Yann Rébillé 
  
Representations of preferences with pseudolinear utility functions

Keywords: preferences, utility functions, additive representation, axiomatization, money. JEL classification: D81, D11, D61

We provide an axiomatization of preferences that are representable by pseudolinear utility functions on product spaces C × IR. A set of necessary and sufficient axioms that a binary relation must fulfill to be representable by a pseudolinear utility function is given. Our framework gives axiomatic foundations to the "money in the utility function" approach in monetary economics. Axiomatizations of quasilinear utility functions, of separable pseudolinear utility functions, of group separable pseudolinear utility functions are derived. A particular attention is given to additive separable pseudolinear utility functions. Extensions to C × I with I a non-degenerate open interval of IR are given. An axiomatization of Cobb-Douglas utility functions is obtained.

Introduction

The general question of representing preferences by continuous utility functions on topological spaces is from a mathematical point of view very advanced and has received a lot of attention since the development of mathematical economics. Original contributions focused on euclidean spaces, and then on metric spaces, second countable, or connected and separable topological spaces ( [START_REF] Eilenberg | Ordered topological spaces[END_REF][START_REF] Debreu | Representation of a preference ordering by a numerical function[END_REF][START_REF] Debreu | Continuity properties of a paretian utility[END_REF][START_REF] Rader | The existence of a utility function to represent preferences[END_REF], see also [START_REF] Fishburn | Utility Theory for Decision Making[END_REF][START_REF] Mehta | Preference and Utility[END_REF][START_REF] Rébillé | Continuous utility on connected separable topological spaces[END_REF]).
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A specific form of utility functions of high interest is given by additive functions (or additively separable functions) on product spaces. Additive functions play a crucial rôle in multi-criteria (multi-attribute) decision making, decision under uncertainty and trace back to early works in neoclassical economics on consumer theory (see H. Gossen (1854)). Representations by continuous additive functions are obtained on connected (and separable spaces) topological spaces ([5, 12, 20]).

Our study is developed on product spaces of the form C × IR. The set C denotes a space of goods and IR denotes money (or any other measurable quantity). Our interest is for utility functions defined on C × IR that are pseudolinear, i.e., U (0 C , z) = z for all z ∈ IR for a given 0 C ∈ C. The element 0 C is a reference bundle of goods. In particular, pseudolinear utility functions allow to obtain directly monetary equivalents and express that money is desirable 1 .

The rôle of money is essential in modern economics ( [START_REF] Handa | Monetary Economics 2nd Edition[END_REF]). One may characterize money through three major functions it performs. These functions are: -unit of account, -medium of payments, -store of value. From the point of view of individual economic agents we may refer to various motives to explain the demand for money. According to the traditional classical approach, there are two motives: -a transaction motive, -a precaution motive. Let us quote A.C. Pigou in the text (p.41 in [START_REF] Pigou | The value of money[END_REF]), "Hence everybody is anxious to hold enough of his resources in the form of titles of legal tender [money] both to enable him to effect the ordinary transactions of life without trouble, and to secure him against unexpected demands, due to a sudden need, or to a rise in the price of something he cannot easily dispense with." As a medium of exchange, agents need money to operate transactions. As a store of value, agents need money by precaution.

For the various services it provides, money can be directly incorporated into the agents utility functions. This trend leads to the so-called models of "Money in the Utility Function" in monetary macroeconomics (see [START_REF] Walsh | Monetary Theory and Policy[END_REF][START_REF] Handa | Monetary Economics 2nd Edition[END_REF] chapters 2 and 3 respectively, see also [START_REF] Bridel | Walras and the 'money-in-the-utility-function' tradition[END_REF] for theoretic discussions). For instance, economic agent's utility has for arguments: consumption c, leisure l and cash balances m (that is money), utility functions take the form U (c, l, m) (see [START_REF] Sidrauski | Rational growth and patterns of growth in a monetary economy[END_REF]). Typically m is considered in real terms, that is m = M/P where M stands for a quantity of money and P stands for an index of the (anticipated) level of prices that reflects standards of consumption 2 . Our framework gives axiomatic foundations to the "money in the utility function" approach. This approach must not be confused with the "utility of money (under risk)" in the risk literature following von Neumann and Morgenstern's axiomatization of expected utility theory.

A natural requirement is that when C is a topological space the utility function U should behave correctly, i.e., U should be continuous, hence erratic behaviors of the agents are discarded. We will provide an axiomatization of preferences representable by continuous pseudolinear functions on topological spaces.

Quasilinear utility functions constitute a particular case of pseudolinear util- 1 That is, (x, z) ∼ (0 C , U (x, z)) and (x, z) ≻ (x, z ′ ) for all x ∈ C, z, z ′ ∈ IR with z > z ′ . 2 For instance, one may use a Laspeyres price index P = ∑ n i=1 p 1 i c * i / ∑ n i=1 p 0 i c * i , where c * = {c * i } n i=1 is a standard bundle of goods and p 0 , p 1 denote present and future prices.

ity functions. U is a quasilinear utility function if U (x, z) = v(x) + z for all (x, z) ∈ C × IR with v(0 C ) = 0. Here, v is a value function that assigns a monetary equivalent to any bundle of goods, the value being independent of the money holdings. Quasilinear utility functions appeared since A. Marshall's contributions to (partial) equilibrium theory (see [START_REF] Brown | Alfred Marshall's cardinal theory of value: the strong law of demand[END_REF]) and can be met in various fields of economic theory such as cooperative game theory or microeconomic theory (see [START_REF] Kaneko | Note on transferable utility[END_REF]). We will provide a new characterization of quasilinear utility functions (see [START_REF] Rébillé | An axiomatization of continuous quasilinear utility[END_REF]). Then, we will seek for axiomatizations of separable pseudolinear functions and group separable pseudolinear functions. The important case of additive separable pseudolinear functions shall deserve a particular treatment. The method we will follow is based on Aczél's results and is related to continuous representations of ordered semi-groups (see [START_REF] Aczél | Lectures on Functional Equations and Their Applications[END_REF]). Our technique can be seen as a simpler version of classical results obtained in [START_REF] Krantz | Foundations of Measurement Vol. I : Additive and Polynomial Representations[END_REF][START_REF] Wakker | The algebraic versus the topological approach to additive representations[END_REF][START_REF] Wakker | Additive Representations of Preferences: A New Foundation of Decision Analysis[END_REF] but for the specific case C × IR. Extensions to C × I where I is a non-degenerate open interval of IR will be given. An axiomatization of preferences à la Cobb-Douglas will be obtained. Examples and counter-examples will be given along the development to illustrate the relationships between the various axioms. All the proofs are gathered in an appendix.

Notations, definitions

IN, IN * denote the set of integers, of positive integers respectively and IR, IR ++ denote the set of real numbers, the set of positive real numbers respectively. z > 0 stands for z ∈ IR ++ . Id denotes the identity function on IR defined by Id : IR -→ IR : z → z. C is a nonempty set without any structure a priori. If C is a topological space, it is not necessarily Hausdorff. C is a connected topological space if the only sets that are both closed and open are ∅ and C. Generic elements are denoted: x ∈ C, y, z ∈ IR. (x, z) ∈ C × IR is interpreted as a couple of (quantities of) goods and a quantity of money.

Let ≽ ⊂ (C × IR) 2 be a binary relation on C × IR. As usual ∼, ≻, denote the equivalence relation, the asymmetric part of ≽.

U : C × IR -→ IR represents a binary relation ≽ on C × IR if for all (x, z), (x ′ , z ′ ) ∈ C × IR, (x, z) ≽ (x ′ , z ′ ) ⇐⇒ U (x, z) ≥ U (x ′ , z ′ ) .
U is called a utility function.

Let 0 C ∈ C be given. Then, (0 C , 0) ∈ C × IR may be interpreted as an origin 3 . The choice of (0 C , 0) as an origin is conventional. The bundle of goods 0 C is an arbitrary reference level of goods. So, 0 C is not necessarily a worst possible bundle of goods among all the bundles of goods. One may also choose some

(0 C , z) ∈ C × IR as another origin. Then, (x, z) ∈ C × IR is interpreted through a money-coordinate change (x, ∆z) ∈ C × IR with ∆z = z -z. U is a pseudolinear function if for all z ∈ IR, U (0 C , z) = z.
In particular, for all (x, z) ∈ C × IR we have U (x, z) = U (0 C , U (x, z)).

Representation of Preferences

Axioms

No particular structure is imposed on C, besides that 0 C ∈ C. So we may deal with indivisible goods as well. Let us introduce some plausible axioms that a binary relation may fulfill.

(WO) ≽ is a weak order, i.e., transitive and complete, if for all

x, x ′ , x ′′ ∈ C, z, z ′ , z ′′ ∈ IR, (x, z) ≽ (x ′ , z ′ ) and (x ′ , z ′ ) ≽ (x ′′ , z ′′ ) ⇒ (x, z) ≽ (x ′′ , z ′′ ) , and (x, z) ≽ (x ′ , z ′ ) or (x, z) ≼ (x ′ , z ′ ) .
(MD) Money is desirable, i.e., for all z, z ′ ∈ IR,

z ≥ z ′ ⇐⇒ (0 C , z) ≽ (0 C , z ′ ) .
Hence, ≽ agrees with the natural order on IR, hence more money is always strictly better than less.

Next axiom introduces monetary equivalents. The superscript s stands for sectional.

(MEQ s ) for all (x, y) ∈ C × IR there exists z ∈ IR such that (x, y) ∼ (0 C , z).

Otherwise put, there exists a monetary compensation t such that (x, y) ∼ (0 C , y+ t) with t = z -y. Thus, given y, x is desirable or undesirable whether t > 0 or t < 0. So, under (MEQ s ) the decision maker is able to say whether a bundle of goods x is desirable or not given his monetary situation y. Now, under (MEQ s ) any couple (x, y) ∈ C × IR can be considered according to its monetary equivalent. Then, by (MD) and (WO), preference comparisons of couples can be undertaken solely on the basis of monetary comparisons. The monetary equivalent existence property is related to restricted solvability condition in [START_REF] Krantz | Foundations of Measurement Vol. I : Additive and Polynomial Representations[END_REF] (see also the proof of Theorem 6.14 p.309 therein).

Instead of requiring (MEQ s ) to hold, a kind of continuity of preferences and boundedness of preferences can be introduced.

(CL s ) ≽ is s-closed, i.e., for all (x, y) ∈ C × IR, {z : z ∈ IR, (0 C , z) ≽ (x, y)} and {z : z ∈ IR, (0 C , z) ≼ (x, y)} are closed in IR.
(BD s ) ≽ is s-bounded, i.e., for all (x, y) ∈ C × IR there exists z, z ∈ IR such that

(0 C , z) ≼ (x, y) ≼ (0 C , z) .
Clearly, (MEQ s ) implies (BD s ). 

x, x ′ , z, z ′ ∈ IR, (x, z) ≽ (x ′ , z ′ ) if and only if x + z ≥ x ′ + z ′ + 1. Then, (WO) is not satisfied since ≽ is not reflexive: (x, z) ̸ ≽ (x, z). However, (CL s ) holds since for all (x, y) ∈ C × IR, {z : z ∈ IR, (0 C , z) ≽ (x, y)} = [x + y + 1, +∞) and {z : z ∈ IR, (0 C , z) ≼ (x, y)} = (-∞, x + y -1]. 2) [vx] Let C = IR, 0 C = 0. Consider the utility function U (x, z) = x + sign(z) for (x, z) ∈ C ×IR where sign(z) = 1, -1, 0 whether z > 0, z < 0, z = 0. Then, (WO) is satisfied. But, (CL s ) is not satisfied since {z : z ∈ IR, (0 C , z) ≽ (1/2, 0)} = (0, +∞) and {z : z ∈ IR, (0 C , z) ≼ (-1/2, 0)} = (-∞, 0) which are not closed. 3) [xx] Let C = IR, 0 C = 0. Consider the following binary relation, for all x, x ′ , z, z ′ ∈ IR, (x, z) ≽ (x ′ , z ′ ) if and only if x + sign(z) ≥ x ′ + sign(z ′ ) + 1. Then, (WO) is not satisfied since ≽ is not reflexive. And (CL s ) is not satisfied since {z : z ∈ IR, (0 C , z) ≽ (-1/2, 0)} = (0, +∞) and {z : z ∈ IR, (0 C , z) ≼ (1/2, 0)} = (-∞, 0) which are not closed. 4) [vv] Let C = IR, 0 C = 0.
: z ∈ IR, (0 C , z) ≽ (x ′ , z ′ )} = [x ′ + z ′ , +∞) and {z : z ∈ IR, (0 C , z) ≼ (x ′ , z ′ )} = (-∞, x ′ + z ′ ] which are closed.

A general result

We may state the preferences representation theorem. There, utility functions are essentially unique. That is to say unique up to an increasing transformation and unique of its kind as a pseudolinear utility function. Let us provide a simple procedure for obtaining pseudolinear utility functions.

Remark 1. Let V : C × IR -→ IR be a utility function satisfying (i) V (0 C , .) increasing and (ii) V (C × IR) = V ({0 C } × IR) then U = V (0 C , .) -1
• V is a pseudolinear utility function representing the same preferences 4 . Conversely, any increasing transformation V = φ • U of a pseudolinear utility function U provides a utility function V satisfying (i) and (ii). Conditions (i)-(ii) jointly characterize "pseudolinearizable" utility functions.

Next example is built on the lexicographic order which is known for not admitting a utility representation (see [START_REF] Debreu | Representation of a preference ordering by a numerical function[END_REF]). This shows that (WO) and (CL 

Example 3. 1) [xx] Let C = IR, 0 C = 0. Consider the utility function U (x, z) = xz for (x, z) ∈ C × IR.
Then, (WO), (CL s ) are satisfied. We have, U (0, 0) = U (0, 1) = 0 and 0 < 1, so (MD) is not satisfied. We have, U (-1, 1) = -1 and U (0, z) = 0 for all z ∈ IR, so (BD s ) is not satisfied.

2) [xv] Let C = IR + , 0 C = 0. Consider the utility function U (x, z) = x + z 2 for (x, z) ∈ C × IR. Then, (WO), (CL s ), (BD s ) are satisfied. We have, U (0, 1) = U (0, -1) = 1 and -1 < 1, so (MD) is not satisfied.
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) [vx] Let C = IR, 0 C = 0. Consider the utility function U (x, z) = x + z |z|+1 for (x, z) ∈ C × IR. Then, (WO), (CL s ), (MD) are satisfied. We have, U (1, 0) = 1 > z |z|+1 = U (0, z) for all z ∈ IR, so (BD s ) is not satisfied. 4) [vv] Let C = IR, 0 C = 0. Consider the utility function U (x, z) = x + z for (x, z) ∈ C × IR.
Then, (WO), (CL s ), (MD), (BD s ) are satisfied.

Continuity

Let C be a topological space. We consider IR with its natural (euclidean) topology and endow C ×IR with the product topology. Let us introduce a continuity axiom. 

Quasilinearity

Let us introduce a simple class of pseudolinear utility functions, the quasilinear utility functions. Quasilinear utility functions can be met in cooperative game theory when dealing with transferable utility properties, or more traditionally in microeconomic theory when dealing with consumer's or producer's theory (see [START_REF] Kaneko | Note on transferable utility[END_REF][START_REF] Rébillé | An axiomatization of continuous quasilinear utility[END_REF]). A specific axiom is needed for obtaining quasilinear utility.

(LM) ≽ is linear w.r.t. money, i.e., for all x ∈ C, y, z ∈ IR,

(x, 0) ∼ (0 C , z) ⇒ (x, y) ∼ (0 C , z + y) .
Hence, money offers no possible substitution or complementarity with goods. Theorem 3. Let C be a nonempty set, 0 C ∈ C and ≽ ⊂ (C × IR) 2 . Then, ≽ satisfies (WO), (CL s ), (MD), (BD s ) and (LM) if and only if there exists a quasilinear utility function U = v + Id representing ≽ with v : C -→ IR and v(0 C ) = 0, i.e., for all (x, z) ∈ C × IR, U (x, z) = v(x) + z. Moreover, U is essentially unique and v is unique. Furthermore, if C is a topological space, then v is continuous if and only if (CONT) is satisfied.

Clearly, for all z ∈ IR it holds U (0 C , z) = v(0 C ) + z = z, so U is a pseudolinear function. Due to their elementary expression U = v + Id, quasilinear functions satisfy various separability properties that we will study in the next section.

Theorem 3 is an equivalent to Theorem 3 in [START_REF] Rébillé | An axiomatization of continuous quasilinear utility[END_REF] obtained on C × IR + with related axioms. For sake of comparison, we quote the latter theorem. Axioms on C × IR + are denoted with a superscript + .

(CL + ) ≽ is closed, i.e., for all x ∈ C, {z : z ∈ IR + , (0 C , z) ≽ (x, 0)} and {z : z ∈ IR + , (0 C , z) ≼ (x, 0)} are closed in IR + . (SENS + ) ≽ is sensitive w.r.t. goods, i.e., there exists some x ∈ C such that (x, 0) ≻ (0 C , 0). (MD + ) Money is desirable, i.e., for all z, z ′ ∈ IR + , z ≥ z ′ ⇐⇒ (0 C , z) ≽ (0 C , z ′ ). (BD + ) ≽ is bounded, i.e., for all x ∈ C, (0 C , 0) ≼ (x, 0) and there exists z x ∈ IR + such that (x, 0) ≼ (0 C , z x ).

(LM + ) ≽ is linear w.r.t. money, i.e., for all x ∈ C, y, z ∈ IR + , (x, 0) ∼ (0 C , z) ⇒ (x, y) ∼ (0 C , z + y).

Theorem (see theorem 3 p.308 in [START_REF] Rébillé | An axiomatization of continuous quasilinear utility[END_REF]) Let C be a nonempty set and ≽ ⊂ (C × IR + ) 2 . Then, ≽ satisfies (WO + ), (CL + ), (SENS + ), (MD + ), (BD + ), (LM + ) if and only if there exists a quasilinear utility function U = v + Id representing ≽, with v : C -→ IR + non-constant and v(0 C ) = 0. Moreover, v is unique.

On C × IR, the closedness axiom (CL s ) is more demanding than (CL + ) developed on C × IR + . The boundedness axiom (BD s ) on C × IR seems more demanding than (BD + ) developed on C × IR + , but (BD + ) requires furthermore that 0 C be a minimum in C. Hence, the value function v is real valued for the case C × IR whereas v is nonnegative for the case C × IR + which is more restrictive.

Separability conditions

Building on Theorem 1, we may give some direct consequences of some interest that will be particularly useful for obtaining pseudolinear utility with separability properties of increasing strength: separability, group separability, additive separability.

Separable pseudolinear utility

The first separability condition states that a couple (x, z) ∈ C × IR should be evaluated at first componentwise and then jointly. So, the preferences should not be affected by a common change regarding each component. This condition is better known under the name of independence (of factors) (see e.g. Chapter 2 in [START_REF] Wakker | Additive Representations of Preferences: A New Foundation of Decision Analysis[END_REF]). A similar version for the case C × IR + is given in [START_REF] Rébillé | An axiomatization of continuous quasilinear utility[END_REF]. 

(INDM) ≽ satisfies independence w.r.t. money, i.e., for all x, x ′ ∈ C, z, z ′ ∈ IR, (x, z) ≽ (x ′ , z) ⇐⇒ (x, z ′ ) ≽ (x ′ , z ′ ) . (INDG) ≽ satisfies independence w.r.t. goods, i.e., for all x, x ′ ∈ C, for all z, z ′ ∈ IR, (x, z) ≽ (x, z ′ ) ⇐⇒ (x ′ , z) ≽ (x ′ , z ′ ) . So,
v : C -→ IR with v(0 C ) = 0 and H : v(C) × IR -→ IR such that, ∀(x, z) ∈ C × IR, U (x, z) = H(v(x), z) , ∀ν ∈ v(C), H(ν, 0) = ν, ∀z ∈ IR, H(0, z) = z , and ∀ν, ν ′ ∈ v(C), z, z ′ ∈ IR, (ν, z) > (ν ′ , z ′ ) ⇒ H(ν, z) > H(ν ′ , z ′ ) , where (ν, z) > (ν ′ , z ′ ) stands for (ν, z) ≥ (ν ′ , z ′ ) and (ν, z) ̸ = (ν ′ , z ′ ).
Moreover, U is essentially unique. 

Hence, U = H(v,
Example 4. 1) [xx] Let C = IR, 0 C = 1. Consider the utility function U (x, z) = xz for (x, z) ∈ C × IR. Then, U is pseudolinear. We have, U (1, 1) = 1 > -1 = U (-1, 1) and U (1, -1) = -1 < 1 = U (-1, -1), so (INDM) is not satisfied. And, U (1, 1) = 1 > -1 = U (1, -1) and U (-1, 1) = -1 < 1 = U (-1, -1), so (INDG) is not satisfied. 2) [xv] Let C = IR ++ , 0 C = 1. Consider the utility function U (x, z) = xz for (x, z) ∈ C × IR. (INDG) is satisfied. And, U (2, 1) = 2 > 1 = U (1, 1) and U (2, -1) = -2 < -1 = U (1, -1), so (INDM) is not satisfied. 3) [vx] Let C = IR, 0 C = 0. Consider the utility function U (x, z) = x + ze xz for (x, z) ∈ C × IR. Then, U is pseudolinear. (INDM) is satisfied since the function (x → x + ze xz ) is increasing on IR for all z ∈ IR. We have, U (0, -2) = -2 < -1 = U (0, -1) and U (1, -2) = 1 -2e -2 > 1 -e -1 = U (1, -1), so (INDG) is not satisfied. 4) [vv] Let C = IR + , 0 C = 0.

Group separable pseudolinear utility

A necessary axiom to obtain a more structured representation on product spaces is the Thomsen condition. Thomsen condition plays an essential rôle for additive separable representations to hold. Related conditions similar to the Thomsen condition are the "hexagon condition", the "triple cancellation", the"Reidemeister condition" (see Lemma III.6.3 p.69 in [START_REF] Wakker | Additive Representations of Preferences: A New Foundation of Decision Analysis[END_REF], see also [START_REF] Gonzales | Two factor additive conjoint measurement with one solvable component[END_REF]). A similar version for the case C × IR + is given in [START_REF] Rébillé | An axiomatization of continuous quasilinear utility[END_REF].

A binary relation ≽ satisfies Thomsen condition if, for all x, x ′ , x ′′ ∈ C, z, z ′ , z ′′ ∈ IR, (x ′ , z) ∼ (x ′′ , z ′ ) and (x, z) ∼ (x ′′ , z ′′ ) ⇒ (x, z ′ ) ∼ (x ′ , z ′′ ) .
Loosely speaking, given z and x ′′ , if x ′ and z ′ equilibrate and if x and z ′′ equilibrate then (x, z ′ ) ∼ (x ′ , z ′′ ).

We may introduce a weaker condition that involves sections, taking 

x ′′ = 0 C . (THC s ) ≽ satisfies s-Thomsen condition, i.e., for all x, x ′ ∈ C, z, z ′ , z ′′ ∈ IR, (x ′ , z) ∼ (0 C , z ′ ) and (x, z) ∼ (0 C , z ′′ ) ⇒ (x, z ′ ) ∼ (x ′ , z ′′ ) . Theorem 5. Let C be a nonempty set, 0 C ∈ C and ≽ ⊂ (C × IR)
v : C -→ IR with v(0 C ) = 0 and H : v(C) × IR -→ IR with U = H(v, Id)
where H is strict-monotonic and pseudolinear in ν and in z, such that for all ν, ν ′ ∈ v(C), z ∈ IR,

H(ν, H(ν ′ , z)) = H(ν ′ , H(ν, z)) .
Moreover, U is essentially unique.

In particular, for z = 0 and since

H(ν, 0) = ν it comes H(ν, ν ′ ) = H(ν ′ , ν), so H is commutative (or symmetric) on v(C) × v(C). Notice possibly that v(C) ̸ = IR, so for some (ν, z) ∈ v(C) × IR it is possible that (z, ν) / ∈ v(C) × IR.
Hence, full commutativity is not possible, but holds at least on v(C) × v(C). Similarly, full associativity is not possible, but we may say a bit more. 

Let ν, ν ′ , ν ′′ ∈ v(C) with H(ν, ν ′ ) ∈ v(C), then, H(H(ν, ν ′ ), ν ′′ ) = H(ν ′′ , H(ν, ν ′ )) = H(ν, H(ν ′′ , ν ′ )) = H(ν, H(ν ′ , ν ′′ )) .
) is satisfied (v). Example 5. 1) [xxx] Let C = IR, 0 C = 0. Consider the utility function U (x, z) = min(x, z) + max(0, z) for (x, z) ∈ C × IR. Then, U is pseudolinear. But (INDM), (INDG) and (THC s ) are not satisfied. We have, U (0, 0) = 0 = U (1, 0) and U (0, 1) = 1 < 2 = U (1, 1) thus (INDM) is not satisfied. We have, U (-2, -1) = -2 = U (-2, -2) and U (-1, -1) = -1 > -2 = U (-1, -2) thus (INDG) is not satisfied. For instance, take x = 1, x ′ = 2, z = 1. We have, U (x, U (x ′ , z)) = U (1, U (2, 1)) = U (1, 2) = 3 and U (x ′ , U (x, z)) = U (2, U (1, 1)) = U (2, 2) = 4 thus (THC s ) is not satisfied. 2) [xxv] Let C = IR, 0 C = 1. Consider the utility function U (x, z) = xz for (x, z) ∈ C × IR. Then, U is pseudolinear. (INDM)

and (INDG) are not satisfied (see Example 4.1)). But (THC

s ) holds, since U (x, U (x ′ , z)) = x(x ′ z) = x ′ (xz) = U (x ′ , U (x, z)) for all x, x ′ , z ∈ IR. 3) [vvx] Let C = IR, 0 C = 0. Consider the utility function U (x, z) = A(x + z + min(x, z)) for (x, z) ∈ C × IR where A(t) = t if t ≥ 0 and A(t) = t/2 if t < 0.

The function U is pseudolinear. (INDM) and (INDG) are satisfied. Indeed, for

x < x ′ , we have x + z + min(x, z) < x ′ + z + min(x ′ , z) for all z ∈ IR. Similarly, for z < z ′ , we have x + z + min(x, z) < x + z ′ + min(x, z ′ ) for all x ∈ IR + . But (THC s ) does not hold. For instance, take x = 3, x ′ = 5, z = 1. Then, U (3, 1) = 5 and U (5, 1) = 7.

Then U (x ′ , U (x, z)) = U (x ′ , U (3, 1)) = U (5, 5) = 15 and U (x, U (x ′ , z)) = U (x, U (5, 1)) = U (3, 7) = 13 ̸ = 15. 4) [vvv] Let C = IR + , 0 C = 0. Consider the utility function U (x, z) = ln(x+e z ) for (x, z) ∈ C × IR. Then, U is pseudolinear and not quasilinear. (INDM), (INDG) are satisfied (see Example 4.4)). For x, x ′ ≥ 0, z ∈ IR, we have ln(x + e ln(x ′ +e z ) ) = ln(x + x ′ + e z ) = ln(x ′ + e ln(x+e z ) ), so (THC s ) is satisfied. 5) [xvv] Let C = IR ++ , 0 C = 1. Consider the utility function U (x, z) = xz for (x, z) ∈ C × IR. (INDG) is satisfied. And, U (2, 1) = 2 > 1 = U (1, 1) and U (2, -1) = -2 < -1 = U (1, -1), so (INDM) is not satisfied. But (THC s ) holds, since U (x, U (x ′ , z)) = x(x ′ z) = x ′ (xz) = U (x ′ , U (x, z)) for all x, x ′ , z ∈ IR. 6) [xvx] Let C = IR + , 0 C = 0. Consider the utility function U (x, z) = xe z + ze x for (x, z) ∈ C × IR. Then, U is pseudolinear and not quasilinear. (INDG) is satisfied since ∂U/∂z (x, z) = xe z + e x > 0 for all (x, z). We have, U (0, 0) = 0 < 1 = U (1, 0) and U (0, -1) = -1 > e -1 -e = U (1, -1), so (INDM) is not satisfied. (THC s ) is not satisfied. For instance, take x = 1, x ′ = 2, z = 1. We have, U (x, U (x ′ , z)) = U (1, U (2, 1)) = U (1, 2e + e 2 ) = e 2e+e 2 +2e+e 2 e = e 2e+e 2 +2e+e 3 and U (x ′ , U (x, z)) = U (2, U (1, 1)) = U (2, 2e) = 2e 2e + 2ee 2 = 2e 2e + 2e 3 . 7) [vxx] Let C = IR, 0 C = 0. Consider the utility function U (x, z) = x + ze xz for (x, z) ∈ C × IR. According to Example 4.3), (INDM) is satisfied and (INDG) is not satisfied. (THC s ) is not satisfied. For instance, take x = 1, x ′ = 2, z = 0. Then, U (x, U (x ′ , z)) = U (1, U (2, 0)) = U (1, 2) = 1 + 2e 2 and U (x ′ , U (x, z)) = U (2, U (1, 0)) = U (2, 1) = 2 + e 2 . 8) [vxv] Let C = IR + , 0 C = 0. Consider the utility function U (x, z) = (x + z 2 ) 1/2 for (x, z) ∈ C × IR + if x > 0, and U (0, z) = z if x = 0. For all 0 < x < x ′ , z ∈ IR we have U (x, z) = (x + z 2 ) 1/2 < (x ′ + z 2 ) 1/2 = U (x ′ , z) and for 0 = x < x ′ , z ∈ IR we have U (0, z) = z ≤ (z 2 ) 1/2 < (x ′ + z 2 ) 1/2 = U (x ′ , z). Thus, (INDM) is satisfied. We have, U (1, -1) = 2 1/2 > 1 = U (1, 0) and U (0, -1) = -1 < 0 = U (0, 0) thus (INDG) is not satisfied. However, (THC s ) is satisfied. For all 0 < x < x ′ , z ∈ IR, we have U (x, U (x ′ , z)) = U (x, (x ′ + z 2 ) 1/2 ) = (x + ((x ′ + z 2 ) 1/2 ) 2 ) 1/2 = (x + x ′ + z 2 ) 1/2 = U (x ′ , U (x, z)). For all 0 = x < x ′ , z ∈ IR, we have U (0, U (x ′ , z)) = U (x ′ , z) and U (x ′ , U (0, z)) = U (x ′ , z) for all z ∈ IR.

Additive separable pseudolinear utility

In this subsection we shall deal with an even stronger condition of separability which is additive separability. For sake of tractability we shall require that v(C) = IR. Hence, any z = v(x) can be interpreted either as an amount of money z or either as a monetary equivalent v(x) of some goods x. Thus, commutativity and associativity can operate fully instead of partially. For this matter we introduce a s-goods equivalent property.

(GEQ s ) Any amount of money has an equivalent in goods, i.e., for all z ∈ IR there exists x z ∈ C such that (x z , 0) ∼ (0 C , z).

Hence any amount of money has a real counterpart in terms of goods. For instance, there could exist a desirable good for which the decision maker is ready to abandon his money to consume more of it. Thus, money admits a substitutable good. Clearly, C has at least the power of the continuum and must be infinite. (MEQ s ) and (GEQ s ) mean that for the decision maker C and IR have the same size.

Next proposition establishes that under (GEQ s ) and (THC s ), conditions (INDM) and (INDG) are equivalent.

Proposition 1. Let C be a nonempty set, 0 C ∈ C and ≽ ⊂ (C × IR) 2 . Assume ≽ satisfies (WO), (CL s ), (MD), (BD s ), (THC s )

and (GEQ s ). Then, ≽ satisfies (INDM) if and only if ≽ satisfies (INDG).

In light of example 5.5) (respectively 5.8)), if ≽ satisfies (WO), (CL s ), (MD),

(BD s ), (THC s ) but (GEQ s ) is not satisfied then (INDG) ̸ ⇒ (INDM) (respectively (INDM) ̸ ⇒ (INDG)).
Furthermore we require that any goods can be compensated by some amount of money.

(CMP) Any goods can be compensated by some amount of money, i.e., for all x ∈ C there exists

z x ∈ IR such that (x, z x ) ∼ (0 C , 0).
Here, (CMP) coincides with the notions of willingness to pay and to accept. For instance, if (x, 0) ≻ (0 C , 0) then -z x can be interpreted as the (maximum) price the decision maker is ready to pay for obtaining x. Symmetrically, if (x, 0) ≺ (0 C , 0) then z x can be interpreted as the (minimum) reward the decision maker is ready to accept for holding x. (CMP) prevents situations where for some x ∈ C it would hold (x, z) ≻ (0 C , 0) for all z ∈ IR, thus x would be absolutely preferred to 0 C ; or symmetrically, it would hold (x, z) ≺ (0 C , 0) for all z ∈ IR, thus x would be absolutely dis-preferred to 0 C . (CMP) means that for the decision maker C and IR are comparable. (MEQ s ), (GEQ s ) and (CMP) constitute the core of the relations between goods and money.

However, (INDM), (INDG), (GEQ s ), (CMP) do not imply (THC s ).

Example 6. Consider Example 5.3). Let

C = IR, 0 C = 0. Consider the utility function U (x, z) = A(x + z + min(x, z)) for (x, z) ∈ C × IR where A(t) = t if t ≥ 0 and A(t) = t/2 if t < 0. The function U is pseudolinear. (INDM)
and (INDG) are satisfied and (THC s ) does not hold. However, for all x ∈ IR, v(x) = U (x, 0) = A(x + min(x, 0)) = x. Thus v(C) = IR and (GEQ s ) is satisfied. And, for x ≥ 0 we have U (x, -x/2) = 0 and for x < 0 we have U (x, -2x) = 0, so (CMP) is satisfied.

Next axiom is rather technical and is essential for obtaining a continuous group order isomorphism on (IR, +, >). This axiom is a weak version of the Archimedeanity axiom introduced in [START_REF] Krantz | Foundations of Measurement Vol. I : Additive and Polynomial Representations[END_REF].

(ARCH s ) ≽ satisfies s-Archimedeanity, i.e., for all x ∈ C, {z n } +∞ n=1 ⊂ IR, k ∈ IR, the following system of preferences is inconsistent,

(x, 0) ≻ ≺ (0 C , 0) , ∀n ∈ IN * , (0 C , z n ) ≼ ≽ (0 C , k) , (x, z 1 ) ∼ (0 C , z 2 ) & (x, z 2 ) ∼ (0 C , z 3 ) & (x, z 3 ) ∼ (0 C , z 4 ) & . . .
In [START_REF] Krantz | Foundations of Measurement Vol. I : Additive and Polynomial Representations[END_REF] 

(0) = 0 such that, ∀(x, z) ∈ C × IR, U (x, z) = ϕ -1 (ϕ(v(x)) + ϕ(z)) .
Moreover, U is essentially unique and ϕ is unique up to an increasing linear transformation, i.e., if for φ : IR -→ IR increasing continuous and onto with φ(0) = 0 it holds U (x, z) = φ -1 (φ(v(x)) + φ(z)) for all (x, z) ∈ C × IR then φ = ϕ/α with α > 0.

Equivalently put, there exists a common change of coordinates ϕ such that v(x), z, U (x, z) are additively related under ϕ (see [START_REF] Debreu | Topological methods in cardinal utility theory[END_REF]), i.e.,

∀(x, z) ∈ C × IR, ϕ(U (x, z)) = ϕ(v(x)) + ϕ(z) .
Clearly φ = ϕ/α with α > 0 is also a common change of coordinates. An additive separable pseudolinear utility function is clearly separable since U (x, z) depends only on v(x) and z. It is also group separable with

H(ν, z) = ϕ -1 (ϕ(ν) + ϕ(z))
for all ν, z ∈ IR. In decision theory, additive representations of preferences are of major interest. That is to say, preferences for which there are functions

(V, V 1 , V 2 ) with V = V 1 + V 2 , V 1 : C -→ IR and V 2 : IR -→ IR such that for all x, x ′ ∈ C, z, z ′ ∈ IR, (x, z) ≽ (x ′ , z ′ ) ⇐⇒ V 1 (x) + V 2 (z) ≥ V 1 (x ′ ) + V 2 (z ′ ) .
Without loss of generality, we may take V 1 (0 C ) = V 2 (0) = 0. Let one assume that ≽ admits a pseudolinear utility function U as well. Then, since U and V represent the same preferences there exists an increasing function ϕ : IR -→ IR with ϕ(0

) = 0 such that V = ϕ • U . Put v(x) = U (x, 0) for all x ∈ C. Hence, for all x ∈ C, V 1 (x) = V (x, 0) = ϕ(U (x, 0)) = ϕ(v(x)) and for all z ∈ IR, V 2 (z) = V (0 C , z) = ϕ(U (0 C , z)) = ϕ(z). Thus, ≽ is represented by ϕ • U = ϕ • v + ϕ • Id.
Here, ϕ and v are not necessarily onto.

Next example shows that an additive representation of preferences may hold but a pseudolinear utility representation may not exist. 

Example 7. Let C = IR, 0 C = 0. Consider the utility function V (x, z) = (e x - 1) + (e z -1) for (x, z) ∈ C × IR. Then, V (0, z) = e z -1 > -1 for all z ∈ IR. So, V (IR × IR) = (-2, +∞) ̸ = (-1, +∞) = V ({0} × IR), thus by Remark 1, V is not pseudolinearizable.
inv : ν → e ν -1. Thus, H(ν, z) = U (v inv (ν), z) = ln(e ν -1 + e z ) for all (ν, z) ∈ IR + × IR. But neither (GEQ s ) nor (CMP) are satisfied. For all x, we have U (x, 0) = ln(x + 1) ≥ 0 but U (0, -1) = -1 < 0, hence (GEQ s ) is not satisfied. For x = 1, we have U (1, z) = ln(1 + e z ) > 0 = U (0, 0) for all z ∈ IR, hence (CMP) is not satisfied. Moreover, taking ϕ : IR -→ (-1, +∞) : z → e z -1, we have, for all (x, z) ∈ IR + × IR, ϕ(U (x, z)) = x + e z -1 = e ln(x+1) -1 + e z -1 = ϕ(v(x)) + ϕ(z) ,
which is an additive representation where ϕ is not onto and v is not onto.

2) [xv] Let C = IR + , 0 C = 0. Consider the utility function U (x, z) = x + z for (x, z) ∈ C × IR. Since U is quasilinear, (INDG), (INDM), (THC s ) are satisfied. (CMP) is satisfied, since for x ≥ 0, U (x, z) = 0 is solved for z = -x. However, U (0, -1) = -1 and U (x, 0) = x ≥ 0 > -1 for all x ∈ IR + , thus (GEQ s ) is not satisfied. Here ϕ = Id on IR is onto, but v = Id on IR + is not onto. 3) [vx] Consider Example 7. Let C = IR, 0 C = 0. Consider the utility function V (x, z) = (e x -1) + (e z -1) for (x, z) ∈ C × IR. Since V is additive separable, ≽ satisfies (INDG), (INDM), (THC s ). Moreover, V (0, z) = V (z, 0) for all z ∈ IR, so (GEQ s ) is satisfied. However, V (1, z) = e -1 + e z -1 > e z > 0 = V (0, 0) for all z ∈ IR, thus (CMP) is not satisfied. 4) [vv] Consider Example 3. 4). Let C = IR, 0 C = 0. Consider the utility function U (x, z) = x + z for (x, z) ∈ C × IR.
Then, U (0, z) = U (z, 0) and U (z, -z) = 0 for all z ∈ IR, so (GEQ s ) and (CMP) are satisfied.

The question whether there exists some preferences that admit a pseudolinear utility representation and that satisfy (INDG), (INDM), (THC s ), (GEQ s ) but not (CMP) remains unanswered.

Let us provide another formulation of Theorem 6 that avoids the recourse to the compensation axiom (CMP) that may be too apparent and the Archimedean axiom (ARCH s ) that may be too technical. For this matter, a bounded compensability axiom and another closedness axiom are considered instead.

(CBD) ≽ satisfies bounded compensability, i.e., for all x ∈ C there exists z, z ∈ IR such that (x, z) ≼ (0 C , 0) ≼ (x, z).

(CCL) ≽ satisfies closedness w.r.t. compensability, i.e., for all

x ∈ C, k ∈ IR, {z : z ∈ IR, (x, z) ≽ (0 C , k)} and {z : z ∈ IR, (x, z) ≼ (0 C , k)} are closed in IR. Corollary 1. Let C be a nonempty set, 0 C ∈ C and ≽ ⊂ (C × IR) 2 .

Then, ≽ satisfies (WO), (CL s ), (MD), (BD s ), (INDM), (INDG), (THC s ), (GEQ s ), (CBD), (CCL) if and only if there exists an additive separable pseudolinear utility function U representing ≽. Moreover, U is essentially unique and ϕ is unique up to an increasing linear transformation.

In particular, for ϕ = αId with α > 0, U boils down to a quasilinear utility function. Conversely, any quasilinear function U = v + Id with v(C) = IR is an additive separable pseudolinear function with ϕ = Id.

(GEQ s ) can be stated in an alternative manner as well as (MEQ s ) and (CMP) could be respectively replaced by (BD s ) and (CL s ) and by (CBD) and (CCL).

Assume C is a topological space. (GBD s ) ≽ satisfies s-boundedness w.r.t. goods, i.e., for all z ∈ IR there exists t, t ∈ C such that (t, 0) ≼ (0 C , z) ≼ (t, 0). (GCL s ) ≽ satisfies s-closedness w.r.t. goods, i.e., for all z ∈ IR, {x : x ∈ C, (x, 0) ≽ (0 C , z)} and {x : x ∈ C, (x, 0) ≼ (0 C , z)} are closed in C.

Let us state an analog of Lemma 1 for the topological space C. Lemma 3. Let C be a connected topological space and ≽ satisfies (WO) and (GCL s ). Then, (GBD s ) is equivalent to (GEQ s ).

We can restate Corollary 1 for the case of connected topological spaces. Here, a continuous additive representation of preferences obtains. Corollary 2. Let C be a connected topological space, 0 C ∈ C and ≽ ⊂ (C × IR) 2 . Then, the following assertions are equivalent: (i) ≽ satisfies (WO), (CL s ), (MD), (BD s ), (INDM), (INDG), (THC s ), (GBD s ), (GCL s ), (CBD), (CCL), (ii) ≽ satisfies (WO), (MD), (BD s ), (INDM), (INDG), (THC s ), (GBD s ), (CBD) and (CONT), (iii) there exists an additive separable continuous pseudolinear utility function U representing ≽. Moreover, U is essentially unique and ϕ is unique up to an increasing linear transformation.

Corollary 2 parallels Theorem III. 6.6 (ii) in [START_REF] Wakker | Additive Representations of Preferences: A New Foundation of Decision Analysis[END_REF] (p.70). Therein, an additive utility representation of preferences is obtained for preferences satisfying (WO), (INDM), (INDG), (CONT) and the "hexagon condition". The latter condition is equivalent to the Thomsen condition. Here, when the second factor is IR, an additively separable pseudolinear utility function obtains. (CL s ), (CCL), (GCL s ) are all guaranteed by (CONT). As it turns out in the connected topological setting, it suffices to simultaneously consider different closedness conditions such as (CL s ), (CCL), (GCL s ) to enforce (CONT). The issue of how continuity appears in the topological setting is subtlety handled in [START_REF] Wakker | The algebraic versus the topological approach to additive representations[END_REF].

Extension to monetary sets

We have considered until now that money holdings were unbounded and signed. Let us provide an extension to open intervals that may be bounded (or half bounded) and positive (or negative, or neither of them). Let M = (m, m) with -∞ ≤ m < m ≤ +∞ and 0 M ∈ (m, m). The monetary set M admits 0 M for an origin 5 . Typical situation is when M = (0, +∞) and 0 M > 0 is a reference level. In our previous development, M = IR, with 0 M = 0 and m = -∞, m = +∞.

We may provide analogues of Theorem 1 and Corollary 1 (Theorem 6 and Corollary 2 can be treated in the same fashion). For this matter, axioms must be restated accordingly. M is endowed with the euclidean topology.

(WO) ≽ is a weak order on C × M. (MD) For all z, z ′ ∈ M, z ≥ z ′ ⇐⇒ (0 C , z) ≽ (0 C , z ′ ). (CL s ) For all (x, y) ∈ C × M, {z : z ∈ M, (0 C , z) ≽ (x, y)} and {z : z ∈ M, (0 C , z) ≼ (x, y)} are closed in M. (BD s ) For all (x, y) ∈ C × M there exists z, z ∈ M such that (0 C , z) ≼ (x, y) ≼ (0 C , z). Theorem 7. Let C be a nonempty set, 0 C ∈ C, M an open interval, 0 M ∈ M and ≽ ⊂ (C × M) 2 .

Then, ≽ satisfies (WO), (CL s ), (MD), (BD s ) if and only if there exists a pseudolinear utility function U representing ≽, i.e., for all

(x, z), (x ′ , z ′ ) ∈ C × M, (x, z) ≽ (x ′ , z ′ ) ⇐⇒ U (x, z) ≥ U (x ′ , z ′ ) and U (0 C , z) = z for all z ∈ M.
Moreover, U is essentially unique.

A celebrated example of utility function in microeconomics is the Cobb-Douglas utility function.

Let C = IR n ++ , 0 C = (1, . . . , 1) and M = IR ++ , 0 M = 1. A func- tion V : IR n ++ × IR ++ -→ IR : (x, z) → ( ∏ n i=1 x α i i )z β , with α 1 , .
. . , α n , β > 0 is a Cobb-Douglas function with parameter ((α i ) n i=1 , β) in its multiplicative form. By composition, we obtain a pseudolinearization (see Remark 1), given by,

U (x, z) = (V (x, z)) 1/β = ( n ∏ i=1 x γ i i )z, for all x ∈ IR n ++ , z > 0,
where γ i = α i /β > 0 for i = 1, . . . , n. Clearly, U is also additive separable, since, for all x ∈ IR n ++ , z > 0, U (x, z) = exp(ln(

∏ n i=1 x γ i i ) + ln(z)
), here ϕ = ln. Let us introduce the relevant axioms. Denote the coordinatewise product by ⊗, where x ⊗ y = (x i y i ) n i=1 for x, y ∈ IR n ++ . (GD) Goods are desirable, i.e., for all x, x ′ ∈ IR n ++ ,

x > x ′ ⇒ (x, 1) ≻ (x ′ , 1) .

(MUL-M) ≽ satisfies multiplicativity w.r.t. money, if for all x ∈ IR n ++ , y, z > 0, we have, (x, 1) ∼ (1, y) ⇒ (x, z) ∼ (1, yz) .

(MUL-G) ≽ satisfies multiplicativity w.r.t. goods, if for all x, x ′ ∈ IR n ++ , y > 0, we have,

(x, 1) ∼ (1, y) ⇒ (x ⊗ x ′ , 1) ∼ (x ′ , y) . Proposition 2. Let C = IR n ++ , 0 C = (1, . . . , 1) and M = IR ++ , 0 M = 1. Assume ≽ ⊂ (IR n ++ × IR ++ ) 2

satisfies (WO), (MD), (BD s ) and (CONT). Let v be the value function with v(1, . . . , 1) = 1 and U be the pseudolinear utility function representing ≽. Then, ≽ satisfies (GD), (MUL-M), (MUL-G) if and only if there exists (unique)

γ 1 , . . . , γ n > 0 such that U (x, z) = ( ∏ n i=1 x γ i i )z for all x ∈ IR n ++ , z > 0.
As we may notice, the utility function is "quasimultiplicative" since U (x, z) = v(x)z for all x ∈ C, z > 0. Under pseudolinearity, "quasimultiplicativity" is equivalent to (MUL-M).

In a similar fashion, (INDM), (INDG), (THC s ) can be restated directly with M = (m, m) instead of M = IR. Regarding (GEQ s ), (CBD), (CCL) we have the following, (GEQ s ) For all z ∈ M, there exists

x z ∈ C such that (x z , 0 M ) ∼ (0 C , z). (CBD) For all x ∈ C, there exists z, z ∈ M such that (x, z) ≼ (0 C , 0 M ) ≼ (x, z). (CCL) For all x ∈ C, k ∈ M, {z : z ∈ M, (x, z) ≽ (0 C , k)} and {z : z ∈ M, (x, z) ≼ (0 C , k)} are closed in M. Theorem 8. Let C be a nonempty set, 0 C ∈ C, M an open interval, 0 M ∈ M and ≽ ⊂ (C × M) 2 .
Then, ≽ satisfies (WO), (CL s ), (MD), (BD s ), (INDM), (INDG), (THC s ), (GEQ s ), (CBD), (CCL) if and only if there exists an additive separable pseudolinear utility function U representing ≽, i.e., there exists v : C -→ M onto with v(0 C ) = 0 M and ϕ : M -→ IR increasing continuous and onto with ϕ(0

M ) = 0 such that, ∀(x, z) ∈ C × M, U (x, z) = ϕ -1 (ϕ(v(x)) + ϕ(z)) .
Moreover, U is essentially unique and ϕ is unique up to an increasing linear transformation.

Conclusion

Our main interest is for preferences on product spaces that can be represented by pseudolinear utility functions. We provided a set of necessary and sufficient axioms that a binary relation must fulfill in order to be representable by a pseudolinear utility function and also by additive separable pseudolinear utility functions. Results are provided for continuous preferences on connected topological spaces. An extension to monetary sets through open intervals possibly unbounded is achieved.

A natural question poses then to go beyond open intervals for monetary sets. The answer is positive if one considers a totally ordered topological space X homeomorphic and order isomorphic to (IR, >). That is to say, let X be given the order structure ≻ X inherited from ≻ on C × X when restricted to {0 C } × X . Clearly X must be unbounded (w.r.t. ≻ X ) and X must be connected and separable in the order topology like any open interval is in IR (e.g. [START_REF] Rébillé | Continuous utility on connected separable topological spaces[END_REF]). In some sense, we cannot go much farther than IR. An other interesting direction is to consider half closed or closed intervals, for instance C × IR + .

From an economic point of view, the identification of money with real numbers is pertinent. Other types of wealth can be accommodated in additional dimensions through the first factor C. Our results give axiomatic foundations to monetary economics based on the "money in the utility function" approach. The relationships between goods and money are intertwined, goods and money do not play symmetric roles in the various axioms, here money is more than a basic good chosen as a numéraire.

The richness of the money factor set allows for simpler axiomatizations. Furthermore, when the assumption (GEQ s ) is fulfilled (e.g. when C is a connected topological space), the derivation of additive separable pseudolinear utility functions is made possible. The question of handling indivisibilities (when C is not connected) remains a challenging question. Application of our technique in order to incorporate related topics such as intertemporal choices or choices under risk or uncertainty could be the object of further researches.

Appendix

A Proofs

Proof. Lemma 1.

It is clear that (MEQ s ) implies (BD s ). For (x, y) ∈ C × IR, put U(x, y) = {z ∈ IR : (0 C , z) ≽ (x, y)} and D(x, y) = {z ∈ IR : (0 C , z) ≼ (x, y)}. Assume (CL s ) holds. Let (x, y) ∈ C × IR.
The sets U(x, y) and D(x, y) are closed in IR. By (BD s ) both are nonempty. By (WO), for any z ∈ IR, either (0 C , z) ≽ (x, y) or (0 C , z) ≼ (x, y), thus U(x, y) ∪ D(x, y) = IR. So, by connectedness of IR it comes U(x, y) ∩ D(x, y) ̸ = ∅. Take z(x, y) ∈ U(x, y) ∩ D(x, y), we have then (0 C , z(x, y)) ∼ (x, y) and (MEQ s ) is established. Assume (MD) holds. It remains to prove that (MEQ s ) implies (CL s ). Let (x, y) ∈ C × IR. By (MEQ s ), there exists z(x, y) ∈ IR such that (0 C , z(x, y)) ∼ (x, y). Then, by (WO) and (MD) successively, it holds U(x, y)

= {z ∈ IR : (0 C , z) ≽ (0 C , z(x, y))} = {z ∈ IR : z ≥ z(x, y)} = [z(x, y), +∞), that is closed in IR. Similarly, D(x, y) = (-∞, z(x, y)], that is closed in IR.
Proof. Theorem 1. (If). We only check for (CL s ) the rest is immediate. Let (x, y) ∈ C × IR. Then, {z : z ∈ IR, (0

C , z) ≽ (x, y)} = {z : z ∈ IR, z ≥ U (x, y)} = [U (x, y), +∞) and {z : z ∈ IR, (0 C , z) ≼ (x, y)} = {z : z ∈ IR, z ≤ U (x, y)} = (-∞, U (x, y)] which are closed in IR.
(Only if). By Lemma 1, (MEQ s ) holds. So for any (x, y) ∈ C × IR there exists some U (x, y) ∈ IR such that (x, y) ∼ (0 C , U (x, y)). Clearly, U (0 C , 0) = 0. By (MD), such U (x, y) ∈ IR is unique. Then, for all x, x ′ ∈ C and for all y, y ′ ∈ IR, by (WO) and (MD),

(x, y) ≽ (x ′ , y ′ ) ⇐⇒ (0 C , U (x, y)) ≽ (0 C , U (x ′ , y ′ )) ⇐⇒ U (x, y) ≥ U (x ′ , y ′ ) ,
so, U represents the preferences. Let y ∈ IR. We have (0 C , y) ∼ (0 C , U (0 C , y)), thus by (MD), U (0 C , y) = y. So, U is pseudolinear. (Moreover). Let us prove that U is essentially unique. Let U ′ be another pseudolinear utility representation of ≽ with U ′ (0 C , 0) = 0. Then, for all (x, y) ∈ C × IR, (x, y) ∼ (0 C , U (x, y)) and (x, y) ∼ (0 C , U ′ (x, y)), thus U (x, y) = U ′ (x, y) by (WO) and (MD). Let V be another utility representation of ≽. Then, for all (x, y) 

∈ C × IR, (x, y) ∼ (0 C , U (x, y)). Thus, V (x, y) = V (0 C , U (x, y)). So, V = φ • U with φ = V (0 C , .). Let us check that φ is increasing. Let z > z ′ , then by (MD), (0 C , z) ≻ (0 C , z ′ ), thus φ(z) = V (0 C , z) > V (0 C , z ′ ) = φ(z ′ ). Proof. Lemma 2. Let (x, y) ∈ C × IR. Put U(x, y) = {z ∈ IR : (0 C , z) ≽ (x,
(O 1 , O 2 ) with 0 C ∈ O 1 ⊂ C and z 0 ∈ O 2 ⊂ IR we have (x, y) ≻ (s, z) for (s, z) ∈ O 1 × O 2 . In particular, (x, y) ≻ (0 C , z) for z ∈ O 2 . Hence, {z ∈ IR : (0 C , z) ≺ (x, y)} is open, so U(x, y) is closed.
The case of D(x, y) is treated in a similar way.

Proof. Theorem 2. (If).We only check for (CONT) the rest is immediate. U (x,y)]) which are closed in IR by continuity of U . (Only if). By Lemma 2, (CL s ) holds. Now, according to Theorem 1 there exists a pseudolinear utility function

Let (x, y) ∈ C × IR. Then, {(t, z) : (t, z) ≽ (x, y)} = {(t, z) : U (t, z) ≥ U (x, y)} = U -1 ([U (x, y), +∞)) and {(t, z) : (t, z) ≼ (x, y)} = U -1 ((
U representing ≽. Let us prove that U is continuous. Let α ∈ IR. Then, {(t, z) : U (t, z) ≥ α} = {(t, z) : U (t, z) ≥ U (0 C , α)} = {(t, z) : (t, z) ≽ (0 C , α)} since U is pseudolinear. So, by (CONT), {(t, z) : U (t, z) ≥ α} is closed.
Since it is true for all α ∈ IR, this proves that U is upper-continuous. Similarly, we may prove that U is lower semi-continuous. (Moreover). Same proof as proof of Theorem 1.

Proof. Theorem 3. (If). It is immediate to check. (Only if). According to Theorem 1 there exists a pseudolinear utility function U representing ≽. Put v(x) = U (x, 0) for all x ∈ C. Then, for all x ∈ C we have

(x, 0) ∼ (0 C , v(x)). Clearly, v(0 C ) = 0. Let (x, y) ∈ C × IR. We have, by (LM), (x, 0) ∼ (0 C , v(x)) ⇒ (x, y) ∼ (0 C , v(x) + y) .
And also (x, y) ∼ (0 C , U (x, y)), thus by (MD), U (x, y) = v(x)+y. So, U = v+Id. (Moreover). By Theorem 1, U is unique as a pseudolinear function, thus a fortiori v is unique. 

: v(C) × IR -→ IR : (ν, z) → H(ν, z) by H(ν, z) = U (x, z), with ν = v(x) for some x ∈ C . H is well defined. Let ν ∈ range(v), x, x ′ ∈ C such that ν = v(x) = v(x ′ ). Let z ∈ IR. We have (x, 0) ∼ (x ′ , 0), thus by (INDM), (x, z) ∼ (x ′ , z), so U (x, z) = U (x ′ , z). In particular, H(ν, 0) = ν for all ν ∈ v(C) and H(0, z) = U (0 C , z) = z for all z ∈ IR. Let ν, ν ′ ∈ v(C) and z, z ′ ∈ IR. There are x, x ′ ∈ C such that ν = v(x) and ν ′ = v(x ′ ). If ν > ν ′ , then (x, 0) ≻ (x ′ , 0). So, by (INDM) it comes (x, z) ≻ (x ′ , z), thus H(ν, z) = U (x, z) > U (x ′ , z) = H(ν ′ , z). Otherwise, if ν = ν ′ then H(ν, z) = H(ν ′ , z). If z > z ′ , then by (MD), (0 C , z) ≻ (0 C , z ′ ). So by (INDG) it comes (x ′ , z) ≻ (x ′ , z ′ ), thus H(ν ′ , z) = U (x ′ , z) > U (x ′ , z ′ ) = H(ν ′ , z ′ ). Otherwise, if z = z ′ then obviously H(ν ′ , z) = H(ν ′ , z ′ ). So, for (ν, z) > (ν ′ , z ′ ) we have H(ν, z) ≥ H(ν ′ , z) ≥ H(ν ′ , z ′
) with at least one strict inequality. (Moreover). By Theorem 1, U is essentially unique.

Proof. Theorem 5. By Theorem 4 there exists a separable pseudolinear function U representing ≽.

(Only if). Let ν, ν ′ ∈ v(C), z ∈ IR. There are x, x ′ ∈ C such that v(x) = ν and v(x ′ ) = ν ′ . We have, (x ′ , z) ∼ (0 C , H(v(x ′ ), z)) and (x, z) ∼ (0 C , H(v(x), z)) .
Thus, by (THC s ), it holds,

(x, H(v(x ′ ), z)) ∼ (x ′ , H(v(x), z)) , and then, H(v(x), H(v(x ′ ), z)) = H(v(x ′ ), H(v(x), z)). That is, H(ν, H(ν ′ , z)) = H(ν ′ , H(ν, z)). (If). Let us show that ≽ satisfies (THC s ). Let x, x ′ ∈ C, z, z ′ , z ′′ ∈ IR. Assume (x ′ , z) ∼ (0 C , z ′ ) and (x, z) ∼ (0 C , z ′′ ). We have, z ′ = H(v(x ′ ), z) and z ′′ = H(v(x), z). Hence, by group separability, H(v(x), z ′ ) = H(v(x), H(v(x ′ ), z)) = H(v(x ′ ), H(v(x), z)) = H(v(x ′ ), z ′′ ), so (x, z ′ ) ∼ (x ′ , z ′′ ).

Proof. Proposition 1

We shall prove the proposition under a weaker version of (THC s ) where z = 0.

(THC ws ) ≽ satisfies weak s-Thomsen condition, i.e., for all x, x ′ ∈ C, z ′ , z ′′ ∈ IR,

(x ′ , 0) ∼ (0 C , z ′ ) and (x, 0) ∼ (0 C , z ′′ ) ⇒ (x, z ′ ) ∼ (x ′ , z ′′ ) .
This condition corresponds to commutativity of H, i.e., for all ν, ν ′ ∈ v(C), H(ν, ν ′ ) = H(ν ′ , ν).

(If). Let x, x ′ ∈ C and z, z ′ ∈ IR with (x, z) ≽ (x ′ , z). We have to establish that (x, z ′ ) ≽ (x ′ , z ′ ). By (GEQ s ) there exists some x z , x z ′ ∈ C such that (G) : (x z , 0) ∼ (0 C , z) and (G') : (x z ′ , 0) ∼ (0 C , z ′ ). We have, (x, 0) ∼ (0 C , U (x, 0)) and (G), thus by (THC ws ) it holds (x, z) ∼ (x z , U (x, 0)). Similarly, we have, (x ′ , 0) ∼ (0 C , U (x ′ , 0)) and (G), thus by (THC ws ) it holds (x ′ , z) ∼ (x z , U (x ′ , 0)). Since (x, z) ≽ (x ′ , z), by (WO) it comes (x z , U (x, 0)) ≽ (x z , U (x ′ , 0)). Thus, by (INDG), (x z ′ , U (x, 0)) ≽ (x z ′ , U (x ′ , 0)). We have, (x, 0) ∼ (0 C , U (x, 0)) and (G'), thus by (THC ws ) it holds (x, z ′ ) ∼ (x z ′ , U (x, 0)). Similarly, we have, (x ′ , 0) ∼ (0 C , U (x ′ , 0)) and (G'), thus by (THC ws ) it holds

(x ′ , z ′ ) ∼ (x z ′ , U (x ′ , 0)). Finally, by (WO), it comes (x, z ′ ) ≽ (x ′ , z ′ ). (Only if). Let x, x ′ ∈ C and z, z ′ ∈ IR with (x, z) ≽ (x, z ′ ). We have to establish that (x ′ , z) ≽ (x ′ , z ′ ). By (GEQ s ) there exists some x z , x z ′ ∈ C such that (G) : (x z , 0) ∼ (0 C , z) and (G') : (x z ′ , 0) ∼ (0 C , z ′ ).
We have, (x, 0) ∼ (0 C , U (x, 0)) and (G), thus by (THC ws ) it holds (x, z) ∼ (x z , U (x, 0)). Similarly, we have, (x, 0) ∼ (0 C , U (x, 0)) and (G'), thus by (THC ws ) it holds

(x, z ′ ) ∼ (x z ′ , U (x, 0)). Since (x, z) ≽ (x, z ′ ), by (WO) it comes (x z , U (x, 0)) ≽ (x z ′ , U (x, 0)). Thus, by (INDM), (x z , U (x ′ , 0)) ≽ (x z ′ , U (x ′ , 0)). We have, (x ′ , 0) ∼ (0 C , U (x ′ , 0)) and (G), thus by (THC ws ) it holds (x ′ , z) ∼ (x z , U (x ′ , 0)). Similarly, we have, (x ′ , 0) ∼ (0 C , U (x ′ , 0)) and (G'), thus by (THC ws ) it holds (x ′ , z ′ ) ∼ (x z ′ , U (x ′ , 0)). Finally, by (WO), it comes (x ′ , z) ≽ (x ′ , z ′ ).
Proof. Theorem 6. (Only if). By Theorem 5 there exists a group separable pseudolinear function U representing ≽. By (GEQ s ), v(C) = IR. We have to establish that there exists some function ϕ : IR -→ IR increasing continuous and onto such that

∀(ν, z) ∈ IR × IR, ϕ(H(ν, z)) = ϕ(ν) + ϕ(z) .
For this to hold we shall rely on a theorem given in sections 2.2.2. p.57 and 6.2.1. p.254 in [START_REF] Aczél | Lectures on Functional Equations and Their Applications[END_REF]. We may interpret H : IR × IR -→ IR as a binary operation on IR, with H(ν, z) = ν ⊕ z.

Let us first show that H is commutative, group separable and associative.

• H is commutative. Let ν, ν ′ ∈ IR. By (GEQ s ), there are x, x ′ ∈ C such that v(x) = ν and v(x ′ ) = ν ′ . We have, by (THC s ),

(x, 0) ∼ (0 C , v(x)) and (0 C , v(x ′ )) ∼ (x ′ , 0) ⇒ (x, v(x ′ )) ∼ (x ′ , v(x)) . So, H(ν, ν ′ ) = U (x, v(x ′ )) = U (x ′ , v(x)) = H(ν ′ , ν).
• H is group separable. By Theorem 5 6 , we have group separability. Now v(C) = IR, thus for all ν, ν ′ , z ∈ IR, it holds, H(ν, H(ν ′ , z)) = H(ν ′ , H(ν, z)) .

• H is associative. Let z 1 , z 2 , z 3 ∈ IR. We have then,

H(H(z 1 , z 2 ), z 3 ) = H(z 3 , H(z 1 , z 2 )) = H(z 1 , H(z 3 , z 2 )) = H(z 1 , H(z 2 , z 3 )) ,
by successive applications of commutativity, group separability and commutativity.

• By construction, H(ν, 0) = ν for all ν ∈ IR. Hence, 0 is a neutral element for H. By (GEQ s ), any ν ∈ IR admits an equivalent in goods x ν ∈ C such that v(x ν ) = ν. Now by (CMP) for all x ν ∈ C there exists some (unique) z(x ν ) ∈ IR such that U (x ν , z(x ν )) = 0. So we may define unambiguously an implicit function ψ : IR -→ IR through H(ν, ψ(ν)) = 0 where ψ(ν) = z(x ν ). So, ψ is decreasing by monotonicity of H and ψ(0) = 0. Hence, any z ∈ IR admits ψ(z) for an inverse under H. 

H(ν, z) ≥ ≤ α ⇐⇒ H(H(ν, z), ψ(ν)) ≥ ≤ H(α, ψ(ν)) ⇐⇒ H(ν, H(z, ψ(ν))) ≥ ≤ H(α, ψ(ν)) ⇐⇒ H(ν, H(ψ(ν), z)) ≥ ≤ H(α, ψ(ν)) ⇐⇒ H(H(ν, ψ(ν)), z)) ≥ ≤ H(α, ψ(ν)) ⇐⇒ H(0, z)) ≥ ≤ H(α, ψ(ν)) ⇐⇒ z ≥ ≤ H(α, ψ(ν)
) . Thus, {z ∈ IR : H(ν, z) ≥ α} = [H(α, ψ(ν)), +∞) and {z ∈ IR : H(ν, z) ≤ α} = (-∞, H(α, ψ(ν)] which are closed, thus H(ν, .) is continuous.

So according to Aczél's theorem, there exists some continuous increasing function f : IR -→ IR with f (0) = 0 and range

f (IR) = (a, b) with -∞ ≤ a < b ≤ +∞ such that for all (y, y ′ ) ∈ IR 2 , f (y + y ′ ) = H(f (y), f (y ′ )) .
Clearly, f (0) = 0. Now, if we establish that f is onto, i.e., f (IR) = IR, then for all (ν, z) ∈ IR 2 it would hold

f (f -1 (ν) + f -1 (z)) = H(ν, z) .
Hence, ϕ = f -1 would be convenient.

Let us present first a claim. Then, we shall give a lemma that characterizes f (IR) = IR. 

f (y + y ′ ) = H(f (y), f (y ′ )) .
Then, f (IR) = IR if and only if (IR, H, >) is Archimedean, i.e., for all z ∈ IR, ν > 0 there exists some n 1 = N 1 (z, ν) ∈ IN such that z < ν n 1 , and for ν < 0 there exists some

n 2 = N 2 (z, ν) ∈ IN such that ν n 2 < z, where ν n+1 = H(ν, ν n ) for n ∈ IN and ν 0 = 0, ν 1 = ν.
Proof. Since f is continuous, f (IR) is an open interval (a, b) and a < 0 < b. By continuity, there exists some y + > 0 such that f (y + ) > 0. Thus, for any z ∈ IR + , there exists some

n 1 = N 1 (z, f (y + )) ∈ IN such that z < (f (y + )) n 1 = f (n 1 y + )
by Archimedeanity and Claim 1. So, (a, b) is not bounded from above, thus b = +∞. We may proceed similarly for z ∈ IR -. By continuity, there exists some y -< 0 such that f (y -) < 0. Thus, for any z ∈ IR -, there exists some n 2 = N 2 (z, f (y -)) ∈ IN such that z > (f (y -)) n 2 = f (n 2 y -) by Archimedeanity and Claim 1. So, (a, b) is not bounded from below, thus a = -∞. Conversely. Assume f (IR) = IR. Let z ∈ IR, ν > 0. There are y ∈ IR, α > 0 such that y = f -1 (z) and α = f -1 (ν) > 0 since f is increasing. Then, by Archimedeanity of IR, there exists

n 1 ∈ IN such that f -1 (z) = y < n 1 α = n 1 f -1 (ν). Thus, z = f (f -1 (z)) < f (n 1 f -1 (ν)) = (f (f -1 (ν))) n 1 = ν n 1 by Claim 1.
The other part of the converse is similar by reverting the inequalities.

It remains to check that (ARCH

s ) guarantees that (IR, H, >) is Archimedean. Let x ∈ C, {z n } +∞ n=1 ⊂ IR, k ∈ IR. Assume (x, 0) ≻ (0 C , 0). That is ν = v(x) > 0. Put z 1 = ν, z 2 = U (x, z 1 ) = H(ν, ν) = ν 2 , z 3 = U (x, z 2 ) = H(ν, H(ν, ν)) = ν 3 and then z n = ν n for all n ∈ IN. Since ν > 0, {z n } +∞
n=1 is an increasing sequence. By (ARCH s ), for all k ∈ IR, there exists some

n 1 = N (k, ν) such that (0 C , z n 1 ) ̸ ≼ (0 C , k), that is z n 1 > k.
We may proceed similarly with ν < 0. Then, {z n } +∞ n=1 is a decreasing sequence. And by (ARCH s ), for all k ∈ IR, there exists some

n 2 = N (k, ν) such that (0 C , z n 2 ) ̸ ≽ (0 C , k), that is z n 2 < k. Thus (IR, H, >) is
Archimedean. And by the Lemma f (IR) = IR. (If). We only check for (CMP) and (ARCH s ). The rest being standard. Let x ∈ C. We have to solve (x, z) ∼ (0 C , 0) in z, that is,

0 = ϕ(U (0 C , 0)) = ϕ(U (x, z)) = ϕ(U (x, 0)) + ϕ(U (0 C , z)) = ϕ(v(x)) + ϕ(z) .
Thus, z x = ϕ -1 (-ϕ(v(x)), since ϕ is invertible. Consider the following system of preferences, where

x ∈ C, {z n } +∞ n=1 ⊂ IR, k ∈ IR, (x, 0) ≻ (0 C , 0), ∀n ∈ IN * , (0 C , z n ) ≼ (0 C , k), (x, z 1 ) ∼ (0 C , z 2 ) & (x, z 2 ) ∼ (0 C , z 3 ) & (x, z 3 ) ∼ (0 C , z 4 ) & . . . Then, ν = v(x) > 0 and for all n ∈ IN * , z n ≤ k. So, ϕ(ν) > 0 and ϕ(z n ) ≤ ϕ(k). Now, ϕ(ν) + ϕ(z n ) = ϕ(z n+1
) for all n ∈ IN * . Hence, we obtain an arithmetic sequence, ϕ(z n+1 ) = ϕ(z 1 ) + nϕ(ν). Thus, lim n ϕ(z n ) = +∞, a contradiction.

The other system of preferences can be treated similarly. (Uniqueness). Assume there exists some function φ : IR -→ IR increasing continuous and onto with φ(0

) = 0 such that U (x, z) = φ -1 (φ(v(x)) + φ(z)) for all (x, z) ∈ C × IR. For all (ν, z) ∈ IR × IR, we have, H(ν, z) = φ -1 (φ(ν) + φ(z)) = ϕ -1 (ϕ(ν) + ϕ(z)) . Let ν ′ , z ′ ∈ IR. Take ν = φ -1 (ν ′ ) and z = φ -1 (z ′ ). Then, φ -1 (ν ′ + z ′ ) = ϕ -1 (ϕ(φ -1 (ν ′ )) + ϕ(φ -1 (z ′ ))) .
Thus, by left composition by ϕ,

ϕ(φ -1 (ν ′ + z ′ )) = ϕ(φ -1 (ν ′ )) + ϕ(φ -1 (z ′ )) .
Hence, ϕ•φ -1 satisfies Cauchy's functional equation, i.e., f (y +y ′ ) = f (y)+f (y ′ ) for all y, y ′ ∈ IR with f : IR -→ IR continuous and increasing. Thus, ϕ•φ -1 = a Id with a > 0. Then, by right composition by φ, we obtain ϕ = a φ.

Proof 

} +∞ n=1 ⊂ IR, k ∈ IR, (x, 0) ≻ (0 C , 0), ∀n ∈ IN * , (0 C , z n ) ≼ (0 C , k), (x, z 1 ) ∼ (0 C , z 2 ) & (x, z 2 ) ∼ (0 C , z 3 ) & (x, z 3 ) ∼ (0 C , z 4 ) & . . .
Since, (x, 0) ≻ (0 C , 0) and (x, z 1 ) ∼ (0 C , z 2 ). We have by (INDM), (x, z 1 ) ≻ (0 C , z 1 ), thus by (MD) z 1 < z 2 . Similarly, (x, 0) ≻ (0 C , 0) and (x, z n ) ∼ (0 C , z n+1 ). 

≽ (0 C , k) ⇐⇒ U (x, z) ≥ U (0 C , k) = k ⇐⇒ ϕ(v(x)) + ϕ(z) ≥ ϕ(k) ⇐⇒ ϕ(z) ≥ ϕ(k) -ϕ(v(x)) ⇐⇒ z ≥ ϕ -1 (ϕ(k) -ϕ(v(x))) ,
since ϕ is increasing, continuous and onto. So, {z : 

z ∈ IR, (x, z) ≽ (0 C , k)} = [ϕ -1 (ϕ(k) -ϕ(v(x))), +∞) that is closed in IR. Similarly, {z : z ∈ IR, (x, z) ≼ (0 C , k)} = (-∞, ϕ -1 (ϕ(k) -ϕ(v(x)))] that is closed in IR. Proof. Lemma 3. It is clear that (GEQ s ) implies (GBD s ). Let z ∈ IR. By (GCL s ) the sets U(z) = {x ∈ C : (x, 0) ≽ (0 C , z)} and D(z) = {x ∈ C : (x, 0) ≼ (0 C , z)} are closed in C. By (GBD s ) both are nonempty. By (WO), for any x ∈ C, either (x, 0) ≽ (0 C , z) or (x, 0) ≼ (0 C , z), thus U(z)∪D(z) = C. So, by connectedness of C it comes U(z) ∩ D(z) ̸ = ∅. Take x z ∈ U (z) ∩ D(z), we have then (x z , 0) ∼ (0 C ,
x ∈ C, k ∈ IR. Put U(x, k) = {z ∈ IR : (x, z) ≽ (0 C , k)} and D(x, k) = {z ∈ IR : (x, z) ≼ (0 C , k)}. Let us prove that U(x, k) and D(x, k) are closed. Let z 0 / ∈ U (x, k). Then, (0 C , k) ≻ (x, z 0 ) by (WO). By (CONT), {(s, z) : (0 C , k) ≻ (s, z)} is open in the product topology. So for some open sets (O 1 , O 2 ) with x ∈ O 1 ⊂ C and z 0 ∈ O 2 ⊂ IR we have (0 C , k) ≻ (s, z) for (s, z) ∈ O 1 × O 2 . In particular, (0 C , k) ≻ (x, z) for z ∈ O 2 . Hence, {z ∈ IR : (x, z) ≺ (0 C , k)} is open, so U(x, k) is closed. The case of D(x, k) is treated in a similar way. So, (CCL) holds. Let z ∈ IR. Put U(z) = {x ∈ C : (x, 0) ≽ (0 C , z)} and D(z) = {x ∈ C : (x, 0) ≼ (0 C , z)}. Let us prove that U(z) and D(z) are closed in C. Let x 0 / ∈ U(z). Then, (x 0 , 0) ≺ (0 C , z) by (WO). By (CONT), {(x, k) : (x, k) ≺ (0 C , z)} is open in the product topology. So, for some open sets (O 1 , O 2 ) with x 0 ∈ O 1 ⊂ C and 0 ∈ O 2 ⊂ IR we have (x, k) ≺ (0 C , z) for (x, k) ∈ O 1 × O 2 . In particular, (x, 0) ≺ (0 C , z) for x ∈ O 1 . Hence, {x ∈ C : (x, 0) ≺ (0 C , z)} is open, so U(z) is closed. The case of D(z)
is treated in a similar way. So, (GLC s ) holds. (i) ⇒ (iii). According to Corollary 1, there exists some v : C -→ IR onto with v(0 C ) = 0 and ϕ : IR -→ IR increasing continuous and onto with ϕ(0) = 0 such that for all (x, z) ∈ C × IR, U (x, z) = ϕ -1 (ϕ(v(x)) + ϕ(z)). In particular, U (x, 0) = v(x) for all x ∈ C. Since ϕ and ϕ -1 are continuous, it suffices to verify that v is continuous in order to establish that U is continuous. We have, for all

x ∈ C, z ∈ IR, (x, 0) ≽ (0 C , z) ⇐⇒ U (x, 0) ≥ U (0 C , z) ⇐⇒ v(x) ≥ z , so, {x : (x, 0) ≽ (0 C , z)} = {x : v(x) ≥ z} which is closed by (GCL s ). Similarly {x : (x, 0) ≼ (0 C , z)} = {x : v(x) ≤ z} which is closed by (GCL s ). Hence, v is continuous.
Proof. Theorem 7. 

(x, z), (x ′ , z ′ ) ∈ C × IR, (x, z) ≽ * (x ′ , z ′ ) ⇐⇒ (x, ξ -1 (z)) ≽ (x ′ , ξ -1 (z ′ )) .
Clearly, ≽ * satisfies (WO), (MD), (BD s ). Let us check that ≽ * satisfies (CL s ). Let (x, y) ∈ C × IR. Then, {z : z ∈ IR, (0 C , z) ≽ * (x, y)} = {z : z ∈ IR, (0 C , ξ -1 (z)) ≽ (x, ξ -1 (y))} that is, {ξ(Z) : Z ∈ M, (0 C , Z) ≽ (x, ξ -1 (y))} = ξ({Z : Z ∈ M, (0 C , Z) ≽ (x, ξ -1 (y))}) . By (CL s ), I = {Z : Z ∈ M, (0 C , Z) ≽ (x, ξ -1 (y))} is closed in M. Since ξ is an homeomorphism, ξ(I) is closed in IR. Now, according to Theorem 1, there exists a pseudolinear function U * on C × IR representing ≽ * . Thus, for all (x, z), (x ′ , z ′ ) ∈ C × M, (x, z) ≽ (x ′ , z ′ ) ⇐⇒ (x, ξ(z)) ≽ * (x ′ , ξ(z ′ )) ⇐⇒ U * (x, ξ(z)) ≥ U * (x ′ , ξ(z ′ )) ⇐⇒ ξ -1 (U * (x, ξ(z))) ≥ ξ -1 (U * (x ′ , ξ(z ′ ))) .

And, for all z ∈ M, ξ -1 (U * (0 C , ξ(z))) = ξ -1 (ξ(z)) = z. Hence, U = ξ -1 (U * (., ξ(.))) is convenient for a pseudolinear utility function. (Moreover). Similar to the proof of Theorem 1.

Proof. Proposition 2 (If). It is immediate to check. (Only if). According to Theorem 7, there exists a pseudolinear utility function U representing ≽. Let v(x) = U (x, 1) for all x ∈ IR n ++ . By (GD), for x, x ′ ∈ IR n ++ with x > x ′ , we have v(x) > v(x ′ ); hence v is strict-monotonic. By (CONT), v is continuous on IR n ++ . Let x ∈ IR n ++ , z > 0. We have, (x, 1) ∼ (1, v(x)). So, by (MUL-M), it holds (x, z) ∼ (1, v(x)z). Now (x, z) ∼ (1, U (x, z)). Thus, U (x, z) = v(x)z. Let x, x ′ ∈ IR n ++ . We have, (x, 1) ∼ (1, v(x)). So, by (MUL-G), it holds (x ⊗ x ′ , 1) ∼ (x ′ , v(x)). Now, (x ′ , 1) ∼ (1, v(x ′ )). So, by (MUL-M), it holds (x ′ , v(x)) ∼ (1, v(x ′ )v(x)). And, by (WO), (x ⊗ x ′ , 1) ∼ (1, v(x ′ )v(x)). But, (x ⊗ x ′ , 1) ∼ (1, v(x ⊗ x ′ )), thus v(x ⊗ x ′ ) = v(x ′ )v(x). Now, we may refer to the multiplicative form of Cauchy's equation: f (yz) = f (y)f (z) for all y, z > 0 with unknown increasing continuous function f . Indeed, let f : IR n ++ -→ IR be a function satisfying f (y⊗z) = f (y)f (z) for all y, z ∈ IR n ++ . Put f i (x i ) = f (1, . . . , x i , . . . , 1) for all i = 1, . . . , n. Then, f (x) =

∏ n i=1 f i (x i ) for all x ∈ IR n ++ . If f is continuous and strict-monotonic then f i is continuous and increasing for all i. We have, f i (x i y i ) = f (1, . . . , x i y i , . . . , 1) = f ((1, . . . , x i , . . . , 1)⊗ (1, . . . , y i , . . . , 1)) = f (1, . . . , x i , . . . , 1)f (1, . . . , y i , . . . , 1) = f i (x i )f i (y i ) for all x i , y i > 0. Thus, there exists a unique γ i > 0 such that f i (x i ) = x γ i i for all x i > 0. So, f (x) = ∏ n i=1 x γ i i for all x ∈ IR n ++ . Hence, we have established that there exists unique γ 1 , . . . , γ n > 0 such that U (x, z) = ( ∏ n i=1 x γ i i )z for all x ∈ IR n ++ , z > 0.

Proof. Theorem 8. Proof. (Only if). By Lemma 1, (MEQ s ) holds. So for any (x, y) ∈ C × IR there exists some E(x, y) ∈ IR such that (x, y) ∼ (0 C , E(x, y)).

In particular, for x = 0 C , we have (0 C , y) ∼ (0 C , E(0 C , y)), thus we can take E(0 C , y) = y. So, E is pseudolinear.

Then, for all x, x ′ ∈ C and for all y, y ′ ∈ IR, by (WO), We may notice that (WO), (CL s ), (BD s ) are sufficient conditions for obtaining a utility representation of preferences, but they are not necessary. Consider Example 3.3). Then, (BD s ) is not satisfied, but since C = IR a utility representation of preferences can still be obtained through Debreu's approach.

  Consider the utility function U (x, z) = ln(x + e z ) for (x, z) ∈ C × IR. Then, U is pseudolinear and not quasilinear. (INDM) and (INDG) are satisfied.

  Next examples show that (INDM), (INDG), (THC s ) are independent. Examples are labeled [abc] with a,b,c ∈ {v, x}. For instance, [vxv] stands for (INDM) is satisfied (v) and (INDG) is not satisfied (x) and (THC s

Remark 3 .

 3 (Babbage's equation[START_REF] Ritt | On certain real solutions of Babbage's functional equation[END_REF]) During the proof of Theorem 6, we introduce an implicit function ψ : IR -→ IR through H(ν, ψ(ν)) = 0 with ψ decreasing and ψ(0) = 0. The function ψ corresponds to the axiom (CMP). Then, H(ψ(ν), ψ(ψ(ν))) = 0 and also H(ψ(ν), ν) = 0 hold by commutativity, thus by strict-monotonicity ψ(ψ(ν)) = ν for all ν ∈ IR, i.e., ψ • ψ = Id. This is precisely Babbage's equation ψ n = Id of order 2 with ψ decreasing and ψ(0) = 0. Then, there exists some continuous increasing onto function ϕ : IR -→ IR with ϕ(0) = 0 such that ψ = ϕ -1 • (-Id) • ϕ. Clearly, if U is an additive separable pseudolinear utility function, then the associated ϕ gives ψ = ϕ -1 • (-Id) • ϕ, which is a solution to the equation ψ 2 = Id.

  Next examples show that, under (INDM), (INDG), (THC s ), the axioms (GEQ s ) and (CMP) are independent. Moreover, an additive representation of preferences may hold with a pseudolinear utility function, however an additive separable pseudolinear utility function representing the preferences may not exist. Examples are labeled [ab] with a,b ∈ {v, x}. For instance, [vx] stands for (GEQ s ) is satisfied (v) and (CMP) is not satisfied (x). Example 8. 1) [xx] Consider Examples 4.4) and 5.4). Let C = IR + , 0 C = 0. Consider the utility function U (x, z) = ln(x + e z ) for (x, z) ∈ C × IR. Then, U is pseudolinear. (INDM), (INDG), (THC s ) are satisfied. Here, v(x) = U (x, 0) = ln(x + 1) ≥ 0, for all x ≥ 0. The inverse function of v : x → ln(x + 1) is given by v

  y)} and D(x, y) = {z ∈ IR : (0 C , z) ≼ (x, y)}. Let us prove that U(x, y) and D(x, y) are closed. Let z 0 / ∈ U (x, y). Then, (x, y) ≻ (0 C , z 0 ) by (WO). By (CONT), {(s, z) : (x, y) ≻ (s, z)} is open in the product topology. So for some open sets

Proof. Theorem 4 .

 4 (If). It is immediate to check. (Only if). By Theorem 1 there exists a pseudolinear function U representing ≽. Define v : C -→ IR by v(x) = U (x, 0), for all x ∈ C, and then, define H

Claim 1 .Lemma 4 .

 14 For all y ∈ IR, n ∈ IN, it holds f (ny) = f (y) n where f (y) n+1 = H(f (y), f (y) n ) for n ∈ IN and f (y) 0 = 0, f (y) 1 = f (y).Proof. Let y ∈ IR. The equality holds for n = 0, since f (0y) = f (0) = 0 = f (y) 0 . The equality holds for n = 1, since f (1y) = f (y) = H(f (y), 0) = H(f (y), f (y) 0 ) = f (y) 1 . Assume it holds for some n ∈ IN. Then, f ((n + 1)y) = f (y + ny) = H(f (y), f (ny)) = H(f (y), f (y) n ) = f (y) n+1 . Let f : IR -→ IRbe a continuous increasing function with f (0) = 0 and range f (IR) = (a, b) with -∞ ≤ a < b ≤ +∞ such that for all (y, y ′ ) ∈ IR 2 ,

  (If). Similar to the proof of Theorem 1. (Only if). Since M = (m, m) is an non-degenerate open interval there exists a continuous increasing function and onto IR (an homeomorhism) with ξ(0 M ) = 0 (take ξ ′ = ξ -ξ(0 M )). Let us define the binary relation ≽ * on C × IR in the following manner, for all

  (If). Similar to the proof of Corollary 1. (Only if). Consider once more the binary relation ≽ * introduced in the proof of Theorem 7. Clearly, (INDM), (INDG), (THC s ), (GEQ s ), (CBD) are satisfied for ≽ * on C × IR when they are satisfied by ≽ on C × M. Let us check for (CCL) for ≽* . Let x ∈ C, k ∈ IR, then, {z : z ∈ IR, (x, z) ≽ * (0 C , k)} = {z : z ∈ IR, (x, ξ -1 (z)) ≽ (0 C , ξ -1 (k))} = {ξ(Z) : Z ∈ M, (x, Z) ≽ (0 C , ξ -1 (k))} = ξ({Z : Z ∈ M, (x, Z) ≽ (0 C , ξ -1 (k))})which is closed, since ξ is an homeomorphism onto IR and since {Z :Z ∈ M, (x, Z) ≽ (0 C , ξ -1 (k))} is closed in M. The case of {z : z ∈ IR, (x, z) ≼ * (0 C , k)} istreated similarly. Hence, according to Corollary 1, there exists an additive separable pseudolinear utility function U * representing ≽, i.e., there exists v * : C -→ IR onto with v * (0 C ) = 0 and ϕ * : IR -→ IR increasing continuous and onto with ϕ * (0) = 0 such that, ∀(x, z) ∈ C × IR, U * (x, z) = (ϕ * ) -1 (ϕ * (v * (x)) + ϕ * (z)) .

  (x, y) ≽ (x ′ , y ′ ) ⇐⇒ (0 C , E(x, y)) ≽ (0 C , E(x ′ , y ′ )) . Now, we may define a preference relation ≽ * ⊂ IR2 where for all z, z ′ ∈ IR,z ≽ * z ′ ⇐⇒ (0 C , z) ≽ (0 C , z ′ ) . By (WO), ≽ * is a weak order. Let y ∈ IR. Then, {z : z ∈ IR, z ≽ * y} = {z : z ∈ IR, (0 C , z) ≽ (0 C , y)}, which is closed in IR by (CL s ). Similarly, {z : z ∈ IR, z ≼ * y} is closed in IR.Hence, ≽ * is continuous. Thus, according to Debreu's theorem, since IR is a connected and separable topological space, there exists a continuous function u : IR -→ IR such that for all z, z ′ ∈ IR,z ≽ * z ′ ⇐⇒ u(z) ≥ u(z ′ ) .It follows then, that for all x, x ′ ∈ C and for all y, y ′ ∈ IR,(x, y) ≽ (x ′ , y ′ ) ⇐⇒ (0 C , E(x, y)) ≽ (0 C , E(x ′ , y ′ )) ⇐⇒ E(x, y) ≽ * E(x ′ , y ′ ) ⇐⇒ u(E(x, y)) ≽ u(E(x ′ , y ′ )) . Hence, U = u • E represents the preferences. (If). It is immediate that (WO) is satisfied. Let (x, y) ∈ C × IR. Then, {z ∈ IR : (0 C , z) ≽ (x, y)} = {z ∈ IR : u(z) ≽ U (x, y)} = {u ≥ U (x, y)} which is closed since u is continuous. Similarly, {z ∈ IR : (0 C , z) ≼ (x, y)} = {u ≤ U (x, y)} is closed. So (CL s ) is satisfied. Let (x, y) ∈ C × IR. Since U ({0 C } × IR) = U (C × IR) there exists E(x, y) ∈ IR such that U (x, y) = U (0 C , E(x, y)). Thus, (x, y) ∼ (0 C , E(x,y)). So, (MEQ s ) is satisfied, and a fortiori (BD s ) is. (Moreover). It is standard. (In particular). Clearly, (MD) holds if and only if u is increasing. Let z, z ′∈ IR. Then, z ≥ z ′ ⇐⇒ (0 C , z) ≽ (0 C , z ′ ) ⇐⇒ u(z) ≥ u(z ′ ) . Since u is increasing and continuous, u : IR -→ u(IR) is invertible. Now u(IR) = U ({0 C } × IR) = U (C × IR), so u -1 • U (., .) is well defined and represents ≽. And then, for all z ∈ IR, u -1 (U (0 C , z)) = u -1 (u(z)) = z. Hence, u -1 • U is a pseudolinear utility function representing ≽.

  Theorem 2. Let C be a topological space, 0 C ∈ C and ≽ ⊂ (C × IR) 2 . Then, ≽ satisfies (WO), (MD), (BD s ) and (CONT) if and only if there exists a continuous pseudolinear utility function U representing ≽. Moreover, U is essentially unique.

	Remark 2. Upper (lower) semi-continuity of U is equivalent to closedness of the
	upper (resp. lower) preference sets {(t, k) : (t, k) ≽ (x, y)} (resp. {(t, k) : (t, k) ≼
	(x, y)}) for all (x, y) ∈ C × IR once a pseudolinear representation is available.
	(CONT) ≽ is continuous, i.e., for all (x, y) ∈ C × IR, {(t, k) : (t, k) ≽ (x, y)}
	and {(t, k) : (t, k) ≼ (x, y)} are closed in the product topology.
	Lemma 2. Let C be a topological space, 0 C ∈ C and ≽ ⊂ (C × IR) 2 .
	If ≽ satisfies (WO) and (CONT) then (CL s ) holds.

  's terminology, the sequence {z n } n ⊂ IR is bounded and standard, in the sense that each z n is incremented by the same non-null x that gives z n+1 and z n+1 remains bounded by k. According to (ARCH s ), {z n } n ⊂ IR must be a finite sequence. By analogy, an arithmetic sequence is bounded if and only if its reason is null, thus constant.

Theorem 6. Let C be a nonempty set, 0 C ∈ C and ≽ ⊂ (C × IR) 2 . Then, ≽ satisfies (WO), (CL s ), (MD), (BD s ), (INDM), (INDG), (THC s ) and (GEQ s ), (CMP), (ARCH s ) if and only if there exists an additive separable pseudolinear utility function U representing ≽, i.e., there exists v : C -→ IR onto with v(0 C ) = 0 and ϕ : IR -→ IR increasing continuous and onto with ϕ

•

  Let us check that H is partially continuous w.r.t. ν and z. By commutativity, it suffices to check continuity w.r.t. z. Let ν ∈ IR be given and α ∈ IR. Then, for z ∈ IR,

  Thus, z n < z n+1 . Since for all n ∈ IN * , (0 C , z n ) ≼ (0 C , k), {z n } n is bounded from above by k. So, {z n } n converges to some z and z n ≤ z for all n. And then, (x, z n ) ∼ (0 C , z n+1 ) ≼ (0 C , z). By (CCL), (x, z) ≼ (0 C , z), and thus by (INDM), (x, 0) ≼ (0 C , 0), a contradiction. The other system of preferences can be treated similarly. This establishes (ARCH s ).

	(If). Obviously, (CBD) is weaker than (CMP). Let us show that (CCL) holds
	once an additive separable pseudolinear utility function U exists. Let x ∈ C, k ∈
	IR. Then, for any z ∈ IR,
	(x, z)

However, even when C is a numerical set, 0 C does not necessarily coincide with a true "0". In Example

2), we consider C = IR ++ and 0 C = 1, hence 0 C ̸ = 0 and moreover 0 / ∈ C.

Increasingness of V (0 C , .) corresponds to (MD) and V (C × IR) = V ({0 C } × IR) to (MEQ s ).

The origin 0 M does not necessarily coincide with the true "0", it is possible that 0 / ∈ M.

Clearly, since for z = 0, H(ν, z) = ν and H(ν ′ , z) = ν ′ , group separability implies (full) commutativity in this setting.

Then, according to Theorem 7, ≽ admits a pseudolinear utility reprepresentation given by for all (x, z) ∈ C × M,

Clearly, ϕ is defined on M and is increasing continuous and onto IR, and v has range

Hence, U is an additive separable pseudolinear utility function representing ≽.

(Uniqueness). U is essentially unique as a pseudolinear function. Let us check that ϕ is unique up to a linear positive transformation.

We mimic the proof of Theorem 6. Assume there exists some function φ : M -→ IR increasing continuous and onto with φ(0

Thus, by left composition by ϕ,

Hence, ϕ•φ -1 satisfies Cauchy's functional equation, i.e., f (y +y ′ ) = f (y)+f (y ′ ) for all y, y ′ ∈ IR with f : IR -→ IR continuous and increasing. Thus, ϕ•φ -1 = a Id with a > 0 on IR. Then, by right composition by φ, we obtain ϕ = a φ on M.

B A utility representation theorem on C × I R

In light of Examples 2 and 3.1) (where C = IR) the existence of a utility function on C × IR can not be guaranteed solely under (WO) and (CL s ). We may obtain a utility representation of preferences theorem on C × IR under the additional condition (MEQ s ). Then, pseudolinearity is obtained if and only if (MD) holds.