Bertrand Tondu 
email: bertrand.tondu@insa-toulouse.fr
  
Towards a theory of actuators: A new classification proposal for actuation systems

Keywords: actuator modeling, flexible actuator, artificial muscle, antagonism

A general actuator definition is proposed, which characterizes the actuator by a force function with two positive components: a motor-component and a resistive-component.

For a constant input value, a stable equilibrium can result under the form of an output which can have the dimension of an acceleration, a velocity or a position, thus giving the actuator its corresponding type. We also introduce a concept of type transformation from acceleration or velocity-type to velocity or position-type. Such possibility of actuator transformation leads us, on the one hand, to propose original interpretations of different technical devices, like a weight-driven clock or a lock, understood as position-type actuators, or an hourglass, understood as velocity-type actuator; and, on the other hand, to distinguish, among the relatively recent class of position-type actuators, these resulting from a transformation of type, like the so-called elastic actuators, from those for which stable open-loop positioning results from opposing force tendencies inside the materials constituting the actuator. We also emphasize the role of a biomimetic antagonism principle for defining multiple inputs-multiple outputs position-type actuators.

Introduction

Actuation is, generally, defined as a "process of conversion of energy to mechanical form"( [START_REF] Hannaford | Actuator Properties and Movement Control: Biological and Technological Models[END_REF], page 101) and, as a consequence, actuators are classified according their energy supply. The development, in the last decades, of artificial muscles, elastic and soft actuators considerably enlarged the actuation technologies. We think that it could be relevant to develop a new approach for classifying classic technologies as well as recent ones. Rather than based on their energy mode, we would like to propose a theoretical framework for 2 characterizing actuators in a systemic point of view, by means of the choice of inputs and outputs, with respect to which their working is stable. In a previous study about the artificial muscle concept, we already proposed a general definition of the artificial muscle as an actuation system which is naturally stable in open-loop with respect to a position-like output [START_REF] Tondu | What is an Artificial Muscle? A Systemic approach[END_REF]. This is, in some way, an extent of this analysis we attempt to develop in this article. Our paper is organized as follows: in a first section, we propose this new typology before, in a second section, to show how the type of an actuator can be modified by some additive structure embedded into the actuation system; in a last part, we apply this approach to the interpretation of rubber made position-type actuators which constitute a promising class of new actuators.

Proposed typology of actuation systems 1.Acceleration, velocity and position-type actuators

In his attempt to classify actuators, Holmes [START_REF] Holmes | The Characteristics of Mechanical Engineering Systems[END_REF] distinguishes four types, according the shape of the torque-velocity characteristic: a first type whose torque-velocity characteristic has a bell-shape shown in Fig. 1.a (number 1) with, as an example, the internal combustion engine, while the induction motor and its typical convex shape shown in Fig. 1.a (number 2) is an example of class 2, and the DC-separately excited motor and the DC-series motor with their straight-line characteristics are respective examples of types 3 and 4. In their re-reading of Holmes' classification for actuation systems, Hannaford and Winter [START_REF] Hannaford | Actuator Properties and Movement Control: Biological and Technological Models[END_REF] propose to gather these two last types into a single one with two sub-types numbered, respectively, 3a and 3b on Fig. 1.a. But, because Winter and Hannaford address a comparison between skeletal muscle and technological actuators, they are tempted to consider a force-velocity characteristic, peculiar to skeletal muscle, to be compared with torque-velocity characteristics of classic actuators. The so-called Hill's equation relating the maximum contraction velocity to a given load, lifted by the muscle, is generally written as follows ( [START_REF] Hill | The heat of shortening and the dynamic constants of muscle[END_REF], page 161):
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where 'm' represents the load, v is the resulting maximum velocity and a, b are positive constants. Although simple, this relationship is particularly powerful for characterizing the dynamic behavior of skeletal muscle. If we consider that the velocity v is equal to zero for a load corresponding to the maximum isometric force produced by the muscle, noted F max , and that the velocity v is equal to a maximum value v max when no load is attached to the muscle i.e. mg = 0, we deduce: max max / F av b 

. The following normalized form of Hill's equation results:
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where now the "force" F represents the load 'mg' and (a/F max ) is a coefficient responsible for the curvature of the concave shape of the corresponding Hill's curve (see Fig. 2). The hyperbolic Hill's relationship can so be interpreted as a characteristic force versus velocity.

By comparison with other actuators, Hill's curve is considered as a fourth type completing the three previous ones, exhibiting the originality of its concave shape (number 4 on Fig. 1.a).

Furthermore, in their rereading of Holmes' classification, Hannaford and Winter propose to use the terminology of Paynter who distinguishes four variableseffort, momentum, flow and displacement -"as the variables of state with which the dynamical or energetic condition of any physical state-determined system may be determined" ( [START_REF] Paynter | Analysis and Design of Engineering Systems[END_REF], page 136). According to this terminology, Fig. 1.a corresponds to a graph effort, as a generalized force, versus flow, as a generalized velocity.

Although elegant, this integration of Hill's curve into Holmes' classification is questionable. Let us consider, for example, the case of a DC-electric motor whose generated torque T is given by the following simplified model:
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where  is the speed of the rotor, U is the voltage control and t K , v K and R, are constants.

This relationship corresponds to the straight-line curve of type 3a on Fig. 1.a. In the two cases of electric motor and skeletal muscle, the flow is clearly an output velocity; but the effort is a torque generated by the actuator in the electric motor case, while it is a resistive force in the case of the skeletal muscle, which is not in accordance with Paynter's thought for whom effort is an active force (see, for example, figure 45 [START_REF] Paynter | Analysis and Design of Engineering Systems[END_REF] where the effort is represented by a pushing force). In fact, in conjunction with effort-flow characteristics, Hannaford and Winter also consider effort-displacement characteristics, especially for dealing with the so-called tension-length curve of the skeletal muscle which, by comparison with Hill's curve, gives the static force really produced by the muscle in relation with position (see Fig. 2). In the case of the skeletal muscle, as also for artificial muscles considered by Winter and Hannaford, the effort-displacement characteristic seems to be a more relevant way for characterizing the actuator than the effort-flow characteristic.

For attempting to clarify this classification of actuators, including skeletal muscle and its biomimetic replicas, we propose to associate to any actuator only one control characteristic relating a privileged output, which can be a position, velocity, or acceleration to the input control of the actuator. This looked input-output relationship corresponds to the actuator equilibrium states, derived from the actuator modeling. For example, in the case of a DCelectric motor, the torque-velocity characteristic of Equ. (3) leads to the steady-state velocity

 equ versus voltage U static relationship: U K v equ ) / 1 (  
, meaning that, for any given voltage U in some admissible range, an equilibrium velocity results when T is equal to zero.

No such input-output relationship can be deduced from Hill's curve because v in Equ. [START_REF] Tondu | What is an Artificial Muscle? A Systemic approach[END_REF] has not the meaning of a possible equilibrium velocity resulting from a constant value of neural activation: this is in practice the maximum velocity reached when lifting the load 'mg'.

According to our approach, the skeletal muscle is, in fact, first characterized by its static tension-length relationship. Let us consider the linear static model proposed by Hogan [START_REF] Hogan | Adaptive Control of Mechanical Impedance by Coactivation of Antagonist Muscles[END_REF], illustrated in Fig. 2, in which length is represented by a contraction ratio in order to get the same positive conventional direction for force F and displacement , written as follows :
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where max F is the maximum contraction force obtained for the normalized u-neural activation equal to 1( 1 0    ) and max  is the maximum contraction ratio corresponding to a force F equal to zero. In this case, the control characteristic is limited to a single equilibrium point:
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It is worthy to note that our approach is systemic in the sense that the actuator is considered both as a physical device but also as a system with its chosen inputs and outputs.

According to our approach, the skeletal muscle, controlled by neural activation, will be said a position-type actuator since its equilibrium point has the dimension of a position, while the DC-electric motor, controlled in voltage, will be said a velocity-type actuator characterized by a velocity versus voltage control characteristic; but the same DC-motor, controlled in current, generates a torque T as follows:
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If internal viscous force is negligible, its resulting steady state is, as a consequence, no more a velocity but an acceleration given by :
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, where rotor J is the inertia of the rotor. The DC-electric motor will be said an acceleration-type actuator when it is controlled in current.

In a general way, let us characterize any actuator by a model of its force/torque F we propose to call force function and we write as follows:
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where

R M F
F , are positive functions of input I and output O -real or vectors -and, eventually, of some of their derivatives
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. The term M F represents the motor- component of the actuator, while the term R F represents its resistive-component. In the case of an acceleration-type actuator, this resistive-component is the own inertia of the actuator while, in the case of velocity and position-type actuators, it respectively gathers velocity or position-depending forces internal to the actuator. For any equilibrium point, eventual derivatives are equal to zero and the following control characteristic results:
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We propose to define the type of the actuator by the choice of some output making possible the control characteristic of Equ. [START_REF] De L'horlogerie | Once upon the time[END_REF]. The general actuator expression of Equ. [START_REF] Hogan | Adaptive Control of Mechanical Impedance by Coactivation of Antagonist Muscles[END_REF] does not a priori include the resistive forces external to the actuator. It is supposed that such eventual external resistive forces are in accordance with the actuator-type i.e. the external resistive force does not modify the type of the actuator but only modifies the range of equilibrium states. For example, an internal-combustion engine is, according to our classification a velocity-type actuator because, as claimed by Holmes, "the torque reaches a maximum and afterwards decreases more and more rapidly as the speed increases due to increasing friction losses and to less complete filling of the cylinders" (page 3, [START_REF] Holmes | The Characteristics of Mechanical Engineering Systems[END_REF]). An equilibrium point results which is constantly modified when the automobile is travelling along a road due to wind and road surface resistance, as illustrated in Fig. 1.b. In the case of the skeletal muscle, a load can be responsible of a modification of the equilibrium point; by using the model of Equ. (4), with a load 'mg' to be lifted, we derive the new equilibrium point: The relationship of Equ. [START_REF] De L'horlogerie | Once upon the time[END_REF] is not able to distinguish stable from unstable equilibrium states. In accordance with a convention associating positive force/torque to positive output variable, any stable equilibrium corresponds to a negative slope of force/torque when it intersects the output-variable, as illustrated in Fig. 3: for constant inputs, when the actuator is put in some equilibrium point, a positive O-deviation of its output induces a negative Freturn force-torque towards the equilibrium position. Because our approach is essentially based on the stability concept, we do not attempt to classify actuators according to the shape of their force/torque characteristic. Convex and concave curves of corresponding static forcetorque output characteristics can, however, find an original interpretation in our approach: for a given constant I-input, a convex F(I=cst, O) characteristic naturally leads to a single O(I) stable equilibrium points, while a concave F(I=cst, O) characteristic can lead to two equilibrium points, whose one is unstable, as illustrated in Fig. 3; we will see in section 3 that such situation can occur in the case of thin-walled pressurized rubber tubes. We also have to emphasize that, in the case of acceleration and velocity-type actuators, the considered stability is always an asymptotic stability, while in the case of position-type actuators, stability can be asymptotic or oscillating. However, due to unavoidable internal friction forces, the actuator stability is, in practice, always asymptotic.

Actuators can be designed either for working in a continuous way or in a discontinuous way. Let us analyze how such distinction can be interpreted in our systemic approach.

Continuous and step-by-step actuators

Let us leave aside the classic case of the step-by-step electric DC-motor for considering a more exotic example: a so-called weight driven clock characterized by its falling weight and its escapement device, as illustrated in Fig. 4.a. A falling weight m can be interpreted, according to our approach, as an acceleration-type actuator whose force function is simply given by: 

m mg F  
, where  is the acceleration-output, assuming that any other resistance is negligible, as illustrated in Fig. 4.b. As a consequence, a sole stable equilibrium state results:  =g, without the need of any input. In the case of a weight-driven clock, this falling is stopped every T period -time, during the same time-period, before falling again by means of what is called, in watch-making technology, an escapement combined with its "foliot" playing the role of a timing control. It is then possible, in accordance with our approach, to draw a new force-velocity characteristic where the motor component is always 'mg' and the resistive component is also equal to 'mg' at each stop imposed by the escapement: an equilibrium state in velocity results, equal to 'gT period ', as illustrated in Fig. 4.b. This equilibrium state is stable since stopping the mass falling and then releasing it does not prevent its working again. The antique weight-driven clock can then be interpreted like a step-by-step velocity-type actuator, as the step-by-step electric motor is clearly, according to our typology, a position-type actuator.

It also can be said that such step-by-step actuators appear to be able to transform a given output dimension into another one: acceleration into velocity, in the case of the weightdriven clock, velocity into position, in the case of the step-by-step electric motor. Let us now analyze how such transformation of actuator-type can be generalized to the class of continuous actuators.

Type-transformation of an actuator

The idea of such actuator-type transformation is very simple: because any actuator was defined by its stability nature, the nature of this stability can be "increased" by means of a moderator 1 either from acceleration to velocity or position, or from velocity to position, as illustrated in Fig. 5. Such a moderator is supposed to keep the open-loop character of the actuator and cannot so be a feedback process requiring a sensor. The moderator is part of the new actuation system, as in the case of the escapement of the weight-driven clock. Other weight driven actuators can be considered: in the case of a lock, the water mass is responsible for the boat lifting or descending. Let us consider the situation of Fig. 6.a. The boat is inside the lock with closed doors: initially, it was downstream at a height noted h down and must be lifted upstream at a height noted h up . When the valve between the lock and the upper part of the channel is 1 The term moderator is borrowed from an old and forgotten paper by Siemens [START_REF] Siemens | On Uniform Rotation[END_REF] to which Maxwell refers in his famous paper 'On Governors' [START_REF] Maxwell | On Governors[END_REF] as an instrument by means of which "the resistance is increased by a quantity depending on the velocity" ( [START_REF] Maxwell | On Governors[END_REF], page 271). The moderator is here used in some enlarged meaning of a resistance depending either on velocity or position, independently, however, of any feedback considerationsee also the analysis proposed by Mayr [START_REF] Mayr | Maxwell and the Origins of Cybernetics[END_REF].

closed, the weight of the boat is balanced with Archimedes's thrust, but when it is opened, the supplementary force F applied to the boat can be estimated as following:
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where  is the water density, S is the pipe section and h is the current height of the lock's basin. This force can be interpreted, in our framework, as a force function whose motorcomponent is equal to The hourglass, shown in Fig. 6.b, offers another interesting situation: the moderator is still a pipe, limited to the narrow passage between the upper and lower parts of the hourglass, for guiding the material flow but, according to Beverloo's law [START_REF] Beverloo | The Flow of Granular Material through Orifices[END_REF], it is known that, contrary to fluids, when a silo is discharged by gravity, the flow rate does not depend on the height of the granular layer and is approximatively constant.The resistive force, which is now proportional to velocity, leads to classify the hourglass as a velocity-type actuator.

This type transformation of actuators can also be applied to the interpretation of recent so-called elastic actuators. Elastic actuators are generally classified into series (SEA) and parallel (PEA) actuators. It is clear that an elastic parallel actuator can be viewed, according to our approach, as a force generator moderated by a spring-like element. Using the notations of Fig. 7.a, we get indeed: [START_REF] Mayr | Maxwell and the Origins of Cybernetics[END_REF] where F is the force function of the actuator composed of its motor component F M , and its resistive component F S proportional to the output-position x, supposed to be equal to zero when the spring, of stiffness K S , is at rest. Whatever the nature of the motor component, the spring in parallel makes this PEA a position-type actuator, eventually combined with a viscous damping for given to the actuator asymptotic stability. In the case of a SEA, as theorized by Pratt and Williamson [START_REF] Pratt | Series Elastic Actuators[END_REF], the dynamic equation of the actuator is given, using notations of Fig. 7.b, by:
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where m M and x M are, respectively, the mass and the position of motor M. Moreover, the relationship relating the actuator-force F to its output x-position is simply given by:
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In accordance with our actuator classification, Equ. ( 12) can be interpreted as follows: as in the case of a PEA, the spring gives its position-type to the actuator but the motor-component is now given by the term A velocity or position-type actuator can result from a type-transformation, as we have tried to illustrate, but it is important to note that actuators can be intrinsically velocity or position-type actuators if their motor-component cannot be separated from their resistivecomponent, as in the case of the electric DC-motor; but also in the case of some rubber-made actuators we propose now to analyze due to the original and promising category of humanfriendly actuators that they constitute.

Rubber-made position-type actuators

In his seminal paper reporting one of the first experiment highlighting the possibility for a polymeric artificial muscle, made of a gel filament, to contract reversibly by means of acid and base solutions, Katchalski claims that "the equilibrium swelling of the polymeric acid gels is brought about by two opposing tendency: [on the one hand], the solution tendency of the polymeric molecules and the osmotic pressure of the cations of the alkali bound by the gel, [on the other hand], the caoutchouc-type contraction tendency of the stretched polymer molecules" ( [START_REF] Katchalsky | Rapid swelling and deswelling of reversible gels of polymeric acids by ionization[END_REF], page 320). In some way, all polymeric artificial muscles derive benefit from the possibility of stretching the molecular network while an opposed tendency works for giving a stable equilibrium to the stimulated system, making them position-type actuators. We voluntarily limit our analysis in this section to some rubber-made actuators because it is relatively easy to propose simple models for illustrating our purpose.

Artificial muscles and extensible actuators

Let us start by considering the case of a rubber-made inflatable thin-walled cylindrical vessel. Let us note, respectively,  1 ,  2 ,  3 , the radial, longitudinal and thickness stresses, and  1 ,  2 ,  3 , the corresponding radial, longitudinal and thickness strains, defined as:  1 =r/r 0 ,  2 =l/l 0 ,  3 =t/t 0 where l 0 , r 0 , t 0 are, respectively, the initial length, radius and thickness of the cylinder, while l, r, t correspond to current length, radius and thickness. In the case of a thinwalled pressurized cylinder, it is well known that :
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, where P is the inflation pressure. In his famous book about physics of rubber elasticity, Treloar developed a theory of the elasticity of a molecular network, based on statistical considerations, leading to characterize the relationships between stress and strain by the following equations ( [START_REF] Treloar | The Physics of Rubber Elasticity[END_REF], page 67):
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where G is the shear modulus of the considered rubber. Johnson and Soden [START_REF] Johnson | The Discharge Characteristics of Confined Rubber Cylinders[END_REF] were among the first to study the behavior of inflated pressure vessels and to show how they radially and longitudinally extend. Inspired by their work, we propose to determine the corresponding pushing force of the inflated cylinder. By using the relationship:
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  and the incompressibility assumption of the rubber cylinder :
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, we deduce the following relationship between longitudinal and radial strains :
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If we privilege, as a position-variable, the strain 2  of the cylinder, the actuator force can be written as follows:
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and so, we deduce:
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This force function is drawn in Fig. 8.a : it has the typical concave shape considered in Fig. 3 exhibiting no equilibrium position if the pressure P is greater than a P Slim -value, or exhibiting both unstable and stable equilibrium points if the pressure P is less than this limit. The value of P Slim defining the actuator functioning range depends both of ) / ( 0 0 r t and G, and may be weak: for a ) / ( 0 0 r t -ratio equal to 0.1 and a typical G=5daN/cm 2 , we get: P Slim bar 6 . 0 

. But if we now consider that the cylinder is radially constrained in order that its inner radius r is constant and equal to its initial value 0 r , i.e. 1 1   , we get:
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which is almost linear as illustrated in Fig. 8.a. The corresponding following control characteristic is deduced:
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drawn in Fig. 8.b. The actuator is now stable in a control P-range only limited by the rupture pressure resulting from an excessive strain. Such pressurized tube, considered as an actuator, is clearly intrinsically a position-type actuator in which the F M motor-component results from pressure forces, while the F R resistive-component results from elastic forces inside the rubber cylinder. The case of the free extensible cylinder is more complex: according to our stabilitybased approach of actuation systems, it is a position-type actuator for a control pressure below P Slim but beyond it loses its actuator nature and is set on a course to destroy it by explosion.

By opposition with this first analysis, we would like to show that most of pneumatic artificial muscles derive benefit from instability in position of unconstrained rubber-made pressurized cylinders, or of other inflatable hyperelastic bladders with axial symmetry: by means of a surrounding guiding structure, they can indeed be transformed into position-type actuators. The McKibben muscle, with its double helix braided sleeve, is without any doubt one of the most typical structure realizing such actuation process. A purely cylindrical

McKibben muscle generates a contraction force given by the following equation:
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see [START_REF] Tondu | Theory of an artificial Pneumatic Muscle and Application to the Modeling of McKibben Artificial Muscle[END_REF] for the definition of parameters l 0 , r 0 ,  where P is the control pressure and  is the contraction ratiothat corresponds, by comparison with the previous considered 2
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.The expression given in Equ. ( 19) can be rewritten by splitting it into a positive component minus a negative component whatever the contraction-ratio , as follows:

  ) 2 ( ) 1 ( ) ( ) , ( 2 2 0 b a a P r P F         (20)
The first positive component can be interpreted as the actuator motor-component while the second one represents the resistive-component. Such non-conventional writing of the McKibben static force exhibits the real originality of this actuator whose resistive force is not a spring or an elastic-type term but results from the pantograph-type structure of the double helix braided sleeve 2 . In fact, no elastic forces are here to be taken into account because they appear to be negligible by comparison with other pressure forces.

From the static force function of the McKibben muscle, drawn in Fig. 9.a, it is clear that there is only one stable equilibrium point corresponding to the maximum contraction: notable analogous device, are particularly well made for working in gravity field but also in antagonism as we are going to attempt to show it in next section.

Antagonism as an extension principle towards MIMO-actuators

In the framework of our attempt to develop a systemic theory of actuators, antagonism consists to put in opposition the effects of two or more actuators of the same type for defining a new actuator. The force function F of the new actuator resulting from the placing into antagonism of two single actuators will be defined by the following relationshipfor simplification reasons, derivatives are not written: 

In the case of a negative antagonism, the corresponding force function is given by: 
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Antagonism principle is particularly relevant for deriving from single SISO-actuators

what can be called a MIMO-actuator. Let us start by considering artificial muscles which contract according to an axial movement like the skeletal muscle does: the functions f and g can be used for modeling points of attachment of artificial muscles to the links (see, for example, our design of a human elbow-like actuation system [START_REF] Tondu | Single Linear Integral Action Control for Closed-Loop Positioning of a Biomimetic Actuator with Artificial Muscles[END_REF]; in a more simple way, functions f and g can be equal to the wheel radius of a chain-pulley system linking the two artificial muscles, as shown in Fig. 10.a. Let us consider that the two artificial muscles are identical cylindrical pneumatic McKibben muscles, as previously modeled: in the initial state, due to the assumed non-extensibility of artificial muscle, the two muscles are both inflated with a P 0 -pressuretypically P 0 =P max /2 where P max is the maximal working pressureand contracted with a  0 -contractioin ratiotypically  0 = max /2 (see Fig. 1.a). The two artificial muscles are independently controlled by two pressure variations P 1 , P 2 in such a way that the pressure inside the first muscle is equal to P 1 =P 0 +P 1 and the pressure inside the second muscle is equal to P 2 =P 0 +P 2 ; the following constraints must be considered: 
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where R is the pulley radius,  is the actuator angle counted positively according to the convention of Fig. 10.a and  1 ,  2 are, respectively, the contraction ratios of muscle 1 and muscle 2 defined according to the two relationships (see Fig. 10.b):
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It is worthy to note that each artificial muscle can be agonist or antagonist according to the fact that its contraction force is greater than this of the other muscle; as a consequence, we get:

(F a , F t ) = (F 1 , F 2 ) if P 1 >P 2 and (F a , F t ) = (F 2 , F 1 ) if P 2 >P 1 .
At the equilibrium point, T=0; we deduce the following expression for  versus the sum and the difference of control pressures  :
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drawn in Fig. 10.d. The considered actuator is so a MIMO-actuator whose inputs can be ) ( Negative antagonism can be illustrated in the case of extensible position-actuators, as the one considered in Fig. 11.a, directly inspired by the work of Suzumori and his colleagues [START_REF] Suzumori | Applying a Flexible Microactuator to Robotic Mechanisms[END_REF]: the already considered thin-walled pressurized cylinder, with a constant imposed internal radius, is now divided into two internal chambers with pressures respectively equal to P 1 and P 2 . If we assume that the tube is closed at its upper tip, it lengthens when 2 1 P P  and lengthens and bends when 2 1 P P  . Because our purpose, in the framework of this article, consists to put into light concepts rather than to check experimental data, we will consider that the two chambers are separated by a flexible wall without thicknesssee our recent paper [START_REF] Tondu | Inflatable Actuators: An Attempt for a common Approach based on Treloar's Rubber Elasticity Theory[END_REF] for a more advanced attempt of realistic modeling of this actuator. Moreover, we will assume, as verified by Suzumori et al., that the actuator bends according to a circular shape.

In accordance with the notations of Fig. 11.b, O tip is the center of the tube tip, O i is the center of the chamber i (i=1, 2), l i is the current length of chamber i measured at point O i while initial length of each chamber is equal to l 0 , and t i is the current thickness of chamber i while t 0 is its initial thickness. Let us call i 2  and i 3  , respectively, the longitudinal and thickness strains of each half cylinder defined as follows:

0 2 / l l i i   , 0 3 / t t i i   (i=1, 2)
. Since the radius of the cylinder is constant, we have:

1 3 2  i i   (i=1, 2
). The bending of the actuator is characterized by the -angle, as defined in Fig. 11.c which, by definition, can be always counted positive. As a consequence, we have to impose: P 1 >P 2 and so 22 [START_REF] Rosenthal | Multiple-degrees of freedom electroelastomer roll actuators[END_REF] 

  

. Because the lateral pressure forces produce no torque due to the fact that, in each chamber, the lateral force against the internal half-cylinder is equal in module to the force against the middle wall, the actuator torque T is so given by:

) , ( ) ( ) , ( ) ( 22 2 21 1     P F R P F R T     (31) where: ) , ( 2i i P F 
 , (i=1, 2) is the pushing force produced by chamber i, that we will model according to Equ. [START_REF] Tondu | Single Linear Integral Action Control for Closed-Loop Positioning of a Biomimetic Actuator with Artificial Muscles[END_REF],  is the distance from O tip to O i known to be equal to: From Fig. 11.c, we get:

          ) ( ) ( 2 1      R l R l R l (32)
where l is the current length of the tube measured along its axis. We so deduce:

       ) 2 /( ) ( 2 / ) ( 2 1 2 1   l l l l l (33)
We can now specify the functions f and g of our actuator : 

           ) /( 2 ] [ ) , ( ) /( 2 ] [ ) , ( 22 
            R g R f (34) Furthermore, since ) , ( 2i i P F
 is always positive, the equilibrium state of the actuator imposes:

0 ) , ( 2 
 i i P F  for i=1,2.
Because radial and longitudinal strains are the same for an idealized half thin-walled pressurized cylinder and a thin-walled pressurized cylinder, Equ. ( 18) can be directly applied to our problem, as follows:

          4 2 2 0 0 1 1 2 i i i Gt r P   , i =1, 2 (35) 
It is hard to deduce, in a formal way, an inverse model ) , ( ) , ( 35), but it is interesting to note that, as soon as the term

4 2 / 1 i  (i=1,
2) can be neglected with respect to 1, we get the following linear system: obtained by separating sectors to be put under electric tension [START_REF] Rosenthal | Multiple-degrees of freedom electroelastomer roll actuators[END_REF] or, more recently, by using independent elastomer sheets for defining a six degrees of freedom actuator [START_REF] Wang | Elastic Cube Actuator with Six Degrees of Freedom[END_REF] according to the principle illustrated on Fig. 12.

           ) ( 16 3 

Conclusion and discussion

We proposed a new theoretical approach for characterizing actuators from a force function with two positive terms: a motor-component and a resistive-component whose equality, for given inputs and outputs, determines the actuator type. Both components are internal to the actuator: the inertia of actuator mobile parts in the case of an acceleration-type actuator, internal velocity or position-dependent factors in the respective cases of velocity and position-type actuators. Finally, what could be the relevance of such theoretical approach?

First, we think that our approach makes possible the comparison of technical objects so different than a weight-driven clock and a DC-motor: in both cases, in accordance with our typology, those devices are interpreted as velocity-type actuators whose velocity stability results from an internal velocity-dependent process, the escapement and its "foliot" in the case of the weight-driven clock, the counter-electromotive force in the case of the DC-motor.

Because we propose to define any actuator as a stable device in open-loop with respect to a privileged output, we are so led to determine the actuator own process which is responsible for its stability in velocity or in position. This looked moderation process can be inherent to the physics of the actuation as for the DC-motor or the inflated rubber tube, under certain conditions, but it also can be an additive device transforming an acceleration or velocity-type actuator into another velocity or position-type actuator. We interpret in this way the escapement and "foliot"-system of the weight-driven clock, but also the spring of recent elastic actuators added in series or in parallel to a DC-electric motor. It is important to note that such actuation-type transformation cannot be performed by a classic feedback control because our approach considers that any external sensor cannot be a part of the actuator: as a consequence, the stability of the actuator is maintained whatever the external conditions imposed to it. For example, skeletal muscle, considered as a position-type actuator, is locally controlled in open-loop by the CNSi.e. no muscular or joint sensor sends to the CNS any numerical value of muscle length or joint position, and this could be interpreted, according to a Darwinian point of view, as a better solution than an accurate numerical closed-loop control:

animal joints are indeed direct driven by skeletal muscles and submitted, in daily gesture, to large inertia variations as to large torque perturbations about which a highly complex robust closed-loop control would be necessary for maintaining movement stability.

Second, if we leave aside the essentially theoretical case of acceleration-type actuators, our approach leads to oppose two great classes of actuators: the velocity-type actuators, on the one hand, the position-type actuators, on the other hand. In a historical perspective, the technical developments at the end of the nineteenth century or at the beginning of the twentieth century emphasize the importance of velocity-type actuators; among them, the DCmotor appeared as one of the most relevant motors, due to its cleanness, simple use and power supply easiness but, because it is precisely an actuator producing velocity, the resulting the antagonism principle we considered can also be applied to velocity-type actuators, it is clear that this principle is a major interest of position-type actuators, for generating new MIMO-actuators able to control both position and stiffness, or multiple position dimensions.

But, as in its SISO-form, position-type actuators in MIMO-form can be hard to control. While actual humanoid robotics overwhelmingly settled on electric motors, the opposition between velocity-type actuators and position-type actuators we attempted to theorize raises the issue of the final choice of actuator type for future highly anthropomorphic machines if we imagine that, in a future day, the gesture learning problem would be solved. 



  and resistive-component is equal to gSh  . A sole equilibrium position results: h equ =h up , for this position-type actuator whose h up can be considered as a constant input and h is the position-output. The communication-pipe plays the role of the moderator because it made possible to generate an equilibrium position between water masses, which, in the gravity field, behave like acceleration-type actuators. By opposition with the weight-driven clock, the continuous character of the actuator resulting from the considered type-transformation comes from the non-solid character of the engaged masses.

  i.e. by the motor-position M x which plays the role of the actuator input. SEAs are position-type actuators devoted to force control but, as pointed by Pratt and Williamson: "Series elastic also turns the force control problem into a position control problem" ([START_REF] Pratt | Series Elastic Actuators[END_REF], page 400).

  a load 'm' to be lifted is attached to the muscle, the corresponding control characteristic is now a continuous curve given by the following equation: in Fig. 9.b. This remark suggests that the McKibben artificial muscle, and also the skeletal muscle, for which McKibben muscle is a

  By using the force function F of McKibben muscle given in Equ.[START_REF] Tondu | Inflatable Actuators: An Attempt for a common Approach based on Treloar's Rubber Elasticity Theory[END_REF], we derive the following expression for the torque T produced by the new actuator which always works according to a positive antagonist mode since the force function F is always positive:

  outputs are  and S t . It is a position-type actuator in the sense that its positioning is stable in the ) is also possible to define a multiple d.o.f actuator as developed by De Volder, Moers and Reynaerts[START_REF] Volder | Fabrication and Control of Miniature McKibben Actuators[END_REF] with two or three parallel miniaturized McKibben muscles.

  R is the instantaneous radius of the tube. Contrary to the antagonist McKibben muscle actuator, chamber '1' is always the agonist single actuator while chamber '2' is always the antagonist single actuator. According to our systemic approach, the bending of the actuator in the reverse side by means of a pressure P 2 >P 1 corresponds to another actuator model with a new definition for angle , for example a  left-angle , while the actual definition of  would correspond to a  right-angle . The double-side real actuator would so be modeled by both a force function for right bendingthe one proposed in Equ. (31)and a force function for left bending -the same one after exchanging indices '1' and '2'.

  highly nonlinear character of Equ. (

  comparison with the actuator made of two antagonist McKibben muscles, considered as the inputs of the actuator but its outputs are now l and instead of the couple position-stiffness. In the case of DEAs (Dielectric Elastomer Actuators) it is also possible to derive multiple degrees of freedom actuators from a similar antagonism principle, as done by Rosenthal et al. with its roll-actuator and its two d.o.f.

  velocity can be too high and the corresponding torque too low, leading to use it in association with high ratio gears. Industrial robots took advantage of the couple DC-motor/high ratio gear for very accurate joint positioning by means of simple closed-loop linear control but with, as a consequence, a non-human friendly character of the robot-arm; recently, the concept of cobot aimed to give safety to the robot-arm by means of additional torque sensor on each joint. In the case of high safety requirements imposed by the hoped new human-robot relationships, position-type actuators clearly appear as an alternative way to the classic electric motor, only partially secured by torque sensors. To oppose velocity-type and position-type actuators also leads to oppose a classic, and very efficient, actuation mode and its closed-loop control to, in a broad meaning, a biomimetic actuation mode whose natural open-loop stability generally requires the use of soft materials (spring, elastomers, other polymers…) inducing peculiar nonlinearities hard to control. Actual attempts for accurate closed-loop positioning of these actuators is still problematic and the question could be: are the classic feedback control methods adapted to position-type actuators? The biomimetic character of position-type actuator also appears in the possibility that he has to be operated in antagonism. If, in theory,
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 12 Figure 1. Actuators' classification based on the relationship between the force/torque produced by the actuator and its resulting output velocity: (a) Extension of Holmes' classification proposed by Hannaford and Winter after they have introduced the typical Hill'sconcave curve for skeletal muscle (number 4) -redrawn from[START_REF] Hannaford | Actuator Properties and Movement Control: Biological and Technological Models[END_REF], (b) Case of the internal combustion engine exhibiting a typical convex shape leading to a stable velocity when the torque versus velocity curve meets the resistive torque -from[START_REF] Holmes | The Characteristics of Mechanical Engineering Systems[END_REF] (see text).

Figure 3 .

 3 Figure 3. Interpretation of convex and concave shapes of an actuator force function versus actuator output in accordance with our stability-based approach of actuation systems (see text).

Figure 4 .

 4 Figure 4. Weight-driven clock and its escapement and "foliot" mechanism responsible for the controlled movement of the weight fall (a) -redrawn from [7] -and (b) interpretation of the escapement and "foliot" mechanism as a mean to transform the weight fall, interpreted as an acceleration-type actuator, into the weight-driven clock, interpreted as a velocity-type actuator-see text.

Figure 5 .

 5 Figure 5. Actuator transformation from acceleration-type into velocity or position-type (arrows 1 or 3) or from velocity-type into position-type (arrow 2).

Figure 6 .

 6 Figure 6. Interpretation of a lock as a position-type actuator (a) and (b) interpretation of an hourglass -redrawn from [7] -as a velocity-type actuator.

Figure 7 .

 7 Figure 7. Elastic actuators deriving their position-type from the putting of a spring either in parallel (a) or in series (b) with a velocity-type motor -see text.

Figure 8 .

 8 Figure 8. Thin-walled pressurized rubber tube whose inflation is considered either free or constrained in radius: (a) Force versus longitudinal strain highlighting the possibility of unstable equilibrium points in the case of a free inflatable cylinder, (b) Corresponding control characteristic in the case of a cylinder with constant internal radius.

Figure 9 .

 9 Figure 9. Stable equilibrium points in the case of the cylindrical model of the McKibben artificial muscle, (a) No-load case exhibiting a single stable equilibrium point corresponding to the maximum contraction ratio whatever the control pressure, (b) Case of a load equal to 25% of the muscle maximum force exhibiting a continuous range of stable equilibrium points versus control pressure -see text.

Figure 10 .

 10 Figure 10. Antagonist actuator made of two identical McKibben muscles linked by a pulleychain system: (a) Initial state, (b) Current state, (c) Corresponding control characteristic for actuator angle, (d) Corresponding control characteristic for actuator stiffness -a cylindrical model of the McKibben has been considered.

Figure 11 .Figure 12 .

 1112 Figure 11. Antagonist actuator made of two pressurized chambers inside a thin-walled rubber tube constrained to maintain constant its inner radius: (a) Lateral view of the actuator in its initial state, (b) Top view of the actuator in its current state, (c) Bending of the actuator supposed to be performed according to a circular shape.

  , are, respectively, the inputs of the agonist and antagonist single actuators, are, respectively, the force functions of the agonist and antagonist single actuators, f and g are positive functions depending on Rt F the corresponding resistive-components. In the case of a positive antagonism, we deduce the following expression of the corresponding force functionfor a more concise expression, dependence of f and g on
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	This expression agrees with our general definition of an actuator since	(	Rt Ma gF fF 	)	and
	(	gF 	fF	)	are both positive. The control characteristic results:
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  ( but the components of I and O can, respectively, be different from the components of
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	we shall go on to examine.																							
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	and corresponding static control characteristic is given by:							
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	It is worthy to note that, in the case of a negative antagonism with always positive force
	functions F a and F t , the actuator equilibrium state can only occurs when F a =F t =0 i.e. when
	each elementary actuator is itself in equilibrium state, as illustrated further. If	t I , are a I
	independent, it is clear that the dimension of I is the sum of the dimensions of

a I and t I , and it is expected that the dimension of O is also the sum of the dimensions of a O and t O

   0 =0.15, P 0 =2.5 bar, P max =5 bar. Moreover, we can define the stiffness S t of the actuator in some -equilibrium position by the relationship: 

	2 1 P P 	parameterized in	(	2 1 P P 	)	-with R=2cm,
		dT	S	d		
		P P	P P	c		

t   . From a simple derivation of Equ. (27) and by using the -relationship of Equ. (29), we get:

In the large literature devoted to McKibben muscle, it was not yet dared, at our knowledge, to do the comparison between the network of pantographs peculiar to the McKibben muscle sleeve and the pantographic shape of the centrifugal regulator of Watt's machine: in both cases, the moderator effect results from the opening of the pantograph(s).