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Abstract

This paper deals with the active control of friction-induced limit cycle oscillations that

are generated from the mode-coupling mechanism, and that are often undesirable in nu-

merous applications of nonlinear dynamical friction systems. The objective is to suppress

the oscillations while taking into account the nonlinearities inherent to the friction sys-

tems and that result for example from the nonlinear laws of contact and friction. For this

purpose, nonlinear control schemes based on the feedback linearizing approach are pro-

posed and investigated in this study by considering a friction system with mode-coupling

instabilities. Based on numerical simulations, an interesting potential is shown for the

proposed control schemes and, more generally, insights about the opportunity to exploit

them for an efficient mitigating of mode coupling instabilities, are stated.

Keywords: Nonlinear dynamical systems, Friction-induced instabilities,

mode-coupling, Nonlinear control, Feedback linearization, Flatness, Stability.

1. Introduction

In numerous engineering applications, friction-induced instabilities are in general un-

desirable due to their negative effects on systems performances. Brake squeal is a well

known example in this area ([1, 2]). Hence, numerous studies have been carried out for

a better understanding of mechanisms of their occurrences [3, 4]. Other studies have5

focused on the developing of methods helping for efficient prediction of friction-induced

instabilities and their properties in deterministic framework, such as in [5, 6, 7, 8] and

in uncertain context as in [9, 10, 11, 12, 13, 14]. In addition to the need to be able to

effectively model and predict friction-induced instabilities, a very important purpose is
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to be capable of mitigating or suppressing them if it turns out that the vibratory level10

is unacceptable. This last issue is the key topic of the present study.

In fact, a number of studies have been proposed these last years for the controlling of

friction-induced instabilities. For example, Bergeot et.al have proposed a passive control

strategy based on Nonlinear Energy Sink (NES) [15]. The main developed idea consists

of adding a mass-stiffness-damping cell with some nonlinear properties, to the initial15

unstable system. The key step is then to determine the mechanical parameters of the

NES so that the controlled system presents suitable stability properties and a fortiori

convenient dynamic behaviour. The authors have shown that the NES parameters can

be tuned for either a complete suppression or a mitigating of the original amplitude of

the friction-induced limit cycle oscillation (LCO). In the same register of passive control,20

Popp and Rudolph have proposed the use of a dynamic vibration absorber to control

the friction-induced instabilities related to stick-slip mechanisms [16]. They have shown

that by determining a suitable set of parameters, the absorber can prevent or minimize

the amplitude of the stick-slip based limit cycle oscillations. Otherwise, Ouyang has pro-

posed structural modifications for an unstable friction system and has shown that this25

strategy is not always suitable for assigning eigenvalues to the desired locations and thus

for stabilizing the system [17]. Active control strategies based on linear state feedback

[18] and on linear delayed state feedback [19, 20, 21, 22] were proposed as alternative

for controlling friction-induced instabilities. The main principle of these schemes is to

act on all the system eigenvalues by assigning them to desired locations in the half left30

complex plane so that stable dynamic behaviours can be ensured. In the case of systems

with high numbers of degrees of freedom, this task can be very difficult and some times

unnecessary. To circumvent this difficulty, a linear state feedback which permits a partial

pole assignment in systems submitted to friction-induced instabilities was proposed in

[23].35

Dealing with the control of friction-induced vibrations submitted to parameter uncer-

tainty was the objective of the recent study in [24]. The main treated question concerns

how to robustly stabilize a linear mechanical system submitted to friction-induced insta-

bilities with respect to the uncertainty related to the contact and friction parameters.

Authors have proposed a robust linear state feedback assigning both eigenvalues and their40
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sensitivities to desired locations and values respectively. The proposed control scheme

ensures a maximum degree for the robustness of the stability of the closed loop system

with respect the considered uncertain parameters.

Most of the mentioned studies have proposed linear techniques for active control of

friction-induced instabilities. However, these instabilities are often the consequence of the45

contact with friction between structures and the laws governing the contact and friction

may be strongly nonlinear. Hence, linear schemes may be unsuitable and/or insufficient

for an efficient and reliable control of friction-induced instabilities and nonlinear control

schemes become more appropriate. This paper focuses on this issue. Otherwise, problems

related to practical implementation of the control input such as the saturation problem50

and its robustness with respect to parameter uncertainty and/or unmodeled dynamics

are not considered in this paper. Some effective solutions related to these issues are

discussed for example in [25] within the framework of controlling of double-pendulum

cranes. Then, the main contribution of the proposed study lies in the taking into account

of nonlinearities in the defining of active control schemes for more efficient mitigating55

of nonlinear friction-induced vibrations in particular those generated from the mode-

coupling mechanism. The latter occurs when a couple of complex eigenvalues approach

one another in frequency when the friction coefficient increases until coalescence at the

Hopf bifurcation point around which the corresponding real parts separate. When at least

one real part becomes positive, self-friction-induced vibrations can be generated [3, 4].60

The main problem is then to mitigate or suppress these vibrations. As stated above,

only passive control based strategies have been proposed to deal with this issue while

the mentioned active control strategies are based on linear schemes that are not suitable

candidates for efficient control of nonlinear mode-coupling instabilities. Hence, methods

based on nonlinear feedback linearization [26, 27] are proposed and investigated in this65

paper. The main objective is to assess their efficiency in dealing with the mitigating of

nonlinear mode-coupling instabilities.

In fact, the feedback linearization principle considers the possibility to determine a

nonlinear coordinate transformation which algebraically puts the nonlinear system into a

canonical form based on which the choosing of a suitable state feedback makes the system70

partially or completely linear. The latter is then said input-output or input-state lin-
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earized, respectively. At this stage, the use of linear control techniques becomes possible.

The input-state linearization is always possible when the system presents some flatness

properties which consist in the possibility to express all the system’ inputs and state

variables by means of the system’output and its successive derivatives [28]. The relative75

degree of the input-output relation, which is the number of required output derivative

to make the input appear, is in this case equal to the system’ dimension. The control

synthesis is then reduced to a classical pole placement problem [26, 27, 29]. Otherwise,

the input-output linearization holds when the relative degree is smaller than the system’

dimension. In this case, a linear relation between the input and output is obtained while80

the input-state relation defining the internal dynamics remains nonlinear. The stabilizing

problem possesses a solution when the internal dynamics which is uncontrolable is stable

[26, 27].

The linearizing feedback techniques have already been proposed to deal with numerous

problems in engineering such as the output tracking control design for an helicopter85

model [30], the control of aeronautic pneumatic systems [31] and the control for the anti-

slip regulation of an hybrid vehicle [32]. New theoretical developments are also proposed

in the recent study [33]. They are based on the combination between the receptance

method well known in LTI systems together with the input-output linearizing feedback.

The main contribution of the resulting method makes the system matrices (with asso-90

ciated assumptions and approximations) unnecessary to be known. Moreover, the form

and parameter values of the nonlinearity are not required when the force is applied at

the same degrees of freedom as the input and output while it does not act directly on

the nonlinearity itself.

Both the input-output and input-state linearizing feedbacks are considered and investi-95

gated in this study the originality of which is, as mentioned previously, related to the

mitigating of mode-coupling instabilities by taking into account of their nonlinear charac-

ter. More particularly, it aims to investigate the effectiveness of the feedback linearization

based methods and to obtain insight about the opportunity to use them for active control

of nonlinear friction systems submitted to mode-coupling instabilities.100

This paper is organized as follows. First, some mathematical notions related to

nonlinear dynamical systems is given in Section 2. The feedback linearization principle
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is then described in Section 3 while its application for the controlling of friction-induced

mode-coupling instabilities is presented and discussed in Section 4. Conclusion is given

at the end of the paper.105

2. Nonlinear dynamical systems and methematical background

Consider the class of single-input/single output (SISO) nonlinear dynamical system

affine with respect to the input u, and described by the following state space represen-

tation:

ẋ = f(x) + g(x)u (1)

where f : Rn → Rn is a smooth nonlinear vector field, involving the existence and the

continuity of its partial derivatives of any required order. Then, the Jacobian matrix can

be defined by ∇f = ∂f
∂x with element given by (∇f)ij = ∂fi

∂xj
. The output of the system

is given by the following output equation:

y = h(x) (2)

where h is a smooth scalar function of the state vector x, with the gradient denoted by

the row vector ∇h such (∇h)i = ∂h
∂xi

.

Without lose of generality, lets consider that the origin (xe, ue) = (0, 0) is the equilibrium

of System (1). The main concern in the following is to determine a state feedback control

u = γ(x) such that the closed loop system

ẋ = f(x) + g(x)γ(x) (3)

is locally asymptotically stable (the eigenvalues of the closed loop system around the

equilibrium are with strictly negative real parts).

Nonlinear techniques based on linearizing feedback are proposed in the sequel in order

to determine γ(x). Some mathematical notions from the Lie algebra required for the110

proposed techniques are recalled from [26, 27].

Let Lfh be a scalar function denoting the Lie derivative of h with respect to f defined

by: Lfh = ∇hf . Additionally, lets denote by [f , g] the Lie bracket of f and g which

is defined by: [f , g] = ∇g f − ∇f g. The repeated Lie brackets are then defined
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recursively by the operator ad such that:
ad0
fg = g

...

adifg =
[
f , adi−1

f g
] (4)

Definition.1 (Involutive distribution of vector fields): let ∆ = span
{
f1,f2, ...,fm

}
a distribution of m linearly independent vector fields. Then ∆ is said involutive if the

following rank condition is fulfilled:

rank
({
f1,f2, ...,fm,

[
f i,f j

]})
= rank

({
f1,f2, ...,fm,

})
∀ {i, j} ⊂ {1, ...,m}

(5)

where i and j ∈ {1, 2, ...,m} are integers denoting the indices of the vector fields consti-

tuting the distribution.

Definition.2 (Rrelative degree): System (1) with the output equation (2) admits the

scalar r as the relative degree within a region of the state space, Ω ⊂ Rn, if r verifies the

following two conditions:  LgL
k
fh(x) = 0 ∀k < r − 1

LgL
r−1
f h(x) 6= 0 ∀x ∈ Ω

(6)

In fact, the relative degree r represents the number of successive derivatives of the output115

y = h(x), from which the control input u appears.

3. Feedback linearization

The main idea is to determine a nonlinear coordinate transformation

z = Φ(x) (7)

with zi = φi(x) = Li−1
f h(x), i = 1, ..., r, L0

fh(x)h(x) = h(x)

together with a nonlinear state feedback simplifying the nonlinearities of System (1) so

that the closed loop system can be written in a linear form and linear control techniques120

can be exploited. Two cases can be distinguished according to the value of the relative

degree r: the input-output linearization which corresponds to the case where r < n and
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the input-state linearization corresponding to the case r = n. In fact, the new state

vector z is linked to System (1) and (3) via the nonlinear coordinate transformation

φ which, as it will presented in the following, is determined in a such a way that it125

is bijective (so x = φ−1(z)), by considering the output function the relative degree of

which define the way to determine the transformation.

3.1. Input-Output lineatization

When the relative degree r is smaller than the system dimension n then the nonlinear

coordinate transformation z = Φ(x) must be completed by the functions φj(x), j =

r + 1, ..., n, given by the solutions of the following equations

Lgφj(x) = 0 (8)

in order to define a diffeomorphism Φ =
[
φ1 φ2 · · · φn

]T
; Φ is bijective (i.e. the

inverse function Φ−1 exists). Hence, by applying the completed nonlinear coordinate

transformation together with the nonlinear state feedback defined by

u =
1

b(ξ, τ )
[−a(ξ, τ ) + v] (9)

with a(ξ, τ ) and b(ξ, τ ) given by a(ξ, τ ) = Lrfh(Φ−1(ξ, τ ))

b(ξ, τ ) = LgL
r−1
f h(Φ−1(ξ, τ ))

(10)

where ξ =
[
z1 z2 · · · zr

]T
=
[
y ẏ · · · yr−1

]T
, with y and yr−1 being the

output and its (r−1)-th time derivative which is equivalent to the (r−1)-th Lie derivative

with respect to f and τ =
[
zr+1 · · · zn

]T
,

then the original nonlinear system (1) is put into the following canonical form
ξ̇ = Aξ +Bv

y = z1

τ̇ = q(ξ, τ )

(11)
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where A =



0 1 0 0 · · · 0

0 0 1 0 · · · 0
...

... 0 . . . . . .
...

...
...

... . . . . . . 1

0 0 0 0 . . . 0


∈ Rr×r and B =



0

0
...
...

1


∈ Rr×1

v is the new control input, q =
[
qr+1 · · · qn

]T
with qi are functions in the vector

variables ξ and τ .

The ξ and τ are called the normal coordinates while the closed loop system (11) is

said to be input-output linearized. Two subsystems can be distinguished from (11); a

r-dimensional linear system in which the control u appears and a (n − r)-dimensional

uncontrollable nonlinear system which represents the internal dynamics. In fact, the

dynamics of the closed loop system (11) presents an input-output map which consists

of a linear relation between y and v, and an internal part which remains unchanged

by the new control input v. However, it can be remarked that the matrix A possesses

all its eigenvalues at zero, which gives rise to unstable behaviour for the closed loop

system regardless the stability of the internal dynamics defined by τ̇ . As the linear

part is controllable, then the closed loop system (11) is said to be locally asymptotically

stabilizable by using a second state feedback

v = KPLξ (12)

with KT
PL ∈ Rr×1,

if and only if the internal dynamics is locally asymptotically stable. Hence in this case,

the stabilizing problem comes down to a classical linear problem of pole placement [29].

However, the key step in the stabilizing procedure is to determine the stability of the in-

ternal dynamics corresponding to the last n−r states in the normal form (11). Analysing

this stability has been shown to be equivalent to the analysis of the zero-dynamics which

corresponds to the internal dynamics when the control input is such that the output y

is maintained at zero. A such control input is given by:

u0(τ ) = −a(0, τ )

b(0, τ )
(13)
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where the ξ is constrained to zero as the output y and thus the successive derivatives are

also constrained to zero [26, 27].130

The stabilizing procedure based on the input-output linearizing approach can be

summarized by the following algorithm.

Algorithm 1

1. Calculate the relative degree r

2. Construct the diffeomorphism Φ by using (7) and (8)135

3. Calculate the input-output linearizing feedback u given by (9) and (10)

4. Determine the stabilizing state feedback defined by (12)

5. Analyse the stability of the zero-dynamics and the whole closed loop system

3.2. Input-state linearization

The previous case has defined the input-output linearization feedback where the140

input-output relation is characterized by a relative degree r smaller than the system’s

dimension n. A complete linearization called input-state linearization can be defined for

System (1) if and only if there exists a scalar function ϕ(x) within a region Ω ∈ Rn

such that the system’s input-output linearization with ϕ(x) as an output function has

relative degree r = n. The existence of a such function is guaranteed if the following two145

conditions are fulfilled:

1. Rank(Mg) = n in Ω

where

Mg =
([

g adfg . . . adn−2
f g adn−1

f g
])

(14)

2. The distribution ∆̄ = span
{
g, adfg, . . . , ad

n−2
f g

}
is involutive in Ω.

Hence by considering the coordinate transformation z = Φ(x) involved by the scalar

output function ϕ(x) such that

zi = Li−1
f ϕ(x), i = 1, ..., n (15)

, and the state feedback (9) with :
a(z) = − Ln

fϕ(Φ−1(z))

LgL
n−1
f ϕ(φ−1(z))

b(z) = 1
LgL

n−1
f ϕ(Φ−1(z))

(16)
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and the new input v, System (1) is transformed into the canonical form of Brunovsky

which is the well-known companion representation for the controllability [29]. ż = Az +Bv

y = ϕ(x) = z1

(17)

where in this case the state, A, and control, B, matrices given in (11) are defined in

Rn×n and Rn×1 respectively.

As in the case of input-output linearization, the obtained closed loop system is unstable150

since all the n eigenvalues of the state matrix A are equal to zero. Hence, a supplemen-

tary state feedback is necessary to make the closed loop system asymptotically stable.

The main advantage in this case is that the couple (A,B) is controllable so the closed

loop system (17) can be made asymptotically stable by solving the corresponding pole

placement problem [29]. Ultimately, the stabilizing procedure based on the input-state155

linearizing approach can be summarized by the following algorithm.

Algorithm 2

1. Calculate g(x0), adfg(x0), . . . , adn−1
f g(x0), x0 ∈ Ω.

2. Verify the rank condition for the matrixMg and the involutivity of the distribution

∆̄.160

3. Determine the output function ϕ(x).

4. Construct the diffeomorphism as defined by (15).

5. Calculate the linearizing feedback (9) by using (16)

6. Determine the state feedback stabilizing the input-state linearized system (17) by

solving the corresponding pole placement problem.165

4. Application to the control of mode-coupling instabilities

In order to analyse the effectiveness of the proposed nonlinear techniques based on

feedback linearization in the controlling of mode-coupling instabilities, a mechanical sys-

tem is considered in Figure (1). It is a minimal model (two degrees of freedom) which

was defined by Hultèn [34] for enhancing the understanding of the mechanisms gener-170

ating instabilities in drum brake systems. In fact, the Hultèn model has been shown to

be a suitable model for a faithful representation of mode-coupling instabilities occurring
10



in drum brake systems so, it has been considered in several other studies such as in

([35, 36]) for the analysis of the influence of damping on the mode-coupling instabilities

or in ([37, 12, 38, 13]) for the prediction of mode-coupling instabilities submitted to pa-175

rameter uncertainty and, more recently, for the analysis of the performances of passive

control based on the NES in the mitigating of mode-coupling instabilities. Otherwise, as

mentioned in the introduction of this paper, several other studies have proposed minimal

models to develop and test control strategies for the mitigating of friction-induced insta-

bilities [17, 18, 19, 24]. The main advantage of such models is that they make it possible180

to overcome the numerical difficulties that may be involved by the considering of high

dimensional models and thus they permit to focus mainly on the methodologies. So,

in this same perspective the Hultèn model is considered in the following to analyse the

performances of the feedback linearization based schemes and their efficiency in dealing

with the controlling of LCO generated from mode-coupling mechanisms.185

[Figure 1 about here.]

As illustrated in Figure (1), the mechanical system consists in a mass assumed to be in

a permanent contact with a moving band. The contacts are modelled by two stiffnesses

with linear and nonlinear (cubic) parts. The friction coefficient µ at the contact is

assumed to be constant as well as the velocity of the band. The relative velocity between190

the band and the velocities Ẋ1 and Ẋ2 is assumed positive which makes constant the

direction of the friction force. According to the Coulomb’s law, the tangential force FT

is assumed proportional to the normal force FN that is: FT = µFN, see ([34, 36, 13]) for

more details. The second order differential equation governing the dynamic behaviour of

the system can be expressed in the state space by considering the state vector195

x =


x1

x2

x3

x4

 =


X1

Ẋ1

X2

Ẋ2


, so that a system like (1) can be obtained with:

11



f(x) =


x2

−w2
1x1 − η1w1x2 + µw2

2x3 − ψNL
1 x3

1 + µψNL
2 x3

3

x4

−µw2
1x1 − w2

2x3 − η2w2x4 − µψNL
1 x3

1 − ψNL
2 x3

3


while g(x) is taken equal to a constant column vector:

g(x) =


0

0

0

1

200

and y = h(x) = x2. The previous column vector defines the control matrix and indicates

through the elements 1 or 0 the positions where the control input u is received. Otherwise,

wi =
√
ki/m are natural pulsations, ηi = ci/

√
mki are the relative damping and ψNL

i =

kNL
i , for i = 1, 2. For numerical simulation, all magnitudes are given in the MKSA

(Meter (m), Kilograme (Kg), Second, Ampere) International System by: w1 = 2π × 100205

rad/second, w2 = 2π× 75 rad/Second, η1 = η2 = 0.02, ψNL
1 = w2

1, ψNL
2 = 0, µ = 0.4 and

m = 1 Kg.

4.1. Stability property and nonlinear dynamic behaviour

First, it can be verified that (xe, ue) = (0, 0) is the solution of the nonlinear static

equation corresponding to the Hultèn system and thus represents the system’equilibrium.210

The local stability of this equilibrium can be analysed by using the indirect Lyapunov

method which is based on the analysis of the eigenvalues of the linearized system around

the equilibrium [26]. Hence, xe is said to be asymptotically stable if all the eigenvalues

are with strictly negative real parts and unstable if at least one eigenvalue is with a

positive real part. Results on the parametric stability analysis of the Hultèn system can215

be find in [38].

For the given set of parameter, the system presents two couples of complex conjugate

eigenvalues that are plotted in Figure (2). The presence of eigenvalues in the right hand

of the complex plan proofs the instability of the origin. Consequently, when the system

state is moved from its equilibrium at t = 0 Second (for example x1(0) = 0.001 m while220

the other states are kept at zero) then the system moves far away its equilibrium with
12



a divergence rate defined by the real parts of the unstable eigenvalues. The temporal

evolutions of the displacement x1 and the corresponding velocity x2 that are obtained

from the time integration of the nonlinear differential equations are plotted in Figures (3-

a) and (3-b). The simulation time is fixed to tf = 3 Seconds and is shown to be sufficient225

to reach stationary regime. The illustrated behaviour shows transient oscillations after

it converges to periodic oscillating regime with a period tp = 10−2 Sec and stationary

amplitudes (0.563 m for the displacement x1 and 310.7 m/Second for the velocity x2.

The same observation can be made about the displacement x3 and the corresponding

velocity x4 which also converge to periodic oscillating regime with the same period tp =230

10−2 Second and stationary amplitudes (0.95 m and 547 m/Second, respectively). The

observed behaviour represents the well known limit cycle phenomenon which can be

recognized by isolated and closed curves in the phase plane. These are is illustrated

in Figure (4-a) and Figure (4-b) where the velocities x2 and x4 are plotted against

the displacements x1 and x3 respectively. As previously presented in the introduction,235

this friction-induced oscillations are undesirable and need to be suppressed or at least

mitigated. Hence, we investigate in the following subsections the performances of the

proposed nonlinear control techniques based on the feedback linearization principle.

[Figure 2 about here.]

[Figure 3 about here.]240

[Figure 4 about here.]

4.2. Implementing of the input-state linearizing and stabilizing feedback

As presented in Section 3, the main step is to built a nonlinear coordinate transforma-

tion Φ which permits the simplifying of the algebraic nonlinearities in the Hultèn model

so that linear control techniques can be applied for the controlling of the friction-induced

LCO. For this aim, the system needs to be input-state linearizable. The output function

ϕ for which the system is input-state linearizable exists if the rank and involutivity con-

ditions (1) and (2) given in Section 3, are fulfilled.

The matrix Mg associated to the nonlinear state representation of the Hultèn model is

obtained as follows:

13



Mg =


0 0 0 −µw2

2

0 0 µw2
2 η2µw

3
2 + η1µw1w

2
2

0 −1 −η2w2 −η2
2w

2
2 + w2

2

1 η2w2 η2
2w

2
2 − w2

2 −η2w
3
2 − η2w2

(
−η2

2w
2
2 + w2

2

)

 (18)

It can be verified that Mg is a full rank matrix which satisfies the rank condition 1 .

Otherwise, the distribution defined by ∆̄ = span
{
g, adfg, ad

2
fg
}

is involutive according

to the condition given in Definition 1. Ultimately, the rank and involutivity conditions

(1) and (2) being fulfilled, the existence of the scalar output function ϕ ensuring the

input-state linearization of the system can be confirmed.

By considering the displacement ϕ(x) = x1 as the output function, it can be verified

that the relative degree r of the corresponding input/output relation equals 4 since we

have:  LgL
k
fϕ(x) = 0 k ∈ 0, 1, 2

LgL
3
fϕ(x) = µw2 6= 0 ∀x ∈ R4

(19)

The relative degree r = 4 being equal to the system dimension, indicates that a full input-

state linearization is possible for the system with the defined output function ϕ(x) = x1.

The nonlinear coordinate transformation z = Φ(x) ensuring the input-state linearization

of the Hultèn system is then given in accordance with expression (15) by:

z1 = x1

z2 = x2

z3 = −w2
1x1 − η1w1x2 + µw2

2x3 − ψNL
1 x3

1

z4 = η1w
3
1x1 +

(
η2

1w
2
1 − w2

1

)
x2 − η1w1w

2
2µx3 + µw2

2x4 + η1w1ψ
NL
1 x3

1 − 3ψNL
1 x2x

2
1

(20)

In an equivalent way, the inverse transformation is obtained as follows:

x1 = z1

x2 = z2

x3 = 1
µw2

2

(
w2

1z1 + η1w1z2 + z3 + ψNL
1 z3

1

)
x4 = 1

µw2
2

(
w2

1z2 + η1w1z3 + z4 + 3ψNL
1 z2

1z2

)
(21)
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The linearizing control feedback is then determined by using the expression (16) and

obtained as follows:

u =
1

µw2
2


−(x2(η1w1(w2

1 + 3ψ1x
2
1)− 6ψ1x1x2)+

(−η2
1w

2
1 + w2

1 + 3ψ1x
2
1)(w2

1x1 + η1x2w1 − µx3w
2
2 + ψ1x

3
1)

−µw2
2(µw2

1x1 + x3w
2
2 + η2x4w2 + µψ1x

3
1)− η1µw1w

2
2x4) + v

(22)

In fact, all state variables and thus the state-feedback control can be written as func-

tions in the considered output function y = x1 and its successive derivatives. This proofs

the flatness property of the considered Hultèn system with the associated output function

ϕ(x). In practice, the flatness property is equivalent to the input-state linearisability in

the case of SISO systems [28].

x1 = y

x2 = ẏ

x3 = 1
µw2

2

(
w2

1y + η1w1ẏ + ÿ + ψNL
1 y3

)
x4 = 1

µw2
2

(
w2

1 ẏ + η1w1ÿ + z4 + 3ψNL
1 y2ẏ

)
(23)

With the new coordinates and by applying the corresponding linearizing feedback, a

fourth order Brunovsky from as given by (17) is obtained. The stabilizing state feedback

can be expressed by using the new coordinates zi

v = −k0z1 − k1z2 − k2z3 − k3z4 (24)

so the closed loop state matrix is obtained:

ACL =


0 1 0 0

0 0 1 0

0 0 0 1

−k0 −k1 −k2 −k3

245

The making asymptotically stable of the closed loop system boils down to the calculating

of the coefficients ki, i = 0, ..., 3 such that the zeros of the characteristic polynomial P (λ),

which are the eigenvalues of the closed loop state matrix ACL are with strictly negative

real parts.

P (λ) = k0 + k1λ+ k2λ
2 + k3λ

3 + λ4 (25)
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The eigenvalues are fixed according to the stability properties and thus to the dynami-

cal behaviour desired for the controlled system. As shown previously, the uncontrolled

Hultèn system presents periodic oscillations with stationary amplitudes that are needed

to be suppressed or at least mitigated. For these perspectives, three different cases

in terms of the location of the desired eigenvalues, are considered. The corresponding250

eigenvalues are plotted in Figure (5) together with the eigenvalues of the original un-

stable system. The eigenvalues of the closed loop system are assigned to locations with

different distances from the imaginary axis which defines the stability/instability bound-

ary. The first case (represented by rounds in Figure (5)) considers stable eigenvalues

but very closed to the imaginary axis.Then, these are slightly shifted to the left of the255

imaginary axis for the second case (eigenvalues with squares) and clearly assigned far

from the imaginary axis for the third case (eigenvalues with diamond). The temporal

evolutions of the displacements x1 and x3 and the associated velocities x2 and x4 that

are obtained from the time integration of the closed loop system, are plotted for each

case in Figures (6),(7) and (8) respectively.260

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

Different dynamical behaviours of the closed loop system are observed depending on265

the considered cases. This is in accordance with what can be expected since each case

presents its own stability properties. From Figure (6) corresponding to the first case,

the stationary oscillating regime initially observed for the uncontrolled Hultèn system is

drastically modified. Indeed, the displacements x1 and x3 as well as the corresponding

velocities x2 and x4 present oscillations with strongly mitigated amplitudes in compar-270

ison with the initial amplitudes. In fact, the oscillations observed for the controlled

displacements are not stationary but correspond to transient regimes. The time simula-

tion (tfinal = 3) Seconds which was previously shown to be sufficient to reach stationary

regimes characterized by LCO (periodic oscillations with constant amplitudes), is kept
16



unchanged for simulating the dynamic behaviour of the controlled system. Until this275

time, the system’s displacements and velocities present oscillations the amplitudes of

which are decaying with rates that are not important enough to permit fast convergence

to the equilibrium, the decaying rates being defined by the real parts of the eigenvalues

closely to the imaginary axis (as shown in Figure (5)). The dynamic oscillations are

consequently weakly damped and a small perturbation of the system equilibrium will280

make the controlled system oscillate for a longer time before it asymptotically converges

to the equilibrium. The controlled displacement x1 and velocity x2 obtained from the

time integration of the closed loop system with tf = 10 Seconds, are plotted in Figure

(9). The asymptotic stability of the closed loop system is clearly observed but with slow

convergence properties.285

[Figure 9 about here.]

The shifting of the eigenvalues of the closed loop system to the left permits to augment

the decaying rates of the amplitude of oscillations and thus to accelerate the convergence

to the equilibrium after the perturbation. Indeed, in Figure (7), it can be observed290

that the friction-induced oscillations shown by the uncontrolled system are suppressed.

The transient regimes are shorter than those observed in the first case. Indeed, the

displacements x1 and x3 and the associated velocities x2 and x4 converge asymptotically

and more rapidly to the equilibrium (almost from t = 1.3 Seconds). In fact, the linearizing

and stabilizing feedback has a friction-compensation effect which can be symbolically seen295

as a decrease of the value of the friction coefficient . The plot of x1 and x2 corresponding

to the Hultèn’s system with µ = 0.15 in Figure (11) are in a perfect accordance with

those corresponding to the controlled system in the second case. Concretely, the applied

nonlinear state feedback has moved the initial unstable system away from the mode-

coupling zone around which the equilibrium has already lost its asymptotic stability300

(see Figure (10)). The mode-coupling zone is characterized by the coalescence point

(µc ≈ 0.289 for the considered system) near which the imaginary parts (and thus the

frequencies) of the system, become equal while the corresponding real parts separate.

One of the eigenvalues becoming positive will make unstable the equilibrium and its small

perturbation will potentially put the system into an oscillatory regime. In an equivalent305
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way, by placing a couple of eigenvalues (as in the first case) at locations very closed to

the imaginary axis, in fact this operation has brought the system close to the coalescence

zone of the system modes while the linearizing and stabilizing state feedback determined

in the second case, has permitted to the system to move further far the coalescence

zone. The distance from the coalescence zone can be much marked by assigning the310

eigenvalues to values that are further to left. This is considered in the third case where

two eigenvalues have been assigned to higher strict negative real parts while the others

have been kept complex conjugate with negative real parts. The dynamic behaviour of

the closed loop system illustrated in Figure (8) show better stability properties (faster

transient with smaller amplitudes). The friction-induced LCO is suppressed and the315

displayed behaviour clearly shows the asymptotic stability of the closed loop system.

After a few number of oscillations with small amplitudes (in comparison with the LCO

amplitudes), the displacements x1 and x3 as well as the associated velocities converge

quickly to the origin (from t ≈ 0.4 second for all the magnitudes).

[Figure 10 about here.]320

[Figure 11 about here.]

4.3. Implementing the input/output linearizing and stabilizing feedback

In the previous subsection, a complete linearizing state feedback has been determined

after the obtaining of a fictive output function ϕ(x) satisfying the rank and involutive

conditions. In the general case, finding a such output function which in addition should

have a relative degree equal to the system’s dimension, is not a trivial task. In numerous

cases, only output functions with relative degrees r < n are more easily obtained. In a

such case, as previously presented in Subsection 3.1, only a partial linearization is possible

and an input-output linearization can be ensured instead of the complete input-state

linearization. However, the stabilization of the partially linearized closed loop system is

submitted to the stability condition of the zero-dynamics which is uncontrollable.

The output function of the Hultèn system is given by y = h(x) = x2, it can be verified

that the corresponding relative degree is equal to r = 3 which is smaller than n = 4.

Hence, only a partial linearization is possible. In this perspective the following nonlinear
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coordinates must be completed in accordance to the equations (7) and (8), to form the

diffeomorphism:
z1 = x2

z2 = −w12x1 − η1x2w1 + µw22x3 − ψNL
1 x3

1

z3 = µw2
2x4 − x2(w2

1 + 3ψNL
1 x2

1) + η1w1(w2
1x1 + η1x2w1 − µx3w

2
2 + ψNL

1 x3
1)

(26)

The remaining coordinate z4 = φ4(x) = x1 can be considered since it is a solution of

equation (8). So, by applying the completed nonlinear coordinate transformation and

the state feedback corresponding to (9) with (10), the following closed loop system is

obtained: 

ż1 = z2

ż2 = z3

...

ż3 = v

ż4 = z1

(27)

The eigenvalues of the linear controllable part in (27) are assigned to values in the left

half complex plan in order to guaranty its asymptotic stability. Their locations are

illustrated in Figure (12). Then, the obtained closed loop system is excited by applying325

a small perturbation on the displacement; x1 = 0.001 m. The temporal evolutions of the

displacements x1 and x3 and the associated velocities x2 and x4 obtained from the time

integration of the corresponding differential equations are illustrated in Figure (13).

[Figure 12 about here.]

It can be observed that the friction-induced LCO are completely suppressed after330

some transient oscillations. The displacements x1 and x3 and the corresponding veloc-

ities x2 and x4 have converged to stationary regimes that are devoid of any oscillation.

This confirms the stable behaviour of the closed loop system. Note that, assigning the

eigenvalues to further to left in the complex plane permits to shorten the transient regimes

of the observed magnitudes, as in the previous studied case about the input-state lin-335

earizing feedback. The same interpretation about the the friction-compensation effect for

the stabilizing state feedback previously given, can be also stated in this case. However,

it can be remarked that x1 and x3 have reached −0.06 m and −0.24 m as final values
19



respectively. This shows that the stability of the equilibrium of the controlled system is

not asymptotic. This is due to the zero-dynamics, ż4 = 0, associated to the obtained340

closed loop system obtained. Indeed, the zero-dynamics corresponds to a pure integrator

system which is known to be a stable but not asymptotically stable system. Hence, the

equilibrium of the whole closed loop is only stable.

[Figure 13 about here.]

Remark: In fact, in the presented study, the contact is assumed to be maintained345

during the vibration. Other studies have considered the opposite case as in [39] for

slider-belt system. In this case namely in the situations when the contact may be lost

and/or stick-slip vibration may occur, the feedback linearizing techniques such presented

in this study become inefficient anf even unsuitable. Indeed, smoothness and derivability

properties are required for the effectiveness of the proposed approach.350

5. Conclusion

This study has presented nonlinear schemes for the active control of nonlinear dy-

namical friction systems submitted to mode-coupling instabilities. The proposed schemes

are based on the feedback linearization principle. The effectiveness of the proposed has

been shown by considering an academic system which is well recognized as a suitable355

benchmark for representing mode-coupling instabilities occurring in brake systems. The

proposed nonlinear control techniques have permitted the suppressing of the friction-

induced LCO. Otherwise, it is necessary to observe that the implementing of feedback

linearizing approach considers that the system’s degrees of freedom are measurable which

is not necessary the case in practice. In this situation, the use of state observer becomes360

necessary. Otherwise, the linearizing feedback based approaches presented in this study

are unsuitable when the non-linearities are non-regular. Moreover, they are sensitive to

parameter uncertainty and/or unmodeled dynamics so no robustness is guaranteed.In

addition, for practical implementation, the control inputs are always subjected to the

saturation problem. All these issues associated to high dimensional friction systems are365

research in progress.
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Figure 1: Mechanical system
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Figure 2: Eigenvalues of the linearized system arround xe = (0, 0)
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and (d) represent zooms on few periods of oscillations of x1(t) and x2(t) respectively
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Figure 4: Velocity versus the displacement: (a) x2(t) versus x1(t), (b) x4(t) versus x3(t)
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Figure 5: Location of the desired eigenvalues for the closed loop system
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Figure 6: The temporal evolutions of: (a) the displacement x1(t), (c) the velocity x2(t), (e) the displace-
ment x3(t) and (g) the velocity x4(t), versus time corresponding to the first case (eigenvalues close to
the imaginary axis). (b), (d), (f) and (h) represent zooms on few periods of oscillations of x1(t), x2(t),
x3(t) and x4(t), respectively. Dark line: original system, red line: closed loop system
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Figure 7: The temporal evolutions of: (a) the displacement x1(t), (c) the velocity x2(t), (e) the displace-
ment x3(t) and (g) the velocity x4(t), versus time corresponding to the second case (eigenvalues shifted
from the imaginary axis). (b), (d), (f) and (h) represent zooms on few periods of oscillations of x1(t),
x2(t), x3(t) and x4(t), respectively. Dark line: original system, red line: closed loop system
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Figure 8: The temporal evolutions of: (a) the displacement x1(t), (c) the velocity x2(t), (e) the displace-
ment x3(t) and (g) the velocity x4(t), versus time corresponding to the third case (eigenvalues far from
the imaginary axis). (b), (d), (f) and (h) represent zooms on few periods of oscillations of x1(t), x2(t),
x3(t) and x4(t), respectively. Dark line: original system, red line: closed loop system
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Figure 9: Long time integration of the close loop system corresponding to the first case (eigenvalues
close to the imaginary axis): (a) the displacement x1(t) and (b) the velocity x2(t)
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Figure 10: Evolution of the eigenvalues of the Hultèn system linearized around the origin, versus the
friction coefficient µ
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Figure 11: The temporal evolution of the displacement x1(t) and the velocity x2(t) of the Hultèn system
corresponding to µ = 0.15 in comparison with those of the closed loop system. Blue line: original system,
red line: closed loop system
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Figure 12: Location of the desired eigenvalues for the partially linearized system
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Figure 13: The temporal evolutions of: (a) the displacement x1(t), (c) the velocity x2(t), (e) the
displacement x3(t) and (g) the velocity x4(t), versus time corresponding. (b), (d), (f) and (h) represent
zooms on few periods of oscillations of x1(t), x2(t), x3(t) and x4(t), respectively. Dark line: original
system, red line: Input-output linearized system
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