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Abstract

The authenticity of tuna is now of great importaicéne multi-step food chain, from
on farm production to consumer consumption. A téeqpim based on the use of front
face fluorescence spectroscopy (FFFS) was empltyagdthenticate tuna species in
canned tuna produced at the pilot scale with surtooil medium: skipjack tuna
(Katsuwonus pelamisyellowfin tuna Thunnusalbacare$ and bigeye tunalbunnus
obesuk Tryptophan residues, aromatic amino acids andermuacids (AAA+NA),
riboflavin, nicotinamide adenine dinucleotide (NADPENd vitamin A spectra were
recorded on 232 canned tunas. When Factorial Digtaint Analysis (FDA) was
applied to the different intrinsic probes, the slfisation rates were not satisfactory.
Therefore, the first five principal components (PGkthe PCA extracted from each
intrinsic probe was pooled into a single matrix amalysed again by FDA. Correct
classification amounting to 74.6% was observed lon dalibration data sets. The
established models tested on 30 unknown commetaiaied tunas illustrated 40%
rate of mislabeling. The tuna cans labelled asja&ipspecies were 100% correctly
classified, while those labelled as yellowfin angeye tunas seemed to be adulterated
since for: i) tuna cans labelled as bigeye, skipgpecies were detected; and ii) tuna
labelled as yellowfin, bigeye, skipjack and mixtref yellowfin and skipjack and

yellowfin and bigeye were found.

Keywords: Bigeye tuna Thunnus obesis Yellowfin tuna {Thunnus albacargs
Skipjack tuna Katsuwonus pelamis),Front face fluorescence spectroscopy,

authentication, quantification, chemometric.
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1. Introduction:

Interest in fish consumption has increased in regears due to the wide range of
health benefits associated to the high polyunstedréatty acids content. Moreover,
fish presents the main source of protein in mangspaf the world. Canned fish
represents a central item of the French diet, aithapparent yearly consumption of
118,000 tons in 2015, of which canned tuna reptes#re lion's share (55.5%)
(FranceAgriMer, 2016). Among the different specmstuna, the most used in
canning industry are yellowfin tunaltfunnus albacares)bigeye tuna Thunnus
obesushnd skipjack tunakatsuwonus pelamjisin addition to brine, sunflower oil is
usually adopted as liquid medium due to both itstgutive action and low price
compared to olive oil. In fact, sunflower oil leatisisolate the product from the air
which helps to ensure a more palatable pradhaba is among the most acclaimed
fish by consumers. Nowadays, the identificatiotunia species in seafood products is
of paramount importance. Generally, canned tunapaoeluced from frozen tuna
fillets imported from different countries. This neakifficult to differentiate between
species visually, inducing some errors in the laigelof canned products. To protect
consumers from economic deception, the autherntitadf tuna species becomes
more and more important. Although, unintentionadl amtentional substitution tuna
species are strictly forbidden by EU Regulation 8/93, several studies reported
recently that canned tunas of high price such @efiol tuna could be adulterated with
cheaper ones like skipjack tuna (Sotelo et al.3201

Several methodologies have been used to authenteaned tuna. Among them,
we can cited TagMan-based gPCR (Chuang, Chen, hizb 2012; Bojolly et al.
2017), electrical properties (Etienne et al., 2080) nucleotide sequence (Paine,

McDowell, & Graves, 2007)DNA-based techniques were recently used by Sotelo e
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al., (2018) in a survey at authenticating tuna e food products sold on EU
market and a mislabelling level ranging from 50%l@9% were foundToday, the
most promising technique used for the authentinadiofood products is the profiling
approach that does not have the ability to diffea¢® between the different analytes
present in a food product but gives rapid informmtibased on the collected
information (Karoui, et al., 2006; Karoui, Downey, & BleckerQ1D; Karoui &
Blecker, 2011) Among these techniques, we can mention front fagerescence
spectroscopy (FFFS), near and mid infrared. Nowsdthe industry is looking for
these rapid analytical techniques that could bel umeline and/or at-line in the
seafood industry. For example, FFFS has laggatiedfor: i) monitoring the freshness
of different fish species (Karoui, Thomas, and RDuf@006; Hassoun and Karoui
2016), ii) discriminating between fresh and frozeawed fish (Karoui, Hassoun, &
Ethuin, 2017); additionally infrared spectroscopy has been used successfully to
differentiate between fresh and frozen thawedtfilleas (Reis et al., 2017).

Despite the numerous studies related to the useeaftroscopic technique for
the authentication of sea food products, at out keswledge, no investigation has
assessed the potential of FFFS to authentispexies in canned tundhus, the
objective of the present study was to investigdte potentiality of FFFS to
authenticate species in canned tunas produceceagpiliht scale with sunflower oil
medium with only one tuna specie (skipjadkatsuwonus pelamisyellowfin:
Thunnusalbacaresor bigeye tunaThunnusbesu¥or a binary mixture ratios varying

between 1 and 99%.

2. Materialsand methods

2.1 Canned tuna
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Two hundred and thirty-two (232) cans were prepaogdthe innovation
platform for aquatic products (Plateforme d’InneeatNouvelles Vagues (PFINV),
Boulogne sur Mer, France) using the process teolgyohpplied in the canning
industry. Entire individuals of bigeye, skipjackdagellowfin tuna originated from
Atlantic, Pacific, and Indian Oceans were idendifiaccording to morphological
characters using identification keys from the FA@e&8es Catalogue (Collette &
Nauen, 1983).

Can samples containinifpe aforementioneduna species were prepared by
PFINV using the technique applied in the canningusiry to obtainstandardised
cans. The frozen tuna fillets were thawed to a tnatpre between 0 and 2 °C. Tins
(diameter = 55 mm, 1/12 can) were filled with 8@fgflesh and sunflower oil. The
flesh has previously pre-cooked in vacuum bagsasteven 80 °C until the flesh
centre reaches 65 °C). Cans were crimpedstadisedat 116 °C to the sterilising
value of 7 min.

To imitate involuntary and voluntary rate substdos in canned tuna, tuna
cans of different mixtures of bigeye /yellowfin,gbiye /skipjack and yellowfin
/skipjack with ratios varying from 1 to 99% dble 1) were prepared. The 232 tuna
samples were used in the calibration process &bksth models. The validation of the
established models was determined on 30 commarnlaiown tuna cans that were

purchased randomly from local markets.

2.2. Fluor escence spectroscopy
The content of each canned tuna was transferted250 ml plastic beaker;
then, the tuna sample was homogenised by usingogenise(T 25 digital ULTRA-

TURRAX®, IKA) with a speed of 10000 rpm for 5 mimst according to the method
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described by Srikornkarn & Sirisomboon (2014). Appmately 3 g of the obtained
sample was poured in a 3 ml quartz cuvette anddiaence spectra were recorded
using a Fluoromax-4 spectrofluorometer (Jobin Yvdigriba, NJ, USA). The
incidence angle of the excitation radiation wasas&0° to ensure that reflected light,
scattered radiation, anddepolarisation phenomena were minimised The
spectrofluorometer was equipped with a thermostatddand the temperature was
controlled by a Haake A25 AC 200 temperature cdietro(Thermo-Scientific.
France). The emission spectra of aromatic amindsaand nucleic acids (AAA+NA),
tryptophan residues, nicotinamide adenine dinuideoi(NADH) and riboflavin
spectra were recorded with the excitation wavelenget at 250, 290, 340, 380 nm,
respectively. The excitation spectra of vitamin &re/ acquired with the emission

wavelength set at 410 nm. For each sample, 3 speetre recorded.

2.3. Mathematical treatment of data

In order to reduce scattering effects and to com@Eamples, fluorescence
spectra werenormalisedby reducing the area under each spectrum to a \aflde
according to others (Karoui, Dufour, & BaerdemaeRk@06a; Karoui, Nicolai, and de
Baerdemaeker 2008; Leriche et al. 2004). Mainlyshiét of the peak maximum and
the peak width changes in the spectra were comsideliowing thisnormalisation.

Then principal component analysis (PCA) was appbeparately to each
normalisedspectral collection. The PCA transforms the origiveriables into new
axes, or principal components (PCs). This stasibtiwultivariate treatment was earlier
used to observe similarities among different samyglk€aroui, Lefur, et al. 2007;
Karoui, Schoonheydt, et al. 2007) reducing the disien to two or three PCs, while

keeping most of the original information found hetdata sets.
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In a second step, FDA was performed on the fir&iCs resulting from the
PCA applied to each fluorophore, containing mo@ntB89% of total variance. FDA
assessed new synthetic variables called “discrimiriactors”, which were linear
combinations of the selected PCs, and allowed gerbséparation of the centres of
gravity of the considered groups. Each canned tcana,be reallocated within one of
the defined groups. For each group, the distarmore the various centres of gravity of
the groups is calculated. The canned tuna is asdigmthe group where its distance
between the centres of gravity is the shortest. gzoison of the assigned group to the
real group is an indicator of the quality of theadlimination.

Then, the first 5 PCs of the PCA performed on ezdhe five data sets were
pooled into one matrix, and this new table was @l by the FDA (Karoui et al.,
2004). The process consists of putting the PCs data of each fluorophore
fluorescence spectra one beside the other in the saatrix to take into account the
whole information collected. This concatenation rappgh helps to improve the
discrimination of the investigated cans of tunanggifferent fluorophores, as well as
to assess the ability of this technique to iderttiyy contents of tuna cans: species and
the amount of each tuna species in the case ofybimixture. The robustness of the
established model from the concatenation techngae determined on 30 unknown
commercial canned tunas.

All analyses were performed using XLSTAT 2014 (Adstift SARL USA,

New York, NY, USA) software.

3. Results and discussion

3.1. Fluorescence spectra



171 The normalised tryptophan emission spectra recordad canned tuna
172 containing 100% bigeye, 100% yellowfin, 100% skgyjaand their binary mixtures
173 with different percentages are presentedFigs. 1a, 1b and 1c. These spectra
174 exhibited maxima located ~373 nm corresponding h® maximum emission of
175 tryptophan (Karoui & Hassoun, 2017). A slight rédftsof the maximum emission of
176 tryptophan as a function of tuna species and theiture levels was noted. This shift
177 could be explained by changes in the protein-pmotprotein-lipid and/or protein-
178 water interactions, in agreement with the findingd<aroui, Dufour, et al., (2006a).
179 These hypotheseswere reinforced by the investigation of Rossi, Qeltn, &
180 Alamprese, (2001) reporting an interchange betwiesnlipid fraction and covering
181 oil that induce some modifications in the tryptoptevironment.

182 The normalised AAA+NA emission spectra recordedcanned tuna containing100%
183 bigeye, 100% yellowfin, 100% skipjack, and theirxtares at different percentages
184 are presented iRigs. 1Sa, b and c. The spectra exhibited a maximum located around
185 383 nm. It appeared that the shape of AAA+NA emisspectra was correlated with
186 the composition of tuna cans (one species or a binargure), since a shift of the
187 maximum emission of AAA+NA towards higher waveldmgivas observed for tuna
188 cans with a binary mixture regardless of the |I®@feldulteration.

189 Figs. 2a, 2b and 2c illustrate the emission spectra of NADH recorded o
190 canned tunas. Again, it appeared that the shapéA8fH emission spectra depends
191 on the composition of tuna cans. For example, treximum emission spectra
192 observed ~ 470 nm for canned tunas containing atipand Y99/B01 shifted to: i)
193 475 nm for canned tunas composed of bigeye (100&)S81/B99; ii) and to 478 nm

194 for canned tunas with Y10/S90.
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Although, the riboflavin emission spectra of canh@&uas showed a maximum
~ 470 nm, the shape of the spectra varied accorirtfhe composition of canned
tunas Figs. 3a, b and c). The variations in the fluorescence intensity70 4m could
be ascribed to the structural changes in ribofladuming sterilisation. This was in
agreement with the findings of Karoui et al., (2DI&porting that lumichrome, a
photo breakdown product from riboflavin contributesthe shape of fluorescence
spectra in the 400-500 nm range.

Figs. 4a, b and c illustrate the normalised vitamin A excitation spa
acquired on canned tunas containing bigeye, yeligvekipjack and their mixtures.
The spectra exhibited two maxima located ~ 292 28d nm varying with canned
tuna contents. A clear visual differentiation ca dbserved between canned tunas
according to their species. Indeed, different #isoence intensities (FI) ratids. K337
nmlF.l.202 nn) Were observed as a function of tuna species $iigeye, yellowfin and
skipjack canned tunas presented ratios of 0.94,dnd 1.17, respectively. This could
be explained by the difference in the moleculariremvnent of vitamin A and/or
solvent viscosity (Karoui, Dufour, & De Baerdemaek2006b). One explanation
could arise from the exchange that could be ocduretween fat and water in the fish
and the sunflower oil (Garcia-Arias et al., 1994).

From the obtained results, it appeared Bhagsz7 nF.l.202 nm ratios could be
considered as a valuable tool for differentiatirgween tuna species when used in a

binary mixture in canned tunas.

3.2 Global analysis of the fluorescence spectral data sets recorded on different

cans. concatenation technique
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3.2.1. Development of calibration models for the authentication of tuna speciesin

canned tunas

The different data sets obtained following the ®&twn and emission
wavelengths were gathered into omatrix and analysed by FDA. Indeed, each
emission and excitation wavelength used in the present studytaios specific
information. For consequent, more information onreal tunas could be obtained by
jointly analysing the different intrinsic probes.hi$ method is known as the
concatenation (Karoui et al. 2008).

The FDA was applied to the first 5 PCs resultirgrfrthe PCA performed on
each intrinsic probe containing more than 99% udlteariance. The similarity map,
defined by the discriminant factors 1 and 2 acdognfor 66.58% of the total
variance showed a clear differentiation of tunascemntaining only one species from
those made with a binary mixture of tuna speciexleéd, according to the
discriminant factor 1, which took into account 324 of the total variance, tuna cans
produced with 100% of bigeye, yellowfin and skigjapecies were observed on the
negative side, whereas the other tuna cans weageldanostly on the positive side
(Fig. 5). Overall correct classification rate amounting/th57% was obtained éble
1S). Tuna cans containing binary mixtures (S90/B10) wi€¥@% correctly classified.
Regarding canned tunas made with only one speé#4,7, 80.56 and 87.50% of
correct classification was obtained for tuna caostaning bigeye, yellowfin and
skipjack species respectively. The low percentage of correct diassion of tuna
cans containing bigeye species could be explaiyethd fact that 6 out 96 spectra
were classified as belonging to Y100, 3 spectraewassigned to Y75/B25 and 1

spectrum was ascribed to S10/B90. The obtainedtsesere in agreement with the

10
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findings obtained by Bojolly et al. (2017) and UldséBrandt, & Hiesel, (1995) who
indicated that is difficult even impossible to diféntiate between yellowfin and
bigeye tuna species, especially at juvenile stage.

Regarding tuna cans containing binary mixture adepe and yellowfin
species at different percentages, correct claasiic varying from 33.33% to 87.50%
was obtained. The worst classification was obsefeedhe Y95/B05 that could be
explained by the fact that 10 spectra were ascribédna cans containing yellowfin
at a level of 99% (7 spectra to the Y99/S01 graugp &spectra to Y99/B0O1 group).
Correct classification rates amounting to 80.00% whserved for Y90/S10 group.
When the amounts of skipjack tuna in the binarytorix were greater than 10%,
correct classifications varying from 60% to 100% evebtained Table 15).

For economic consideration, it is well-known thatlgwfin and albacore tuna
cans were considered more susceptible to adutteratihus such finding seemed to
suggest that FFFS could be used as a promisingfdoakipjack tuna detection in
yellowfin and albacore tunas. The obtained ressliggested that the methodology
consisting in coupling fluorescence data sets intiable allowed more exhaustive

identification of tuna species especially when usea binary mixture.

3.2.2. Evaluation of the ability of the established model for the authentication
and quantification of commercial tuna cans

The established modealbtained on experimental tuna cans produced by
PFINV with known tuna species was tested on 30 edrniunas purchased from local
supermarket in France and labelled as bigeye (mr=l0), yellowfin tuna(n =10)

and skipjack tunén =10).

11



268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

201

292

The obtained results indicated that 40% of tuna samples were mislabelled. The
tuna cans labelled as skipjack tuna were complet#00%) correctly classified
(Table 1b), in agreement with the findings of Bojolly et #017) who by using
gPCR method succeeded to differentiate 100% skipjaca cans from bigeye and
yellowfin tuna cans. In our study, tuna cans lazklas bigeye were 70% correctly
classified, with 3 out 10 tuna cans were ascrileeskipjack tuna samples. The worst
classification was obtained for tuna cans labelisdyellowfin, since only10% of
correct classification was observed: 15 spectrawkxssified as belonging to bigeye,
7 spectra to Y75/S25 group, 4 spectra to skipjak aspectrum as Y75/B25 group.
From the obtained results, it could be concludedptesence of different species in
tuna cans labelled as yellowfin and bigeye tunasistabeling during the production

and processing, which the tuna canning industryldvbave to address.

4. Conclusion

Front face fluorescence spectroscopy (FFFS) aloily @hemometric tools
(PCA and FDA) has demonstrated its ability to aotivate skipjack tuna
(Katsuwonus pelamisyellowfin tuna Thunnus albacaresgnd bigeye tunalbunnus
obesus}hat are the most species commonly used in canmest The application of
FDA to the concatenated intrinsic probes appeacetiet a valuable technique to
authenticate tuna species. A complete (100%) afecbrclassification was observed
for skipjack tuna. The canned tunas labelled aswéh and bigeye were found to be
misclassified indicating error labelling for thesea species. The obtained results
suggest thaFFFScould be considered as a rapid and non-destrustixeening tool
to authenticate canned tunas. The technique cauldsbd as on line screening tool

for the authentication of canned tuna.

12
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Figure 1S: Normalised aromatic amino acids and nucleic achl8A+NA) fluorescence
spectra scanned oa)( tuna cans containing 100% bigeye species, 108#6wfin species and
a binary mixture of bigeye and yellowfin speciegshmiifferent percentaged) tuna cans
containing 100% yellowfin species, 100% skipjacka@es and a binary mixture of yellowfin
and skipjack species with different percenta@gsuna cans containing 100% skipjack species,
100% bigeye species and a binary mixture of skipjand bigeye species with different
percentages

Notes:

- The first letter is related to tuna species: Byd/e; S: Skipjack and Y: Yellowfin.

- The two numbers represent the percentage ofdpeaies in canned tuna

- The three numbers (100 %) indicated that canned s produced with only 1 species

Figure 1. Normalised tryptophan fluorescence spectra recome@): tuna cans containing
100% bigeye species, 100% yellowfin species antharyp mixture of bigeye and yellowfin
species with different percentagds funa cans containing 100% yellowfin species, 100%
skipjack species and binary mixture of yellowfindaskipjack species with different
percentagefc) tuna cans containing 100% skipjack species, 1bigfgye species and a binary
mixture of skipjack and bigeye species with différpercentages

Notes:

- The first letter is related to tuna species: By#/e; S: Skipjack and Y: Yellowfin.

- The two numbers represent the percentage ofs¢peaies in canned tuna

- The three numbers (100 %) indicated that canoed is produced with only 1 species

Figure 2: Normalised NADH fluorescence spectra recordedayntyna cans containing 100%
bigeye species, 100% yellowfin species and a bingirgure of bigeye and yellowfin species
with different percentaged) tuna cans containing 100% yellowfin species, 108pjack
species and a binary mixture of yellowfin and skij species with different percentageks
tuna cans containing 100% skipjack species, 100§éyei species and a binary mixture of
skipjack and bigeye species with different percgesa

Notes:

- The first letter is related to tuna species: Byd/e; S: Skipjack and Y: Yellowfin.

- The two numbers represent the percentage ofdpeaies in canned tuna

- The three numbers (100 %) indicated that canned s produced with only 1 species

Figure 3: Normalised riboflavin fluorescence spectra recordad@): tuna cans containing
100% bigeye species, 100% yellowfin species anthary mixture of bigeye and yellowfin
species with different percentagds tuna cans containing 100% yellowfin species, 100%
skipjack species and a binary mixture of yellowand skipjack species with different
percentagef) tuna cans containing 100% skipjack species, 1bigfgye species and a binary
mixture of skipjack and bigeye species with différpercentages

Notes:

- The first letter is related to tuna species: By#/e; S: Skipjack and Y: Yellowfin.

- The two numbers represent the percentage ofs¢peaies in canned tuna

- The three numbers (100 %) indicated that canoed is produced with only 1 species
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Figure 4: Normalised vitamin A fluorescence spectra recorded@): tuna cans containing
100% bigeye species, 100% yellowfin species anthary mixture of bigeye and yellowfin
species with different percentagds tuna cans containing 100% yellowfin species, 100%
skipjack species and a binary mixture of yellowand skipjack species with different
percentagef) tuna cans containing 100% skipjack species, 1bigfgye species and a binary
mixture of skipjack and bigeye species with différpercentages

Notes:

- The first letter is related to tuna species: By#/e; S: Skipjack and Y: Yellowfin

- The two numbers represent the percentage ofg¢peaies in canned tuna

- The three numbers (100 %) indicated that canned s produced with only 1 species

Figure 5: Similarity map of the factorial discriminant ansity (FDA) determined by
discriminant factors 1 (DF1) and 2 (DF2), applied the 25 concatenated PCs which
correspond to the first 5 PCs of the PCA performedromatic amino acids and nucleic acids
(AAA+NA), tryptophan, NADH, riboflavin and vitamiA fluorescence spectra recorded on
tuna cans containing: 100% bigeye speci®s 100% yellowfin speciesd], 100% skipjack
species @), a binary mixture of skipjack and bigeye specigth different percentage@) a
binary mixture of yellowfin and bigeye species widiiferent percentages (-) and a binary
mixture of vyellowfin and skipjack species with @ifent percentages X].
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Table la:
Composition of canned tuna code number of cans
100% of yellowfin tuna Y 100 24
100% of Skipjack tuna S100 48
100% of Bigeye tuna B100 32
99% of yellowfin tunaand 01% of bigeye tuna Y99/B01 8
95% of yellowfin tunaand 05% of bigeye tuna Y 95/B05 8
90% of yellowfin tunaand 10% of bigeye tuna Y90/B10 8
75% of yellowfin tunaand 25% of bigeye tuna Y75/B25 8
50% of yellowfin tunaand 50% of bigeye tuna Y50/B50 8
99% of yellowfin tunaand 01% of skipjack tuna Y 99/S01 8
95% of yellowfin tunaand 05% of skipjack tuna Y 95/S05 8
90% of yellowfin tunaand 10% of skipjack tuna Y 90/S10 5
75% of yellowfin tunaand 25% of skipjack tuna Y 75/S25 8
50% of yellowfin tunaand 50% of skipjack tuna Y 50/S50 10
10% of yellowfin tunaand 90% of skipjack tuna Y 10/S90 5
90% of skipjack tunaand 10% of bigeye tuna S90/B10 5
50% of skipjack tuna and 50% of bigeye tuna S50/B50 10
25% of skipjack tuna and 75% of bigeye tuna S25/B75 8
10% of skipjack tuna and 90% of bigeye tuna S10/B90 5
05% of skipjack tuna and 95% of bigeye tuna S05/B95 8
01% of skipjack tuna and 99% of bigeye tuna S01/B99 8
Total 232




ol

6

10
11

Table 1b

% of Correct

Commercial tuna cans Prediction e
classification
15 spectra belonging to bigeye
7 spectra belonging to Y 75/S25
Y ellowfin (n=10) 4 spectra belonging to skipjack 10
3 spectra belonging to yellowfin
1 spectra belonging to Y 75/B25
, _ 21 spectra belonging to bigeye
a 9 spectra bel onging to skipjac

Bigeye (n =10) bel &« K 70

Skipjack (n =10) 30 spectra belonging to skipjack 100

Total 90 60






