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In this paper we study the domain of the generator of stable processes, stable-like processes and more general pseudo-and integro-differential operators which naturally arise both in analysis and as infinitesimal generators of Lévy-and Lévy-type (Feller) processes.

In particular we obtain conditions on the symbol of the operator ensuring that certain (variable order) Hölder and Hölder-Zygmund spaces are in the domain. We use tools from probability theory to investigate the small-time asymptotics of the generalized moments of a Lévy or Lévy-type process

for functions f which are not necessarily bounded or differentiable. The pointwise limit exists for fixed x ∈ R d if f satisfies a Hölder condition at x. Moreover, we give sufficient conditions which ensure that the limit exists uniformly in the space of continuous functions vanishing at infinity. As an application we prove that the domain of the generator of (X t ) t≥0 contains certain Hölder spaces of variable order. Our results apply, in particular, to stable-like processes, relativistic stable-like processes, solutions of Lévy-driven SDEs and Lévy processes.

Introduction

Since the pioneering work of Caffarelli and Silvestre on fractional powers of the Laplacian, see [START_REF] Silvestre | Regularity of the obstacle problem for a fractional power of the Laplace operator[END_REF][START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF], a lot of work has been devoted to fractional powers of the Laplacian from the analytical point of view, we refer to [START_REF] Cabré | Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates[END_REF][START_REF] Cabré | Nonlinear equations for fractional Laplacians, I: Existence, uniqueness, and qualitative properties of solutions[END_REF][START_REF] Caffarelli | Hölder regularity for generalized master equations with rough kernels[END_REF][START_REF] Grubb | Fractional Laplacians on domains, a development of Hörmander's theory of µtransmission pseudodifferential operators[END_REF][START_REF] Ros-Oton | The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary[END_REF] to mention but a few.

The fractional power of the Laplacian is also the generator of a stochastic process with stationary and independent increments (a Lévy process), which allows us to use probabilistic methods for its investigation. In fact, fractional powers of the Laplacian are just a special case of generators of Lévy processes and -if one allows for generators with variable coefficients -of the more general class of Feller processes, the classic result is [START_REF] Courrège | Sur la forme intégro-différentielle des opérateurs de C ∞ k dans C satisfaisant au principle du maximum, In: Séminaire Brelot-Choquet-Deny. Théorie du potentiel[END_REF], see [START_REF] Böttcher | Lévy-Type Processes: Construction, Approximation and Sample Path Properties[END_REF] for a recent survey. Over the past two and a half decades these operators have been studied from both the analytical community but most of all the probability community, see [START_REF] Bogdan | Potential analysis of stable processes and its extensions[END_REF][START_REF] Chen | Heat kernel estimates for the Dirichlet fractional Laplacian[END_REF][START_REF] Chen | Heat kernel estimates for stable-like processes on d-sets Stochastic Processes and their[END_REF][START_REF] Jacob | Pseudo Differential Operators and Markov Processes I, II, III[END_REF][START_REF] Kassmann | Intrinsic scaling properties for nonlocal operators[END_REF][START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF][START_REF] Taira | Semigroups, Boundary Value Problems and Markov Processes[END_REF].

Of particular importance is a good understanding of the domain of these operators which, in general, have a representation as pseudo-differential as well as integrodifferential operator. This is partly due to the fact that for elements in their domains we can construct interesting martingales.

In this paper we study in great detail the domains of rather general generators of Feller processes and, by using probabilistic techniques in combination with analytic techniques, we succeed in finding precise conditions in terms of (variable-order) Hölder and Lipschitz function spaces to belong to these domains, see Theorem 3.2 (for Lévy processes and generators with constant coefficients) and Theorem 3.5 (for Feller processes and generators with variable coefficients). As far as we are aware, these results extend known results for fractional powers of the Laplacian (including those of variable order of differentiability).

For a d-dimensional Lévy process (L t ) t≥0 with Lévy triplet (b, Q, ν) the family of measures (p t ) t>0 on (R d ∖ {0}, B(R d ∖ {0}) defined by p t (B) ∶=

1 t P(L t ∈ B), t > 0, B ∈ B(R d ∖ {0})
converges vaguely to the Lévy measure ν, i. e. lim t→0

1 t Ef (L t ) = R d ∖{0} f (y) ν(dy) (1) 
holds for any continuous function f with compact support in R d ∖ {0}, cf. [START_REF] Böttcher | Lévy-Type Processes: Construction, Approximation and Sample Path Properties[END_REF]Lemma 2.16] or [START_REF] Berg | Potential Theory on Locally Compact Abelian Groups[END_REF]Proposition 18.2]. By the portmanteau theorem, this implies the following small-time asymptotics lim t→0

1 t P(L t ∈ B) = ν(B) (2) 
for any Borel set B ∈ B(R d ∖ {0}) such that 0 ∉ B and the topological boundary ∂B is a ν-null set. Jacod [START_REF] Jacod | Asymptotic properties of power variations of Lévy processes[END_REF] proved that the small-time asymptotics (1) extends to continuous bounded functions f ∶ R d → R with f (0) = 0 which satisfy a Hölder condition at x = 0,

f (x) -f (0) ≤ x α for all x ≤ 1
where α ∈ (0, 2) is a suitable constant depending on the Lévy triplet (b, Q, ν), see [START_REF] Jacod | Asymptotic properties of power variations of Lévy processes[END_REF] or [19, p. 2] for details. More recently, Figueroa-López [START_REF] Figueroa-López | Small-time asymptotics for Lévy processes[END_REF] showed that the assumption on the boundedness of f can be replaced by a much weaker integrability condition which basically ensures that the expectation Ef (L t ) is exists for any t > 0.

In the first part of this paper, Section 4, we establish similar results for the class of Lévy-type processes which includes, in particular, Lévy processes, affine processes, solutions of Lévy-driven stochastic differential equations, and stable-like processes. We will show that any Lévy-type process (X t ) t≥0 with rich domain and characteristics (b(x), Q(x), ν(x, dy)) satisfies lim

t→0 1 t P x (X t -x ∈ B) = ν(x, B) for all x ∈ R d (3) 
which is the analogue of (2), cf. Corollary 4.3; again B ∈ B(R d ∖ {0}) is a Borel set such that 0 ∉ B and ν(x, ∂B) = 0. Because of the small-time asymptotics (3), we have for fixed

x ∈ R d lim t→0 1 t (E x f (X t ) -f (x)) = R d ∖{0} (f (x + y) -f (x)) ν(x, dy)
for any continuous function f with compact support in R d ∖{x}. Using a localized version of a maximal inequality, cf. Lemma 4.1, we will show that for a rich Lévy-type process (X t ) t≥0 and fixed x ∈ R d the pointwise limit

lim t→0 1 t (E x f (X t ) -f (x)) (4) 
exists for a much larger class of functions. More precisely, we will establish the smalltime asymptotics (4) for functions f ∶ R d → R which satisfy a Hölder condition at x, cf. Theorem 3.1 and 4.4, and need not be bounded, see Theorem 4.6.

In the second part, Section 5, we turn to the question under which assumptions on a continuous function f vanishing at infinity -we write f ∈ C 0 (R d ) for short -the limit lim

t→0 1 t (E x f (X t ) -f (x)) (5) 
exists uniformly (in x) for a rich Lévy-type process (X t ) t≥0 with bounded coefficients. This is equivalent to asking for sufficient conditions which ensure that a function f ∈ C 0 (R d ) is contained in the domain D(A) of the generator A of (X t ) t≥0 . The main results in Section 5 are Corollary 5.2 and Corollary 5.3 which state that D(A) contains certain Hölder spaces of variable order. Our results apply, in particular, to Lévy processes, cf. Theorem 3.2; for instance, if (L t ) t≥0 is an isotropic α-stable Lévy process, α ∈ (0, 1), then the Hölder space C β 0 -see [START_REF] Bogdan | Potential analysis of stable processes and its extensions[END_REF] below for a precise definition -is contained in the domain of the generator A of (L t ) t≥0 for any β ∈ (α, 1], and we have

Af (x) = R d ∖{0} (f (x + y) -f (x)) ν(dy), f ∈ C β 0 , x ∈ R d .
At the end of Section 5 we discuss several examples, including stable-like dominated processes (Example 5.4), solutions of Lévy-driven SDEs (Example 5.6), stable-like processes and relativistic stable-like processes (Example 5.5).

Basic definitions and notation

We consider the Euclidean space R d with the canonical scalar product x⋅y ∶= ∑ 

f ∶ R n → R d and {f ∈ B} = f -1 (B) denotes the preimage of a set B ⊆ R d under f . A function f ∶ R d → [0, ∞) is called submultiplicative if there exists a constant c > 0 such that f (x + y) ≤ cf (x)f (y) for all x, y ∈ R d . (6) 
Later on we will use that submultiplicative functions grow at most exponentially, cf. [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF]Lemma 25.5]. For a set B ⊆ R d we use ∂B to denote the topological boundary of B. We use ∫ × and ∫ × B as a shorthand for ∫ R d ∖{0} and ∫ B∖{0} , respectively.

Function spaces: The smooth functions with compact support are denoted by

C ∞ c (R d ), and C 0 (R d )
is the space of continuous functions f ∶ R d → R vanishing at infinity. Superscripts k ∈ N are used to denote the order of differentiability, e. g. f ∈ C k 0 (R d ) means that f and its derivatives up to and including order k are C 0 (R d )-functions. We define Hölder spaces by

C α ∶= f ∈ C 0 (R d ); f α ∶= sup x,y∈R d f (x) -f (y) x -y α < ∞ , α ∈ [0, 1] C 1,α 0 ∶= f ∈ C 1 0 (R d ); ∇f ∈ C α 0 , α ∈ [0, 1] (7) 
Since there are various concepts of Hölder (or Lipschitz) spaces in the literature, let us explain the relations to the other function spaces. There are the "classical" Hölder spaces C α equipped with the norm

⌊α⌋ j=0 β∈N d 0 β =j ∂ β f ∞ + max β∈N d 0 β =⌊α⌋ sup x≠y ∂ β f (x) -∂ β f (y) x -y α-⌊α⌋ (⋆)
where ⌊α⌋ denotes the biggest natural number less or equal than α. On the other hand, there are the Zygmund-Hölder spaces C α consisting of all functions f ∈ C k such that the norm

k j=0 β∈N d 0 β =j ∂ β f ∞ + max β∈N d 0 β =k sup x,h∈R d h≠0 ∂ β f (x + h) + ∂ β f (x -h) -2∂ β f (x) h s
is finite where s ∈ (0, 1] and k ∈ N are chosen such that α = k + s, see Triebel [41, pp. 34].

If α ∈ (0, ∞) ∖ N then C α = C α , cf.
[40, Theorem 1(b), p. 201]; however for α ∈ N we have a strict inclusion: C α ⊋ C α . For α = 1 it is possible to show that C 1 is strictly larger than the space of Lipschitz continuous functions Lip (cf. [38, p. 148]) which is, in turn, strictly larger than C 1 . There are the following relations between the Hölder spaces introduced in ( 7) and the just mentioned function spaces:

C α 0 = C α ∩ C 0 (R d ) = C α ∩ C 0 (R d ), α ∈ (0, 1), C 1,α-1 0 = C α ∩ C 1 0 (R d ) = C α ∩ C 1 0 (R d ), α ∈ (1, 2)
and

C 1 0 = Lip ∩C 0 (R d ), C 1,0 0 = C 1 ∩ C 0 (R d
). Lévy(-type) Processes: Throughout, (Ω, A, P) denotes a probability space. A stochastic process (L t ) t≥0 is called a Lévy process if it has stationary and independent 4 increments, L 0 = 0 almost surely and the sample paths t ↦ L t (ω) are càdlàg (rightcontinuous with finite left-hand limits) for almost all ω ∈ Ω. By the Lévy-Khintchine formula, every Lévy process can be uniquely characterized by its characteristic exponent ψ(ξ) ∶= -log Ee iξ⋅X1 ,

ψ(ξ) = -ib ⋅ ξ + 1 2 ξ ⋅ Qξ + × 1 -e iy⋅ξ + iy ⋅ ξ1 (0,1) ( y ) ν(dy), ξ ∈ R d , (8) 
where (b, Q, ν) is the Lévy triplet consisting of the drift b ∈ R d , the symmetric positive semidefinite diffusion matrix Q ∈ R d×d and the Lévy measure

ν on (R d ∖{0}, B(R d ∖{0})) satisfying ∫ × min{ y 2 , 1} ν(dy) < ∞. A function ψ ∶ R d → C with ψ(0) = 0 is called continuous negative definite if it
admits a Lévy-Khintchine representation of the form [START_REF] Bochner | Diffusion Equation and Stochastic Processes[END_REF].

A Lévy-type process is a Markov process whose transition semigroup is a Feller semigroup; for further details see e. g. [START_REF] Böttcher | Lévy-Type Processes: Construction, Approximation and Sample Path Properties[END_REF]. Without loss of generality, we may assume that the sample paths of a Lévy-type process are càdlàg. If C ∞ c (R d ) is contained in the domain D(A) of the generator A of a Lévy-type process (X t ) t≥0 , then we call (X t ) t≥0 a rich Lévy-type process. Lévy-type processes are also known as Feller processes, and we will use both terms synonymously. Our main reference for Feller processes is the monograph [START_REF] Böttcher | Lévy-Type Processes: Construction, Approximation and Sample Path Properties[END_REF]. If (X t ) t≥0 is a rich Lévy-type process with generator A, then

A C ∞ c (R d ) is a pseudo-differential operator, Af (x) = -q(x, D)f (x) ∶= - R d e i x⋅ξ q(x, ξ) f (ξ) dξ, f ∈ C ∞ c (R d ), x ∈ R d
where f (ξ) ∶= (2π) -d ∫ R d e -ix⋅ξ f (x) dx denotes the Fourier transform of f and

q(x, ξ) = q(x, 0) -ib(x) ⋅ ξ + 1 2 ξ ⋅ Q(x)ξ + × 1 -e iy⋅ξ + iy ⋅ ξ1 (0,1) ( y ) ν(x, dy) (9) 
is the negative definite symbol, cf. [START_REF] Böttcher | Lévy-Type Processes: Construction, Approximation and Sample Path Properties[END_REF]Theorem 2.21]. By [10, Theorem 2.30], continuity of x ↦ q(x, 0) implies that the mapping x ↦ q(x, ξ) is continuous for all ξ ∈ R d . Probabilistically, the term q(x, 0) leads to a(n exponential) killing of the process, while analytically it acts like a multiplication operator. Both cases are not interesting for our study and we will assume from now on that q(x, 0) = 0. For each fixed x ∈ R d the tuple (b(x), Q(x), ν(x, dy)) is a Lévy triplet. We call the family (b(x), Q(x), ν(x, dy)) x∈R d the characteristics of q and use (b, Q, ν) as a shorthand. It is not difficult to see that [START_REF] Böttcher | Lévy-Type Processes: Construction, Approximation and Sample Path Properties[END_REF]Theorem 2.21], where ∇ 2 f denotes the Hessian and tr A the trace of a matrix A. We say that a rich Lévy-type process (X t ) t≥0 has bounded coefficients if its symbol q has bounded coefficients, i. e. there exists a constant c > 0 such that q(x, ξ) ≤ c(1 + ξ 2 ) for all x, ξ ∈ R d . We will frequently use the following result from [10, Proposition 2.27(d), Theorem 2.31].

Af (x) = b(x) ⋅ ∇f (x) + 1 2 tr Q(x) ⋅ ∇ 2 f (x) + × f (x + y) -f (x) -∇f (x) ⋅ y1 (0,1) ( y ) ν(x, dy) for any f ∈ C ∞ c (R d ), see e. g.
Theorem 2.1. Let q be given by (9) such that q(x, 0) = 0. For any compact set K ⊆ R d :

(i). C K ∶= sup x∈K sup ξ ≤1 q(x, ξ) < ∞, (ii). sup x∈K q(x, ξ) ≤ 2C K (1 + ξ 2 ) for all ξ ∈ R d , (iii). sup x∈K ( b(x) + Q(x) + ∫ × ( y 2 ∧ 1) ν(x, dy)) < ∞.
If q has bounded coefficients, then the statements also hold for K = R d .

We define, following [START_REF] Schilling | Growth and Hölder conditions for the sample paths of Feller processes[END_REF], for fixed

x 0 ∈ R d the generalized Blumenthal-Getoor index at ∞ β x0 ∞ ∶= inf ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ γ > 0; lim r→∞ 1 r γ sup ξ ≤r q(x 0 , ξ) < ∞ ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ . ( 10 
)
Since any continuous negative definite function grows at most quadratically at infinity, we have

β x0 ∞ ∈ [0, 2] for any x 0 ∈ R d ; moreover, × y ≤1 y β ν(x 0 , dy) < ∞ for all β > β ∞ x0 . (11) 
If q(x 0 , ⋅) has no diffusion part, i. e. Q(x 0 ) = 0, and satisfies the sector condition, i. e. if there exists a constant C > 0 such that Im q(x 0 , ξ) ≤ C Re q(x 0 , ξ) for all ξ ∈ R d , then

× y ≤1 y β ν(x 0 , dy) < ∞ ⇒ β x0 ∞ ≤ β. (12) 
In this case, the Blumenthal-Getoor index can be equivalently characterized in terms of fractional moments of the Lévy measure

β x0 ∞ = inf ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ γ > 0; × y ≤1 y γ ν(x 0 , dy) < ∞ ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ ;
this is a special case of [START_REF] Schilling | Growth and Hölder conditions for the sample paths of Feller processes[END_REF]Proposition 5.4], see also [START_REF] Blumenthal | Sample functions of stochastic processes with stationary independent increments[END_REF].

For later reference we state the following result which can be found in [10, Theorem 2.44].

Theorem 2.2. Let (X t ) t≥0 be a rich Lévy-type process with symbol q and characteristics (b, Q, ν). Then (X t ) t≥0 is a semimartingale and its semimartingale characteristics (B, C, µ) relative to the truncation function y1 (0,1) ( y ) are given by

B t = t 0 b(X s ) ds, C t = t 0 Q(X s ) ds, µ(⋅, ds, dy) = ν(X s , dy) ds. ( 13 
)

Main results

In this section, we present the main results and some illustrating examples. We will point the reader to further results and examples which can be found in Section 4 and 5.

Our first main result gives a condition on the regularity of a function f ∶ R d → R at a fixed point x 0 ∈ R d which ensures that the pointwise limit

lim t→0 E x0 f (X t ) -f (x 0 ) t (14) 
exists. The required regularity is expressed in terms of the generalized Blumenthal-Getoor index β x0 ∞ of the Lévy-type process (X t ) t≥0 , cf. [START_REF] Böttcher | Lévy-Type Processes: Construction, Approximation and Sample Path Properties[END_REF] for the definition.

Theorem 3.1 (Regularity at x 0 ). Let (X t ) t≥0 be a rich Lévy-type process with symbol q and characteristics (b, Q, ν). Suppose that f ∈ C 0 (R d ) satisfies one of the following conditions for some fixed x 0 ∈ R d .

(A1) There exist constants α ∈ [0, 2], α > β x0 ∞ , and C > 0 such that

f (x) -f (x 0 ) ≤ C x -x 0 α for all x ∈ B(x 0 , 1). (A2) f is differentiable at x = x 0 and there exist α ∈ [1, 2], α > β x0 ∞ , and C > 0 such that f (x) -f (x 0 ) -∇f (x 0 ) ⋅ (x -x 0 ) ≤ C x -x 0 α
for all x ∈ B(x 0 , 1).

(A3) f is twice continuously differentiable in a neighbourhood of x 0 .

Then the limit lim

t→0 1 t (E x0 f (X t ) -f (x 0 ))
exists and takes the value

(A1) Lf (x 0 ) ∶= ∫ × (f (x 0 + y) -f (x 0 )) ν(x 0 , dy), (A2) Lf (x 0 ) ∶= b(x 0 ) ⋅ ∇f (x 0 ) + ∫ × f (x 0 + y) -f (x 0 ) -∇f (x 0 ) ⋅ y1 (0,1) ( y ) ν(x 0 , dy), (A3) Lf (x 0 ) ∶= b(x 0 ) ⋅ ∇f (x 0 ) + 1 2 tr Q(x 0 ) ⋅ ∇ 2 f (x 0 ) + ∫ × f (x 0 + y) -f (x 0 ) -∇f (x 0 ) ⋅ y1 (0,1) ( y ) ν(x 0 , dy),
depending on which of the conditions (A1)-(A3) is satisfied.

For the proof of Theorem 3.1 see Section 4, p. 15. As a by-product of the proof, we will find that for any rich Lévy-type process (X t ) t≥0 the family of measures p t (dy) ∶= t -1 P x0 (X t -x 0 ∈ dy), t > 0, on (R d ∖ {0}, B(R d ∖ {0})) converges vaguely to ν(x 0 , dy) for each fixed x 0 ∈ R d , cf. Corollary 4.3.

In Theorem 3.1 we have to assume that α is strictly larger than the Blumenthal-Getoor index β x0 ∞ . It turns out that Theorem 3.1 also holds for α = β x0 ∞ if q(x 0 , ⋅) satisfies a sector condition, has no diffusion part, and the fractional moment ∫ × y ≤1 y β x 0 ∞ ν(x 0 , dy) is finite, see Theorem 4.4 for the precise statement. Moreover, it is possible to extend Theorem 3.1 to functions f which are not necessarily bounded, see Theorem 4.6 and Theorem 4.9 for details.

The other main results concern the existence of the limit [START_REF] Caffarelli | Hölder regularity for generalized master equations with rough kernels[END_REF] uniformly with respect to x 0 ∈ R d . For the particular case that (X t ) t≥0 is a Lévy process we obtain the following statement, see Section 5, p. 25, for the proof. Theorem 3.2. Let (L t ) t≥0 be a Lévy process with Lévy triplet (b, Q, ν). Denote by (A, D(A)) its generator and fix α ∈ [0, 2] such that ∫ × y ≤1 y α ν(dy) < ∞.

(i). C 2 0 (R d ) ⊆ D(A) and for f ∈ C 2 0 (R d ) Af = b ⋅ ∇f + 1 2 tr(Q∇ 2 f ) + × f (• + y) -f -∇f ⋅ y1 (0,1) ( y ) ν(dy). (ii). If Q = 0, α ∈ [0, 1] and b = ∫ y <1 y ν(dy), then C α 0 is contained in D(A) and for f ∈ C α 0 Af (x) = × (f (x + y) -f (x)) ν(dy). (iii). If Q = 0 and α ∈ [1, 2], then C 1,α-1 0 is contained in D(A) and for f ∈ C 1,α-1 0 Af (x) = b ⋅ ∇f (x) + × f (x + y) -f (x) -∇f (x) ⋅ y1 (0,1) ( y ) ν(dy).
We refer the reader to [START_REF] Bogdan | Potential analysis of stable processes and its extensions[END_REF] for the definition of the Hölder spaces C α 0 and C 1,α-1 0

. Part (ii) of Theorem 3.2 was recently proved by Cygan & Grzywny [START_REF] Cygan | Heat content for convolution semigroups[END_REF] for the particular case α = 1. Let us illustrate Theorem 3.2 with two examples.

Example 3.3 (Isotropic α-stable Lévy processes). Let (L t ) t≥0 be an isotropic αstable process for some α ∈ (0, 2), i. e. a Lévy process with characteristic exponent

ψ(ξ) = ξ α , ξ ∈ R d , and set c α ∶= α2 α-1 π -d 2 Γ α+d 2 Γ 1 -α 2 .
Then, by Theorem 3.2: • If α ∈ (0, 1), then Theorem 3.2 shows that the Hölder space C β 0 is contained in the domain of the generator A for any β ∈ (α, 1] and

Af (x) = c α × (f (x + y) -f (x)) dy y d+α , f ∈ C β 0 , x ∈ R d . • If α ∈ [1, 2), then C 1,β-1 0 ⊆ D(A) for all β ∈ (α, 2]
and

Af (x) = c α × f (x + y) -f (x) -∇f (x) ⋅ y1 (0,1) ( y ) dy y d+α , f ∈ C 1,β-1 0 , x ∈ R d .
The generator of an isotropic α-stable Lévy process is the fractional power -(-∆) α 2 of the Laplace-operator ∆; this is a well-known fact which probably goes back to Bochner [START_REF] Bochner | Diffusion Equation and Stochastic Processes[END_REF] and [9, p. 93 and pp. 102-106]. Depending on the domain, there are various (equivalent) ways to define fractional powers and we refer to the survey paper [START_REF] Kwaśnicki | Ten equivalent definitions of the fractional laplace operator[END_REF]. Along with the information on the domain, our example recovers the classical integro-differential representation of the fractional Laplacian as it is widely used in analysis, see e.g. [START_REF] Caffarelli | Hölder regularity for generalized master equations with rough kernels[END_REF][START_REF] Jacob | Pseudo Differential Operators and Markov Processes I, II, III[END_REF][START_REF] Stein | Singular Integrals and Differentiability Properties of Functions[END_REF] to mention but a few. Let us mention that the domain D(A) of the generator of (L t ) t≥0 is contained in the Zygmund-Hölder space 

C α 0 ∶= C α ∩ C 0 ,
(R) [35, Example 7.15]. For d ≥ 1 it is possible to show that the resolvent R λ , λ > 0, satisfies R λ (C 0 (R d )) ⊆ C α
0 using well-known heat kernel estimates for the transition density of (L t ) t≥0 , see e. g. [START_REF] Blumenthal | Some theorems on stable processes[END_REF] or [26, formula (2.11)]; since

D(A) = R λ (C 0 (R d ))
this gives the assertion. In summary,

C α+ 0 ∶= ⋃ ε>0 C α+ε 0 ⊆ D(A) ⊆ C α 0 . ( 15 
)
Example 3.4 (Compound Poisson processes). Let (L t ) t≥0 be a Lévy process with Lévy triplet (b, 0, ν). Suppose that ν is a finite measure and b = ∫ × y <1 y ν(dy) (e. g. b = 0 and ν B(0,1) symmetric). Then the domain D(A) of the generator of (L t ) t≥0 equals C 0 (R d ) and

Af (x) = × (f (x + y) -f (x)) ν(dy), f ∈ C 0 (R d ), x ∈ R d .
Our third, and final, main result extends Theorem 3.2 to the much larger class of Lévy-type processes, see Section 5, p. 25 for the proof.

Theorem 3.5. Let (X t ) t≥0 be a rich Lévy-type process with symbol q and characteristics (b, Q, ν). Assume that (X t ) t≥0 has bounded coefficients and that

x ↦ Q(x) is continuous. For fixed x ∈ R d denote by β x ∞ ∈ [0, 2] the generalized Blumenthal-Getoor index at ∞, cf. (10). Let α ∶ R d → (0, 2] be a uniformly continuous mapping such that α(x) ≥ min{β x ∞ + ε, 2} and sup x∈R d × y ≤1 y α(x)-ε ν(x, dy) < ∞ for some absolute constant ε ∈ (0, inf x∈R d α(x)). Suppose that f ∈ C 0 (R d ) satisfies the following conditions. (C1) For any x ∈ {0 < α ≤ 1} it holds that sup 0< y ≤1 f (x + y) -f (x) y α(x) < ∞. (C2) f is differentiable at every point x ∈ {1 < α < 2} and g j (x) ∶= ∂ xj f (x), x ∈ {1 < α < 2}, has a C 0 -extension to R d for each j ∈ {1, . . . , d}. Moreover, sup 0< y ≤1 f (x + y) -f (x) -∇f (x) ⋅ y y α(x) < ∞ for all x ∈ {1 < α < 2}. (C3) For any x ∈ {α = 2}, f is twice differentiable in a neighbourhood of x and the function h ij (x) ∶= ∂ xi ∂ xj f (x), x ∈ {α = 2}, has a C 0 -extension to R d for all i, j ∈ {1, . . . , d}.
Then f is in the domain D(A) of the generator A of (X t ) t≥0 and

Af (x) = b(x) ⋅ g(x) + 1 2 tr (Q(x)h(x)) + × f (x + y) -f (x) -g(x) ⋅ y1 (0,1) ( y ) ν(x, dy) for all x ∈ R d where g ∶= (g 1 , . . . , g d ) ⊺ and h ∶= (h ij ) i,j=1,...,d .
As an immediate consequence of Theorem 3.5 we obtain that certain Hölder spaces of variable order are contained in the domain of the generator, see Corollary 5.2 and Corollary 5.3. Theorem 3.5 applies to a large class of Lévy-type processes, for instance, stable-dominated processes (Example 5.4), stable-like processes (Example 5.5) and solutions to Lévy-driven SDEs (Example 5.6). In particular, Theorem 3.5 allows us to obtain the following natural generalization of Example 3.3.

Example 3.6 (Isotropic stable-like process). Let (X t ) t≥0 be a rich Lévy-type process with symbol q(x, ξ) = ξ γ(x) for a Hölder continuous mapping

γ ∶ R d → (0, 2) which is bounded away from zero. Let α ∶ R d → [0, 2] be a uniformly continuous mapping such that inf x∈R d (α(x) -γ(x)) > 0. (i). If α(R d ) ⊆ [0, 1], then C α(⋅) 0 ∶= ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ f ∈ C 0 (R d ); sup x∈R d sup 0< y ≤1 f (x + y) -f (x) y α(x) < ∞ ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭
is contained in the domain D(A) of the infinitesimal generator A and

Af (x) = c γ(x) × (f (x + y) -f (x)) 1 y d+γ(x) dy for all f ∈ C α(⋅) 0 where c γ(x) ∶= γ(x)π -d 2 Γ((γ(x) + d) 2) Γ(1 -γ(x) 2).
(ii). The Hölder space of variable order

C 1,(α(⋅)-1) + 0 ∶= f ∈ C 1 0 (R d ); ∀j = 1, . . . , d ∶ ∂ j f ∈ C max{α(⋅)-1,0} 0 is contained in D(A) and Af (x) = c γ(x) × f (x + y) -f (x) -∇f (x) ⋅ y1 (0,1) ( y ) 1 y d+γ(x) dy for all C 1,(α(⋅)-1) + 0 .
For the existence of the Lévy-type process (X t ) t≥0 with symbol q(x, ξ) = ξ γ(x) we refer the reader to [29, Theorem 5.2], see e. g. also [START_REF] Bass | Uniqueness in Law for Pure Jump Markov Processes[END_REF][START_REF] Kolokoltsov | Markov Processes, Semigroups and Generators[END_REF] for related results. Example 3.6 applies, in particular, in the Lévy case, i. e. if γ(x) does not depend on x, and therefore it generalizes Example 3.3.

Let us close this section with some remarks on Theorem 3.5.

Remark 3.7. (i). Depending on the local Hölder index α(x), the generator Af (x), f ∈ D(A), has the following equivalent representations:

• Af (x) = ∫ × (f (x + y) -f (x)) ν(x, dy) for any x ∈ {0 < α ≤ 1} • Af (x) = b(x) ⋅ ∇f (x) + ∫ × f (x + y) -f (x) -∇f (x) ⋅ y1 (0,1) ( y ) ν(x, dy) for any x ∈ {1 < α < 2} • Af (x) = b(x) ⋅ ∇f (x) + 1 2 tr Q(x) ⋅ ∇ 2 f (x) + ∫ × f (x + y) -f (x) -∇f (x) ⋅ y1 (0,1) ( y ) ν(x, dy) for any x ∈ {α = 2}.
(ii). Since the regularity of the function f may vary from point to point and the triplet is x-dependent, Theorem 3.5 requires stronger assumptions than in the Lévy case.

(iii). Let q be a negative definite symbol with characteristics (b, 0, ν) and suppose that q satisfies the sector condition, i. e. there exists a constant C > 0 such that

Im q(x, ξ) ≤ C Re q(x, ξ) for all x, ξ ∈ R d . ( 16 
)
Then ∫ × y ≤1 y α(x)-ε ν(x, dy) < ∞ entails β x ∞ ≤ α(x) -ε, cf. [START_REF] Cabré | Nonlinear equations for fractional Laplacians, I: Existence, uniqueness, and qualitative properties of solutions[END_REF]. Consequently, it suffices in this case to check the integrability condition sup

x∈R d × y ≤1 y α(x)-ε ν(x, dy) < ∞.
On the other hand, if there exist constants C > 0 and δ > 0 such that

Re q(x, ξ) ≤ C ξ β x ∞ +δ for all x, ξ ∈ R d , ξ ≥ 1, (17) 
then any uniformly continuous function

α ∶ R d → (0, 2) with inf x∈R d (α(x) -β x ∞ -δ) > 0
satisfies the assumptions of Theorem 3.5; this follows from the inequality

y ≤1 y κ ν(dy) ≤ c κ Re ψ(ξ) ξ d+κ dξ, κ ∈ (0, 2)
which holds for any continuous negative definite function

ψ ∶ R d → C with triplet (b, 0, ν), see (A.1) in the proof of Lemma A.2.
The sector condition ( 16) is, in particular, satisfied if q(x, ⋅) is real-valued. This is equivalent to saying that q(x, ⋅) symmetric for all x ∈ R d (i. e. q(x, ξ) = q(x, -ξ) for all x, ξ ∈ R d ) or b(x) = 0 and ν(x, dy) = ν(x, -dy) for all x ∈ R d .

(iv). It is well known, cf. [10, Theorem 2.30], that the mapping x ↦ q(x, ξ) is continuous for all ξ ∈ R d for any symbol q with q(x, 0) = 0. However, continuity of q(⋅, ξ) does, in general, not imply continuity of x ↦ Q(x); consider, for instance,

q(x, ξ) ∶= 1 2 ξ 2 1 {0} (x) + 1 -cos(xξ) x 2 1 R d ∖{0} (x), x, ξ ∈ R,
see [17, p. 11].

Pointwise limits

In this section we investigate the small-time asymptotics of generalized moments, i. e. we study limits of the form lim

t→0 1 t (E x f (X t ) -f (x)) (18) 
for a rich Feller process (X t ) t≥0 and any fixed

x ∈ R d . Recall that a function f is contained in the domain D(A) ⊆ C 0 (R d ) of the generator A, if the limit exists uniformly in C 0 (R d ), i. e. D(A) ∶= f ∈ C 0 (R d ); ∃g ∈ C 0 (R d ) ∶ lim t→0 sup x∈R d 1 t (E x f (X t ) -f (x)) -g(x) = 0 , Af (x) ∶= lim t→0 1 t (E x f (X t ) -f (x)) .
It is, in general, a non-trivial task to check whether a function f ∈ C 0 (R d ) is in the domain of the generator; typically, this requires assumptions on the smoothness, e. g.

f ∈ C 2 0 (R d ) if (X t ) t≥0 has bounded coefficients, cf.
[10, Theorem 2.37(h)]. We are interested in proving the existence of the limit [START_REF] Cygan | Heat content for convolution semigroups[END_REF] (and also determining it) for functions f which are not necessarily bounded or differentiable. Intuitively, there are two issues which we have to consider: (i). We have to ensure that the expectation E x f (X t ) exists; therefore, we need an assumption on the growth of f at infinity.

(ii). For the existence of the limit (18) for a fixed x ∈ R d the behaviour of f close to x ∈ R d is crucial. For instance, if X t ∶= t is a deterministic drift process, then the limit (18) exists if, and only if, f is differentiable at x. This means that we have to make an assumption on the local regularity of f at x, typically Hölder continuity or differentiability.

In a first step we consider the particular case that f vanishes at infinity and satisfies f B(x,δ) = 0 for some δ > 0; for such functions f we show in Theorem 4.2

lim t→0 1 t (E x f (X t ) -f (x)) = × (f (x + y) -f (x)) ν(x, dy).
This implies, in particular, that t -1 P x (X t -x ∈ ⋅) converges vaguely to ν(x, ⋅) as t → 0, cf. Corollary 4.3, and so, lim

t→0 1 t P x (X t -x ∈ A) = ν(x, A) for any A ∈ B(R d ∖ {0}
) such that 0 ∉ Ā and ν(x, ∂A) = 0. In Theorem 3.1 and Theorem 4.4 we show that the assumption f B(x,δ) = 0 on the regularity of f at x can be replaced by a local Hölder or differentiability condition. The required regularity can be expressed in terms of fractional moments of ν(x, ⋅) or in terms of the generalized Blumenthal-Getoor index at infinity, see [START_REF] Böttcher | Lévy-Type Processes: Construction, Approximation and Sample Path Properties[END_REF] for the definition. Finally, in Theorem 4.6, we extend Theorem 3.1 to functions f which are not necessarily bounded.

The following upper bound for the small-time asymptotics of P( X t -x ≥ r) will be one of our main tools. Lemma 4.1. Let (X t ) t≥0 be a rich Lévy-type process with symbol q. There exists a function

c ∶ R d → (0, ∞) such that lim sup t→0 1 t P x ( X t -x ≥ r) ≤ lim sup t→0 1 t P x sup s≤t X s -x ≥ r ≤ c(x) sup ξ ≤r -1 q(x, ξ) for all x ∈ R d and r > 0. Moreover, c is locally bounded, i. e. c K ∶= sup x∈K c(x) < ∞ for any compact set K ⊆ R d .
Lemma 4.1 is a localized variant of a known maximal inequality, cf. [10, Corollary 5.2]; for the readers' convenience we include a full proof.

Proof of Lemma 4.1. For fixed x ∈ R d and r > 0 denote by τ x r ∶= inf{t ≥ 0; X t ∉ B(x, r)} the exit time from the ball B(x, r). As

{ X t -x ≥ r} ⊆ sup s≤t X s -x ≥ r ⊆ {τ x r ≤ t},
it suffices to show that lim sup

t→0 1 t P x (τ x r ≤ t) ≤ c sup ξ ≤r -1 q(x, ξ) (⋆)
for some constant c > 0. To this end, fix

x ∈ R d , r > 0 and pick u ∈ C ∞ c (R d ) such that u(0) = 1, supp u ⊆ B(0, 1) and 0 ≤ u ≤ 1. If we set u x r (y) ∶= u((y -x) r), then u x r ∈ C ∞ c (R d ) ⊆ D(A)
, and an application of Dynkin's formula, cf. Lemma A.1, gives

E x u x r (X t∧τ x r ) -1 = E x [0,t∧τ x r ) Au x r (X s ) ds
where A denotes the generator of (X t ) t≥0 . Thus,

P x (τ x r ≤ t) ≤ E x 1 -u x r (X t∧τ x r ) = -E x [0,t∧τ x r ) Au x r (X s ) ds = -E x [0,t∧τ x r ) 1 { Xs-x <r} Au x r (X s ) ds . Since -Au x r (y) = R d e iy⋅ξ q(y, ξ) u x r (ξ) dξ = e -ix⋅ξ r d R d e iy⋅ξ q(y, ξ)û(rξ) dξ = e -ix⋅ξ R d
e iy⋅ξ q(y, r -1 ξ)û(ξ) dξ for all y ∈ R d , we get

P x (τ x r ≤ t) ≤ t E x R d sup s<t∧τ x r q(X s , r -1 ξ) û(ξ) dξ .
As X s ∈ B(x, r) for all s < t ∧ τ x r , there exists by Theorem 2.1 a constant C = C(r, x) such that sup

s<t∧τ x r q(X s , r -1 ξ) û(ξ) ≤ C(1 + ξ 2 ) û(ξ) ∈ L 1 (dξ)
for all t ≥ 0. On the other hand, q(x, 0) = 0 implies that x ↦ q(x, ξ) is continuous for all ξ ∈ R d , see [10, Theorem 2.30]), and therefore

sup s<t∧τ x r q(X s , r -1 ξ) û(ξ) t→0 → q(x, r -1 ξ) û(ξ) for almost all ξ ∈ R d .
Applying the dominated convergence theorem yields lim sup

t→0 1 t P x (τ x r ≤ t) ≤ R d q(x, r -1 ξ) û(ξ) dξ.
Now (⋆) follows using the estimate from Theorem 2.1

q(x, r -1 ξ) ≤ 2 sup η ≤r -1 q(x, η) (1 + ξ 2 ) for all ξ ∈ R d , r > 0.
The following result is well known for the particular case that (X t ) t≥0 is a Lévy process, see [START_REF] Berg | Potential Theory on Locally Compact Abelian Groups[END_REF]Proposition 18.2] or [START_REF] Böttcher | Lévy-Type Processes: Construction, Approximation and Sample Path Properties[END_REF]Lemma 2.16], its extension to Lévy-type processes is new. Theorem 4.2. Let (X t ) t≥0 be a rich Lévy-type process with symbol q and characteristics (b, Q, ν). Let f ∈ C 0 (R d ) and suppose that f B(x0,δ) = 0 for some x 0 ∈ R d and δ > 0.

Then 1 t E x f (X t ) t→0 → × f (x + y) ν(x, dy)
uniformly in a neighbourhood of x 0 . In particular,

x ↦ ∫ f (x + y) ν(x, dy) is continuous at x = x 0 . Proof. For fixed ε > 0 choose χ ∈ C ∞ c (R d ) such that f -χ ∞ ≤ ε.
Without loss of generality, we may assume that χ B(x0,δ) = 0. Obviously,

1 t E x f (X t ) -× f (x + y) ν(x, dy) ≤ 1 t E x (f -χ)(X t ) + × f (x + y) -χ(x + y) ν(x, dy) + 1 t E x χ(X t ) -× χ(x + y) ν(x, dy) =∶ I 1 + I 2 + I 3 .
We estimate the terms separately. Using that χ(x) = 0, ∇χ(x) = 0 and ∇ 2 χ(x) = 0 for all x ∈ B(x 0 , δ 4), we find for all x ∈ B(x 0 , δ 4)

I 3 = 1 t (E x χ(X t ) -χ(x)) -Aχ(x) ≤ sup x∈R d 1 t (E x χ(X t ) -χ(x)) -Aχ(x) t→0 → 0 as χ ∈ C ∞ c (R d ) ⊆ D(A).
For I 2 we note that for any x ∈ B(x 0 , δ 4)

I 2 ≤ y ≥δ 4 f (x + y) -χ(x + y) ν(x, dy) ≤ ε sup x∈B(x0,δ 4) ν(x, R d ∖ B(0, δ 4)).
Note that the constant on the right-hand side is finite, see e. g. [10, Theorem 2.30(d)], and δ > 0 is a fixed constant which does not depend on ε. Since

I 1 ≤ ε t P x X t -x 0 ≥ δ 2 ≤ ε t P x X t -x ≥ δ 4
for all x ∈ B(x 0 , δ 4), it follows from Lemma 4.1 that there exists a constant C > 0 such that lim sup

t→0 1 t I 1 ≤ Cε sup x∈B(x0,δ 4) sup ξ ≤4δ -1 q(x, ξ) .
The above estimates show lim sup

t→0 1 t E x f (X t ) -× f (x + y) ν(x, dy) ≤ ε sup x∈B(x0,δ 4) ν(x, R d ∖ B(0, δ 4)) + C sup x∈B(x0,δ 4) sup ξ ≤2δ -1 q(x, ξ) ε→0 → 0.
The assertion on the continuity follows directly from the local uniform convergence and the fact that x ↦ E x f (X t ) is continuous as (X t ) t≥0 is a Feller process.

If we use Theorem 4.2 for the shifted function f (⋅ -x 0 ) for a fixed x 0 ∈ R d , we get:

Corollary 4.3. Let (X t ) t≥0 be a rich Lévy-type process with symbol q and characteristics (b, Q, ν). If f ∈ C 0 (R d ) and f B(0,δ) = 0 for some δ > 0, then

lim t→0 1 t E x f (X t -x) = × f (y) ν(x, dy) for all x ∈ R d .
Corollary 4.3 shows that the family of measures p t (dy

) ∶= t -1 P x (X t -x ∈ dy), t > 0, on (R d ∖ {0}, B(R d ∖ {0}
)) converges vaguely to ν(x, dy) for each fixed x ∈ R d . By the portmanteau theorem, Corollary 4.3 implies

lim t→0 1 t P x (X t -x ∈ A) = ν(x, A) (19) 
for any Borel set A ∈ B(R d ∖ {0}) such that 0 ∉ Ā and ν(x, ∂A) = 0.

We are now ready to prove our first main result, Theorem 3.1, see p. 7 for the statement. It allows us to to relax the assumption "f B(x0,δ) = 0" in Theorem 4.2.

Proof of Theorem 3.1. Pick χ ∈ C ∞ c (R d ), 0 ≤ χ ≤ 1, such that χ B(x0,1) = 1, χ B c (x0,2) = 0 and set χ δ (x) ∶= χ(δ -1 x) for δ > 0.
(A1) Without loss of generality, we may assume f (x 0 ) = 0, otherwise we consider the shifted function

x ↦ f (x) -f (x 0 ). As α > β x0 ∞ , we have × f (x 0 + y) ν(x 0 , dy) ≤ C × y ≤1 y α ν(x 0 , dy) + f ∞ ν(x 0 , R d ∖ B(0, 1)) < ∞,
and therefore it follows from Theorem 4.2 and the dominated convergence theorem that

1 t E x0 ([f (1 -χ δ )](X t )) t→0 → × f (x 0 + y)(1 -χ δ (x 0 + y)) ν(x 0 , dy) δ→0 → × f (x 0 + y) ν(x 0 , dy).
On the other hand, if we set C δ ∶= sup y-x0 ≤2δ f (y) , then C δ → 0 as δ → 0 and

E x0 ([f χ δ ](X t )) ≤ C δ 0 P x0 f (X t ) ≥ r, X t -x 0 ≤ 2δ dr ≤ C δ 0 P x0 X t -x 0 α ≥ r C dr for any δ ∈ (0, 1 2). By Lemma 4.1 lim sup t→0 1 t P x0 X t -x 0 α ≥ r C = lim sup t→0 1 t P x0 X t -x 0 ≥ C -1 α r 1 α ≤ c sup ξ ≤r -1 α C 1 α q(x 0 , ξ) ≤ C ′ r -β α (20) 
for any β ∈ (β x ∞ , α) and suitable constants c, C ′ > 0; thus, by Fatou's lemma, lim sup

t→0 1 t E x0 ([f χ δ ](X t )) ≤ C ′ C δ 0 r -β α dr δ→0 → 0. Writing 1 t E x0 f (X t ) = 1 t E x0 ([f χ δ ](X t )) + 1 t E x0 ([f (1 -χ δ )](X t ))
and letting first t → 0 and then δ → 0, proves the claim.

(A2) For fixed R > 0 let τ x0 R denote the exit time from the ball B(x 0 , R). The function

x ↦ g(x) ∶= f (x) -f (x 0 ) -∇f (x 0 ) ⋅ (x -x 0 )χ(x)
satisfies (A1) and, therefore, by the first part of this proof, lim

t→0 1 t E x0 g(X t ) = × (g(x 0 + y) -g(x 0 )) ν(x 0 , dy) = × (f (x 0 + y) -f (x 0 ) -χ(y + x 0 )∇f (x 0 ) ⋅ y) ν(x 0 , dy). As (• -x 0 )χ(•) ∈ C ∞ c (R d ) ⊆ D(A) an application of Dynkin's formula, cf. Lemma A.1, shows 1 t E x0 (X t∧τ x 0 R -x 0 )χ(X t∧τ x 0 R ) t→0 → b(x 0 ) + × y χ(y + x 0 ) -1 (0,1) ( y ) ν(x 0 , dy)
for any R > 0. Using the fact that supp χ ⊆ B[x 0 , 2] and applying Lemma 4.1, we find for some constant c = c(x 0 )

1 t E x0 (X t∧τ x 0 R -x 0 )χ(X t∧τ x 0 R ) - 1 t E x0 ((X t -x 0 )χ(X t )) ≤ 4 t P x0 τ x0 R ≤ t ≤ 4c sup ξ ≤R -1 q(x 0 , ξ) R→∞ → 0,
and therefore we conclude

1 t E x0 ((X t -x 0 )χ(X t )) t→0 → b(x 0 ) + × y χ(y + x 0 ) -1 (0,1) ( y ) ν(x 0 , dy).
Consequently,

1 t (E x0 f (X t ) -f (x 0 )) = 1 t E x0 g(X t ) + 1 t ∇f (x 0 ) ⋅ E x0 ((X t -x 0 )χ(X t )) t→0 → b(x 0 ) ⋅ ∇f (x 0 ) + × f (x 0 + y) -f (x 0 ) -∇f (x 0 ) ⋅ y1 (0,1) ( y ) ν(x 0 , dy),
finishing the second part.

(A3) We begin with the particular case that f (x 0 ) = 0 and ∇f (x 0 ) = 0. Since, by Theorem 4.2 and the dominated convergence theorem,

1 t E x0 ([f (1 -χ δ )](X t )) t→0 → × [f (1 -χ δ )](x 0 + y) ν(x 0 , dy) δ→0 → × f (x 0 + y) ν(x 0 , dy), it is enough to show 1 t E x0 ([f χ δ ](X t )) t,δ→0 → d i,j=1 Q ij (x 0 )∂ i ∂ j f (x 0 ). (21) 
In order to keep notation simple, we set f δ (x) ∶= f (x)χ δ (x). Note that by Lemma 4.1

1 t E x0 f δ (X t ) - 1 t E x0 f δ (X t∧τ x 0 R ) ≤ 2 f ∞ 1 t P x0 τ x0 R ≤ t ≤ 2c f ∞ sup ξ ≤R -1 q(x 0 , ξ) R→∞ → 0,
and therefore ( 21) follows if we can show that

1 t E x0 (f δ (X t∧τ x R )) t,δ→0 → d i,j=1 Q ij (x 0 )∂ i ∂ j f (x 0 ) (22) 
for every fixed R > 0. By Taylor's formula, there exists a continuous mapping ϕ ∶ R → R such that lim r→0 ϕ(r) = 0 and

f (y) = 1 2 d i,j=1 (y i -x i 0 )(y j -x j 0 )∂ i ∂ j f (x 0 ) + y -x 0 2 ϕ( x 0 -y )
for all y = (y 1 , . . . , y d ) ∈ B(x 0 , δ). Thus,

1 t E x0 (f δ (X t∧τ x R )) = I 1 + I 2 where I 1 ∶= 1 2t d i,j=1 ∂ i ∂ j f (x 0 )E x0 (X i t∧τ x R -x i 0 )(X j t∧τ x R -x j 0 )χ δ (X t∧τ x R ) I 2 ∶= 1 t E x0 X t∧τ x R -x 0 2 ϕ( X t∧τ x R -x 0 )χ δ (X t∧τ x R
) . We estimate the terms separately. By the definition of χ δ , we have

I 2 ≤ t -1 sup r≤2δ ϕ(r) E x0 ( X t∧τ x R -x 0 2 χ(X t∧τ x R )),
and so an application of Dynkin's formula yields

I 2 ≤ sup r≤2δ ϕ(r) sup y-x0 ≤R A( • -x 0 2 ⋅ χ(•))(y) δ→0 → 0.
Using that ∇χ δ (x 0 ) = 0 and ∇ 2 χ δ (x 0 ) = 0, it is not difficult to see from Dynkin's formula and the fundamental theorem of calculus that

I 1 t→0 → 1 2 d i,j=1 ∂ i ∂ j f (x 0 ) Q ij (x 0 ) + × y i y j χ δ (x 0 + y) ν(x 0 , dy) δ→0 → 1 2 d i,j=1 ∂ i ∂ j f (x 0 )Q ij (x 0 ).
Combining both convergence results proves [START_REF] Jacod | Asymptotic properties of power variations of Lévy processes[END_REF] if f (x 0 ) = 0 and ∇f (x 0 ) = 0. For the general case define

g(x) ∶= f (x) -f (x 0 ) -χ(x)∇f (x 0 ) ⋅ (x -x 0 ), x ∈ R d ,
and use exactly the same reasoning as in the proof of (A2).

In Theorem 3.1 we have to assume that α is strictly larger than the Blumenthal-Getoor index β x0 ∞ defined in [START_REF] Böttcher | Lévy-Type Processes: Construction, Approximation and Sample Path Properties[END_REF]. In fact, Theorem 3.1 also holds for α = β x0 ∞ if q(x 0 , ⋅) satisfies the sector condition, has no diffusion part, and the fractional moment

∫ × y ≤1 y β x 0 ∞ ν(x 0 , dy) is finite.
Theorem 4.4. Let (X t ) t≥0 be a rich Lévy-type process with symbol q and characteristics (b, 0, ν). Suppose that f ∈ C 0 (R d ) satisfies one of the following conditions for some fixed

x 0 ∈ R d .
(B1) There exist α ∈ (0, 1] and C > 0 such that ∫ × y ≤1 y α ν(x 0 , dy) < ∞ and

f (x) -f (x 0 ) ≤ C x -x 0 α for all x ∈ B(x 0 , 1).
(B2) f is differentiable at x = x 0 and there exist constants α ∈ (1, 2) and C > 0 such that

∫ × y ≤1 y α ν(x 0 , dy) < ∞ and f (x) -f (x 0 ) -∇f (x 0 ) ⋅ (x -x 0 ) ≤ C x -x 0 α
for all x ∈ B(x 0 , 1).

If q(x 0 , ⋅) satisfies the sector condition, i. e. Im q(x 0 , ξ) ≤ C ′ Re q(x 0 , ξ) for some constant C ′ > 0, then the limit

lim t→0 1 t (E x0 f (X t ) -f (x 0 ))
exists and takes the value

(B1) Lf (x 0 ) ∶= ∫ × (f (x 0 + y) -f (x 0 )) ν(x 0 , dy); (B2) Lf (x 0 ) ∶= b(x 0 ) ⋅ ∇f (x 0 ) + ∫ × f (x 0 + y) -f (x 0 ) -∇f (x 0 ) ⋅ y1 (0,1) ( y ) ν(x 0 , dy).
Proof. The proof is very similar to that of Theorem 3.1; the only modification is needed in [START_REF] Grubb | Fractional Laplacians on domains, a development of Hörmander's theory of µtransmission pseudodifferential operators[END_REF] where we use the fact that ∫ y ≤1 y α ν(x 0 , dy) < ∞ implies

1 0 sup ξ ≤r -1 α q(x 0 , ξ) dr = α ∞ 1 1 s 1+α sup ξ ≤s q(x 0 , ξ) ds < ∞ (cf. Lemma A.

for details) to obtain an integrable majorant.

In the remaining part of this section we extend Theorem 3.1 and Theorem 4.4 to functions f which are not necessarily bounded. Recall that a function g ≥ 0 is called submultiplicative if there exists a constant c > 0 such that g(x + y) ≤ cg(x)g(y) holds for all x, y ∈ R d . In [START_REF] Kühn | Existence and estimates of moments for Lévy-type processes[END_REF] it was shown that the implication

sup x∈K × y ≥1 g(y) ν(x, dy) < ∞ ⇒ ∀t > 0 ∶ sup x∈K sup s≤t E x g(X s∧τ K -x) < ∞
holds for any twice differentiable submultiplicative function g ≥ 0, any compact set K ⊆ R d , and any rich Lévy-type process; if (X t ) t≥0 has bounded coefficients, then K = R d is admissible. Here τ K denotes as usual the first exit time from K. It is therefore a natural idea to replace

1 t (E x f (X t ) -f (x)) by 1 t (E x f (X t∧τ K ) -f (x)) ,
and to consider functions f ∶ R d → R which can be dominated by a submultiplicative function g ≥ 0 with sup x∈K ∫ y ≥1 g(y) ν(x, dy) < ∞.

Definition 4.5. Let (b(x), Q(x), ν(x, dy)) be an x-dependent Lévy triplet and K ⊆ R d . We write Σ(K) for the family of twice differentiable submultiplicative functions g ∶ R d → (0, ∞) satisfying the following two integrability conditions.

(i). M (K) ∶= sup x∈K ∫ y ≥1 g(y) ν(x, dy) < ∞ (integrability). (ii). M R (K) ∶= sup x∈K ∫ y ≥R g(y) ν(x, dy) R→∞ → 0 (tightness).
Theorem 4.6 (Behaviour at ∞). Let (X t ) t≥0 be a rich Lévy-type process with symbol q and characteristics (b, Q, ν). Moreover, let f ∶ R d → R be a continuous mapping satisfying the following growth condition (G).

(G) There exist a compact set K ⊆ R d and a function g ∈ Σ(K) such that

lim x →∞ f (x) g(x) < ∞.
If one of the conditions (A1)-(A3) holds for some x 0 ∈ K, then the limit

lim t→0 1 t (E x0 f (X t∧τ K ) -f (x 0 ))
exists and equals Lf (x 0 ) defined in Theorem 3.1; here τ K ∶= inf{t ≥ 0; X t ∉ K} denotes the exit time from the set K. If (X t ) t≥0 has bounded coefficients, then K = R d is admissible.

Proof. We only consider the case that (X t ) t≥0 has bounded coefficients and g ∈ Σ(R d ); the proof of the other assertion works analogously and just requires an additional stopping argument. For simplicity of notation we assume that b(x) = 0 and Q(x) = 0 for all x ∈ R d , see the remark at the end of the proof. Let χ be a continuous function such that 1

-χ ∈ C ∞ c (R d ), 0 ≤ χ ≤ 1, χ B(0,1) = 0 and χ B c (0,2) = 1, and set χ R (x) ∶= χ(R -1 x). Then f (•) ⋅ (1 -χ R (• -x 0 )
) satisfies the assumptions of Theorem 3.1 for each R > 0 and therefore

1 t (E x0 (f (X t )(1 -χ R )(X t -x 0 )) -f (x 0 )) t→0 → L(f (1 -χ R )(• -x 0 ))(x 0 ). Since ∇χ R (x 0 ) = 0, ∇ 2 χ R (x 0 ) = 0 for each R > 0 and ∫ y ≥1 f (y) ν(x 0 , dy) < ∞, it follows easily from the definition of L(f (1-χ R )(•-x 0 )) and the dominated convergence theorem that 1 t (E x0 (f (X t )(1 -χ R )(X t -x 0 )) -f (x 0 )) t→0 → L(f (1 -χ R )(• -x 0 ))(x 0 ) R→∞ → Lf (x 0 ).
Consequently, it remains to show that lim sup

R→∞ lim sup t→0 1 t E x0 (f (X t )χ R (X t -x 0 )) = 0.
Because of the growth condition (G) and the submultiplicativity of g, it suffices to prove lim sup

R→∞ lim sup t→0 1 t E x0 (g(X t -x 0 )χ R (X t -x 0 )) = 0. ( 23 
)
By Theorem 2.2, (X t ) t≥0 is a semimartingale with semimartingale characteristics (0, 0, µ) given by ( 13). Consequently, (X t ) t≥0 has a canonical representation where N denotes the jump measure of (X t ) t≥0 , cf. [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]Theorem II.2.34]. By the submultiplicativity of g, there exists a constant c > 0 such that

X t = x 0 +X (1) t +X (2) t , X (1) 
g(X t -x 0 ) = g(X (1) t + X (2) t ) ≤ cg(X (1) t )g(X (2) 
t ), t ≥ 0.

Since any submultiplicative function grows at most exponentially, cf. [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF]Lemma 25.5],

we can find constants a, b > 0 such that

g(X t -x 0 ) ≤ a exp b X (1) t 2 + 1 -1 g(X (1) t ), t ≥ 0. ( 24 
)
In order to keep our notation simple, we assume that a = b = c = 1. Moreover, we set

(x) ∶= exp x 2 + 1 -1
and use the subscript to denote truncated functions, e. g.

R (x) ∶= χ R (x) (x) and g R (x) ∶= χ R (x)g(x).
From the definition of χ R and the triangle inequality, it is not difficult to see that

χ R (x + y) ≤ χ R 4 (x) + χ R 4 (y) for all x, y ∈ R d , (25) 
and therefore we obtain

g(X t -x 0 )χ R (X t -x 0 ) ≤ exp X (1) t 2 + 1 -1 g(X (2) 
t )χ R 4 (X (1) t ) 
+ exp X

(1) t

2 + 1 -1 g(X (2) 
t )χ R 4 (X (2) 
t ) = R 4 (X (1) 
t )g(X

t ) + (X (2) 
t )g R 4 (X (1) 
t ).

Consequently, ( 23) follows if we can show

lim R→∞ lim t→0 1 t E x0 R 4 (X (1) 
t )g(X

t ) = 0 (26) lim R→∞ lim t→0 1 t E x0 (X (2) 
t )g R 4 (X (1) 
t ) = 0.

First we prove [START_REF] Kwaśnicki | Ten equivalent definitions of the fractional laplace operator[END_REF]. Define a stopping time by

τ ∶= τ r ∶= inf t > 0; X (1) t + X (2) t ≥ r
for fixed r > 0. Applying Itô's formula for semimartingales gives

E x0 R 4 (X (1) 
t∧τ )g(X

t∧τ ) = E x0 t∧τ 0 y ≥1 R 4 (X (1) s )(g(X (2) s + y) -g(X (2) s )) ν(X s , dy) ds (2) 
+ E x0 ⎛ ⎜ ⎝ t∧τ 0 × y <1 g(X (2) s ) R 4 (X (1) s + y) -R 4 (X (1) s ) -∇ R 4 (X (1) s ) ⋅ y ν(X s , dy) ds ⎞ ⎟ ⎠ . (28) 
Since g ≥ 0 is submultiplicative, the first term on the right-hand side of ( 28) is bounded above by

E x0 t 0 × R 4 (X (1) s )g(X (2) s )g(y) ν(X s , dy) ds ≤ sup x∈R d y ≥1 g(y) ν(x, dy) E x0 t 0 R 4 (X (1) s )g(X (2) s ) ds .
For the second term in [START_REF] Kühn | Existence and estimates of moments for Lévy-type processes[END_REF] we apply Taylor's formula and use the fact that ∇ 2 χ R 4 (z) = 0 for all z ∈ B(0, R 4) ∪ B c (0, R 2) to conclude that there exists a function ψ ∈ C 2 b (R d ) such that ψ(z) = 0 for all z ∈ B(0, 1 16) and

R 4 (x + y) -R 4 (x) -∇ R 4 (x) ⋅ y ≤ y 2 (x)ψ(x) for all x ∈ R d , y ≤ 1 for R ≥ 1. Using this estimate for x ∶= X (1) 
s , we find that the second term on the right-hand side of (28) is bounded above by

⎛ ⎜ ⎝ sup x∈R d × y ≤1 y 2 ν(x, dy) ⎞ ⎟ ⎠ E x0 t 0 (X (1) s )ψ(X (1) s )g(X (2) s ) ds .
Now it follows from Fatou's lemma, Definition 4.5 and Lemma 4.7 below that there exists an absolute constant C > 0 such that

1 t E x0 R 4 (X (1) 
t )g(X

t ) ≤ lim inf r→∞ 1 t E x0 R 4 (X (2) 
t∧τ )g(X

(2) t∧τ ) ≤ C t t 0 s ds
(recall the definition of , R 4 and note that K = R d ), and this implies [START_REF] Kwaśnicki | Ten equivalent definitions of the fractional laplace operator[END_REF].

It remains to prove [START_REF] Kühn | Probability and Heat Kernel Estimates for Lévy(-Type) Processes[END_REF]. Again an application of Itô's formula shows

E x0 ( (X (1) 
t∧τ )g R 4 (X (2) t∧τ )) = E x0 t∧τ 0 y ≥1 (X (1) s ) g R 4 (X (2) s + y) -g R 4 (X (2) s ) ν(X s-, dy) ds (29) 
+ E x0 t∧τ 0 × y <1 g R 4 (X (2) s ) (X (1) s + y) -(X (1) s ) -∇ (X (1) s ) ⋅ y ν(X s-, dy) ds .
Using the submultiplicativity of g ≥ 0 and ( 25), we find that the first term on the righthand side is bounded above by

E x0 t 0 y ≥1 (X (1) s ) g R 16 (X (2) s )g(y) + g(X (2) s )g R 16 (y) ν(X s-, dy) ds ≤ M R 16 (R d ) t 0 E x0 ( (X (1) s )g(X (2) s )) ds + M (R d ) t 0 E x0 ( (X (1) s )g R 16 (X (2) s ) ds with M (R d ) and M R 16 (R d
) from Definition 4.5. On the other hand, a similar calculation as in the proof of [START_REF] Kwaśnicki | Ten equivalent definitions of the fractional laplace operator[END_REF] shows that the second term on the right-hand side of ( 29) is less or equal than

CE x0 t 0 g R 4 (X (2) s ) (X (1) s )ψ(X (1) s ) ds where C is a suitable constant and ψ ∈ C 2 b (R d ) such that supp ψ ∩ B(0, 1 16) = ∅.
If we combine both estimates, apply Lemma 4.7 and use that lim R→∞ M R 16 (R d ) = 0, we get [START_REF] Kühn | Probability and Heat Kernel Estimates for Lévy(-Type) Processes[END_REF].

In the general case, i. e. if b(x) ≠ 0 or Q(x) ≠ 0, we replace X where (X C t ) t≥0 denotes the continuous martingale part, cf. [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]Theorem II.2.34]; this gives additional terms when applying Itô's formula, but the reasoning works exactly as in the pure-jump case. Lemma 4.7. Let (X t ) t≥0 , K, g and x 0 ∈ R d be as in Theorem 4.6. For any T > 0 and all functions g, θ ∈ C 2 b (R d ) such that supp θ ∩ B(0, ε) = 0 for some sufficiently small ε > 0, there exists a constant C > 0 such that

E x0 exp X (1) t∧τ K 2 + 1 -1 g(X (2) 
t∧τ K ) ≤ C E x0 exp X (1) t∧τ K 2 + 1 -1 g(X (2) t∧τ K )θ(X (1) 
t ) ≤ Ct E x0 exp X (1) t∧τ K 2 + 1 -1 g(X (2) t∧τ K )θ(X (2) 
t ) ≤ Ct for all t ≤ T ; here τ K denotes the exit time from the set K and X t -x 0 = X (1) t + X

(2) t the decomposition from the proof of Theorem 4.6.

Proof. We know from the proof of [START_REF] Kühn | Existence and estimates of moments for Lévy-type processes[END_REF]Theorem 4.1] that under the assumptions of Theorem 4. [START_REF] Blumenthal | Sample functions of stochastic processes with stationary independent increments[END_REF] sup

t≤T E x0 exp X (1) t∧τ K 2 + 1 -1 g(X (2) 
t∧τ k ) < ∞,
and this proves the first assertion. The other two estimates now follow from a straightforward application of Itô's formula; mind that the initial term exp X

(1)

t∧τ K 2 + 1 -1 g(X (2) 
t∧τ K )θ(X

(i) t ) t=0 = 0 vanishes for i ∈ {1, 2} since θ(X (i) 0 ) = 0.
Remark 4.8. (i). The proof of Theorem 4.6 simplifies substantially if the submultiplicative function g ∈ C 2 (R d ) satisfies the inequality

∇ 2 g(x) ≤ C g(x) , x ∈ R d , (30) 
for some absolute constant C > 0. In this case, we can apply Itô's formula directly to the mapping x ↦ g(x-x 0 )χ R (x-x 0 ) to prove [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]; there is no need to use the decomposition

X t = x + X (1) t + X 
(2) t and estimate [START_REF] Kassmann | Intrinsic scaling properties for nonlocal operators[END_REF]. Although there are many examples of submultiplicative functions satisfying [START_REF] Kühn | Solutions of Lévy-driven SDEs with unbounded coefficients as Feller processes[END_REF], it does not hold true for all (twice differentiable) submultiplicative functions.

(ii). In Theorem 4.6 submultiplicativity of the dominating function g is required. This assumption can be weakened; it suffices to assume that there exist a subadditive function a ∶ R d → R and a submultiplicative function m ∶ R d → (0, ∞) such that g(x) = m(x)⋅a(x)

for all x ∈ R d , a, m ∈ C 2 (R d ) and lim R→∞ inf x ≥R a(x) > 0.
The proof of Theorem 4.6 under this relaxed assumption is similar, but more technical.

Using exactly the same reasoning as in the proof of Theorem 4.6, we obtain a similar extension of Theorem 4.4 to unbounded functions. Theorem 4.9. Let (X t ) t≥0 be a rich Lévy-type process with characteristics (b, 0, ν) and symbol q, and let f ∶ R d → R be a continuous function satisfying the growth condition (G). Suppose that either (B1) or (B2) holds for some x 0 ∈ K and that q(x 0 , ⋅) satisfies the sector condition. Then the limit

lim t→0 1 t (E x0 f (X t∧τ K ) -f (x 0 ))
exists and equals Lf (x 0 ) as defined in Theorem 4.4. If (X t ) t≥0 has bounded coefficients, then K = R d is admissible.

We close this section with an application of Corollary 4.3, which has been announced (without proof) in the recent publication [28, remark following Theorem 5.2] on moments of Lévy-type processes. Proposition 4.10. Let (X t ) t≥0 be a rich Lévy-type process with symbol q and characteristics (b, Q, ν). If there exist x ∈ R d , R ≥ 0 and α > 0 such that

lim inf t→0 1 t E x X t -x α 1 { Xt-x >R} < ∞, then y >R y α ν(x, dy) ≤ R α ν(x, {y ∈ R d ; y > R})1 R>0 + lim inf t→0 1 t E x ( X t -x α 1 { Xt-x >R} );
in particular ∫ y >R y α ν(x, dy) < ∞.

For R = 0 Proposition 4.10 shows

C ∶= lim inf t→0 1 t E x ( X t -x α ) < ∞ ⇒ × y α ν(x, dy) ≤ C < ∞.
Proof of Proposition 4.10. Since the identity

y α µ(dy) = α (0,∞) µ( y ≥ r)r α-1 dr (⋆)
holds for any α > 0 and any σ-finite measure µ, we have

y >R y α ν(x, dy) = α (0,∞) ν(x, {y ∈ R d ; y > R, y ≥ r}) r α-1 dr.
If R = 0 then it follows from [START_REF] Figueroa-López | Small-time asymptotics for Lévy processes[END_REF] and Fatou's lemma that y >0 y α ν(x, dy) ≤ α lim inf

t→0 1 t (0,∞) P x ( X t -x ≥ r) r α-1 dr (⋆) = lim inf t→0 1 t E x ( X t -x α
).

Here we use that the σ-finiteness of ν(x, dy) implies ν(x, ∂B(0, r)) = 0 for Lebesguealmost all r > 0. If R > 0, then we split the integral

y >R y α ν(x, dy) ≤ R α ν(x, {y ∈ R d ; y > R}) + α (R,∞) ν(x, {y ∈ R d ; y ≥ r}) r α-1 dr,
and use again [START_REF] Figueroa-López | Small-time asymptotics for Lévy processes[END_REF] and Fatou's lemma to estimate the second term.

Uniform limits

In the previous section we have seen that the pointwise limit lim t→0 t -1 (E x0 f (X t )f (x 0 )) exists for some fixed x 0 ∈ R d if f ∈ C 0 (R d ) satisfies a Hölder condition at x 0 . Now we turn to the question under which assumptions on the regularity of f the limit

lim t→0 1 t (E • f (X t ) -f (•)) (31) 
exists uniformly in C 0 (R d ), i. e. under which assumptions f is contained in the domain D(A) of the generator of (X t ) t≥0 . It is well known that the limit exists (uniformly) for any function f ∈ C 2 0 (R d ) and any Lévy-type process (X t ) t≥0 with bounded coefficients, cf. [START_REF] Böttcher | Lévy-Type Processes: Construction, Approximation and Sample Path Properties[END_REF]Theorem 2.37]. However, the results from the previous section suggest that the uniform limit may also exist for functions whose regularity varies from point to point, e. g. functions which satisfy

f (x + y) -f (x) ≤ C y α(x)
for all x, y ∈ R d , y ≤ 1 for some absolute constant C > 0 and a suitable mapping α ∶ R d → [0, 2]. In this section, we will show that this is indeed true; more precisely we will establish that certain Hölder spaces of variable order are contained in the domain of the generator, cf. Corollary 5.2 and Corollary 5.3. The idea is to use the fact that for a Lévy-type process (X t ) t≥0 the limit (31) exists uniformly if, and only if, the pointwise limit exists for each x ∈ R d and the limit defines a function in C 0 (R d ), cf. [START_REF] Schilling | Brownian Motion. An Introduction to Stochastic Processes[END_REF]Theorem 7.22]. At the end of this section we will present some examples, including stable-like and relativistic stable-like processes.

Our first main result, Theorem 3.2, is about the particular case that (X t ) t≥0 is a Lévy process.

Proof of Theorem 3.2. (i) is well known, see e. g. [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF]Theorem 31.5] or [START_REF] Böttcher | Lévy-Type Processes: Construction, Approximation and Sample Path Properties[END_REF]Theorem 2.37]. The proofs of (ii) and (iii) are very similar, and therefore we only prove (ii). Pick

a cut-off function χ ∈ C ∞ c (R d ) such that χ ≥ 0, supp χ ⊆ B(0, 1) and ∫ R d χ(x) dx = 1. If we set χ ε (x) ∶= ε -1 χ(ε -1 x), then the convolution f n ∶= χ 1 n * f is in C 2 0 (R d ), hence in D(A), and lim n→∞ f n -f ∞ = 0. As (f n -f )(x + y) -(f n -f )(x) ≤ χ(z)(f (x + y + n -1 z) -f (x + n -1 z)) dz + f (x + y) -f (x) ≤ 2 f α y α
for all y ≤ 1 and

(f n -f )(x + y) -(f n -f )(x) ≤ 2 sup r-s ≤n -1 f (r) -f (s) n→∞ → 0, we find sup x∈R d sup 0< y ≤1 (f n -f )(x + y) -(f n -f )(x) y α n→∞ → 0 which implies that Af n (x) = × (f n (x + y) -f n (x)) ν(dy) n→∞ → × (f (x + y) -f (x)) ν(dy)
uniformly in x ∈ R d . Since the generator (A, D(A)) is a closed operator, this finishes the proof.

Next we extend Theorem 3.2 to Lévy-type processes, cf. Theorem 3.5.

Proof of Theorem 3.5. It follows from Theorem 3.1 that the pointwise limit

Lf (x) = lim t→0 1 t (E x f (X t ) -f (x))
exists for all x ∈ R d and is given by

• Lf (x) = ∫ × (f (x + y) -f (x)) ν(x, dy) for any x ∈ {0 < α ≤ 1}; • Lf (x) = b(x) ⋅ ∇f (x) + ∫ × f (x + y) -f (x) -∇f (x) ⋅ y1 (0,1) ( y ) ν(x, dy) for any x ∈ {1 < α < 2}; • Lf (x) = b(x) ⋅ ∇f (x) + 1 2 tr Q(x)∇ 2 f (x) + ∫ × f (x + y) -f (x) -∇f (x) ⋅ y1 (0,1) ( y ) ν(x, dy) for any x ∈ {α = 2}.
As Q(x) = 0 for all x ∈ {0 < α < 2} and ∫ × y <1 y ν(x, dy) = b(x) for all x ∈ {0 < α ≤ 1} (see Lemma A.3 in the appendix), we can write Lf in a closed form as

Lf (x) = b(x) ⋅ g(x) + 1 2 tr (Q(x)h(x)) + × f (x + y) -f (x) -g(x) ⋅ y1 (0,1) ( y ) ν(x, dy).
In order to prove that f is contained in the domain of the generator A and Af = Lf , it suffices to show that Lf ∈ C 0 (R d ), see e. g. [START_REF] Schilling | Brownian Motion. An Introduction to Stochastic Processes[END_REF]Theorem 7.22]. The triangle inequality, Taylor's formula and conditions (C1)-(C3) imply that there exists a constant

C > 0 such that f (x + y) -f (x) -g(x) ⋅ y ≤ C y α(x) for all x, y ∈ R d , y ≤ 1. ( 32 
) Fix a cut-off function χ ∈ C ∞ c (R d ) such that χ ≥ 0, supp χ ⊆ B(0, 1) and ∫ R d χ(x) dx = 1. If we set χ ε (x) ∶= ε -1 χ(ε -1 x), then the convolutions f n ∶= χ 1 n * f , g n ∶= χ 1 n * g and h n ∶= χ 1 n * h are C 2 0 (R d )-functions and f n -f ∞ + g n -g ∞ + h n -h ∞ n→∞ → 0.
We are going to show that

∆ n (x, y) ∶= (f n -f )(x + y) -(f n -f )(x) -(g n -g)(x) ⋅ y
satisfies an estimate similar to [START_REF] Ross | Fractional integration operators of variable order in Hölder spaces H λ(x)[END_REF]. By the very definition of the convolution, we have

∆ n (x, y) = (f (x + y + z) -f (x + y))χ 1 n (z) dz -(f (x + z) -f (x))χ 1 n (z) dz -(g(x + z) -g(x)) ⋅ yχ 1 n (z) dz. Since supp χ 1 n ⊆ B[0, 1 n] and 0 ≤ χ ≤ 1, ∆ n (x, y) ≤ 2 sup r-s ≤n -1 f (r) -f (s) + sup r-s ≤n -1 g(r) -g(s) .
On the other hand, we have by [START_REF] Ross | Fractional integration operators of variable order in Hölder spaces H λ(x)[END_REF] ∆ n (x, y) ≤ 2C sup

x-z ≤n -1 y α(z) B(0,1)

χ(z) dz = 2C y α(x) sup x-z ≤n -1 y α(z)-α(x) .
As α is uniformly continuous, we can choose N ∈ N sufficiently large such that

α(x) -α(z) ≤ ε 2 for all x ∈ R, z ∈ B(x, N -1
).

Combining both estimates, we find ∆ n (x, y) y α(x)-ε = 0.

∆ n (x, y) y α(x)-ε ≤ min ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 2 sup r-s ≤n -1 f (r) -f (s) + sup r-s ≤n -1 g(r) -g(s) y α(x)-ε , 2C sup x-z ≤n -1 y ε+(α(z)-α(x)) ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ ≤ min 2 sup r-s ≤n -1 f (r) -f (s) + sup r-s ≤n -1 g(r) -g(s) y 2 , 2C y ε 2 for all x ∈ R d , 0 < y ≤ 1 and n ≥ N . As f ∈ C 0 (R d ) and g ∈ C 0 (R d )
In particular, there exist constants C n > 0 such that C n → 0 as n → ∞ and

(f n -f )(x + y) -(f n -f )(x) -(g n -g)(x) ⋅ y ≤ C n y α(x)-ε for all x, y ∈ R d , y ≤ 1. If we set Lf n (x) ∶= b(x)g n (x) + 1 2 tr (Q(x)h n (x)) + × f n (x + y) -f n (x) -g n (x) ⋅ y1 (0,1) ( y ) ν(x, dy), then Lf n (x) -Lf (x) ≤ b ∞ g n -g ∞ + Q ∞ h n -h ∞ + C n × y ≤1 y α(x)-ε ν(x, dy) + 2 f n -f ∞ sup x∈R d y >1 ν(x, dy).
This expression converges to zero uniformly in x since (X t ) t≥0 has bounded coefficients. As Lf n ∈ C 0 (R d ) for large n ∈ N, see Lemma 5.1 below, we conclude that Lf ∈ C 0 (R d ).

For the proof of Theorem 3.5 we need the following auxiliary statement.

Lemma 5.1. Lf n defined in the proof of Theorem 3.5 is a C 0 (R d )-function for sufficiently large n ∈ N.

Proof. The mapping x ↦ Q(x) is, by assumption, continuous and bounded. As

h n ∈ C 2 0 (R d ), this implies that tr(Q(•) ⊺ h n (•)) ∈ C 0 (R d ). Consequently, it is enough to show that Lf n (x) ∶= b(x) ⋅ g n (x) + × f n (x + y) -f n (x) -g n (x) ⋅ y1 (0,1) ( y ) ν(x, dy) ∈ C 0 (R d
).

Since C ∞ c (R d ) ⊆ D(A) and (X t ) t≥0 has bounded coefficients, we have C 2 0 (R d ) ⊆ D(A), and therefore

Af n (x) = b(x) ⋅ ∇f n (x) + 1 2 tr Q(x)∇ 2 f n (x) + × f n (x + y) -f n (x) -∇f n (x) ⋅ y1 (0,1) ( y ) ν(x, dy) is in C 0 (R d ). Using again the fact that Q ∈ C b (R d ) and ∇ 2 f n ∈ C 0 (R d ), we get Ãf n (x) ∶= b(x)⋅∇f n (x)+ × f n (x + y) -f n (x) -∇f n (x) ⋅ y1 (0,1) ( y ) ν(x, dy) ∈ C 0 (R d ).
Let x ∈ R d . We distinguish between two cases.

0 < α(x) ≤ 1 + ε 2: Using our assumption β x ∞ + ε ≤ α(x), we find β x ∞ < 1 which implies, by Lemma A.3, b(x) -∫ y <1 y ν(x, dy) = 0. Thus, Ãf n (x) = Lf n (x). 1 + ε 2 < α(x): Since α is uniformly continuous, we can choose n ∈ N (not depending on x) so large that α(x) -α(z) ≤ ε 4 for all z ∈ B[x, n -1 ]. Then α(z) > 1 + ε 4 for all z ∈ B(x, n -1 ) and, therefore, f B(x,n -1 ) is differentiable. As supp χ 1 n ⊆ B[0, 1 n], this implies ∇f n (x) = g n (x). Hence, Lf n (x) = Ãf n (x).

Consequently, we have Lf

n = Ãf n ∈ C 0 (R d ) for n ∈ N sufficiently large.
Corollary 5.2. Let (X t ) t≥0 be a rich Lévy-type process with symbol q, q(x, 0) = 0 and characteristics (b, 0, ν). Suppose that q has bounded coefficients and b(x) = ∫ × y <1 y ν(x, dy) for all x ∈ R d . Let ε > 0 and α ∶ R d → [ε, 1] be uniformly continuous such that

sup x∈R d × y ≤1 y α(x)-ε ν(x, dy) < ∞.
If either the sector condition (16) holds or β x ∞ ≤ α(x) -ε for all x ∈ R d , then the Hölder space of variable order

C α(⋅) 0 ∶= ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ f ∈ C 0 (R d ); sup x∈R d sup 0< y ≤1 f (x + y) -f (x) y α(x) < ∞ ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭
is contained in the domain of the generator A and

Af (x) = × (f (x + y) -f (x)) ν(x, dy) for all x ∈ R d , f ∈ C α(⋅) 0 .
Proof. Under the assumptions of Corollary 5.2, we know from the remark following Theorem 3.5 that β x ∞ ≤ α(x) -ε for all x ∈ R d . Moreover, α(x) ∈ [0, 1] for all x ∈ R d and, by assumption, condition (C1) is satisfied for all x ∈ R d . Consequently, the assumptions of Theorem 3.5 are satisfied, and so Theorem 3.5 proves the assertion.

Let us mention that among the first to consider Hölder spaces of variable order were Ross & Samko [START_REF] Ross | Fractional integration operators of variable order in Hölder spaces H λ(x)[END_REF] who study fractional integrals of variable order. In [START_REF] Almeida | Besov spaces with variable smoothness and integrability[END_REF] Hölder spaces of variable order are shown to be particular cases of Besov spaces with variable smoothness and integrability; see Andersson [START_REF] Andersson | Characterization of Pointwise Hölder regularity[END_REF] for further characterizations.

Corollary 5.3. Let (X t ) t≥0 be a rich Lévy-type process with bounded coefficients and with symbol q and characteristics (b, 0, ν). Let ε > 0 be a constant and α ∶ R d → (ε, 2] be a uniformly continuous mapping. Suppose that either the sector condition [START_REF] Chen | Heat kernel estimates for stable-like processes on d-sets Stochastic Processes and their[END_REF] Example 5.4 (Stable-like dominated process). Let (X t ) t≥0 be a rich Lévy-type process with symbol q and characteristics (b, 0, ν). Denote by (A, D(A)) the generator of (X t ) t≥0 . Suppose that (X t ) t≥0 has bounded coefficients and that there exist a constant c > 0 and a mapping γ ∶ R d → (0, 2) such that inf x∈R d γ(x) > 0 and ν(x, A ∩ B(0, 1)) ≤ c A∩B(0,1) dy y d+γ(x) for all A ∈ B(R d ∖ {0}), x ∈ R d .

Let α ∶ R d → (0, 2) be a uniformly continuous mapping such that inf x∈R d (α(x)-γ(x)) > 0, and suppose that either the sector condition ( 16) is satisfied or inf x∈R d (α(x) -β x ∞ ) > 0. Example 5.5. Let (X t ) t≥0 be a rich Lévy-type process with one of the following symbols.

• stable-like: q(x, ξ) = ξ γ(x) where γ ∶ R d → (0, 2) is a Hölder continuous mapping such that inf x∈R d γ(x) > 0.

• relativistic stable-like: q(x, ξ) = ( ξ 2 +m(x) 2 ) γ(x) 2 -m(x) γ(x) for Hölder continuous mappings γ ∶ R d → (0, 2) and m ∶ R d → (0, ∞) such that • TLP-like:1 q(x, ξ) = ( ξ 2 +m(x) 2 ) γ(x) 2 cos γ(x) arctan ξ m(x) -m(x) γ(x) for Hölder continuous mappings γ ∶ R d → (0, 1) and m ∶ R d → (0, ∞) such that 0 < inf Example 5.5 is a direct consequence of Theorem 3.5 and Remark 3.7(ii) since all symbols satisfy the sector condition [START_REF] Chen | Heat kernel estimates for stable-like processes on d-sets Stochastic Processes and their[END_REF] and growth condition [START_REF] Courrège | Sur la forme intégro-différentielle des opérateurs de C ∞ k dans C satisfaisant au principle du maximum, In: Séminaire Brelot-Choquet-Deny. Théorie du potentiel[END_REF] with δ = 0. Note that the existence of (rich) Lévy-type processes with the symbols mentioned in Example 5.5 has been established in [START_REF] Kühn | Probability and Heat Kernel Estimates for Lévy(-Type) Processes[END_REF] recently, see also [START_REF] Kühn | Lévy-Type Processes: Moments, Construction and Heat Kernel Estimates[END_REF]. Obviously, Example 5.5 applies, in particular, in the Lévy case, i. e. if the maps γ(•) and m(•) are constants.

We close this section with the following example.

d j=1 x j y

  j and the Borel σ-algebra B(R d ) generated by the open balls B(x, r) ∶= {y ∈ R d ; yx < r} and closed balls B[x, r] ∶= {y ∈ R d ; yx ≤ r}. We write supp f for the support of a function

  see Section 2 for the definition. In dimension d = 1 this follows by combining two results from interpolation theory [40, Theorem 1(a), p. 201; Theorem (d), p. 101] with the fact that the domain of the generator of one-dimensional Brownian motion equals C 2 0

  y (N (dy, ds) -µ(dy, ds)) X

  s ) ds + X C t + t 0 0< y <1y (N (dy, ds) -µ(dy, ds))

  is satisfied or α(x) -ε ≥ β x ∞ for all x ∈ R d . If sup x∈R d × y ≤1y α(x)-ε ν(x, dy) < ∞, then the spaceC 1,(α(⋅)-1) + 0 ∶= f ∈ C 1 0 (R d ); ∀j = 1, . . . , d ∶ ∂ j f ∈ C max{α(⋅)-1,0} 0is contained in the domain of the generator A, and for all x ∈ R d and f ∈ C1,(α(⋅)-1) + 0 Af (x) = b(x) ⋅ ∇f (x) + × f (x + y) -f (x) -∇f (x) ⋅ y1 (0,1) ( y ) ν(x, dy). Proof. As C 1,(α(⋅)-1) + 0 ⊆ C 1 0 (R d ),we may assume without loss of generality that α(x) ≥ 1 for all x ∈ R d ; otherwise we could replace α by max{α, 1}. As in the proof of Corollary 5.2, we findβ x ∞ + ε ≤ α(x) for all x ∈ R d . It remains to check that f ∈ C 1,α(⋅)-1 0satisfies the assumptions of Theorem 3.5. If x ∈ R d is such that α(x) = 1 it is obvious from the mean value theorem that (C1) is satisfied. Now let x ∈ {1 < α < 2}. Applying the mean value theorem to the auxiliary function h(y) ∶= f (x + y) -f (x) -∇f (x) ⋅ y shows f (x + y) -f (x) -∇f (x) ⋅ y ≤ y sup ζ∈B(0, y ) ∇f (x + ζ) -∇f (x) ≤ C y ⋅ y α(x)-1 = C y α(x)for all x, y ∈ R d , y ≤ 1 and some absolute constant C > 0; here we use that∂ j f ∈ C α(⋅)-1 0for all j ∈ {1, . . . , d}. This shows that condition (C2) holds true.We close this section with some examples. Recall the definition of the Hölder spaces of variable order C α(⋅) 0 and C 1,(α(⋅)-1) + 0 introduced in Corollary 5.2 and Corollary 5.3, respectively.

⊆

  (i). If α(R d ) ⊆ [0, 1] and b(x) = ∫ × y <1 y ν(x, dy) for all x ∈ R d , then C α(⋅) 0 ⊆ D(A) and Af (x) = × (f (x + y) -f (x)) ν(x, dy), x ∈ R d , f ∈ C D(A) and Af (x) = b(x) ⋅ ∇f (x) + × f (x + y) -f (x) -∇f (x) ⋅ y1 (0,1) ( y ) ν(x, dy)for all f ∈ C 1,(α(⋅)-1) + 0 and x ∈ R d .

  inf x∈R d γ(x) > 0 and 0 < inf x∈R d m(x) ≤ sup x∈R d m(x) < ∞.

•

  Lamperti stable-like: q(x, ξ) = ( ξ 2 +m(x)) γ(x) -(m(x)) γ(x) -(z) γ ∶= Γ(z +γ) Γ(z) denotes the Pochhammer symbol -for Hölder continuous mappings γ ∶ R d → (0, 1) andm ∶ R d → (0, ∞) such that 0 < inf x∈R d γ(x) ≤ sup x∈R d γ(x) < 1 and 0 < inf x∈R d m(x) ≤ sup x∈R d m(x) < ∞. Let α ∶ R d → [0,2] be a uniformly continuous mapping such that inf x∈R d (α(x)-γ(x)) > 0. Then:(i). C 1,(α(⋅)-1) + 0 ⊆ D(A) and Af (x) = ∫ × f (x + y) -f (x) -∇f (x) ⋅ y1 (0,1) ( y ) ν(x, dy) for any f ∈ C 1,(α(⋅)-1) + 0where (0, 0, ν) denotes the characteristics of the symbol q.(ii). If α(R d ) ⊆ [0, 1], then C α(⋅) 0 ⊆ D(A) and Af (x) = ∫ × (f (x + y) -f (x)) ν(x, dy) for any f ∈ C α(⋅) 0 .

TLP is short for "truncated Lévy process".

Example 5.6 (Lévy-driven SDE). Let (L t ) t≥0 be a k-dimensional Lévy process with Lévy triplet (0, 0, ν) and characteristic exponent ψ. Suppose that the Lévy measure ν is symmetric and that there exists an α ∈ (0, 2) such that ∫ × y ≤1 y α ν(dy) < ∞. For any bounded (globally) Lipschitz continuous function σ ∶ R d → R d×k the solution to the SDE dX t = σ(X t-) dL t , X 0 = x, is a rich Lévy-type process with symbol q(x, ξ) = ψ(σ(x) ⊺ ξ), x, ξ ∈ R d . Moreover:, (i). If α ∈ (0, 1), then the Hölder space C β 0 is contained in the domain of the generator A of (X t ) t≥0 for any β ∈ (α, 1] and

is contained in the domain of the generator A of (X t ) t≥0 for any β ∈ (α, 2] and

Proof. It is well known that the solution (X t ) t≥0 to the SDE is a rich Lévy-type process with symbol q(x, ξ) = ψ(σ(x) ⊺ ξ), cf. Schilling & Schnurr [START_REF] Schilling | The Symbol Associated with the Solution of a Stochastic Differential Equation[END_REF]Corollary 3.7] or Kühn [START_REF] Kühn | Solutions of Lévy-driven SDEs with unbounded coefficients as Feller processes[END_REF]Example 4.1]. Since the Lévy measure ν is symmetric, both ψ and q are real-valued; in particular, q satisfies the sector condition. Moreover, the characteristics of q are given by (0, 0, ν(x, dy)) where

therefore, the boundedness of σ gives sup

Now the assertion follows from Corollary 5.2 and Corollary 5.3.
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A. Appendix

We frequently use Dynkin's formula which can be seen as a probabilistic counterpart of the fundamental theorem of calculus, see e. g. [START_REF] Jacob | Pseudo Differential Operators and Markov Processes I, II, III[END_REF]Lemma I.4.1.14] or [START_REF] Schilling | Brownian Motion. An Introduction to Stochastic Processes[END_REF]Proposition 7.31].

Lemma A.1 (Dynkin's formula). Let (X t ) t≥0 be a Lévy-type process with infinitesimal generator (A, D(A)), and let

Recall that a function ψ ∶ R d → C with ψ(0) = 0 is continuous negative definite, if it admits a Lévy-Khintchine representation of the form [START_REF] Bochner | Diffusion Equation and Stochastic Processes[END_REF]. A continuous negative definite function ψ satisfies the sector condition if there exists a constant C > 0 such that

The following lemma is used in the proof of Theorem 4.4.

Lemma A.2. Let ψ be a continuous negative definite function with triplet (b, 0, ν), and let α ∈ (0, 2). The following statements are equivalent:

If ψ satisfies the sector condition, then we may replace Re ψ by ψ .

Proof. Obviously, it suffices to prove the first assertion. We prove (i) ⇒ (ii) ⇒ (iii) ⇒ (i).

(i) ⇒ (ii): Since 1 -cos(y ⋅ ξ) ≤ 1 2 yξ 2 for all y, ξ ∈ R d , we have

An application of Tonelli's theorem shows

and

In the last step we use the identity

which holds for any σ-finite measure µ on (R d ∖ {0}, B(R d ∖ {0})) and any non-negative measurable function f . This proves (ii).

The implication (ii) ⇒ (iii) follows easily by introducing spherical coordinates and using the obvious estimate

It remains to prove that (iii) implies (i). To this end, we note that

(1 -cos(y ⋅ ξ))

which completes the proof.

For a continuous negative definite function ψ the Blumenthal-Getoor index at ∞ can be defined by

Schilling [START_REF] Schilling | Growth and Hölder conditions for the sample paths of Feller processes[END_REF] or Blumenthal & Getoor [START_REF] Blumenthal | Sample functions of stochastic processes with stationary independent increments[END_REF]. The following auxiliary statement is needed in the proof of Theorem 3.5.

Lemma A.3. Let ψ be a continuous negative definite function,

and denote by β ∞ ∈ [0, 2] the Blumenthal-Getoor index at ∞.

Proof. (i) Since ξ -2 1 -cos(y ⋅ ξ) ≤ min{2, y 2 } for all ξ ≥ 1, an application of the dominated convergence theorem shows lim

)), we may assume, without loss of generality, that supp ν ⊆ B[0, 1]. For any γ ∈ (0, 1) there exists some c γ > 0 such that

As supp ν ⊆ B[0, 1], it follows easily from Taylor's formula that Re ψ(z) ≤ C ′ z 2 for some absolute constant C ′ > 0. On the other hand, by assumption, Re ψ(z) ≤ C z β for some β ∈ (β ∞ , 1). Consequently, we find ∫ × y γ ν(dy) < ∞ for all γ > β. This implies, in particular, that ψ 0 (ξ) ∶= × 1 -e iy⋅ξ ν(dy), ξ ∈ R d , is well-defined. Using Markov's inequality and the elementary estimate sin x ≤ x , we find for all γ ∈ (β, 1)

Im ψ 0 (ξ) ≤ × Dividing both sides by ξ γ and letting ξ → ∞ proves the assertion.