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, whereas the spectrum of sampled signal is free of alias and the sampling frequency is reduced (a much smaller than Nyquist-Shannon sampling rate). In order to take advantage of this mode, it is applied on vibration signals to enhance remoted machine monitoring.

Introduction

Nowadays, machine monitoring and supervision has become one of the most important domains of research. Many axes of exploration are involved in this domain: signal processing, machine learning and many others. Besides, industrial systems can now be remotely monitored because of the internet availability. In fact, as are many other systems, machines can now be connected to any network by their Internet Protocol (IP) addresses due to the Internet of Things (IOT) concept. However, this combination is challenging in data acquisition and storage. In 2006, the compressive sensing was introduced to provide data with low rate in order to save energy consumption within wireless sensor networks [START_REF] Donoho | Compressed sensing[END_REF]. Having a similar aspect, random sampling is found to be advantageous in randomly acquiring with low frequency (much smaller than Nyquist rate) and guaranteeing a spectrum without aliasing. However, until now, these methods of sampling are not available by hardware means in markets. Thus, a brief study on the Random Sampling (RS) is presented: its concept, its impact on sampled signal and its implementation in hardware using Arduino microcontroller. In this article, a summary about the RS and its different modes is presented in the first section. In section 2, the conditions and the limitations of RS are cited. In section 3, a brief study on time quantization is given to define the Discrete Random Sampling, and section 4 summarizes the spectral analysis study. In sections 5 and 6, the application on simulated and real signals is shown. The article ends with a summary on the importance of random sampling.

Random Sampling and its Different Modes

Usually, samples are acquired from analogic signals at a constant rate; this is the well-known uniform sampling. Though, in some cases, some samples can't be acquired or may be missed; like in astronomy, structural and biomedical studies where the acquisition at some instants is impossible. Therefore, the time step between consecutive samples is not constant anymore. This type of sampling is defined as Non-Uniform Sampling, where the sampling frequency is not constant due to data loss or unavailability [START_REF] Babu | Spectral analysis of nonuniformly sampled data -a review[END_REF]. In fact, in the already cited cases, the non-uniform sampling (NUS) is a problem to be resolved, but in other cases, NUS is a chosen way to sample data in order to profit from its advantages. Actually, RS is a type of Non-Uniform sampling which is used in Compressive Sensing and Digital Alias-free Signal Processing (DASP) [START_REF] Bilinskis | Digital alias-free signal processing[END_REF] for its advantages of free-aliasing and low sampling frequency in contrary to uniform sampling where the main condition is the Nyquist rate.

In time domain, the sampling process of a signal x(t) is modeled with a simple multiplication in [START_REF] Beutler | Random sampling of random process: Stationary point processes[END_REF].

x s (t) = x(t).s(t) [START_REF] Beutler | Random sampling of random process: Stationary point processes[END_REF] s(t), which is the sampling signal, is defined in [START_REF] Donoho | Compressed sensing[END_REF].
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In uniform sampling the n th instant of sampling is t n =nT, while in random sampling t n is a random variable that has a specific distribution law. The mode of random sampling is determined by the formula of t n . The possible modes of RS are: Additive Random Sampling (ARS), Jittered Random Sampling (JRS), correlated Random Sampling (CRS) and Hybrid Additive Random Sampling (HARS). While, theoretically, the random variable may follow different probability distributions such as: exponential, uniform and Gaussian [START_REF] Wojtiuk | Randomized Sampling for Radio Design[END_REF][START_REF] Ben Romdhane | Echantillonnage Non Uniforme Appliqué à la Numérisation des Signaux Radio Multistandard[END_REF][START_REF] Luo | Non-Uniform Sampling Algorithm and Architecture[END_REF][START_REF] Lo | New Approach for Estimating Spectra from Randomly Sampled Sequences[END_REF].

First, the additive random sampling (ARS) was first proposed by Shapiro and Silverman in [START_REF] Shapiro | Aliasing-free sampling of random noises[END_REF] as a sampling method providing alias-free processing of analogic signals. As its name indicates, the sampling instant in this mode is obtained by adding a random variable to its previous as in [START_REF] Wojtiuk | Randomized Sampling for Radio Design[END_REF].
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where τ n are independent and identically distributed (iid) variables with a probability density function (PDF) = p(τ) having a variance =σ 2 and a mean=µ. There are modified models of ARS that are introduced by [START_REF] Lo | New Approach for Estimating Spectra from Randomly Sampled Sequences[END_REF] and [START_REF] Bilinksis | Randomized Signal Processing[END_REF]: Hybrid ARS and Correlated RS that have the same properties of ARS but a bit enhanced to provide more advantages: the HARS process reduces the calculation cost of the Discrete Fourier Transform and the CRS has better aliasing suppression. Though the study in this paper is limited to the main mode (ARS) in order to prove their common properties.

Second, the jittered random sampling (JRS) where a jitter (error) is applied to a uniform sampling grid, is a type of sampling that appears frequently in practical sampling systems because of uncertainty of sampling clocks due to hardware imperfections [START_REF] Badaoui | Impact of Angular Sampling on Mechanical Signals[END_REF]. The sampling model in this case can be described by (4).
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where T S is the mean inter-sample interval and u n are iid variables with probability density function (PDF) equal to p(u) having variance σ 2 and a zero mean.

Condition of Random Sampling

Point Process Stationarity

As the sampling instants {t n } are considered as points on the real timeline, they can be treated as a point process. Bilinksis and Mikelson defined the stationarity point process SPP as the probability of a sample occurring is the same everywhere on the time axis. To clarify this definition, some notations must be given. p s (t), the sampling point density function, is the sum of all the individual probability density functions (PDF) p n (t), where p n (t) is the PDF of the n th instant of sampling (t n ). Also, if θ n is the random time interval between the sampling instants t n-1 and t n , µ is the mean value of θ n . For n = 0 the representation of θ ! = t 0 is of an initial time value, or initial phase, of the sequence time process {t n }. Figure 1 represents a simple example of a time process for n>=1. Thus, the stationarity condition of a random point process is defined by [START_REF] Luo | Non-Uniform Sampling Algorithm and Architecture[END_REF].

" = " = 1 # 5
where µ=E[θ k ].

Figure 1: Time process for n>=1

According to the Alias-Free theorem, if the random sampling sequence verifies the SPP condition of Bilinskis and Mikelson, the spectrum of the sampled signal is free of aliases [START_REF] Ben Romdhane | Echantillonnage Non Uniforme Appliqué à la Numérisation des Signaux Radio Multistandard[END_REF][START_REF] Bilinksis | Randomized Signal Processing[END_REF].

Time condition

The most usable distributions in sampling are: Gaussian and Uniform [START_REF] Wojtiuk | Randomized Sampling for Radio Design[END_REF][START_REF] Shapiro | Aliasing-free sampling of random noises[END_REF]. In [START_REF] Ben Romdhane | Echantillonnage Non Uniforme Appliqué à la Numérisation des Signaux Radio Multistandard[END_REF] a statistic parameter is introduced in order to measure the validity of the distribution to be used in sampling signals in reality. As mentioned before, the sampling instants {t n } are considered to form a random process, that should be simple. Thus, all t k should be taken in increasing order as in [START_REF] Lo | New Approach for Estimating Spectra from Randomly Sampled Sequences[END_REF].
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To verify this obvious condition, the random variable should be limited to [-0.5T S ; +0.5 T S ] in JRS mode, and to [0.5 T S ; 1.5 T S ] in ARS mode. Consequently, the author in [START_REF] Ben Romdhane | Echantillonnage Non Uniforme Appliqué à la Numérisation des Signaux Radio Multistandard[END_REF] concluded that a maximal limit for the statistic parameter σ/µ=σ/T S is equal to 0.2887 in the uniform distribution case as the mean and the standard deviation are defined by ( 7) and [START_REF] Babu | Spectral analysis of nonuniformly sampled data -a review[END_REF].

# = ; < ' (7) = = < ; √ ' (8) 
However, in this study it was proven that the value already proposed in [START_REF] Ben Romdhane | Echantillonnage Non Uniforme Appliqué à la Numérisation des Signaux Radio Multistandard[END_REF] for the statistical parameter is not accurate in case of Gaussian distribution. In fact, when considering a probability coverage of 99.7% is enough to represent the entire distribution interval of the Gaussian random variable, the end points (minimum and maximum limits) of this interval can be deduced in term of σ and µ as in ( 9) and [START_REF] Shapiro | Aliasing-free sampling of random noises[END_REF], and thus the parameter σ/T S maximal value is 0.333. ?+ = # -3= (9) ?@A = # -= 10

ARS Stationarity

As the PDF of the sum of two random variables is the convolution of their PDFs, the PDF of the n th instant t n is given by [START_REF] Badaoui | Impact of Angular Sampling on Mechanical Signals[END_REF].
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This is the convolution repeated n times to obtain p n (t). p 1 (t) is exactly equal to p 1 (τ). In [START_REF] Ben Romdhane | Echantillonnage Non Uniforme Appliqué à la Numérisation des Signaux Radio Multistandard[END_REF], using the Central Limit Theorem, it is deduced that the PDF of t n can be considered as a Gaussian distribution having a mean equal to nµ and a standard variation equal to √ = ' (when n→ ∞), where τ n has a pdf with mean=µ and variance== ' .
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In the same reference [START_REF] Ben Romdhane | Echantillonnage Non Uniforme Appliqué à la Numérisation des Signaux Radio Multistandard[END_REF], in order to compute p s (t) =Ʃ (p n (t)), the author used Fourier transform of the sum of geometric series and the final value theorem to prove [START_REF] Bland | Analysis of algorithms for nonuniform time discrete Fourier transform[END_REF] where the mean µ of the random interval τ is equal to T S .
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Thus, the ARS mode is satisfying the SPP condition without determining any detail concerning the probability distribution.

JRS Stationarity

The probability density function (PDF) of the n th instant is declared in [START_REF] Korenberg | A robust orthogonal algorithm for system identification and time-series analysis[END_REF].
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All the densities are similar but translated in time with a period equal to T s . The deduced form of the PDF function in JRS mode cannot give information concerning the stationarity, it depends on the chosen distribution: uniform or Gaussian. The formula [START_REF] Qaisar | Compressive Sensing: From Theory to Applications, a Survey[END_REF] verifies the condition of point process stationarity declared previously; the only remaining condition is to have a statistic parameter which verifies the temporal condition: σ/T s <=0.2887 [START_REF] Ben Romdhane | Echantillonnage Non Uniforme Appliqué à la Numérisation des Signaux Radio Multistandard[END_REF]. According to [START_REF] Luo | Non-Uniform Sampling Algorithm and Architecture[END_REF], a JRS process with Gaussian distribution can reach the point process stationarity after a certain delay (T ds ), depending on the distribution characteristics. In fact, many discussions were made to figure out this detail. On one hand, in [START_REF] Badaoui | Impact of Angular Sampling on Mechanical Signals[END_REF], the condition proposed for the Gaussian distribution in case of JRS is deduced from the low-pass filter shape of the characteristic function (CF) of this distribution, so the condition on the value of σ/T s is deduced from the cut-off frequency and is defined by: σ/T s >0.133. Although this condition seems to be compatible with the time condition declared in paragraph 2.2, it was recommended in [START_REF] Badaoui | Impact of Angular Sampling on Mechanical Signals[END_REF] to choose high values of σ/T s >>0.133. While, on the other hand, in [START_REF] Ben Romdhane | Echantillonnage Non Uniforme Appliqué à la Numérisation des Signaux Radio Multistandard[END_REF], it was proven that the stationarity guaranteeing alias elimination in such mode is verified for σ/T s =0.5>0.333. Therefore, JRS is not recommended to be used with Gaussian distribution.

Time Quantization

Due to practical limitations and material implementation constraints, the real time axis couldn't be considered continuous. Therefore, time quantization should be applied on each recommended random sampling process to have a real exploration of such processes. Let ∆ be the smallest time spacing step (that is generally declared by systems manufacturer or chosen by the user according to the requirements). If T S is the mean sampling period, q T is then the temporal quantization factor.
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Let δ tk be the distance between two consecutive sampling instants t k and t k-1 , it can be defined by [START_REF] Skf | SKF Bearing Calculator[END_REF].
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The relation in ( 16) is conceived to model the behavior of sampling in digital applications. For example, in this study the Discrete Random Sampling is applied by using Arduino microcontroller, where the acquisition of samples at random instants is based on interruptions released by a 16 bit timer, and the Analog to Digital Converter (ADC) is called by the corresponding interruption routines. In fact, the random time between two consecutive samples is first generated and rounded to be then declared in the timer register. When the timer reaches this declared delay, it generates an interruption that calls the ADC for a new sample acquisition. As the timer is clocked at a time step ∆, the resulting random time delay between two consecutive samples is n∆, where n is the generated random number after being rounded. Thus, the random interval δ tk is modeled in digital applications by its quantized version δ tk,q = n∆. In Figure 2, a simple flowchart is presented to clarify the used procedure of sampling in this application. It can be deduced from the presented flowchart that the generated random instants must be greater than the conversion time needed by the ADC to accomplish sample acquisition. Thus, the ADC conversion time must be taken in consideration when choosing the parameters of random distribution to avoid data loss or malfunctions in acquisition.

To study the effect of quantization on a sampled signal, referring to [START_REF] Wojtiuk | Randomized Sampling for Radio Design[END_REF][START_REF] Ben Romdhane | Echantillonnage Non Uniforme Appliqué à la Numérisation des Signaux Radio Multistandard[END_REF] the CF of the Time Quantized-RS ( Ф ,P 6 is deduced by [START_REF] Bonnardot | Comparaison entre les analyses angulaire et temporelle des signaux vibratoires de machines tournantes. Etude du concept de cyclostationnarite floue[END_REF].
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where Ф is the CF of the distribution of random instants. It is clear that discretization has introduced a periodicity to the sampling sequence, which will affect the spectrum of the sampled signal. According to [START_REF] Luo | Non-Uniform Sampling Algorithm and Architecture[END_REF], the CF of the quantized interval τ q becomes periodic of 1/∆, so is the Power Spectral Density (PSD) within the interval [-1/(2∆);+1/(2∆)] the original spectrum of the signal before quantization is present without any repetitions caused by the time quantization.

A simple example is done by simulation on a sine wave having two frequencies: 100 and 150 Hz, to prove the limitation introduced by ∆ in having alias in randomly sampled signals. Like in uniform sampling, where the spectrum is repeated at each multiple of the sampling frequency, in quantized or discrete RS the spectrum of the signal is repeated every 1/∆. In the bottom of figure 3, as the frequencies of the signal are 100 and 150 Hz, and the quantization step is 0.003 (1/∆=333.3Hz), it can be seen that the repetition of 100Hz is at 433.3Hz (333.3+100) and at 766.7 Hz (2*333.3+100) and the repetition of 150Hz is at 483.3Hz (333.3+150) and at 816.7 Hz (2*333.3+150). The other alias are the opposite frequency (negative frequencies of the sine) of the replicas according to the reference, for example, 233.3Hz is the opposite of 433.3Hz according to 333.3 (=1/∆) :233.3=-100+333.3, thus the whole replicated spectrum is found within the interval [-1/(2∆);+1/(2∆)] that is centered at 1/∆, which means [1/(2∆);3/(2∆)]=[166.7;500]. The same concept is shown for ∆=0.006 with the only difference that distance between replicas is shorter.

The relation between the sampling frequency and aliasing noise power is given by:
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the average aliasing noise power of the sampled signal x s (t),that is reduced when the normalized average sampling frequency
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is the mean value of the quantized random interval). So the author in [START_REF] Luo | Non-Uniform Sampling Algorithm and Architecture[END_REF] deduced that: once the average sampling frequency is fixed, the average aliasing noise power is fixed too, but according to the used probability distribution and the sampling process mode, the shaping of the aliasing noise power can be changed. For example, the uniform distribution used with ARS, when increasing the number of samples, the average aliasing power is reduced. The same distribution with JRS, when increasing the number of samples, the frequency range that is free of aliasing frequencies is increased.

Spectral Analysis of Randomly Sampled Signals

In Non-Uniform sampling, many spectral analysis methods were suggested. Some of them use signal reconstruction, especially when it is a problem of missing or unreached data. These methods are based first on interpolation, slotted resampling or continuous time models, and then completed with uniform sampling spectral methods [START_REF] Babu | Spectral analysis of nonuniformly sampled data -a review[END_REF]. On the other hand, compressive sensing methods based on exact spectrum reconstruction are used to go back with the inverse Fourier transform into time domain in order to reconstruct the whole signal, the most used are Matching Pursuit and Basis Pursuit where the reconstruction method is based on either l 0 , l 1 or l 2 minimization [START_REF] Qaisar | Compressive Sensing: From Theory to Applications, a Survey[END_REF]. In some other applications of NUS, such as the Random Sampling, the purpose of spectral analysis is not the signal reconstruction, since the RS is chosen and not imposed. In fact, some methods for analyzing the spectrum of randomly sampled signals are based on least square fitting like: Lomb and Scargle periodogram, Real-valued Iterative Adaptive Approach [START_REF] Babu | Spectral analysis of nonuniformly sampled data -a review[END_REF] and Fast Orthogonal Search [START_REF] Korenberg | A robust orthogonal algorithm for system identification and time-series analysis[END_REF], without the intention to do the signal reconstruction in time domain.

In this study, the analysis of the randomly sampled signal began with the basic transformation from time to frequency domain: the Discrete Fourier Transform (DFT), by calculating the frequency component at the randomly chosen instants.
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Where N is the number of samples, x k are the chosen samples at the instants t k that are randomly generated. In nonuniform sampling, calculating the DFT at random instants is known as Point Rule NUT-DFT( Non-Uniform Time-Discrete Fourier Transform) [START_REF] Bland | Analysis of algorithms for nonuniform time discrete Fourier transform[END_REF]. Theoretically, the DFT is a good method to estimate the Fourier transform of the signal in the random sampling context, but as the number of samples must be increased to enhance the quality of acquisition, the calculation cost becomes a real matter as the complexity of the algorithm is O (N 2 ). In the simulation study, the DFT is basically used to evaluate the random sampling effect on the sampled signal. In real signal acquisition it was a must to find a faster method to estimate the spectrum of long acquired signal. In [4 and 5], fast and practical ways are proposed to calculate the spectrum of randomly sampled signal based on the use of the FFT: replace skipped samples by zeros (zero insertion) at the smallest time step ∆ and calculate the FFT of the signal having the sampling frequency 1/∆. In [START_REF] Ben Romdhane | Echantillonnage Non Uniforme Appliqué à la Numérisation des Signaux Radio Multistandard[END_REF], the noise introduced by the zero insertion is minimized by averaging, while in [START_REF] Luo | Non-Uniform Sampling Algorithm and Architecture[END_REF], the spectrum is enhanced by the least square fitting. Since the method of [START_REF] Ben Romdhane | Echantillonnage Non Uniforme Appliqué à la Numérisation des Signaux Radio Multistandard[END_REF] is faster and easier to implement, it is used in an enhanced version in processing the real signals that are sampled randomly, where, instead of a simple averaging, the method of Welch [START_REF] Welch | The use of Fast Fourier Transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms[END_REF] is used to calculate the averaged spectrum of the data.

Simulation Study

The purpose of this study is to evaluate the random sampling and explore its impact on the sampled signal and consequently learn how to choose the sampling parameters in real applications. The simulated signal is a sine wave having 4 frequencies with different amplitude for each. A zero mean Gaussian noise, or white noise, 'w n ' is added to the signal having a variance equal to 5. s = 10. sin 2E. 1000. + 3. sin 2E. 1100. + 5. sin 2E. 1500. + 7. sin 2E. 1510. + * 20

The time vector for sampling is generated by two methods: ARS and JRS. The intervals in ARS are random variables that follow a uniform distribution in the first case, and a Gaussian distribution in the second case. JRS is studied with the uniform distribution.

First, in ARS mode, time vector is simulated by adding random variables n n that follow either a Uniform or a Gaussian distribution, as declared in [START_REF] Wojtiuk | Randomized Sampling for Radio Design[END_REF]. In case of uniform probability, the lower and upper endpoints of the interval [a;b] must be given and the mean µ of the distribution is equal to the mean sampling period and is given in terms of a and b by (21).
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The variance σ 2 is also expressed in terms of a and b to give the value of the standard deviation. To simplify the notation, the difference between the upper and the lower endpoints (that is equal to the interval length) is used instead of the standard deviation, it is called deviation "D" and defined by ( 22).
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To have a mean sampling period T S and a maximum deviation (D), the interval must be: [0.5T S ; 

Thus, if the values of T S and R are determined values of a and b can be calculated to generate the needed time vector according to (24).
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Consequently, by varying the interval endpoints of the uniform distribution different values of T S and R can be obtained. In ARS with Gaussian distribution, the parameters that should be given are the mean µ and the standard deviation σ. As it is the ARS mode, then the mean µ is equal to the mean sampling period T S . So by directly varying the mean, different mean sampling periods are obtained. In addition, 99.7% of possible values of a random variable that follows a Gaussian distribution are extended on the interval of [µ-3σ;µ+3σ] [START_REF] Hazewinkel | Normal distribution[END_REF]. Therefore, the length of this interval, already called Deviation, is equal to 6σ. So when the T S and R (= D/ T S ) are determined, the parameters of the Gaussian distribution are directly deduced in (25).
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In JRS mode, the random jitter u n must follow a distribution with a zero mean, as declared in (4). So, the mean sampling period is determined, independently from the distribution, and added to the generated clock or time vector.

As the only distribution used with this mode is the uniform distribution, the interval should be zero centered and the endpoints would be opposites. The values of the endpoints are chosen according to the needed deviation D or the ratio R. In fact, in JRS as well, the ratio σ/ T S is replaced by R and its maximum value (0.333) is replaced by 1.
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Thus, after generating the random jitter u n , it will be added to the corresponding multiple of the chosen mean period (nT s ) to form the instant at which the random sample will be chosen. After determining the mode and the distribution with its parameters, the number of samples N or the length of the sampled signal must be determined. Multiple signal lengths are tested to analyze the effect of the samples' number on the resulted randomly sampled signal. In Table 1 all the tested values of T S , R and N are depicted. But, to have a clear view of the impact of each parameter, the deviation (or the ratio R) and the number of samples are varied from their minimum to their maximum for every value of T S .

Table 1: Different simulated values of Ts, N and R

To have the ability of comparing the different modes and different distributions, the same values of these parameters are repeated in every case: ARS with uniform, ARS with Gaussian and JRS with Uniform. The time quantization step is taken equal to 5 µs to focus on the influence of random sampling. To evaluate the sampled signals, each case of random sampling (same mode, same distribution and same parameters) is generated 50 times. Every time, the DFT of the signal is calculated and squared to obtain the periodogram of the generated signal. Then, the average of all the periodograms of the 50 signals is taken to represent the case studied (the mode, the distribution and the chosen parameters) and thus analyzed to explore the results.

In the beginning, the impact of RS is observed based on the ability to separate the sampled signal from the noise. In fact, the noise in the randomly sampled signal is not only the additive part 'w n ' that is added in [START_REF] Kurt | PRBS (Pseudo-Random Binary Sequence)[END_REF]. Another part is introduced by the random sampling process, and it is proved to be cyclo-stationary of order 2 as mentioned in [START_REF] Badaoui | Impact of Angular Sampling on Mechanical Signals[END_REF], since the sampled signal is periodic. In figures 4 to 6, the value of the smallest amplitude is compared to the highest value of the noise, to examine how much noise can be eliminated in each case of RS: ARS with uniform distribution, ARS with Gaussian distribution and JRS with uniform distribution. This is also used to explore the impact of varying the mean sampling frequency (or period) and the number of samples taken. In each figure, the color of the plot represents the result for a specified frequency. For the same frequency, two lines are drawn: the continuous line which represents the value of the smallest amplitude of the signal and the dashed line which represents the highest value of noise. These curves (continuous and dashed) show the variation of corresponding amplitudes along with the variation of the number of samples in the signal. In fact, the simulation is done for all the previously mentioned mean sampling periods (or frequencies), but only the most significant results are shown, for mean frequency equal to 500 Hz, 200Hz, 150 Hz and 50 Hz. The ratio R in these tests is fixed and equals 1.

Figure 4: Comparison of the smallest amplitude of the signal to the noise in ars with uniform distribution

It can be obviously seen that in ARS with uniform distribution, the signal is easily distinguished from noise for a number of samples greater than 50 for all the mean frequencies. The smallest amplitude of the signal is perfectly reconstructed and a way greater than the noise for a mean frequency of sampling that equals 50 Hz, a value that is much smaller than the Nyquist frequency.

Figure 5: Comparison of the smallest amplitude of the signal to the noise in ars with gaussian distribution

In ARS with Gaussian distribution the signal can be easily separated from noise for a number of points greater than 100. Nonetheless, it can be seen that also in this mode the mean sampling frequency can be a way smaller than the Nyquist rate also, but with a limitation on the number of samples to be greater than 100.

Figure 6: Comparison of the smallest amplitude of the signal to the noise in jrs with uniform distribution

In JRS with the uniform distribution case, it can be deduced that, for a number of points greater or equal to 50 the signal is easily separated from the noise. As for other cases the number of samples, when increased, enhances the signal and reduces the noise to its minimum, for low and high mean sampling frequencies.

It can be concluded from the comparison of these three ways of RS that the number of samples increases the performance and the low frequency can be easily used. However, the ARS with Gaussian distribution provides results with good distinction of the signal from the noise, for a number of points greater than the ones in ARS and JRS with uniform distribution. So, for cases where there is no limitation on data storage, the ARS with Gaussian distribution can be used. Nevertheless, due to this constraint, it is preferred to continue the study with ARS and JRS with uniform distribution.

In addition, to observe the anti-aliasing property of random sampling, the Amplitude/Alias (A/A) ratio is examined with the variation of Deviation/T S ratio previously noted as R. In fact, R measures the "randomness" of the sampling process. So this analysis is done to study the effect of randomness on the anti-aliasing property. In both cases, ARS and JRS with uniform distribution, the interval endpoints are changed to have different R. The test is repeated for all frequencies, and in each case same results are obtained. Thus, the case of mean frequency that is equal to 10Hz is presented. But as the number of points may influence the results, the most significant cases are to be shown. In Figures and 400, for both cases: ARS and JRS with uniform distribution.

Figure 7: A/A variation with R variation in ARS with uniform distribution

To have a sufficient anti-aliasing property, the A/A ratio must be higher than 1. In Figure 7, it can be seen how this ratio decreases when R is decreased and how the number of points increases the A/A ratio but cannot avoid the impact of R diminution. However, in this mode (ARS with uniform distribution) a value of R that is greater than 0.5 can provide a sufficient anti-aliasing property; i.e. the length of the interval of the random variable must be at least half the mean sampling period.

Figure 8: A/A variation with R variation in JRS with uniform distribution

Same conclusions regarding the impact of R and the number of points on the A/A ratio can be derived for the JRS with uniform distribution. However, but in this case, to have an adequate anti-aliasing, the ratio R must be greater than 0.8, which is a limitation for such sampling mode. This means that when generating an uniform jitter, the interval length of the distribution must be greater than 80% of the value of the mean sampling period. Consequently, the JRS with uniform distribution has more limitations than the ARS with the same distribution regarding the anti-aliasing property.

Hardware Implementation

Acquisition of Signals from Function Generator

In order to apply RS on real signals, a program was developed on Arduino Uno [19]. The main idea of the program is to generate random instants at which the samples are acquired by the ADC. Both modes are applied: ARS and JRS with the uniform distribution. In the beginning, multiple tests were applied on a triangular waveform in order to reveal the impact of RS in practice. This waveform had a frequency of 1kHz, an amplitude of 2.5 V and an offset of 2.5V for compatibility reasons with the ADC input (0 to 5V). The ADC saves the value of the sample in 10 bits within a maximal conversion time equal to 230 µs. This is compatible with all possible values of random delays since the signals in this study are acquired at much higher values of T S . The microcontroller clock is 16 MHz, with a possibility to be divided by a prescaler in timers. So, the time quantization step ∆ is determined by the timer and by the clock of the microcontroller. When the clock has a low rate, large time granulation, the second and third harmonics were difficult to be detected due to the increased noise floor as mentioned in [START_REF] Skf | SKF Bearing Calculator[END_REF]. Thus, small ∆ values are used to focus on RS influence. To generate a random jitter or time interval that follows an uniform distribution, the algorithm of Pseudo-Random Binary Sequence (PRBS) was developed. Many tests were done for different values of T S , D and number of points. T S must be declared in a register as a number of clock pulses; in ARS, it should be the mean of randomly generated time intervals, while in JRS it should be simply added to the randomly generated jitter. D is declared to limit the variation of the random variable (whether it is a jitter or time interval) to be compatible with time condition [START_REF] Lo | New Approach for Estimating Spectra from Randomly Sampled Sequences[END_REF]. Due to hardware limitations the ratio R couldn't have an exact value of 1, it is slightly greater than 0.8. The samples of the signal with their instants of sampling are saved, so the DFT of the randomly sampled signal can be calculated, in Matlab, as mentioned in [START_REF] Bonnardot | Comparaison entre les analyses angulaire et temporelle des signaux vibratoires de machines tournantes. Etude du concept de cyclostationnarite floue[END_REF]. The offset of the signal is eliminated before calculating the DFT.

A uniformly sampled triangular waveform, with a frequency of 1 kHz, an amplitude equal to 2.5 and an offset of 2.5, is simulated on Matlab without noise. It has a spectrum with peaks on 1 kHz and its odd multiples as in Figure 9, and the fundamental has the highest amplitude while the other harmonics have reduced amplitudes. To observe the two harmonics at 3 kHz and 5 kHz, the uniform sampling frequency is taken 10.2 kHz, the length of the signal is 2040 points.

Figure 9: FFT of the triangular waveform with uniform sampling

The acquisition of the already mentioned triangular signal was done with different values of T S , D and number of points. One of the most important results is shown in Figure 10. A comparison of the DFT of the triangular signal is presented when sampled with ARS and JRS with the uniform distribution having the same parameters. The mean frequency is approximately 200Hz, where the period is 4.99 ms and the ratio R is 0.8. The number of samples taken is 4000 points. When comparing both results, it can be seen that the aliases appears in the JRS mode, as the mean frequency of sampling is 200Hz , aliases appears around the fundamental with a distance of 200 Hz and its multiple, while in ARS no aliases appears. This aliasing is due to two reasons. The first is that the uniform distribution of the jitter is not perfect enough so the condition of stationarity is not satisfied as in [START_REF] Babu | Spectral analysis of nonuniformly sampled data -a review[END_REF]. The second is that the ratio R (deviation/Ts) is not greater than 80% as deduced from simulation. Moreover, the main fundamental and its first harmonic appears in both cases. The second harmonic has very low amplitude that can be easily covered by the noise due to hardware conditions and RS noise. Consequently, the ARS mode with uniform distribution is able to detect the peaks of the signals with a low frequency without aliasing with no limitations as in the JRS with uniform distribution. 

Vibrational Signal Acquisition

The whole research on the random sampling and its different modes was conducted in order to study the possibility of its application on vibrational signals. After the test of random sampling on simple signal (triangular waveform), it was concluded that the ARS mode with the uniform distribution is the combination with less limitations to be applied on real signals. In addition, the time granulation should be the smallest possible value, and the ratio R should be higher than 0.5. The frequency can be small enough and the number of points should be increased to have better result. In fact, these parameters are determined by the context of each application.

An experiment was done in the laboratory of LASPI (Laboratoire d'Analyse des Signaux et des Processus Industriels), on a rotating motor shown in Figure 10. The motor had a bearing 6205 RS manufactured by MTM that could have either a normal or a defected inner race. The speed was 37 Hz. Vibrational signals were acquired by an accelerometer placed radially to the bearing as in figure 11. The output of the accelerometer is wired to the Arduino, so the signals could be sampled randomly. Because of higher number of samples in real applications, the spectral analysis to be used in RS, couldn't be the DFT due to its high complexity. Thus, it was more advantageous to use the FFT with the zero Padding. In fact, the samples acquired by Arduino were saved with their random instants of sampling as well as the time granulation ∆ which is the period of the clock of Arduino while the sampling was done. Consequently, the zero padding, or insertion, was done by adding zeros at each step ∆ between the randomly chosen samples. So the acquired signal became longer and with a constant time step between samples. The samples were then the randomly acquired samples along with the added zeros. As the time between samples is constant, the FFT can be applied on the acquired signals. The sampling frequency F 0S is given by (27).
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In [START_REF] Ben Romdhane | Echantillonnage Non Uniforme Appliqué à la Numérisation des Signaux Radio Multistandard[END_REF] to eliminate the noise added by the zero insertion the spectrum of the signal is averaged. In this study, the Welch method is applied to average the spectrum and obtain an optimized periodogram by dividing the signal in 8 segments with a Hamming window and an overlapping of 50% in all the mentioned tests.

First of all, the vibration was acquired with uniform sampling frequency (51200 Khz) from the accelerometer (the same used in random sampling) using National Instrument DAQ device. The signal (of 100 000 pts), was processed in Matlab. In diagnostic, many tools of bearing signals' processing are based on the signal envelope's extraction to detect the important frequencies that give information about the bearing state: rotation frequency, defection characteristic frequency and others [START_REF] Bonnardot | Comparaison entre les analyses angulaire et temporelle des signaux vibratoires de machines tournantes. Etude du concept de cyclostationnarite floue[END_REF]. In this study, all the vibration signals, randomly or uniformly sampled, were explored without any pre-processing or filtering.

The start is with the case of normal bearing, where the frequency to detect is the rotation frequency. In uniform sampling, only one segment of 1000 points of the signal and its envelop are shown in Figure 13.

First, the start will be with the case of normal bearing, where the frequency to detect is the rotation frequency. In uniform sampling, the signal in time domain is shown in Figure 13(a). Due to the use of a high sampling frequency, the signal within 4 seconds is very dense. Thus, only 1000 points of the signal are plotted in figure 13(b), laying in approximately 0.02 seconds. To detect the frequency of rotation, the FFT of the envelop is calculated, and the PSD, estimated by the Welch periodogram, is presented to be compared to the PSD of the randomly sampled signal. Both are presented for the whole signal (100000 points) in figure 14. It is obvious how in the FFT and in the Welch periodogram the rotation frequency is detected with its harmonics. Also, the noise elimination is clearer in the periodogram. In random sampling, the ARS mode with the uniform distribution is chosen to acquire vibrational signal, as it was deduced to have less limitations than other modes. Since it is a low frequency signal, the mean frequency used is 25 Hz, the ratio R is 0.8 and the number of samples is 8000. In fact, multiple trials were done to choose the number of acquired samples from 1000 to 10 000 samples. The most satisfying results are those observed for N equal to 8000. As the sampling frequency is low, the acquired signal within 4 seconds (figure 15 (a)) is not representative enough, a longer signal is then presented in figure 15 (b) to visualize 1000 samples that take 40 seconds to be acquired. Thus, during the comparison between US and RS signals in time domain, it is preferred to fix the number of samples instead of the time interval as the sampling frequencies are far different in values. The Welch periodogram of the envelope is presented in Figure 16. It can be deduced from Figure 15, that with a low sampling frequency (25 Hz) and a moderate number of samples (8000), the rotation frequency can be detected in the Welch periodogram when using the ARS with uniform distribution.

In case of faulty bearing, the defection is situated in the inner race. According to the bearing type and its characteristics, the most important peaks are: 37 Hz and 199.4 Hz which is the defection frequency (inner race defection) [START_REF] Skf | SKF Bearing Calculator[END_REF]. As in the previous case, the uniformly sampled signal is presented with its spectrum. Then the randomly sampled signal will be shown. The uniformly sampled signal and its envelop in time domain, are presented in Figure 17. Segments of only 1000 points are shown. The frequency of sampling and the number of points are the same ones of the normal bearing case. The calculated FFT and Welch periodogram of the whole signal (8000 pts) envelop are shown in Figure 18. From figure 17, it can be seen how the rotation frequency and the defection frequency appear both in the FFT and in the Welch periodorgam with their harmonics. The purpose of applying the RS on the vibrational signal is to obtain such results with lower frequency and moderate number of samples. So, for the same bearing in the same situation, the vibrational signal (8000 pts) is acquired from the same accelerometer with Arduino, using the ARS with the uniform distribution and a mean frequency 50Hz with a deviation that equals 80% of the mean period. A segment of 1000 samples of the randomly sampled signal and its envelop in time domain are presented in figure 18. The Welch periodorgam of the envelop are presented in figure 19. In ARS results, it can be seen that both peaks are detected with their harmonics. In the Welch periodogram, the results are valued due to the noise elimination. Compared to the randomly sampled signal of the normal bearing, the peaks of defection are very clear, which makes the diagnostic feasible with RS.

As for a first application of RS on vibrational signals, this result is very satisfying when taking into consideration the frequency of sampling (50 Hz), the number of points (8000) and the unrequired anti-aliasing filter. Consequently, the random sampling seems to be a promising when applied on vibrational signals of rotating machineries. In this context, it provides easy monitoring in real time applications due to the low sampling frequency, and thus these rotating machineries can be remotely supervised by using the IOT concept.

Conclusion

Finally, after a brief review on the Random sampling and its different modes, it can be concluded that the stationarity condition is approved by the ARS mode with any random distribution and by the JRS with the uniform distribution only. Though, the simulation study showed some limitations of the ARS with the Gaussian distribution and the JRS with the uniform distribution. Those limitations could be treated with a higher number of samples and high ratio of Deviation/T S requiring a higher hardware performance. Hence, the ARS with uniform distribution is chosen to be used in practice. The spectral analysis of randomly samples signal is done by using the DFT for simulated signals and by the PSD (of Welch) after zero insertion for real signals. A comparison between vibrational signals acquired from a normal and a faulty bearing, using both uniform and random sampling is done. In RS, the resulting spectrums in both cases, normal and faulty bearing, are clear and give the needed information to do the diagnostic. At the end, it is deduced that the ARS is applicable in machine monitoring domain, offering a diagnosis with a lower frequency (way lower than the Nyquist frequency) without demanding a large amount of data neither an anti-aliasing filter. Thus, the random sampling, inspired by the compressive sensing, can simplify the implementation of machine monitoring to be used in remote application having low frequency rate and thus easily managed in real time operations. Having such potential, random sampling should be studied in order to reveal all its specifications and limitations, especially the noise introduced by this process. This noise needs to be eliminated in order to enhance the performance of this promising way of sampling. 
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Table 1 : Different simulated values of Ts, N and R

 1 

	T S (sec)	0.002	0.005	0.0067	0.01	0.02	0.05	0.1
	N(pts)	25	50		80	100	150	200	400
	R (D/T S )	0.1	0.2	0.3	0.4	0.5	0.6	0.7 0.8 0.9	1