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ABSTRACT 

Objective 

We aimed to develop and evaluate an algorithm for automatically screening citations when 

updating living network meta-analysis (NMA). 

Study Design and Setting 

Our algorithm learns from the initial screening of citations conducted when creating an NMA 

to automatically identify eligible citations (i.e., needing full-text consideration) when 

updating the NMA. We evaluated our algorithm on four NMAs from different medical 

domains. For each NMA, we constructed sets of initially screened citations and citations to 

screen during an update that took place 2 years after the conduct of the NMA. We encoded 

free text of citations (title and abstract) using word embeddings. On top of this vectorized 

representation, we fitted a logistic regression model to the set of initially screened citations to 

predict the eligibility of citations screened during an update. 

Results 

Our algorithm achieved 100% sensitivity on two NMAs (100% [93-100] and 100% [40-100] 

sensitivity), and 94% [81-99] and 97% [86-100] on the remaining two others. For all NMAs, 

our algorithm would have spared to manually screen 1345 of 2530 citations, decreasing the 

workload by 53% [51-55], while missing 3 of 124 eligible citations (2% [1-7]), none of 

which were finally included in the NMAs after full-text consideration. 

Conclusion 

For updating an NMA after 2 years, our algorithm considerably diminished the workload 

required for screening, and the number of missed eligible citations remained low. 

 

Keywords: automatic screening, network meta-analysis, live cumulative network meta-
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analysis, machine learning, natural language processing, word embeddings 

 

What is new ? 

● Using data from four network meta-analyses we showed that automatic screening can 

successfully be applied for updating living network meta-analysis (NMA), 

considerably diminishing the workload without missing any finally included citations. 

● We showed that representing citations using word embeddings, a numerical 

representation of words based on the idea that words with similar meaning occur in 

similar contexts, improved significantly the prediction of eligible citations when 

updating NMAs. 

 

BACKGROUND 

Systematic reviews (SRs) are the core of evidence synthesis in biomedical research. They are 

based on a comprehensive search strategy that aims to collect an exhaustive set of studies for 

a given medical question. Often, multiple competing treatments are available for a given 

medical condition; however, SRs only provide a fragmented panorama of the evidence for all 

treatments[1]. Network meta-analyses (NMAs)[2] provide part of the solution by allowing for 

simultaneous comparison of multiple treatments for a given condition. 

In addition, the evidence synthesis needs to be updated regularly to maintain clinically 

relevant results. Indeed, half of SRs are published more than 14 months after the last search 

date[3], so 7% of reviews are out-of-date by the time they are published[4]. In addition, less 

than half of SRs are updated[5]. The Cochrane handbook for SRs suggests that SRs should be 

updated every 2 years[6]; however, updating SRs is challenging because of the increasing 

number of publications[7]. A recently developed type of NMA, live cumulative NMA [8] 

also called living NMA aims at being a unique access point to an up-to-date overview of all 
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existing evidence on all available treatments for a precise health condition. Living NMAs are 

based on large and exhaustive searches of a wide panel of databases and frequent updates. 

An SR is based on a search for citations and two screening stages. First, citations (i.e., titles 

and abstracts) are retrieved from electronic databases such as MEDLINE by using search 

equations. Second, these citations are manually screened to select eligible citations. Finally, 

full texts for all eligible citations are retrieved and manually screened to select included 

citations. The screening process is one of the most time-consuming tasks when conducting 

SRs[9] and thus an important barrier to updating the synthesis of evidence. 

Efforts for automated screening based on machine learning have been developed in recent 

years[10–12]. The automation of screening may save a large amount of work but may lose 

accuracy as compared with human updating. Machine-learning techniques applied to 

automatic screening were suggested to save 30% to 78% of the workload but miss 4% to 5% 

of relevant studies[12,13]. 

Automation of screening relies on automatic analysis of free text. In natural language 

processing, word embeddings[14] were designed to overcome the limitations of the basic 

representation of words. Classically, words are represented according to their position in the 

list of all words mentioned in the corpus, without notion of distance between words. 

Conversely, word embeddings were conceived to provide numerically close representations 

of words that are semantically and syntactically close based on the context in which they 

appear. For example, the words “bronchoscopy” and “cystoscopy” will be represented by 

close numerical vectors because they share similar contexts, such as “the patient underwent 

bronchoscopy/cystoscopy before the operation”. Word embeddings have been found useful in 

tasks such as topic modelling[15] and feature extraction for classification of text using 

machine learning[16,17]. 
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OBJECTIVE 

We aimed to develop and evaluate an automated screening algorithm for updating NMAs of 

randomized controlled trials by using vectorized representation of text based on word 

embeddings and machine learning. 

 

MATERIALS AND METHODS 

Our algorithm learns from the initial screening of citations conducted when creating an NMA 

to automatically identify eligible citations when updating the NMA. We replicated the initial 

and update screening phases for four NMAs from different medical fields. For each NMA, 

we constructed sets of initially screened citations and sets of citations to screen for an update 

2 years after the initial screening. We then built an automatic screening algorithm that learned 

to discriminate between eligible and ineligible citations based on the sets of initially screened 

citations, separately for each NMA. Finally, we evaluated the performance of the algorithm 

over each set of citations to screen for the update. Figure 1 summarizes the different stages of 

the workflow and represents the inputs and outputs of the system. 

 

Data on screening process 

We used data from four NMAs[1,18–20] in the fields of pneumology, urology, oncology, and 

psychiatry, with more than 1000 screened citations each. For each NMA, we disposed of the 

search equations, the titles of eligible citations after title and abstract screening, and the titles 

of finally included citations after full text screening. We used the search equations to newly 

search electronic databases (MEDLINE, EMBASE, CENTRAL, and PsychINFO) to retrieve 

all screened citations. As the last date of search, we used December 31 of the year preceding 

the actual last date of search for the NMA to have all citations published within each year. 

We replicated updates of NMAs by artificially introducing a cut-off time separating citations 
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by publication year. For each NMA, we constructed sets of initially screened citations and 

sets of citations to screen if an update was conducted 2 years after the initial screening. For 

example, Khoo et al. originally included citations until 6/1/2015: we considered citations 

published between 1/1/2013 and 12/31/2014 as the set of citations to screen if an update was 

conducted (test set), and all citations published before 12/31/2012 as the set of initially 

screened citations (training set). 

Automatic screening 

To automate the screening process, we trained a machine-learning algorithm to classify 

eligible and ineligible citations after title and abstract screening (Figure 1). We represented 

free text of citations (title and abstract) by using word embeddings. We compared the 

performances of classification to a baseline in which free text in citations was represented 

using a term frequency-inverse document frequency (tf-idf) matrix. 

 

Citation representation based on word embeddings 

For each citation, we represented the title and abstract by using embedded word vectors[21], 

whereby each word was encoded into a 200-dimensional numerical vector. We used word 

vectors from a previous study[22] that trained a Skip-gram model[21] over all the available 

biomedical literature from PubMed and PMC until 2013,  enriched for common words with a 

Wikipedia corpus. For each NMA as a corpus, the 30 most frequent words and words 

appearing less than 5 times across all citations were not encoded, nor were words not 

corresponding to pre-trained word vectors which included stop words. We then represented 

each citation by using the average of its word vectors. For each NMA, we applied principal 

component analysis (PCA) to the vectorized representation of screened citations to visualize 

eligible and ineligible citations in a 2-D plot. 

Citation representation based on tf-idf as a baseline 
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For each NMA as a corpus, we excluded the 30 most frequent words and words appearing 

less than 5 times across all citations, as well as common english stop words. We tokenized 

text and applied the Porter Stemmer Algorithm to reduce inflected or derived words to their 

stem. We then vectorized citations based on tf-idf. 

Classifier 

For each NMA, we fitted a logistic regression model with L2 regularization to the set of 

initially screened citations to predict their eligibility after screening according to their 

vectorized representation. Each fitted model was then used to automatically identify eligible 

citations in the set of citations to screen during the update. Models were fitted by using the 

stochastic gradient descent algorithm with exponential decay. We used a weighted loss 

function along with oversampling of eligible citations at a 1:1 ratio during training to cope 

with class imbalance. The weighted loss function penalized more classification error of 

eligible citations than those of non-eligible citations. We searched for optimal 

hyperparameters on development sets that were built by sampling 20% of the set of initially 

screened citations. The hyperparameters optimized included the learning rate, the 

regularization term and the positive weight. We selected the models with the best sensitivity, 

and if models had equal sensitivity, we selected those with the best specificity. 

Evaluation 

We assessed the performance of the algorithm to accurately classify eligible and ineligible 

citations in the sets of citations to screen during an update. Performance was measured in 

terms of sensitivity, specificity, missed studies, and workload saving, overall and for each 

NMA. Sensitivity corresponded to the ratio of the number of correctly labeled eligible 

citations to the total number of eligible citations. Specificity corresponded to the ratio of the 

number of correctly labeled ineligible citations to the total number of ineligible citations. 

Missed studies corresponded to the ratio of the number of inaccurately labeled eligible 
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citations to the total number of eligible citations. Workload saving corresponded to the ratio 

of the number of correctly labeled ineligible citations to the total number of citations.  We 

assessed whether eligible citations that were misclassified by the algorithm were finally 

included in the NMA. 

 

Sensitivity analysis 

We assessed the robustness of our results by repeating the analysis with earlier cut off time - 

three years and four years - for separating sets of initially screened citations and sets of 

citations to screen for an update. In this regime, less eligible and non-eligible citations were 

available for training the algorithm. 

 

Implementation 

Algorithms were implemented in python by using TensorFlow[23] and scikit-learn[24]. The 

code and dataset are available on open-source at 

https://gitlab.com/lerner.ivan/automatic_screening_NMA.  The code for analysis is available 

as one jupyter notebook in our github repository 

(https://gitlab.com/lerner.ivan/automatic_screening_NMA/blob/master/sysReviewFromVecto

rized/scan_save_eval.ipynb). 

 

Statistical analysis 

Descriptive data are presented with number (%) and 95% confidence intervals (CIs) 

calculated by the Clopper-Pearson method using the statsmodels[25] library in python. We 

assessed the statistical significance of the difference in sensitivity and specificity between 

word embeddings and baseline (tf-idf representation) by calculating Fisher’s exact test. 
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RESULTS 

Screening process 

Our study included four NMAs in different fields of medicine (Table 1), which altogether 

totalled 14,853 screened citations. We present in Figure 2 the evolution over time of the 

number of eligible and ineligible studies for each NMA. The NMAs presented diverse paces 

of publications, or number of eligible citations published during the year. The Bateman et al., 

Chen et al., and Créquit et al. studies each showed a peak in pace of publication, with more 

than 10 eligible citations published each year during the peak. The time between this peak 

and the last date of search varied across NMAs. Conversely, the pace of publication of the 

Khoo et al. was more stable over time. For the Bateman et al. and Chen et al. studies, the 

artificial cut-off times introduced (in January 2011 and 2010, respectively) to create the sets 

of initially screened citations and citations to screen for a 2-year update took place at the end 

of an intense publication cycle. The cut-off introduced in 2013 for Créquit et al. took place in 

the middle of an intense publication cycle. 

Automatic screening 

Citation representation 

The median length of citations (i.e., titles and abstracts) was 294 words, which for all 

citations totalled 2,341,517 words. The size of the vocabulary was 18,669 (Bateman et al.), 

15,935 (Créquit et al.), 11,535 (Chen et al.) and 18,821 words (Khoo et al.). The proportion 

of vectorized words with word embeddings was: 84% (Bateman et al.), 82% (Créquit et al.), 

92% (Chen et al.) and 82% (Khoo et al.). Eligible citations after vectorized representation 

using word embeddings and dimensionality reduction with PCA seemed to be spatially close 

(Figure 3). Although PCA in two dimensions explained only 32% to 38% of the variability, 

citations were partially separated between eligible and ineligible by the encoding scheme 
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only. 

Classifier evaluation    

For two of the four NMAs, logistic regression on top of a word embeddings representation 

achieved 100% sensitivity. For Créquit et al. and Khoo et al., it achieved 100% [93-100] and 

100% [40-100] sensitivity, and 58% [54-62] and 78% [75-81] specificity. For Chen et al., it 

achieved 94% [81-99] sensitivity and 59% [52-66] specificity, missing two eligible citations, 

none of which were finally included in the NMA after full-text consideration. For Bateman et 

al., it achieved 97% [86-100] sensitivity and 33% [30-36] specificity, missing one eligible 

citation, which was not finally included in the NMA after full-text consideration. For three 

out of four NMAs, using word embeddings representation was significantly superior to tf-idf 

in terms of specificity (p<0.05), and for all NMAs, using word embeddings seemed to be 

superior to tf-idf in terms of sensitivity, although the differences were not statistically 

significant (Table 2). We expected the sensitivity to be systematically high since all models 

were developed to have high sensitivity regardless the text representation. For all NMAs, our 

algorithm would have spared screening manually 1345 of 2530 citations, decreasing the 

workload by 53% [51-55], while missing 3 of 124 eligible citations (2% [1-7]). 

Sensitivity analysis 

The algorithm had similar performances when trained to predict the eligibility of citations 

during an update happening four years after the initial screening. Indeed, it decreased the 

workload by 56% [55-58] while missing 7 of 269 (3% [1-5]) eligible citations (Table S1 and 

S2). 

DISCUSSION 

In this study, we evaluated algorithms for automatically screening citations when updating 

NMAs 2 years after the conduct of the initial NMA. Our results showed that a model of 

logistic regression on top of a word embedding representation of the title and abstract 
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achieved good discriminative properties for this task. Our model achieved high sensitivity, it 

missed 3 of 124 eligible citations (2% [1-7]), and still was able to maintain substantial 

specificity, decreasing the workload by 53% [51-55]. These performances may have been 

mostly due to the embedded representation of citations.     

Our automatic classification method missed three eligible citations across all NMAs, but 

none of them was finally included in the NMA after full-text consideration. Indeed, in our 

study we labeled citations to train our classifier according to their eligibility after the 

screening of title and abstracts only and not after final inclusion after full-text consideration. 

Using eligible citations as labels for training the algorithm allowed us to have a « safety net » 

regarding missed citations. The results of the analysis for these NMA would not have been 

affected by the loss of these citations. Conversely, logistic regression on top of a tf-idf 

representation missed nine eligible citations, of which one was finally included in the NMA 

after full-text consideration[26]. The proportion of citations considered as eligible citations 

after title and abstract screening varies considerably from one reviewer to another, and for 

NMAs such as Chen et al. having a high ratio of eligible studies (15%), these labels could be 

too noisy and lower specificity of the algorithm. 

A recent study investigated machine-learning algorithm to update three SRs in the field of 

rheumatology, using a support vector machine (SVM) with a term-frequency bag-of-word 

representation of citations[13]. They reported a mean sensitivity of 96% while reducing the 

number of citations to be screened by a mean of 78%. Our results confirmed the possibility to 

achieve high sensitivity for automatic screening, not only when updating conventional MAs 

but also NMAs, for which it would be more difficult for a text mining framework to 

automatically identify the names of the interventions considered in the NMA as a feature for 

classification.. In addition, our algorithm shows similar performance when applied to 

different fields of medicine, but also when applied to NMAs where initial screening 
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conditions differ, such as the percentage of eligible citations. We showed in our study that 

word embeddings could be a better method for representing citations to feed machine 

learning algorithms as compared to tf-idf. Techniques based on other features than free text 

were proposed to alleviate the burden of screening, such as ranking based on co-citation 

metrics[27]; however, their performance decreased when citations included a large diversity 

of authors (50% of workload saving with 21% loss of studies). Semi-supervised 

approaches[11] or active learning[15] are known to be more competitive with fewer screened 

citations available, for instance when conducting the initial screening of a SR. However when 

updating SRs, more training data is available and classical supervised approaches are 

therefore possible.     

A strength of our study is that we evaluated our algorithm by replicating the context of the 

update of an NMA, and did not trained and tested our classifier to discriminate citations 

regardless of the date of publication (eg., by using cross-validation). In addition, our 

algorithm achieved good performances in different fields of medicine. These performances 

were established with NMAs and not simply SRs, which are based on complex search 

equations because several interventions need to be considered. Finally, we used pre-trained 

word embeddings to take advantage of knowledge of the free-text structure previously 

extracted from a very large dataset from the biomedical literature. Word embeddings 

provided a simple and computationally efficient representation of citations; they also proved 

useful for distinguishing eligible and ineligible citations (Figure 3). We also showed that they 

provide better features than tf-idf for automatic screening using logistic regression. 

Our study shows several limitations. First, in the context of an NMA aiming at comparing all 

available treatments for a particular condition (such as a live cumulative NMA), new 

treatments may become available with time, which requires updating search equations. Our 

algorithm was evaluated only when search equations are not modified over time. However, 
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an updated search equation would include additional terms (e.g., corresponding to the new 

treatments to include in the NMA), thereby implying a larger amount of citations to screen. 

Our algorithm can still be applied to the subset of these citations retrieved by the initial 

search equation, and retrained afterwards with the new search equation. This study also 

lacked comparisons with other classification algorithms or uses of more sophisticated text 

representation. There may be room for improvements in citation representation; for example, 

a previous study[17] showed that combining a tf-idf representation of unigrams with word 

vectors may increase classification accuracy. One could investigate representations that 

account for word order such as paragraph embeddings[28]. Features based on co-citations 

metrics could be incorporated to the model in order to account for other source of information 

than free text. Our logistic regression model did not allow for building non-linear hypotheses 

to discriminate citations, and using more complex models such as SVMs or gradient boosting 

machines[29] may increase discrimination performance. However, the use of word 

embeddings with a simple linear model may provide performance comparable to the best-

performing existing algorithms in many text classification tasks[16]. 

NMAs are a useful framework to address the comprehensive and up-to-date synthesis of 

biomedical evidence globally. Indeed, NMAs by their construction already enable 

comparison of all available treatments. Comparing all available treatments while staying up-

to-date would fulfill the conditions for directly operable synthesis of evidence in everyday 

clinical practice. These objectives were recently introduced by living NMAs[8]. Sharing a 

similar vision as Thomas et al.[30], efforts will be made to directly connect machine-learning 

algorithms with electronic databases via their application programming interface, for a 

pipeline of search equations followed by automatic screening before manual screening. 

 

CONCLUSION 
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When updating an NMA after 2 years, our screening algorithm based on word embeddings 

considerably diminished the workload of screening, and missed eligible citations remained 

low. Machine-learning algorithms may greatly reduce the time needed to update NMAs. 

Reviewers may use these methods to update NMAs more regularly, thereby reinforcing their 

validity and clinical relevance.  

 

FIGURES 
Figure 1. Workflow of automatic screening using word embeddings 

Summary of the different stages of the workflow and detailed representation of the inputs and 

outputs of the system. 

Figure 2. Pace of publication of eligible and ineligible citations      

Number of eligible (left) and ineligible (right) citations published each year between 1990 and 2015. Grey 

horizontal lines represent the cut-offs introduced in time to separate sets of initially screened citations and sets 

of citations to screen if an update was conducted after this cut-off for each network meta-analysis. 

 

Figure 3. Visualizing citations using principal component analysis 

Citations are represented by the average of their word vectors, then reduced to two dimensions by principal 

component analysis. Red triangles represent eligible citations and grey circles ineligible citations. 

 

 

TABLES 

Table 1. Network meta-analysis characteristics after replicating the search equations 

For each network meta-analysis (NMAs) we retrieved citations from electronic databases with the original 

search equations, and we identified eligible citations using data we disposed from the original screening process. 

We present for each NMAs the electronic databases, the total number of citations, the number of eligible 

citations, the ratio of the number eligible to total citations and the last date of search. 
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Table 2. Automatic screening when updating two years after the initial conduct of the 

network meta-analysis 

For each NMA we constructed sets of initially screened citations and of citations to screen during an update by 

introducing an artificial cut-off for time based on publication year of the screened citations. We evaluated the 

performance of logistic regression on top of both tf-idf and word embeddings representation when the update 

took 2 years after the conduct of the initial NMA. Sensitivity corresponded to the ratio between the number of 

correctly labeled eligible citations and the total number of eligible citations. Specificity corresponded to the ratio 

between the number of correctly labeled ineligible citations and the total number of ineligible citations. Loss of 

studies corresponded to the ratio between the number of inaccurately labeled eligible citations and the total 

number of eligible citations. Total predicted positive are all citations classified as eligible by the algorithm. 

Ineligible citations spared from screening are ineligible citations correctly predicted. We calculated 95% 

confidence intervals with the Clopper-Pearson method. 

 

 

LIST OF ABBREVIATIONS 

NMA: network meta-analysis. 

SR: systematic review. 

PCA: principal component analysis. 

SVM: support vector machines. 

tf-idf: term frequency - inverse document frequency 
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Citation representation

Training set Evaluation set

Randomized, double-blind, placebo-controlled trial of sildenafil (Viagra) for
erectile dysfunction after rectal excision for cancer and inflammatory
bowel disease.

Abstract

PURPOSE:

Controlled trials have demonstrated the efficacy of sildenafil for "mixed etiology" erectile dysfunction, but this may not be
the case if there is underlying pelvic parasympathetic nerve damage. We aimed to determine the efficacy of sildenafil
after rectal excision for rectal cancer and inflammatory bowel disease.

(...) 

CONCLUSION:

Sildenafil completely reverses or satisfactorily improves postproctectomy erectile dysfunction in 79 percent of patients.
Side effects are usually mild and well tolerated. The damage incurred by the pelvic nerves after proctectomy, less
profound than after prostatectomy, is likely to result in a partial parasympathetic nerve lesion.
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Table 1.  

First author  Field  Databases  Total 
screened  

Eligible  Proportion 
of eligible 
citations 

Last date of 
search 

Bateman et al. 2015 Pneumology MEDLINE, EMBASE 4219 400  9 % 12/31/2012 

Chen et al. 2015 Urology MEDLINE, EMBASE 1662  256  15 % 12/31/2011 

Créquit et al. 2016 Oncology MEDLINE, EMBASE, 
CENTRAL 

3373  113  3 % 12/31/2014 

Khoo et al. 2015 Psychiatry MEDLINE, EMBASE, 
PsycINFO 

5599   75 1 % 31/12/2014 

 

 

Table 2.   

First author  

Number of citations to screen after two years of up date  

Sensitivity  

(95% CI) 

Specificity  

(95% CI) Total  

 Eligible  Ineligible  

spared  

to  

screen  
Manual  Correctly 

predicted  Missed  
Total 

predicted 
positive  

Word embeddings representation  

Bateman et al.  875 37 36 1 596 278 
0.97 

(0.86-1.00) 

0.33 

(0.30-0.36) 

Chen et al.  232 35 33 2 113 117 
0.94 

(0.81-0.99) 

0.59 

(0.52-0.66) 

Créquit et al.  638 48 48 0 297 341 
1.00 

(0.93-1.00) 

0.58 

(0.54-0.62) 

Khoo et al.  785 4 4 0 176 609 
1.00  

(0.40-1.00)  

0.78 

(0.75 - 0.81) 

TF-IDF representation  

Bateman et al.  875 37 35 2 651 222 
0.95 

(0.82-0.99) 

0.26 

(0.24-0.30) 

Chen et al.  232 35 32 3 157 72 
0.91 

(0.77-0.98) 

0.37 

(0.30-0.40) 

Créquit et al.  638 48 44 4 317 317 
0.92 

(0.80-0.98) 

0.54 

(0.50-0.58) 

Khoo et al.  785 4 4 0 533 252 
1.00  

(0.40-1.00)  

0.32 

(0.29 - 0.36) 

 




