Grantham score for missense variants, co-segregation of the VUS 

with the disease in multiplex families, abnormal transcripts, functional assays, etc. ENIGMA promotes 

sharing of efforts at classification by laboratories, clinical cancer geneticists and national variant database 

curators [19] [20] [21] [22]. It should be noted that currently the classification of VUSs identified in non-

Caucasian patients and in smaller ethnic groups is more difficult due to the lack of epidemiological data. 

Special effort should be made in these populations. 

Overall, while it is of the utmost importance to classify VUSs, it is equally important to update the test 

results. In other words, laboratories need to have the ability to come back to patients and their physicians 

when a VUS has been classified. Indeed, it is expected that some VUSs, hopefully most of them, will be 

classified as pathogenic or neutral as more data are accrued. Conversely, some pathogenic variants have 

been “declassified” to non-pathogenic due to a residual functional protein derived from physiological 

alternative transcripts that were not previously taken into account [23]. Reporting of variants and their 

clinical classification has to be written clearly so that the numerous physicians who manage women at risk 

understand the results and use them appropriately. In a survey of 3672 women who had BRCA1/BRCA2 

testing in 2014-2015, Kurian et al. reported that 51% of women carrying a VUS underwent bilateral 

prophylactic mastectomy even in the absence of a severe family history [24]. In the Prospective Registry 

of Multiplex Testing (PROMPT), 26% of variants reported by at least two commercial laboratories were of 

conflicting interpretation [25]. In March 2016, the journalist Jeremy Lange reported in The New York 

Times the case of a woman whose doctors had conflicting information on her BRCA1/BRCA2 test result. 

“The situation is ripe for overinterpretation and misinterpretation,” said a geneticist interviewed by 

Jeremy Lange. In summary, laboratories must collaborate with physicians in order to take intoaccount 

patient clinical and familial data, contribute to and track the classification of variants and be able to pass 

on the updated variant classification to patients and their physicians. If these objectives are in the DNA of 

academic laboratories, they are not in that of commercial laboratories. It is however of the utmost 
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importance to organise and sustain variant databases and to pursue all the efforts with all the actors of 

breast cancer genetic testing.  

Clinical Validity and Clinical Utility 

The aim of predictive medicine is to limit the risk of an expected disease or to limit its impact on quality of 

life (including psycho-social outcomes) and to limit its mortality. We do not include here specific 

treatments such as PARP inhibitors in tumours with bi-allelic HR gene inactivation. The main aim of 

testing for breast (and ovarian) cancer genes is prevention in carriers of pathogenic variants and 

reassurance of non-carriers. If clinical validity refers to the accuracy with which a condition is identified 

and clinical utility to the benefits of management guidelines based on genetic testing, clinical validity and 

utility should be demonstrated before being put into clinical practice [26] [27]. Because clinical validity 

and utility must be demonstrated for each gene in the panel, and because our knowledge of genes and 

tumour risk levels differ, the clinical use of breast (and ovarian) cancer multigene panel testing is 

challenging.  

- Clinical Validity 

Strande et al. for the NIH-funded Clinical Genome Resource (ClinGen) created a framework that provides 

evidence for the strength of the association between a gene and a disease or a disease risk through semi-

quantitative classification: definitive, strong, moderate, limited, no reported evidence, or conflicting 

evidence [28]. The classification is based on genetics, i.e. cosegregation data, case and case-control 

studies, as well as experimental data, i.e. functional data, cell and animal models. 

Some genes, such as MEN1 and CTNNB1, included in some breast (and ovarian) multigene panels based 

on case reports seem to be “lost in translation”. Classification of clinical validity is a dynamic process, 

subject to new information. For example, until recently no studies reported an increased risk of breast 

cancer associated with RAD51C and RAD51D pathogenic variants, which were initially thought to be 

associated only with ovarian cancer. A first study performed in 65,000 women affected with breast cancer 

reported an increased risk of breast cancer with RAD51D [29]. A second and more recent study performed 

in 10,900 triple negative carcinoma (TN) cases, a subset of 140,000 breast cancer cases, confirmed the 

risk of breast cancer with RAD51D and identified an increased risk in carriers of RAD51C pathogenic 

variants, another paralogue of RAD51 [30]. Due to the very low frequency of RAD51C and RAD51D carriers 

in the general population and the heterogeneity of breast cancer, with TN tumours representing 15% of 

breast cancers, the increased risk and therefore clinical validity were demonstrated with difficulty. 

- Clinical Utility 

Cancer risk estimates are the key point in defining management guidelines and thus clinical utility. Cancer 

risks are classified as high, moderate or low, each being associated with different management guidelines 

(Table 1). Low risk means less than two times as high as the risk in the general population, moderate risk 2 

to 4 times as high, and high risk more than four times higher [27]. National guidelines on prophylactic 

mastectomy and breast MRI are well established and homogenous regarding carriers of high-risk genes 

(BRCA1, BRCA2, PALB2), while guidelines on moderate-risk genes (ATM, CHEK2) are not homogeneous. 

For the same genes, some recommend breast MRI when a test result is positive, while others take family 

history into account more so than the test result [31], [32], [33], [34]. The heterogeneity of guidelines and 
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practices regarding moderate-risk genes illustrates the extent to which clinical utility is not yet firmly 

established.  

Another difficulty related to moderate-risk genes is the use of identified pathogenic variants for testing 

relatives. When a pathogenic BRCA1 variant is identified in a woman, variant-targeted tests are offered to 

her relatives and when negative, relatives are reassured. When a pathogenic variant in a moderate-risk 

gene, such as ATM, is identified, especially in a woman with a severe family history, can a targeted test be 

offered to her relatives and, if negative, is it reassuring? Probably not, because we consider that the ATM 

variant does not “recap” the family history. The multigene panel test is generally presented as a single 

test, but it is actually a myriad of tests whose results are as numerous as the number of genes tested. 

Because the clinical utility of moderate-risk genes has not been firmly established and because the tests 

available to relatives are not unequivocal, the French Genetic and Cancer Group (GGC)-Unicancer chose 

not to include ATM and CHEK2 in its breast (and ovarian) cancer multigene panel [31]. However, all 

multigene panels are welcome provided that the consequences of identifying a pathogenic variant for 

each gene have been anticipated in terms of follow-up and testing available to relatives. 

Specific syndrome genes such as TP53, CDH1, PTEN, STK11 and NF1, are included in most breast (and 

ovarian) cancer multigene panels. Specific guidelines have been published for carriers whose families 

have the syndrome. For example, in Li-Fraumeni syndrome, annual “head-to-toe” whole-body MRI is 

advised in TP53 pathogenic variant carriers [35]. Does such stringent and stressful follow-up need to be 

conducted in TP53 carriers identified through a multigene panel performed because, for example, two 

relatives developed breast cancer at age 50? A recent study by Rana et al. examined the phenotype of 

TP53 carriers identified through multigene panels. Ages at diagnosis of breast cancer were older than 

reported in the classic Li-Fraumeni syndrome, suggesting that TP53 pathogenic variants may have a 

broader phenotypic spectrum than previously reported [36]. The question is similar for CDH1 carriers 

[37]. Should prophylactic gastrectomy before the age of 30 be recommended when no relative is affected 

with gastric carcinoma? Re-assessment of cancer risks by prospective studies is required in individuals 

whose genetic tests have been conducted outside stringent testing criteria, which is likely to be more 

frequent with increasing multigene panel use [38]. 

A similar question is raised regarding BRCA1 and BRCA2 carriers. Modifier factors, genetic or otherwise, 

have long been known to increase or decrease the risk of breast and ovarian cancer in carriers [39,40]. 

The aims of the international collaborative groups IBCCS (International BRCA1/2 Carrier Cohort Study) and 

CIMBA (The Consortium of Investigators of Modifiers of BRCA1/2) are precisely to identify such modifier 

factors. Kuchenbaecker et al. have examined a polygenic risk score (PRS) based on the genotypes of 77 

single nucleotide polymorphisms (SNP). The PRS modulates breast cancer risks at age 80 between 53% to 

78% in BRCA1 carriers and 35% to 55% in BRCA2 carriers [41] (and Cox et al. this issue). Similar studies are 

on-going for ovarian cancer risks. It is of particular importance to take into account modifier factors in 

personalised risk estimates when relatives are not affected with breast or ovarian cancers. The on-going 

BRIDGES project (Breast cancer RIsk after Diagnostic GEne Sequencing) aims to combine, in addition to 

BRCA1, BRCA2, ATM and CHEK2 variants, modifier factors including a PRS, [42]. Personalised risk 

estimates are urgently needed when some groups report that it is time to offer BRCA1, BRCA2, RAD51C, 

RAD51D, BRIP1 and PALB2 tests to all women over the age of 30 [43]. 
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In summary, efforts to identify and combine factors that modify cancer risks linked to the different 

predisposing genes sequenced in multigene panels are needed to produce personalised risk estimates for 

women tested, as well as for her relatives, and thus to escape the bias of any testing criteria. 

 

Perspectives and Conclusion 

Multigene panel testing is a promising tool that makes it possible to test a considerable number of genes 

in a large number of individuals. It is possible that in the future, when the coverage and minimal read 

depths are high and homogeneous, whole exome sequencing will be performed with a multigene panel 

reading. Whole exome and later whole genome sequencing associating genome spread SNPs and thus 

PRS, will be the “Swiss knife” of geneticists. Before this era, more widespread use of multigene panel is 

also likely to allow us to identify individuals with two predisposing genes (digenism), a situation probably 

more frequent than hitherto thought. Indeed, BRCA2 carrier frequency in the Caucasian population may 

be as high as 1/192 and ATM carrier frequency 1/150 [44] [45]. Currently, multigene panel testing is 

already a highly useful tool provided the results are not overinterpreted or misinterpreted. As genetic 

testing advances, research into the interpretation of VUSs, the accuracy of personalised risk estimates 

through the identification of risk-modifying factors must continue. Studies are on-going through 

international efforts under the auspices of consortia such as ENIGMA, IBCCS, CIMBA and through data-

sharing as in the BRCA Challenge. Special research efforts are required in individuals of non-occidental 

ethnic groups as few data are currently available. Diagnosis and research may be combined in the same 

multigene panel, however the genes sequenced for research should be defined and patients informed 

before testing. It is important to remember the bulk of our knowledge in this field was obtained thanks to 

patients and their families, and this situation has not changed. Information on the issues related to the 

tests and anticipation of possible results, including VUSs, are key points in genetic counselling.  

The complexity of information, the capacity to come back to patients with updated results, such as when 

VUSs are re-classified as pathogenic, and the expected large increase in the number of individuals to be 

tested are challenging both for physicians and patients. Indeed, the treatment by PARP inhibitors of 

women affected with high grade ovarian cancer, TN breast cancer or metastatic breast cancer and whose 

tumors is inactivated for BRCA1 or BRCA2 is going to strongly increase the indications of breast (and 

ovarian) multigene panel testing and also to modify its process. For example, the recent study SOLO1 has 

demonstrated the interest of maintenance therapy by PARP inhibitor olaparib in newly diagnosed 

advanced high grade ovarian carcinoma in women whose tumour is inactivated for BRCA1 or BRCA2 

through germline or somatic mutation events [46]. It is expected that in the near future multigene panel 

testing will be performed through tumour DNA with the double aim of treatment and prevention. It is 

important to keep in mind that BRCA1/2 tumour testing (ovarian, breast and other locations) is a cancer 

predisposing test since 80% of pathogenic variants identified are germline [47]. Tumour DNA is the native 

DNA of the patient! Oncologists and surgeons need to work closely with clinical and molecular geneticists. 

It is paradoxal that at that time the Food and Drug Administration has authorised direct-to-consumer 

tests of three BRCA1-2 pathogenic variants [48]. We can only speculate on what patients understand. 

ASCO and The European Breast Cancer Council (EBCC) recently issued guidelines for breast cancer 

predisposition testing. Quality of tests, information, interpretation of results and accompaniment of 

patients who have no choice when treatment is one of the objectives of genetic testing, are at the heart 

of the guidelines [49] [50].  
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Gene 

Clinical Validity / Risk Level Clinical Utility 

Main 

References Level of breast cancer risk Level of ovarian cancer risk 

Specific Guidelines Genetic 

Test for 

Relatives 
Breast Ovary Related 

syndrome 

BRCA1 High CLTR(80) 72%[51] High CLTR(80) 44% Yes * Yes °  Yes [51] 

BRCA2 High CLTR(80) 69% High CLTR(80)  17% Yes * Yes °  Yes [51] 

PALB2 High OR 6.56-9.47 Conflicted Yes * No   Yes [52–57] 

TP53 High RR 3.76 ; CLTR(70) 85% Conflicted Yes * No Li Fraumeni Yes [55,58] 

PTEN High CLTR(70): 67-85.2%  Low Yes * No Cowden Yes [59–61] 

CDH1 High RR 6.6-7.7; CLTR(80) 39-42% Unknown Yes * No HDGC Yes [62–64] 

STK11 High, RR 15; CLTR(70) 77% High RR 2; CLTR(70) 45% Yes * Yes† Peutz Jeghers Yes [65,66] 

MLH1 Conflicted High CLTR(70): 20% No  Yes† Lynch  Yes [55,67] 

MSH2/EPCAM Conflicted High CLTR(70): 24% No  Yes† Lynch  Yes [55,67] 

MSH6 Conflicted Conflicted  No Yes† Lynch  Yes [55,67] 

PMS2 Conflicted Conflicted No Yes† Lynch  Yes [55,68] 

NF1 Insufficient data Insufficient data Discussed No NF1 Yes† [69] 

RAD51C No evidence of association High RR 5.2-6.31; CLTR(80): 9% No Yes  Yes [70–74] 

RAD51D No evidence of association High OR 6.3; ; CLTR(80) 13.56% No  Yes  Yes [72,75,76] 

ATM Low to moderate RR 1.5-3 $ No evidence of association Discussed$ No  Discussed [57,77–79] 

CHEK2 Low to moderate OR 1.58 -3 $ Insufficient data Discussed$ No  Discussed [77,80,81] 

BRIP1 No evidence of association Moderate RR 3.41; CLTR(80) 4-12.7%  No Discussed  Discussed [77,82] 

BARD1 Insufficient data Insufficient data No No  No [82,83] 

GEN1 No evidence of association No evidence of association No No  No [84,85] 

RAD50 Insufficient data Insufficient data No No  No [54,55] 

RINT1 Conflicted Insufficient data No No  No [86,87] 

MRE11A Insufficient data Insufficient data No No  No [54] 

NBN Conflicted OR 1.4-2.66 $ No evidence of association No No  No [55,82,88] 

XRCC2 No excess risk  Insufficient data Insufficient data No  No  No [77,89] 

MCPH1 Insufficient data Insufficient data No  No  No [77] 

SLX4 Insufficient data Insufficient data No No  No [77] 
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Table 1: Genes most frequently included in breast (and ovarian) cancer panels and their validity and clinical utility 

 

OR: odds ratio; RR relative risk ; CLTR () cumulative lifetime risk (at age); HDGC hereditary diffuse gastric cancer; NF1 neurofibromatosis type I 

$ According to type of mutation  

* Including breast MRI and prophylactic mastectomy 

° Including prophylactic oophorectomy  

† According to guidelines on related syndrome  

In the absence of specific guidelines, surveillance should be based on family history of breast and/or ovarian cancer, regardless of genetic result. 

The clinical utility of genetic testing in relatives means that specific guidelines will be applied to carriers of the pathogenic variant and that surveillance will 

be stopped in non-carriers. 
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