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Abstract

The present contribution is dedicated to a coupling method mixing finite and dis-

crete elements to simulate thermally induced stresses and local damage in com-

posites. Investigations are focused on ceramic-metal materials which are charac-

terized by a strong difference of properties and a coefficient of thermal expansion

mismatch. Typically, thermal residual stresses are induced at the interface dur-

ing a cooling process which can lead to dramatic effects on the local integrity of

the joint. Some discrete approaches as the lattice beam model enable to simulate

such effects but in somes cases lead to prohibitive calculation costs which affect

their relevance. As a result, a coupling method taking benefit of both continuous

and discrete approaches with a lower computational cost is of great interest. In

this work, we investigate the DEM-FEM coupling approach based on a domain

decomposition with overlapping area which has already proved its flexibility and

its reliability in a large context. However, be aware that what is commonly called

DEM-FEM coupling is in fact a beam lattice-FEM coupling approach in which

the lattice network is generated using the contact network of a granular assem-
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bly. Preliminary studies are first carried out to verify the ability of the coupling

method to take into account the thermal expansion in homogeneous medium. In a

second step, tests are performed in the framework of ceramic-metal fiber compos-

ites and compared to FE simulations in terms of stress and strain fields. Interfacial

debonding effects are also studied. Finally, a classical ceramic-metal joint issue

with local damage is simulated. In each case, results exhibit the relevance of the

present approach to take into account thermal expansion and damage with a suit-

able accuracy. They also show a significant computation time decrease compared

to FEM and DEM.

Keywords: DEM-FEM coupling method, Domain decomposition, Thermal

expansion, Stress field, Damage

1. Introduction

Composite materials are more and more used in many industrial sectors and a

large range of applications. Thus, fibre-reinforced composite materials character-

ized by an excellent stiffness-to-weight ratio are particularly popular in the field

of high-performance products able to resist to hard conditions such as aerospace

components, sport accessories, automobile engine devices, solar panel substrates

or even surgical instruments. Sandwich materials are more specifically consid-

ered in airplane structures for thermal insulation and the dampening of vibration

and noise, and woven ones have the benefit to be easily molded in complex shapes

which make them good candidates for applications as, for example, a piece of pro-

peller blades, auto bodies or drive shaft. However, independently of current en-

virommental and cost issues, joining two materials with different properties with

a high integrity remains a real challenge. Thus, in the field of ceramic-metal ma-
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terials, the reliability of the joint greatly depends on the nature of the interface

bond and the Coefficient of Thermal Expansion (CTE) mismatch. In fact, thermal

residual stresses are induced in the joint during the cooling process due to CTE

mismatch and the difference of properties between metal and ceramics. These can

dramatically reduce the joint strength and lead to local damage. Therefore, a great

effort is required to propose new processes as well as numerical methods to better

predict and control the potential implications of such interfacial issues in terms of

integrity and lifecycle of composites.

In the last decades, numerous analytical and numerical tools have been devel-

oped to predict the multi-scale and multi-physics behavior of composite materi-

als. Thus, Hashin-Shtrikman bounds [1], the Mori-Tanaka model [2] and other

formulations based on probabilistic quantities [3] provide estimates of macro-

scopic properties such as mechanical and thermal ones as a function of a set of

microstructural parameters. Numerical approaches such as the Finite Element

Method (FEM) and the Fast Fourier Transform (FFT) based method [4] are of-

ten preferred when composites exhibit an intricated microstructure with a given

level of entanglement. However, this class of materials is prone to several com-

plex phenomena among others the local damage, the interfacial debonding and

variability effects which are not easily taken in account in classical simulations.

Similar to peridynamics [5], the Discrete Element Method (DEM) is more suited

to characterize the multi-scale behavior of materials in which discontinuities and

cracks arise under dynamic loadings. DEM was initially used in the field of rock

mechanics [6] and later applied to a large scope of problems such as the wear

mechanism [7], the subsurface damage from polishing [8], the silo discharge [9]
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and the electromechanical modeling of ball bearing[10]. Cohesive bond models

have also been developed to model continuous media and reproduce their me-

chanical [11, 12] and thermal [13, 14] properties using DEM, and applied to the

context of heterogeneous media [15, 16]. Typically, cohesion is introduced at the

scale of the elementary contact using a classical spring element but recent works

[17, 18] take benefit of a cohesive beam model based on Euler-Bernoulli theory.

This proved to be relevant to simulate the constitutive behavior of materials and

model complex crack patterns with bifurcating and branching [19, 20, 21]. More

recently, models have also been developed to consider the interfacial debonding

[20, 21], non-linear effects [22] and the thermo-elastic coupling [23, 24, 25, 26].

However, in spite of new developments in terms of parallel implementation, such

an approach remains poorly efficient when massive dynamic calculations are re-

quired. As a result, a great effort has been made in the last fifteen years to set up

efficient coupling methods able to take into account very thin information at the

microscopic scale with a lower computational cost [27, 28, 29]. The DEM-FEM

coupling method used by Frangin et al. [27] and Rousseau et al. [30] is based on

a domain decomposition with overlapping area and has the great advantage to be

very flexible and benefit of a suitable background literature.

In the present contribution, we aim at investigating the ability of the DEM-FEM

coupling method used by Frangin et al. [27] and Rousseau et al. [30] to simulate

the thermal-induced damage in material composites. First of all, one must keep in

mind that it enables to couple a continuous model to a granular system bonded by

beam or spring elements and not directly to the DEM but the terminology ”DEM-

FEM” is nevertheless commonly used and will be preferred in what follows. Be-
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sides, and for the same reason, the terminology ”DEM” will refer to the cohesive

beam based approach. This work is mainly motivated by the need to understand

the limits and advantages of the coupling method in light of recent developments

in DEM, especially those related to the simulation of thermo-mechanical behav-

ior of composite materials and their damage. Typically, in a coupled discrete-

continuous method, local areas where discontinuities and moderate cracks could

occur are modeled using a set of Discrete Element (DE) and the homogeneous ar-

eas are modeled by Finite Elements (FE). Please notice that such a paradigm is not

well-suited to model severe cracking since it requires large DE areas which dra-

matically affect the computational cost and prevent the method to fulfill its original

efficiency purpose compared to full DE calculations. Discrete areas are modeled

using the cohesive beam model which enables to simulate an effective medium

[18] and its thermo-mechanical behavior [26] using a network of cohesive bonds

described by Euler-Bernoulli beam elements. In this approach, a natural network

of links is first extracted from a granular packing, then improved by a specific

Delaunay triangulation process and replaced by a network of cohesive beam ele-

ments. A specific calibration process finally relates the effective mechanical prop-

erties to local coefficients associated to each cohesive bond. The thermo-elastic

coupling is also introduced using a model of thermal expansion based on the di-

latation of each beam element at the scale of the elementary contact [25, 26]. This

enables to simulate local damage due to CTE mismatch using specific tools. Thus,

cracks initiation and propagation are modeled by the Removed Discrete Element

Failure (RDEF) criterion [31], and the interfacial debonding is modeled by the

Discrete Damage Zone Model (DDZM) [32]. Figure 1 illustrates the main steps

of the DEM-FEM coupling method to simulate the thermal-induced damage in
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material composites. After the introduction, part 2 describes the cohesive beam

model and different numerical tools enabling to simulate the thermo-elastic be-

havior of composite materials and their damage. Part 3 is dedicated to validation

tests of the DEM-FEM coupling method in homogeneous medium without and

with thermal expansion. The next part aims at investigating the ability of the cou-

pling method to simulate the damage induced by CTE mismatch in the context

of fiber-composites. The last part focuses on a application to a current issue in

ceramic-metal joint.

Figure 1: DEM-FEM coupling method to simulate the thermal-induced damage in material com-

posites

2. Cohesive beam model

The present section describes the cohesive beam model based approach and sev-

eral numerical tools introduced in previous works to simulate the thermo-mechanical

behavior of materials. The basic idea is to reproduce a continuous medium using

a granular packing composed of disks in contact. For that purpose, each contact is

replaced by a cohesive beam element and the obtained lattice structure is associ-

ated to the discrete medium. Thus, we obtain a kind of hydrid model in which the
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lattice structure enables to reproduce the effective behavior of the material and the

discrete system gives the possibility to handle complex phenomena as damaging

and contact.

2.1. Equivalent domain

The first step consists in generating an equivalent domain. Typically, we consider

a granular system composed of disks in 2D or spheres in 3D which is generated

under several assumptions of compacity, size, and arrangement of particles. In

fact, previous works [17, 33] exhibited the great sensitivity of the macroscopic

response to previous parameters. Besides, the representativity of our equivalent

system strongly depends on the isotropy of the granular system which, to our

knowledge, can only be ensured using random systems. That is why, our choice is

to generate granular packings with the help of the efficient Lubachevsky-Stillinger

Algorithm (LSA) [34] which enables an accurate control of the compacity and

other parameters such as the size of particles and the coordination number. Thus,

we can meet the assumptions of Random Close Packing (RCP) [35] the associated

volumetric ratio of which is close to 85% for 2D systems. The suitable density

of particles depends on the heterogeneity of the system and is a priori difficult to

estimate. However, recent works [21, 26] showed that a minimum of about 5000

to 7000 particles is required to model a homogeneous square pattern indepen-

dently of its dimensions. It corresponds to a criterion of about 70 to 80 particles

along the side, which will serve as a basis for present studies. The isotropy of

the granular system is closely related to particles arrangement which requires pre-

liminary studies. Thus, a small size polydispersity is introduced in order to avoid

undesirable directional effects. Typically, the particle’s radius follows a Gaussian

distribution law and the dispersion is described by a coefficient of variation set to
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0.3 which remains small enough to not influence the results. A great care is also

taken in the determination and the control of the coordination number Z which is

the average number of particles in contact with a given one. This depends on a

sensitivity parameter ε which enables to control the range of interaction between

particles. We assume that bonds arise when the following relation is verified :

di j ≤ Ri + R j + ε (1)

where di j is the center to center interparticle distance between two particles i and

j in contact with radii Ri and R j. Our choice is to adjust ε parameter in order to

set Z to 4.5 which is a typical value for a 2D system. Finally, the randomness of

contact angles between each pair of particles is verified using polar plots and the

2-point probability function as discussed in [36]. Please notice that, in the present

work, the natural lattice structure of each granular system is densified using a

specific Delaunay triangulation and its associated Voronoi tessellation [26]. Such

a process turns out to be very practical since it avoids local flaws in the contact

network and provides at the same time an area of representation to each DE and a

transmission area to each contact. These two last parameters are specifically used

in the thermo-mechanical coupling.

2.2. Elastic behavior

After generating the system, the second step of the present approach consists in

introducing the cohesion at the scale of the elementary contact. Our choice is

to use the beam element based on Euler-Bernoulli theory which yields a suitable

effective medium as verified by several authors in the two last decades [11, 17].
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Figure 2: Cohesive beam model

2.2.1. Beam model

A cohesive beam element the formulation of which is given by Euler-Bernoulli

model [18] is associated to each pair of particles in contact. This is characterized

by a set of geometrical parameters, namely the length Lµ , the cross-section Aµ and

the quadratic moment Iµ which are directly linked to the particles radii, and a local

Young’s modulus Eµ which is a priori not equal to effective Young’s modulus of

the system. For simplification purposes, we consider a quadrangular cross-section

of height h which is defined as a function of particles size and reads :

h = rµ
Ri + R j

2
(2)

where Ri and R j are respectively the radius of particles in contact i and j, and

rµ is a positive coefficient. Thus, all geometrical parameters only depend on rµ

and particles size. However, this latter is directly connected to the global density

of particles which is generally chosen high enough to prevent any effect on the

macroscopic behavior. From a mechanical standpoint, each cohesive link is con-

troled by a vector of three-component generalized forces acting as internal forces
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which are given by the following system :

F j→i
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F j→i
t

M j→i
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ui
n − u j

n

ui
t − u j

t

θi

θ j


(3)

where superscripts n and t refer to the main directions of the local Cartesian co-

ordinates system related to the contact between i and j particles. ui, j
n and ui, j

t are

respectively the normal and tangential displacements associated to i and j parti-

cles. θi and θ j are the components of rotation of particles i and j. Kn and Kt are the

classical normal and tangential stiffnesses. Equations of motion for a given par-

ticle derive from internal cohesive forces and the numerical resolution is carried

out by an explicit time integration which is well-adapted to compute large scale

simulations and take into account complex phenomena with dynamics effects as

damage or impact. A Rayleigh damping can also be added to internal forces in

order to achieve a mechanical steady state. This point will be later discussed.

DE calculations are performed over time which requires to define a suitable time

step ∆t. This is evaluated as function of critical time steps ∆tc
crit related to each

cohesive beam element so that :

∆t =
1
k

min
c∈ζ

(∆tc
crit) (4)

where ζ is the set of contacts in the whole granular packing and k is a security

coefficient chosen close to 2π according to [37].

2.2.2. Microscopic-macroscopic relation

We aim at correlating the macroscopic elastic response to sole microscopic co-

efficients Eµ and rµ. To our knowledge, no correlation exists for the present co-
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hesive beam model. That is why, macroscopic elastic properties EM and νM are

connected to local coefficients Eµ and rµ using calibration curves obtained in our

previous works [21, 26]. From a practical standpoint, a set of data is obtained for a

large scale of configurations using specific quasi-static tests performed on square

representative patterns composed of 7000 DE according to previous investigations

[18, 21]. Results are treated to link local and global coefficients using polynomial

regressions which directly provide the suitable pair of microscopic coefficients for

an expected macroscopic response. Figures 3a and b illustrate the influence of rµ

Figure 3: Microscopic-macroscopic relation (a) case of Poisson’s ratio νM (b) case of dimension-

less Young’s modulus Ed

parameter on νM and the dimensionless Young’s modulus Ed which is defined as

the ratio between EM and Eµ. For the present range of configurations, namely

Eµ ∈[2GPa,1000GPa] and rµ ∈[0.1,0.9], it is interesting to notice that Eµ has no

impact on calibration curves so that the determination of the suitable pair of local

parameters can simply be performed as follows. First, the user evaluates rµ param-

eter using Figure 3a. Then, Figure 3b provides Ed as a function of this same pa-

rameter. Finally, Eµ is calculated from Ed and the expected macroscopic Young’s

modulus EM. However, one has to know that the microscopic-macroscopic rela-
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tion strongly depends on the characteristics of the granular packing, namely the

coordination number Z, the volume fraction of particles φ and the range of interac-

tion between particles ε [33]. As a result, our calibration curves are only valuable

for the configuration described in subsection 2.1 with Z set to 4.5 and φ set to

0.85. Besides, all mechanical configurations can not always be handled using the

cohesive beam model. In fact, Poisson’s ratio νM is limited to 1/3 in the context

of a lattice model based on Delaunay triangulation.

2.3. Model of thermal expansion

The thermo-elastic behavior of the material is described using a model of linear

Figure 4: Thermal expansion of the beam (a) at T = T0 (b) at T = T0+∆T

thermal expansion investigated by several authors [23, 24, 25]. In this approach,

the whole domain is expanded without any additional forces or torques which

means that under a homogeneous temperature field, thermal strains do not gener-

ate stresses for a relaxed homogeneous material . The model consists in modifying

the free length lT=T0
0 of each beam element as a function of the temperature differ-

ence ∆T (Fig. 4) :

lT=T0+∆T
0 = lT=T0

0 (1 + α∆T) (5)

where α is the CTE associated to each beam element which is verified equal to the

CTE of the effective medium [25, 26]. Please notice that an expansion of matter
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is characterized by a positive ∆T, and a shrinkage by a negative ∆T. In the sequel,

all temperature fields will be assumed homogeneous so that heat transfer is not

considered in the present work. However, the interested reader could refer to one

of our previous work on this subject [26].

2.4. Damaging

2.4.1. Stress and strain tensors

Generally, in DEM, cracks are modeled by breaking cohesive bonds using stress

or strain criteria. However, it was proved that such models are irrelevant to simu-

late complex cracks pattern as the Hertzian cone in indentation test [21, 31]. As

a result, we prefer to consider another approach based on the prediction of the

Cauchy stress tensor at the scale of the particle using Zhou’s formulation [38] :

σi =
1

2Ωi

∑
j∈Zi

fi j ⊗ ri j (6)

where σi is the stress tensor associated to a given particle i. Prefix j designates a

DE belonging to Zi the set of particles linked to particle i. fi j is the internal cohe-

sion force vector applied to i by j and ri j is the relative position vector between

particles i and j. Ωi is the area of representation provided by Voronoi tessellation.

In the present contribution, the strain field is not used to predict cracks initiation

and model their propagation. However, this provides interesting information to

detect elastic areas induced by the mismatch of CTE in composite materials. The

strain field is typically determined using a numerical tool called the fabric ten-

sor [39] which is not easy to handle and requires additional calculations. In the

present context, we prefer to consider the expression of the strain field proposed

by Leclerc et al. [26] which takes benefit of a Voronoi tessellation to introduce
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representative areas. Thus, εi the strain tensor associated to a particle i reads :

εi =
1

2Ωi

∑
j∈Zi

Ai jni j ⊗ ∆i j (7)

where ni j is the inter-particle normal vector, ∆i j is the relative displacement be-

tween i and j particles and Ai j is the area of transmission between i and j particles

which is given by the Voronoi mosaic.

2.4.2. Failure criterion

Crack propagation is modeled using the RDEF process introduced by André et

al. [31]. The basic idea is to delete a particle when its equivalent stress tensor

verifies a given failure criterion. Thus, in such an approach, mass conservation

is not verified anymore when cracks initiate but the mass loss is limited to a low

ratio of particles, typically less than 1% , for dense packings. The set of removed

particles can then be seen as a set of ejected debris which do no interact anymore

with the computational domain. In previous works [21, 25, 31], a hydrostatic

stress based criterion was considered as failure criterion. However, even if such

a criterion is suitable to model complex cracks pattern as the Hertzian Cone, this

does not provide any information on the stress plane which does however play a

key role in the brittle fracture mechanism. Besides we remind that, in the present

contribution, we are only interested in failure of fragile materials such as alumina

which have a strong ability to resist in compression and are consequently more

sensitive to tensile solicitations. As a result, we prefer to consider the major main

stress as criterion. Thus, the fracture is assumed to occur when σI
i the major main

stress associated to a given particle i is greater than the Ultimate Tensile Strength

(UTS) of the material :

σI
i > UTS (8)
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2.4.3. Interfacial debonding

In the context of 2-phase materials, the CTE difference between each phase can

be a key factor leading to interfacial debonding according to thermal conditions

(heating or cooling). In the present work, we consider an interfacial model derived

from the Discrete Damage Zone Model (DDZM) introduced by Liu et al. [32] and

discussed by Leclerc et al. in a previous contribution [21]. In this approach, co-

hesive beam elements connecting two particles belonging to two different phases

are replaced by spring elements the normal stiffness of which KΓ
n is defined as a

function of the normal displacement uΓ
n and the normal force FΓ

n as follows :

FΓ
n = KΓ

nuΓ
n (9)

In a first linear regime, when uΓ
n < uΓ,c

n where uΓ,c
n is a critical displacement, KΓ

n is

constant and equal to a given KΓ,0
n stiffness :

KΓ
n

(
uΓ

n < uΓ,c
n

)
= KΓ,0

n (10)

In a second non-linear regime, when uΓ
n ≥ uΓ,c

n , KΓ
n explicitly depends on uΓ

n and

uΓ,c
n according to an exponential decrease so that KΓ

n tends to zero for high dis-

placements :

KΓ
n

(
uΓ

n ≥ uΓ,c
n

)
=

1

exp
(
uΓ

n − uΓ,c
n

uΓ,c
n

)KΓ,0
n (11)

Thus, the normal stiffness KΓ
n only depends on two parameters, namely the linear

stiffness KΓ,0
n and the critical displacement uΓ,c

n which is a priori unknown. How-

ever, this is related to the interfacial stress limit σΓ
lim :

uΓ,c
n =

σΓ
limAΓ

KΓ,0
n

(12)
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where AΓ is a cross-section associated to the spring element which is chosen equal

to this of the corresponding cohesive beam element. From a practical standpoint,

the microscopic stress limit σΓ,c
lim related to a spring element has to be calibrated

to match the expected macroscopic value σΓ
lim. For that purpose, several values of

σΓ,c
lim are preliminary tested until a good agreement is found between the observed

result and σΓ
lim.

3. DEM-FEM coupling method

DEM can be seen as a potential alternative method to continuous approaches.

In fact, this enables to more easily treat discontinuities and singularities than a

classical method as FEM. Besides, this is also well-suited to take into account

complex cracks pattern which occur at very fine scales. However, such an ap-

proach is poorly efficient in terms of computational cost which drastically affects

its suitability to model complex materials which require massive calculations. As

a result, different approaches have been proposed in the literature to couple dis-

crete and continuous domains in order to take advantage of benefits proposed by

a discrete approach without the calculation cost drawback [28, 29, 40, 41]. The

present section focuses on a DEM-FEM coupling method as used by [27], [30]

and [42]. This is based on the decomposition domain method with an overlapping

sub-domain and weighting of energy.

3.1. Description

We consider a domain decomposition method based on a subdivision in three sub-

domains : ΩC is the continuous sub-domain discretized with FE, ΩD is the discrete

domain which is discretized with DE and ΩO is an overlapping area composed of

both FE and DE. Weighting coefficients are introduced inside the overlapping
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Figure 5: DEM-FEM coupling with overlapping domain, and definition of ΩC , ΩD and ΩO sub-

domains

sub-domain in order to avoid an overestimation of the mechanical energy. Thus,

α and β respectively describe continuous and discrete ratio and vary from 0 to 1

inside the overlapping sub-domain and are constant elsewhere. Please notice that

cubic polynomial functions are used to ensure a smooth transition inside ΩO and

α + β = 1. Besides, from a practical standpoint, a small real ε is introduced to

avoid singularities so that α and β ∈ [ε, 1 − ε] with ε = 0.01 [42].

We define the total energy H of the global domain as the weighted sum of energies

associated to each sub-domain :

H(q,u) = αHc(q) + βHd(u) (13)

where Hc is the energy of the continuous sub-domain and Hd is the energy of the

discrete sub-domain. q is the vector of continuous displacements and u is the

vector of discrete displacements. The transition between q and u is ensured inside

the overlapping sub-domain using the following kinematic continuity condition :

u − Dq = 0 (14)

where D is a coupling matrix which depends on the relative position of each DE

within each FE and is only calculated one time. The kinematic continuity condi-
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tion is taken into account using a vector of Lagrange multipliers λ the dimension

of which is the number of DE inside the overlapping sub-domain :

L (q,u, λ) = αHc(q) + βHd(u) + λ.(u − Dq) (15)

Thus, the final problem consists in minimizing the new functional L. One of the

issues encountered when coupling FEM and lattice elements is related to wave re-

flection at the interface of discrete and continuous approaches. This well-known

phenomenon is related to discretization difference between both methods. Typi-

cally, non-physical ”ghost forces” occur and generate spurious reflected waves.

Several authors have explored numerical methods to tackle such a drawback.

Thus, Rousseau et al. [30] proposed some simplifications in the Lagrange method

and Frangin et al. [27] introduced a relaxation parameter to reduce the values of

Lagrange multipliers. More recently, Jebahi et al. [29] used a projection method

in the context of a Constrained Natural Element Method (CNEM)-DEM coupling.

Tu et al. [43] developed a generalized bridging domain method which takes bene-

fit of independent weight functions and compensation forces. Besides, Chen et al.

[44] proposed a novel DEM-FEM coupling approach using ghost particles, and

Tu et al. [45] considered a multiscale separate edge coupling method to analyze

the soil failure process. However, in spite of a great effort in the research commu-

nity, the wave reflection issue is not completely solved at the present time. In this

contribution, we only treat the wave reflection issue by filtering the smallest terms

in the coupling matrix which leads to suitable results.

3.2. Validation tests

Validation tests are set up to exhibit the accuracy of the DEM-FEM coupling

method and determine its ability to take into account thermal expansion. In a
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first step, a numerical tensile test is performed using a 2D flat rectangular plate

at ambient temperature which means that thermal effects are not taken account in

this study. Then, in a second step, we investigate the case of a square domain only

submitted to thermal solicitations during a cooling process.

3.2.1. Tensile test

(a) t=5e−5s (b) t=5e−4s

Figure 6: Comparison of the displacement field between FEM and DEM-FEM coupling method

(a) t=5e−5s (b) t=5e−4s

Figure 7: Comparison of σxx field between FEM and DEM-FEM coupling method

FEM DEM DEM-FEM

A pos. B pos. C pos. A pos. B pos. C pos. A pos. B pos. C pos.

u,t=5e−5s 0 0 1.59e−8 0 0 1.45e−8 0 0 1.47e−8

t=5e−4s 4.24e−7 2.30e−6 4.23e−6 4.08e−7 2.30e−6 4.20e−6 4.21e−7 2.28e−6 4.19e−6

σxx,t=5e−5s 0 0 1.27e4 0 0 1.16e4 0 0 1.16e4

t=5e−4s 2.25e5 2.22e5 2.21e5 2.04e5 2.52e5 2.36e5 2.24e5 2.10e5 2.45e5

Table 1: Displacement (mm) and σxx (Pa) values at A, B and C positions
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We consider a 2D flat rectangular plate of width l=0.23m, length L=1.104m and

thickness e=0.01m. The domain is divided into two parts. The left part is located

between x=0m and x=0.575m and discretized by a regular mesh composed of

2000 triangular FE. The right part is located between x=0.483m and x=1.104m

and modeled by a granular packing composed of 14060 DE. The overlapping sub-

domain is located between x=0.483m and x=0.575m and composed of 2087 DE

and 320 FE. Please notice that the number of particles is chosen so as to ensure a

density of about 70 particles in the width which corresponds to about 5000 DE by

square domain of side the width of the rectangular plate. The number of triangular

elements is obtained under the assumption of one FE for 6 particles which leads

to suitable results according to Haddad et al. [42]. The macroscopic Young’s

modulus EM is set to 53.3 GPa and the Poisson’s ratio νM is set to 0.157. These

values correspond to Eµ= 56 GPa and rµ=0.65 in the DE part. The density of the

continuous model ρM is 2600 kg/m3 and this of the discrete part ρµ is set to 3059

kg/m3 in order to offset the porosity of the granular packing and ensure the mass

equilibrium. A numerical tensile test is set up using the following configuration.

The left edge is clamped and a time-dependent loading is applied to right one.

The strength linearly increases from 0 to 500 N between t=0s and t=5e−4s, and

is set to 500 N for t>5e−4s. Besides, no thermal effect is taken into account and

no damping is considered. The time step is 1e−7s and the total duration is 3.5e−3s

which corresponds to a total of 35000 time steps.

Figures 6a and b show the displacement field obtained using FEM and DEM-

FEM coupling method at (a) t=5e−5s and (b) t=5e−4s respectively. For informa-

tion purposes, FE comparisons are obtained using the same configuration than the
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coupling method except for the mesh which is composed of 3840 triangular el-

ements. From a qualitative standpoint, both displacement fields are very similar

and the transition area exhibits no discontinuity. Numerical results are extracted

from A(0.1m;0.115m), B(0.529m;0.115m) and C(1.004m;0.115m) positions and

compared to full DE calculations performed in the same context using a granular

packing composed of 25000 particles. These quantitative comparisons are given

in Table 1. Results remain in good agreement whatever the method and the posi-

tion with relative differences always less than 9% with respect to FE calculations.

Figures 7a and b illustrate σxx stress field obtained using FEM and DEM-FEM

coupling method at (a) t=5e−5s and (b) t=5e−4s respectively. Please notice that the

stress tensor from which is derived σxx in the DE part is obtained using Zhou’s

formulation [38] as discussed in subsection 2.4.1. As previously seen for the dis-

placement, stress fields are very similar without any discontinuity or singularity

in the overlapping sub-domain. From a quantitative standpoint, stress values ex-

tracted from A, B and C positions show a good agreement between each method

with a relative difference equal to 13% with respect to FE result in the worst case.

Some comparison results of FEM, DEM and DEM-FEM coupling simulations are

given in Figures 8a, b, c in terms of displacement, reaction strength, kinetic energy

and potential energy. The displacement is obtained by averaging the contributions

of each particle or node located to the right side of the plate. The reaction strength

is determined by summing the contributions of the left side and energies are deter-

mined taking into account weighting parameters discussed in subsection 3.1. One

can notice that, except for specific results obtained for a smaller overlapping area,

all results are in good agreement with very low relative differences less than 3%

whatever the method. In the case of the reaction strength, numerical outputs are
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(a) Displacement (b) Reaction strength

(c) Kinetic energy (d) Potential energy

Figure 8: Comparison of FEM, DEM and DEM-FEM coupling simulations

obtained for several dimensions of the overlapping area according to lc parameter

which describes the ratio, expressed in percentage, of the width of the transition

part to the total width of the plate. Three values are considered in our investi-

gations. lc = 8.3% corresponds to the reference case for which the width of the

overlapping sub-domain is 0.092m. lc = 3.1% and lc = 13.5% lead respectively to

a smaller and a larger transition area compared to the reference configuration. This

study exhibits that larger the overlapping area is, more accurate results are. How-

ever, the intermediate value lc = 8.3% turns out to be a good compromise between
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accuracy and efficiency since a too large transition sub-domain leads to prohibitive

calculation costs due to additional elements and particles. To conclude, the scope

of present results highlights the suitability of the present DEM-FEM coupling ap-

proach to model an elastic medium under a dynamic loading. However, one has to

keep in mind that precautions must be taken in the dimensions of the overlapping

area to ensure the accuracy of numerical results.

3.2.2. Thermal expansion problem

The present test is dedicated to the study of the thermal expansion of a homo-

Figure 9: Definition of sub-domains in the DEM-FEM coupling method (case of thermal expan-

sion problem)

geneous medium under a time-dependent homogeneous temperature field. We

focus our investigations on a metallic material represented by a 2D square domain

of side L=0.1 and thickness e=0.01m. As previously seen, the global domain is

divided into three sub-domains. The continuous one corresponds to the square

domain to which a centered disk of radius Ri=0.017m is removed. The discrete

part is a centered disk of radius Ro=0.023m and the overlapping area is located

between each centered disk of radii Ro and Ri respectively. For simplicity and effi-

ciency purposes, the continuous part is discretized using a regular mesh composed
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of 2892 triangular elements which does not strictly fit the circular boundary of the

sub-domain but this has a priori no impact on our calculations as long as the mass

equilibrium is verified. The discrete part is modeled by a granular packing com-

posed of 2500 DE in order to ensure a ratio of about one FE for 5 particles. Thus,

the overlapping area is finally composed of 1043 DE and 208 FE. We consider

a homogeneous material composed of aluminum alloy of macroscopic Young’s

modulus EM=69.1 GPa, Poisson’s ratio νM=0.277 and CTE α=2.25e−5K−1. These

values correspond to Eµ= 186.5 GPa, rµ=0.3 and the same CTE in the DE part.

Mass densities of continuous and discrete models are respectively ρM=2600 kg/m3

and ρµ=3059 kg/m3 in order to offset the porosity of the granular packing. Numer-

ical computations are performed according to the following configuration. Sym-

metric boundary conditions are imposed at left and bottom edges of the square

domain to enable the free expansion of the material. The temperature is varied

over time so that the difference between initial and final temperatures T0 and T is

∆T=T-T0=-10K and leads to a shrinkage of matter. From a practical standpoint,

the temperature linearly decreases from T0 to T between t=0s and t=5e−5s, and

is set to T for t>5e−5s. Besides, the time step is 1e−8s and the total duration is

2.5e−4s which corresponds to a total of 25000 time steps. and no damping is con-

sidered. For information purposes, in the sequel, comparisons are also carried out

with FEM and DEM based on a discretization of 3200 FE and 15000 particles

respectively.

FEM DEM DEM-FEM

A pos. B pos. C pos. A pos. B pos. C pos. A pos. B pos. C pos.

u (mm) 6.02e−6 2.02e−5 3.31e−5 5.76e−6 2.03e−5 3.31e−5 5.99e−6 2.01e−5 3.31e−5

Table 2: Displacement values at A, B and C positions at t=5e−5s
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(a) DEM-FEM coupling results (b) Relative differences between

FEM and DEM-FEM coupling

Figure 10: Investigation of the displacement field at t=5e−5s

Figure 10a illustrates the displacement field obtained using the DEM-FEM cou-

pling method at t=5e−5s. From a qualitative standpoint, results verify that the

farther away from the origin of coordinates (0;0) we are, higher is the displace-

ment. Quantitatively speaking, comparisons are performed with DEM and FEM

using some indicators located at A (15mm; 15mm), B (50mm; 50mm), and C

(85mm; 85mm) positions and given in Table 2. Besides, Figure 10b illustrates

the relative differences with respect to FE calculations. Numerical comparisons

exhibit a quite good agreement between FEM and DEM-FEM coupling with rel-

ative differences less than 1% which highlights the suitability of the DEM-FEM

coupling in the present context. Figures 11a, b, c and d show some comparative

results computed using FEM, DEM and DEM-FEM coupling method in terms of

displacement, induced strength, kinetic energy and potential energy. Please keep

in mind that what we call ”induced strength” has to be distinguished from the re-

action strength. In fact, in DE calculations, if both temperature field and medium

are homogeneous, thermal strains do not generate local stress and the material re-

mains relaxed. Conversely, in a FE approach, the thermal expansion is typically
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described as an additional force applied to each node of the FE mesh. As a re-

sult, the definition of reaction strength is different between both approaches since

FE simulations also include a contribution directly related to thermal expansion

which does not exist in DEM. That is why, for comparison purposes, we only

consider the induced part of the strength as given by DEM, which is theoretically

equal to zero in a static case but exhibits some oscillations in a dynamic context.

This scope of results exhibits that, whatever the method and the mechanical in-

dicator, results are still in good agreement with relative differences less than 5%

with respect to FE references. As a result, we can conclude that DEM-FEM cou-

pling method is able to take into account thermal effects in the present case of a

homogeneous material. The next section will focus on heterogeneous materials

with thermal-induced damage.

4. Thermal-induced damage in fiber composites

The present section is dedicated to the simulation of fiber composites composed

of metallic fibers embedded in an alumina matrix. Investigations are led to exhibit

the ability of the DEM-FEM coupling approach to take into account thermal ex-

pansion effects and predict the thermal-induced damage at the fiber-matrix inter-

face. In the sequel, all material properties which are given in Table 3 are assumed

to be linear elastic.

4.1. Single-fiber composite

4.1.1. Numerical model

In a first step, we consider the case of a single-fiber composite. Numerical sim-

ulations are performed using a 2D square pattern of length L=0.1m in which the
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(a) Displacement (b) Induced strength

(c) Kinetic energy (d) Potential energy

Figure 11: Comparison of FEM, DEM and DEM-FEM coupling simulations (case of thermal

expansion problem)

single fiber is modeled by a disk of radius R f =0.015m as described by Figure 12.

Thus, the area fraction of the single inclusion with respect to global surface is

theoretically 7.07%. Calculations are performed using the DEM-FEM coupling

method and compared to FEM. In the coupling approach, we use the same sub-

domains as previously seen in the context of a homogeneous material (see Figure

9). The discrete domain is represented by a centered disk of radius Ro=0.023m

which encompasses the single-fiber inclusion. The continuous one is delimited by
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Macroscopic properties Discrete properties

EM (Pa) ν ρM (kg/m3) α (/K) Eµ (Pa) rµ ρµ (kg/m3) α (/K)

Alumina 350e9 0.22 3900 7.5e−6 518.5e9 0.5 4588 7.5e−6

Metal 69.5e9 0.28 2600 2.25e−5 186.5e9 0.3 3059 2.25e−5

Table 3: Properties of each phase

the square pattern and an inner circle of radius Ri=0.017m which is higher than R f

so that the continuous part is only constituted of alumina matrix, and lc=100(Ro-

Ri)/L=6%. For information purposes, the granular packing related to DE part is

still composed of 2500 particles and the FE one is still discretized using a regular

mesh composed of 2892 triangular elements. Please notice that, in DEM-FEM

coupling method, the material of each particle is fully determined by the posi-

tion of its center of mass. Thus, a set of 1073 particles is associated to metallic

fiber and a set of 1427 particles is associated to alumina matrix. Preliminary tests

exhibit that the representative area of the set of 1073 DE which is calculated by

summing the contributions of each particle is 7.06% of the total area and conse-

quently in good agreement with the theoretical area fraction of 7.07%. Conversely

to previous studies, a Rayleigh damping is taken into account in our calculations

to reduce dynamic effects which could affect the damage process. For simplicity

purposes, we only handle a Rayleigh damping matrix proportional to the stiffness

matrix in the continuous part and by analogy, proportional to the cohesion matrix

given in Equation 3 in the discrete part. The mass proportional Rayleigh damping

coefficient is set to 2e−6 in both cases. Introducing damping in our calculations

directly affects the time step which is now decreased to 2e−10s. However, one

has to keep in mind that we consider the same time step for continuous and dis-
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crete sub-domains while a multiple time step could have been handled to be more

effective.

4.1.2. Elastic response

Figure 12: Elastic strain field obtained by (a) FEM and (b) DEM-FEM coupling method (case of

single-fiber composite)

Figure 13: Von-Mises stress field obtained by (a) FEM and (b) DEM-FEM coupling method (case

of single-fiber composite)

FEM (3200 el.) FEM (39200 el.) DEM-FEM
A pos. B pos. C pos. max. A pos. B pos. C pos. max. A pos. B pos. C pos. max.

εe -9.17e−5 5.36e−4 7.10e−5 6.16e−4 -8.18e−5 5.34e−4 6.30e−5 7.36e−4 -8.81e−5 5.23e−4 6.71e−5 1.03e−3

σv 3.08e7 3.91e7 3.08e7 7.45e7 3.42e7 4.12e7 3.42e7 9.64e7 3.21e7 4.06e7 3.30e7 1.13e8

Table 4: εe and σv (Pa) values at A, B and C positions and corresponding maxima (case of single-

fiber composite)
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The elastic behavior of the heterogeneous model is investigated using the fol-

lowing configuration. As previously seen in the case of a homogeneous medium,

symmetric boundary conditions are imposed at left and bottom edges of the square

domain to enable the free expansion of the material. No damage or interfacial ef-

fects are taken into account. The temperature field is assumed homogeneous in

space but varied over time. In a first phase, the temperature linearly decreases

from a given initial value T0 to a smaller one T with T=T0-50K between t=0s and

t=1.6e−4s which corresponds to 800,000 time steps and a gradient of -6.25−5K by

time step. In a second phase, the temperature field is maintained constant equal

to T for a total duration of 4e−4s which corresponds to a total of 2,000,000 time

steps. Figures 12a and b illustrate the elastic strain field respectively given by

(a) FEM and (b) DEM-FEM coupling method at t=4e−4s. Please notice that the

present FE results are obtained using a mesh composed of 39,200 regular trian-

gular elements which are about 4 times smaller than in the DEM-FEM coupling

method to ensure a suitable prediction of stress and strain maxima located close to

fiber-matrix interface. Conversely, the coupling method has the great advantage

to handle a low density mesh which makes it computationally efficient in com-

parison with the classical FE method. From a qualitative standpoint, strain fields

are very similar with maximum values located in the fiber inclusion. Some quan-

titative values are extracted from the field at A(0.05m;0.075m), B(0.05m;0.05m)

and C(0.075m;0.05m) positions. These indicators and maximum values are given

in Table 4 and compared to FE results given by a coarse mesh composed of 3200

elements. At A, B and C positions, the comparison exhibits a good agreement

between FEM and DEM-FEM coupling method with relative differences always

less than 12% with respect to FE predictions given by the fine mesh. However,
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maximum values given by FEM are much lower than those given by the coupling

method with relative differences close to 40%. This is explained by disruption ef-

fects in the stress field obtained by Zhou’s formulation in the discrete sub-domain.

In fact, this is only determined at the scale of the particle and could be improved

by taking into account the vicinity of each particle using a specific approach. Fig-

ures 13a and b show the Von-Mises stress field respectively given by (a) FEM and

(b) DEM-FEM coupling method at t=4e−4s. As previously seen in the case of the

elastic strain, fields are very similar with maxima located close to the fiber-matrix

interface. Quantitative indicators at A, B and C positions highlight suitable results

with relative differences less than 10% with respect to FE predictions given by the

fine mesh. However, the maximum value is still overestimated by DEM-FEM cou-

pling approach with a relative difference close to 17%. Figures 14a and b illustrate

some comparative results computed using DEM and DEM-FEM coupling method

in terms of displacement, reaction strength, kinetic energy and potential energy.

All results are in very good agreement with relative differences less than 3%. We

can conclude that FEM and DEM-FEM coupling method are in good agreement

but some local values, especially where strain and stress peaks are noticeable, are

somewhat overestimated in the discrete sub-domain.

4.1.3. Thermal-induced damage

We now introduce interfacial debonding effects in our numerical model. Interfa-

cial properties are given by DDZM model discussed in subsection 2.4. Each bond

associated to the interface, e.g. each bond connecting two particles belonging to

different phases, is modeled by a spring-like element of normal stiffness KΓ,0
n equal

to the geometric average of normal stiffnesses K f
n and Km

n of beam elements re-

spectively associated to the fiber and the matrix. The interfacial stress limit σΓ
lim is
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(a) Displacement and reaction field (b) Kinetic and potential energies

Figure 14: Comparison of FEM and DEM-FEM coupling simulations (case of single-fiber com-

posite)

determined as a function of the stress limit of the matrix σm
lim using a CΓ parameter

which reads as follows :

σΓ
lim = CΓσ

m
lim (16)

In the present study, CΓ is set to 0.5 which means that the fiber-matrix interface is

more prone to break than the matrix when submitted to tensile solicitations. We

consider the same mechanical properties and model as previously studied except

for the thermal loading. The temperature remains homogeneous in space but is

now linearly decreased over time using the same gradient of -6.25−5K by time

step until failure without any temperature threshold. Thus, in such a configuration,

interfacial debonding theoretically occurs due to the mismatch of CTE between

the fiber and the matrix during the cooling process. Figures 15a and b illustrate the

Von-Mises stress field around the fiber inclusion when debonding effects initiate

at t=1.62−4s and when the fiber-matrix interface is fully debonded at t=2.40−4s.

Results exhibit that the debonding occurs shortly after the elastic state discussed
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in the previous study, at t=1.62−4s. Local debonding spots appear around the fiber

and slowly grows until the fiber-matrix interface is fully debonded at t=2.4−4s.

Figure 16 exhibits the evolution of kinetic energy and reaction strength over the

time. Please notice that the debonding initiation at t=1.62−4s is materialized by

a continuous vertical green line. It is interesting to notice that both parameters

are strongly affected by this phenomenon since the kinetic energy tends to zero

before damage and a peak occurs at its initiation. Besides, the reaction strength is

somewhat disrupted by the debonding. In fact, after breaking and a given period

of stabilization, this tends to a linear behavior which signifies that the material is

not fully damaged and the matrix is able to respond to the thermal loading in spite

of the local damage. These results are in good agreement with our expectations

and previous results obtained using full discrete calculations [26]. As a result, we

can conclude that DEM-FEM coupling does not disrupt the damage process in the

present context.

(a) t=1.62−4s, ∆T=-50.6K (b) t=2.40−4s, ∆T=-75.0K

Figure 15: Von-Mises stress field and debonding effects around the fiber inclusion (a) at t=1.6−4s

and (b) at t=2.4−4s.

4.2. Multi-fiber composite
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Figure 16: Kinetic energy and reaction strength

over the time

Figure 17: Representative pattern of the multi-

fiber composite

4.2.1. Numerical model

We consider the case of a multi-fiber composite modeled by the 2D square pat-

tern of side L=0.1m and thickness e=0.01m described in Fig. 17. The numerical

model consists of 15 dilute fibers represented by monodisperse disks of radius

R f =6.35mm so that the total area fraction of fibers is 19.03%. Please notice that

the minimum distance between two given inclusions is equal to 2R f , and the min-

imum distance between a given edge and a given disk is R f . Calculations are car-

ried out using the DEM-FEM coupling method and FEM results are also provided

for comparison purposes. Definitions of discrete, continuous and overlapping sub-

domains are based on the configuration used in the investigation of the single-fiber

composite. A circular discrete area is placed at the center of each inclusion with

Ri=1.15R f and Ro=1.5R f so that each fiber is fully encompassed in the discrete

sub-domain. The continuous sub-domain is delimited by the square pattern and

the set of inner circles associated to each inclusion so that this is only composed of

alumina matrix. A single granular packing composed of 2500 particles is gener-

ated using LSA and replicated to be associated to each discrete area. Thus, the DE
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sub-domain is finally composed of a total of 37500 particles. The FE one is dis-

cretized using a regular mesh composed of 25220 triangular elements. Moreover,

each inclusion is represented by a set of 1073 DE the representation area of which

is 1.268% of the total area. Thus, the global ratio for the set of 15 inclusions is

19.02% which is in good agreement with the theoretical value. Identically to the

previous study, we use symmetric boundary conditions and a Rayleigh damping

is taken into account with a coefficient equal to 6e−7. Material properties are those

given in Table 3 and the time step is set to 1e−10s.

4.2.2. Elastic response

We aim at investigating the elastic behavior of the multi-fiber composite for a

Figure 18: Elastic strain field obtained by (a) FEM and (b) DEM-FEM coupling method (case of

multi-fiber composite)

FEM (64800 el.) DEM-FEM
A pos. B pos. C pos. D pos. max. A pos. B pos. C pos. D pos. max.

εe 5.22e−4 -1.15e−4 -2.61e−5 -1.12e−4 6.72e−4 4.67e−4 -1.05e−4 -2.53e−5 -1.07e−4 9.98e−4

σv 4.82e7 4.89e7 1.11e7 4.46e7 1.05e8 5.00e7 4.70e7 1.11e7 4.13e7 1.36e8

Table 5: εe and σv (Pa) values at A, B and C positions and corresponding maxima (case of multi-

fiber composite)

given thermal loading. For that purpose, we assume that damage and interfacial
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Figure 19: Von-Mises stress field obtained by (a) FEM and (b) DEM-FEM coupling method (case

of multi-fiber composite)

debonding do not occur in the present context. The temperature field remains ho-

mogeneous in space and time-dependent. Thus, in a first phase, the temperature

linearly decreases over time using a gradient of -5.56−9K by time step until a tem-

perature difference of -50K is reached which corresponds to a duration of 9e−4s

and a number of 9,000,000 time steps. In a second phase, we consider constant

temperature conditions for a total duration of 1.8e−3s which corresponds to a total

of 18,000,000 time steps. Figures 18a and b illustrate the elastic strain field ob-

tained at the end of numerical computations at t=1.8e−3s. Results are compared

to predictions given by FEM using a regular mesh composed of 64800 triangular

elements which is about two times denser than the mesh used in the DEM-FEM

coupling method. From a qualitative standpoint, the strain field obtained by the

coupling method is very similar to this obtained by the continuous approach. Nu-

merical values are extracted from A(12.7mm; 86.8mm), B(15.9mm; 49.8mm),

C(62.7mm; 62.1mm) and D(86.8mm; 24.9mm) positions and given in Table 5.

The comparison exhibits a good agreement between both approaches with relative

differences less than 11% with respect to FE assessments. However, as observed

36



in the case of the single inclusion problem, maximum values are overestimated

in the case of the coupling method. Figures 19a and b illustrate the Von-Mises

stress field respectively given by (a) FEM and (b) DEM-FEM coupling method at

t=1.8e−3s. Stress fields are very similar and maximum values are located near the

fiber-matrix interface as previously observed in the context of a single-fiber com-

posite. Numerical predictions given at A, B, C and D positions exhibit the good

agreement between both approaches with relative differences less than 8% with

respect to FE results. Maximum values are again overestimated. Figures 20a and

b provide some comparative results in terms of displacement, reaction strength,

kinetic energy and potential energy. All results are in quite good agreement with

relative differences less than 5%. In terms of calculation time, numerical compu-

tations have been performed using an Intel R© Xeon R© CPU E5-1660 v2 (3.7 GHz)

processor without parallel computing. DEM-FEM coupling based calculations

take about 7 days. For comparison, FE calculations based on the mesh of 64800

triangular elements take about 13 days and we estimate that full discrete simula-

tions necessitate more than 3 weeks. To conclude, this scope of results exhibits the

relevance of the DEM-FEM coupling method in the present context. However, as

regards maximum values, more accurate results could be obtained in the DE part

using the vicinity of the particle in the computation of stress and strain fields.

4.2.3. Thermal-induced damage

Interfacial debonding is now taken into account with a CΓ parameter set to 0.5

so that the fiber-matrix interface is more prone to break than the ceramic matrix.

We consider the same mechanical properties as previously used and a spatially

homogeneous but time-dependent temperature field is applied using a gradient of

-5.56−5K by time step for a total duration of 1.8e−3s. Thus, from a theoretical
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(a) Displacement and reaction field (b) Kinetic and potential energies

Figure 20: Comparison of FEM and DEM-FEM coupling simulations (case of multi-fiber com-

posite)

standpoint, interfacial debonding should occur due to CTE mismatch between the

fiber and the matrix during the cooling process. Figures 21a and b show the Von-

Mises stress field within the multi-fiber composite when debonding effects initiate

at t=7.9−4s and when the fiber-matrix interface is fully debonded at t=8.5−4s. One

can notice that the debonding starts at the upper part of the representative pattern

at the ceramic-metal interface associated to fibers 1, 3, 4, 5 and 10 with respect to

the numbering given in Figure 17. Local debonding spots occur around each fiber

and grow until the complete failure of the fiber-matrix interface. This phenomenon

propagates to neighboring fibers and a kind of domino effect leads to the complete

debonding of the whole set of fibers.

5. Application to a current issue in ceramic-metal joint

5.1. Current issues

Ceramics are widely used in devices in which metal and ceramics have to be

jointed together. Thus, among many other applications, ceramic-metal joints ex-
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(a) t=7.9−4s, ∆T=-43.8K (b) t=8.5−4s, ∆T=-47.2K

Figure 21: Von-Mises stress field and debonding effects within the multi-fiber composite (a) at

t=7.9−4s and (b) at t=8.5−4s.

ist in vacuum tubes, transistor packages and automobile engine components [46].

However, joining ceramic to metal remains a real issue which can be unless par-

tially solved using techniques as the brazing method based on metallic fillers and

the solid-state joining. Two main factors affect the quality of joint, namely the

CTE mismath and the difference of nature of the interface bond. During a cooling

process, CTE mismatch and the difference of mechanical behavior induce thermal

stresses which reduce the strength of the material and could lead to unexpected

damage of the ceramic-metal joint [47]. As a result, understanding the influence

of material properties and other geometrical characteristics on this phenomenon is

of crucial importance. In perfect elastic conditions, residual stresses can be esti-

mated knowing mechanical properties and CTE of each material. Typically, resid-

ual stresses cause plastic deformations in the metallic part and cracks only arise in

the ceramic one. Please notice that the distribution of thermal stresses is not uni-

formly distributed along the ceramic-metal interface. Thus, residual stresses are

more important near the interface and its breadth depends on sample dimensions.

Generally speaking the higher the difference of CTE is the lower the strength of
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the joint is. However, that is not always true since the presence of internal flaws as

voids also induced thermal stresses. Two methods exist to reduce the magnitude

of thermal stresses [48]. The first approach consists in inserting a metallic filler

with a CTE close to ceramic one. The second approach uses a ductile metal prone

to plastic deformations under thermal stresses. Figures 22 illustrate the two main

modes of cracking according to the difference of CTE. In the first case depicted

in Figure 22a, the CTE of the ceramic αc is lower than that of the metal αm. The

ceramic part is subjected to tensile solicitations and cracks initiate at the edges

near the ceramic-metal interface. In the second case depicted in Figure 22b, the

CTE of the ceramic αc is higher than that of the metal αm. Tensile stresses are

applied at the core of the ceramic part and cracks propagate transversally to the

ceramic-metal interface through the ceramic part. Thus, thermal conditions and

properties directly impact on the mode of cracking.

(a) Edge cracks initiation (b) Bulk cracks initiation

Figure 22: Modes of cracking according to the difference of CTE [46, 48]
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Figure 23: Definition of sub-domains in the DEM-FEM coupling method (case of the ceramic-

metal joint problem)

5.2. Numerical simulation

We aim to simulate the case αc < αm described in Figure 22a which is more

suited to the coupling method due to local damage. The ceramic-metal joint is

modeled by a rectangular sample of length L=0.1m and width 2l=0.05m. For

efficiency purposes, we only consider one half of the specimen by imposing sym-

metric boundary conditions at the lower edge of the half-sample. Material prop-

erties are given in Table 3 and interfacial debonding and local damage are taken

into account. Thus, the ultimate tensile stress of ceramic is set to 200 MPa and

CΓ parameter which describes the interfacial strength is set to 2 so that ceramic

is more prone to break than the interface. Figure 23 illustrates the definition of

sub-domains in the DEM-FEM coupling method. A half-circular discrete domain

of radius Ro=0.0168m and center A(0.00m;0.05m) is placed at the upper part of

the specimen where local damage should theoretically occur. The continuous one

is delimited by the rectangular pattern and a half-circle of same center and radius

Ri=0.012m. The granular packing associated to DE part is composed of 4000

particles and the FE Mesh is discretized using 2910 triangular elements. A set

of 1952 particles and 276 triangular elements are located within the overlapping

area which corresponds to a ratio of one triangular element to about 7 particles.
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Calculations are performed using a time step of 3e−10s and a Rayleigh damping

coefficient of 3.6e−7. The temperature field is assumed homogeneous in space and

linearly varied over time using a gradient of -8.33e−6K by time step. The total du-

ration of the numerical test is 5.808e−3s which corresponds to a total of 19,360,000

time steps and a temperature difference ∆T of -161.3K. Figures 24a and b illustrate

the Von-Mises stress field before crack initiation at t=1.82e−3s, and after failure

at t=3.24e−3. Figure 24a shows that maximum stress values are located close to

ceramic-metal interface with a peak located at the upper left hand corner of the

ceramic part. A crack initiates in this area at t=3.18e−3s for a temperature differ-

ence of -50.7K and propagates to the ceramic core as we can observe in Figure

24b. The crack pattern is in quite good agreement with the expectations depicted

in Figure 22a. Figure 25 illustrates the kinetic energy and reaction strength over

the time. Results exhibit that the evolution of the kinetic energy is clearly divided

in two phases. In a first step, before cracking, the kinetic energy slowly tends to a

constant value which is not zero due to linear thermal loading. Then, in a second

step, the system is again excited due to crack initiation and propagation and the ki-

netic energy tends again to the non-zero constant value. The reaction force which

is determined by summing the contributions at the lower edge is barely affected

by the ceramic cracking. To conclude, DEM-FEM coupling method enables to

reproduce a suitable crack pattern in the present context. However, some ques-

tions still require some investigations. First, the interfacial parameter CΓ probably

impacts on the numerical output. Then, criteria based on material and geometrical

parameters would be useful to determine the suitable size of the overlapping area

which has to be optimized to ensure suitable results with a minimum computa-

tional cost. Finally, the stress field given by Zhou’s formulation at the scale of the
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particle is again too disrupted and leads to undesirable local stress peaks which

could affect the cracking.

(a) t=1.82−3s, ∆T=-50.7K (b) t=3.24−3s, ∆T=-90.0K

Figure 24: Von-Mises stress field and damage effects (a) at t=1.82−3s and (b) at t=3.24−3s.

Figure 25: Kinetic energy and reaction strength over the time

Conclusions and prospects

The present work dealt with a DEM-FEM coupling method to simulate the thermal-

induced damage in composite materials. In a first step, validation tests performed

on a homogeneous medium exhibited the ability of the domain decomposition ap-

proach with overlapping area to take into account the thermal expansion. Then,

43



in a second step, the method was applied to the case of ceramic-metal compos-

ites; comparisons with FEM highlighted the accuracy and the efficiency of the

discussed method in such a context. Interfacial debonding was also simulated us-

ing an interfacial model introduced at the ceramic-metal joint. Results showed

suitable debonding effects during a cooling process. Finally, the DEM-FEM cou-

pling method was applied to the framework of ceramic-metal joint issue. Local

damage was introduced using a criterion based on the Cauchy stress tensor esti-

mated at the scale of the particle. Numerical simulations led to a proper stress

field and a realistic crack pattern. However, stress fields are somewhat disrupted

and local peaks could arise at undesirable time and place. We are currently work-

ing on a new approach derived from the specimen method proposed by Haddad

et al. [18] to solve this issue. In a next future, we expect to set up the present

approach in 3D using a parallel implementation of our MULTICOR3D++ code.

We are also developing a method to introduce variability effects in the cohesive

beam model in the framework of VARIATION project funded by the ”région des

Hauts-de-France”.
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