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We consider the problem of maximal regularity for non-autonomous Cauchy problems

The time dependent operators A(t) are associated with (time dependent) sesquilinear forms on a Hilbert space H. We are interested in J.L. Lions's problem concerning maximal regularity of such equations.

We give a positive answer to this problem under minimal regularity assumptions on the forms. Our main assumption is that the forms are piecewise H 1 2 with respect to the variable t. This regularity assumption is optimal and our results are the most general ones on this problem.

Introduction

Let (H, (•, •), • ) be a separable Hilbert space over R or C. We consider another separable Hilbert space V which is densely and continuously embedded into H. We denote by V the (anti-) dual space of V so that

V → d H → d V .
Hence there exists a constant C > 0 such that

u ≤ C u V (u ∈ V),
where • V denotes the norm of V. Similarly,

ψ V ≤ C ψ (ψ ∈ H).
We denote by , the duality V -V and note that ψ, v = (ψ, v) if ψ ∈ H and v ∈ V. We consider a family of sesquilinear forms

a : [0, τ ] × V × V → C.
We assume throughout this paper the following usual properties.

• [H1]: D(a(t)) = V (constant form domain),

• [H2]: |a(t, u, v)| ≤ M u V v V for t ∈ [0, τ ], u, v ∈ V
and some constant M > 0 (uniform boundedness),

• [H3]: Re a(t, u, u) + ν u 2 ≥ δ u 2 V for u ∈ V and some δ > 0 and ν ∈ R (uniform quasi-coercivity).

We denote by A(t), A(t) the usual associated operators with a(t) as operators on H and V , respectively. In particular, A(t) : V → V as a bounded operator and a(t, u, v) = A(t)u, v for all u, v ∈ V.

The operator A(t) is the part of A(t) on H. We consider the non-homogeneous Cauchy problem u (t) + A(t) u(t) = f (t), t ∈ (0, τ ] u(0) = u 0 . (P)

Definition 1.1. The Cauchy problem (P) has maximal L 2 -regularity in H if for every f ∈ L 2 (0, τ ; H), there exists a unique u ∈ H 1 (0, τ ; H) with u(t) ∈ D(A(t)) for a.e. t ∈ [0, τ ] and u is a solution of (P) in the L 2 -sense.

By a very well known result of J.L. Lions, maximal L 2 -regularity always holds in the space V . That is, for every f ∈ L 2 (0, τ ; V ) and u 0 ∈ H there exists a unique u ∈ H 1 (0, τ ; V ) ∩ L 2 (0, τ ; V) which solves the equation

u (t) + A(t) u(t) = f (t), t ∈ (0, τ ] u(0) = u 0 . (P')
In applications one needs however maximal regularity in H (for example for elliptic boundary value problems one has to work on H rather than V in order to identify the boundary conditions). Maximal regularity in H differs considerably from the same property in V . Before we recall known results and explain our main contribution in this paper, we recall that one of the reasons why maximal regularity (both in the autonomous and nonautonomous cases) was intensively studied is due to the fact that it is a very useful tool to prove existence results for non-linear evolution equations.

For symmetric forms a(t), Lions [START_REF] Lions | Équations Différentielles Opérationnelles et Problèmes aux Limites[END_REF] (IV Sec. 6, Théorème 6.1]) proved that if t → a(t, u, v) is C 1 and u 0 = 0, then maximal L 2 -regularity in H is satisfied. For general u 0 ∈ D(A(0)), Lions imposes the stronger regularity property that t → a(t, u, v) is C 2 . Bardos [START_REF] Bardos | A regularity theorem for parabolic equations[END_REF] improves the latter result for forms satisfying the uniform Kato square root property (see Definition 3.4 below) by assuming that A(.) 1 2 is continuously differentiable with values in L(V, V ) and u 0 ∈ V. Ouhabaz and Spina [START_REF] Ouhabaz | Maximal regularity for non-autonomous Schrödinger type equations[END_REF] proved maximal regularity in H if t → a(t, u, v) is C α for some α > 1 2 when u 0 = 0. This result was extended in Haak and Ouhabaz [START_REF] Haak | Maximal regularity for non-autonomous evolution equations[END_REF] who prove maximal L p -regularity under a slightly better regularity condition and allowing u 0 ∈ D(A(0) 1 2 ). Dier [START_REF] Dier | Non-autonomous Cauchy Problems Governed by Forms: Maximal Regularity and Invariance[END_REF] proved maximal L 2 -regularity for symmetric forms such that t → a(t, u, v) is of bounded variations. Fackler [START_REF] Fackler | Lions' problem concerning maximal regularity of equations governed by non-autonomous forms[END_REF] proved that the order α > 1 2 in [START_REF] Ouhabaz | Maximal regularity for non-autonomous Schrödinger type equations[END_REF] or [START_REF] Haak | Maximal regularity for non-autonomous evolution equations[END_REF] is optimal in the sense that there exist a(.) symmetric and C 1 2 for which maximal regularity in H fails. A counter-example already appeared in Dier [START_REF] Dier | Non-autonomous Cauchy Problems Governed by Forms: Maximal Regularity and Invariance[END_REF] and it is based on a form which does not satisfy the Kato square root property. Dier and Zacher [START_REF] Dier | Non-autonomous maximal regularity in Hilbert spaces[END_REF] proved that if t → A(t) is in the fractional Sobolev space H 1 2 +δ (0, τ ; L(V, V )) for some δ > 0 then maximal L 2 -regularity in H holds. For a Banach space version of this result, see Fackler [START_REF] Fackler | Non-Autonomous Maximal L p -Regularity under Fractional Sobolev Regularity in Time[END_REF]. The example in [START_REF] Fackler | Lions' problem concerning maximal regularity of equations governed by non-autonomous forms[END_REF] is not a differential operator. For elliptic operators in divergence form on R n , Auscher and Egert [START_REF] Auscher | On non-autonomous maximal regularity for elliptic operators in divergence form[END_REF] proved maximal regularity if the coefficients satisfy a certain BMO-H 1 2 condition. The example from [START_REF] Fackler | Lions' problem concerning maximal regularity of equations governed by non-autonomous forms[END_REF] also shows that A(.) ∈ W 1 2 ,p (0, τ ; L(V, V )) for p > 2 is not enough to obtain maximal regularity. The example in [START_REF] Dier | Non-autonomous Cauchy Problems Governed by Forms: Maximal Regularity and Invariance[END_REF] shows that A(.) ∈ W 1 2 ,p (0, τ ; L(V, V )) for p < 2 does not imply maximal regularity, at least for form which does not satisfy Kato's square root property. For a discussion on these negative results, see the review paper of Arendt, Dier and Fackler [START_REF] Arendt | Lions' problem on maximal regularity[END_REF]. As pointed in [START_REF] Arendt | Lions' problem on maximal regularity[END_REF], the remaining problem is the case of fractional regularity H 1 2 . We solve this problem in the present paper. Our main result shows that for forms satisfying the uniform Kato square root property and an integrability condition (see

(2.1) below), if t → A(t) is piecewise in the Sobolev space H 1 2 (0, τ ; L(V, V )) then maximal L 2 -regularity in H is satisfied. The initial data u 0 is arbitrary in V.
This result is optimal. The required Soblev regularity cannot be smaller than 1 2 since C

1 2 ⊂ H α for α < 1 2 .
In the case where A(t) -A(s) maps into the dual space of [H, V] γ we allow the fractional Sobolev regularity to be γ 2 . This extends related results in Ouhabaz [START_REF] Ouhabaz | Maximal regularity for non-autonomous evolution equations governed by forms having less regularity[END_REF] and Arendt and Monniaux [START_REF] Arendt | Maximal regularity for non-autonomous Robin boundary conditions[END_REF].

We give the precise statements of the main results in the next section. In Sections 3 and 4 we prove several key estimates and develop the necessary tools for the proofs of the main results. Some of these tools are quadratic estimates and L ∞ (0, τ ; V)-estimates for the solution of the Cauchy problem. The main results are proved in Section 5 and several examples are given in Section 6.

Main results

In this section we state explicitly our main results. For clarity of exposition we consider separately the cases γ = 1, γ ∈ (0, 1) and γ = 0.

We start by recalling the definition of vector-valued fractional Sobolev spaces.

Definition 2.1. Let X be a Banach space, α ∈ (0, [START_REF] Achache | Non-autonomous right and left multiplicative perturbations and maximal regularity[END_REF] and

I an open subset of R. A function f ∈ L 2 (I; X) is in the fractional Sobolev space H α (I; X) if f 2 H α (I;X) := f 2 L 2 (I;X) + I×I f (t) -f (s) 2 X |t -s| 2α+1 dsdt < ∞.
We say that f is in the homogeneous Sobolev space Ḣα (I; X) if

f 2 Ḣα (I;X) := I×I f (t) -f (s) 2 X |t -s| 2α+1 dsdt < ∞.
We shall say that f is piecewise in H α (I; X) (resp. Ḣα (I; X)) if there exists t 0 < t 1 < ... < t n such that I = ∪ i [t i , t i+1 ] and the restriction of f to each sub-interval (t i , t i+1 ) is in H α (t i , t i+1 ; X) (resp. Ḣα (t i , t i+1 ; X)).

Let a(t) : V × V → C for 0 ≤ t ≤ τ be a family of forms satisfying [H1]-[H3] and let A(t) and A(t) be the associated operators on H and V , respectively. We shall need the following property.

Given ε > 0, there exists

τ 0 = 0 < τ 1 < ... < τ n = τ such that sup t∈(τ i-1 ,τ i ) τ i τ i-1 A(t) -A(s) 2 L(V,V ) |t -s| ds < ε. (2.1)
Note that this assumption is satisfied in many cases. Suppose for example that t → a(t, u, v) is C α for some α > 0 in the sense that

|a(t, u, v) -a(s, u, v)| ≤ M |t -s| α u V v V (2.2)
for some positive constant M and all u, v ∈ V. Then clearly

A(t) -A(s) L(V,V ) ≤ M |t -s| α
and this implies (2.1). More generally, if ω i denotes the modulus of continuity of A on the interval (τ i-1 , τ i ) then (2.1) is satisfied if (0, τ ; L(V, V )) and satisfies (2.1) then (P) has maximal L 2 -regularity in H for all u 0 ∈ V. In addition, there exists a positive constant C independent of u 0 and f such that

|r|≤τ i -τ i-1 ω i (r) 2 r dr < ε. ( 2 
A(.)u(.) L 2 (0,τ ;H) + u H 1 (0,τ ;H) ≤ C u 0 V + f L 2 (0,τ ;H) .
(2.4)

We refer to the next section for the definition of the uniform Kato square root property and for few more details on such property.

We have the following corollary which recovers the maximal regularity result proved [START_REF] Dier | Non-autonomous maximal regularity in Hilbert spaces[END_REF] under the assumption that t → A(t) is in H 1 2 +δ (0, τ ; L(V, V )).

Corollary 2.3. Suppose that [H1]-[H3]

and the uniform Kato square property are satisfied. Suppose that t → A(t) is piecewise in H 1 2 +δ (0, τ ; L(V, V )) for some δ > 0. Then (P) has maximal L 2 -regularity in H for all u 0 ∈ V. In addition, there exists a positive constant C independent of u 0 and f such that

A(.)u(.) L 2 (0,τ ;H) + u H 1 (0,τ ;H) ≤ C u 0 V + f L 2 (0,τ ;H) .
(2.5)

Proof. It follows from [START_REF] Simon | Besov and Nikol'skii fractional spaces: imbeddings and comparisons for vector valued spaces on an interval[END_REF], Corollary 26 that H

1 2 +δ (τ i-1 , τ i ; L(V, V )) is con- tinuously embedded into C δ (τ i-1 , τ i ; L(V, V )).
As explained above this implies condition (2.1). We then apply Theorem 2.2.

Let γ ∈ [0, 1] and V γ := [H, V] γ be the usual complex interpolation space between H and V. We denote by V γ := (V γ ) its (anti-) dual. In some situations, one may have A(t) -A(s) : V → V γ for some γ ∈ [0, 1) (see Section 3 for some additional details). For example, this happens for forms a(t) associated with differential operators such that the difference a(t) -a(s) has only terms of smaller order or boundary terms. In this case the required regularity in the previous theorem can be improved. Before we state the results we introduce the following assumption

• [H4]: A(t) -A(s) L(V,V γ ) ≤ M γ
for some positive constant M γ and all t, s ∈ [0, τ ].

Theorem 2.4. Suppose [H1]-[H3] and that D(A(t

0 ) 1 2 ) = V for some t 0 ∈ [0, τ ]. Let γ ∈ (0, 1) and suppose [H4]. If t → A(t) is piecewise in the homogeneous Sobolev space Ḣ γ 2 (0, τ ; L(V, V γ ))
, then (P) has maximal L 2regularity in H for all u 0 ∈ V. In addition, there exists a positive constant C independent of u 0 and f such that

A(.)u(.) L 2 (0,τ ;H) + u H 1 (0,τ ;H) ≤ C u 0 V + f L 2 (0,τ ;H) . (2.6) Note that if [H4] holds with γ = 0 then | A(t)u -A(s)u, v | ≤ M 0 u V v
for all u, v ∈ V. In that case A(t) -A(s) defines a bounded operator from V into H. This implies in particular that the operators A(t) have the same domain D(A(t)) = D(A(0)). For operators satisfying the later property maximal regularity of (P) holds under the assumption that t → A(t)v is relatively continuous for all v ∈ D(A(0)), see [START_REF] Arendt | L p -maximal regularity for non-autonomous evolution equations[END_REF], Theorem 3.3. See also [START_REF] Gallarati | Maximal regularity for non-autonomous equations with measurable dependence on time[END_REF] where the later regularity assumption is replaced by a certain commutation property. We prove here that maximal regularity holds without requiring any property on the operators (or the forms). More precisely, we have

Proposition 2.5. Suppose [H1]-[H3]. Suppose that [H4]

holds for γ = 0 and that D(A(t 0 )

1 2 ) = V for some t 0 ∈ [0, τ ].
Then (P) has maximal L 2regularity in H for all u 0 ∈ V. In addition, there exists a positive constant C independent of u 0 and f such that

A(.)u(.) L 2 (0,τ ;H) + u H 1 (0,τ ;H) ≤ C u 0 V + f L 2 (0,τ ;H) .
(2.7)

Preparatory lemmas

In this section we prove several estimates which will play an important role in the proofs of the main results. We emphasize that one of the important points here is to prove estimates with constants which are independent of t.

Before we start let us point out that we may assume without loss of generality that assumption [H3] is satisfied with ν = 0, that is the forms are coercive with constant δ > 0 independent of t. The reason is that the maximal regularity of (P) is equivalent to the same property for

v (t) + (A(t) + ν)v(t) = g(t), v(0) = u 0 . (3.1)
This can be seen by observing that for g(t

) := f (t)e -νt , then v(t) = u(t)e -νt and clearly v ∈ H 1 (0, τ ; H) if and only if u ∈ H 1 (0, τ ; H) (and obviously f ∈ L 2 (0, τ ; H) if and only if g ∈ L 2 (0, τ ; H)).
When [H3] holds with ν = 0 then clearly the operators A(t) are invertible on H. In addition, one has the resolvent estimate

(µ + A(t)) -1 L(H) ≤ C 1 + µ (3.2)
for all µ ≥ 0. The constant is independent of t ∈ [0, τ ] (see e.g., [START_REF] Arendt | Maximal regularity for evolution equations governed by non-autonomous forms[END_REF], Proposition 2.1). The same estimate holds for

A(t) on V . Recall that V γ = [H, V] γ (for γ ∈ [0, 1]
) is the complex interpolation space between H and V and V γ := (V γ ) denotes its (anti-) dual space.

Lemma 3.1. Suppose that [H1]-[H3]

are satisfied with ν = 0. Then there exists a constant C > 0 such that the following estimates hold for all µ ≥ 0, r > 0 and all t ∈ [0, τ ].

1-(µ + A(t)) -1 L(V γ ,V) ≤ C (µ+1) 1-γ 2 , 2-(µ + A(t)) -1 L(V γ ,H) ≤ C (µ+1) 1-γ 2 , 3-e -rA(t) L(V γ ,H) ≤ C r γ 2
.

Proof. The arguments are classical but we write them here for clarity of the exposition.

We have for w ∈ V

δ (µ + A(t)) -1 w 2 V ≤ Re A(t)(µ + A(t)) -1 w, (µ + A(t)) -1 w = Re w -µ(µ + A(t)) -1 w, (µ + A(t)) -1 w ≤ w V (µ + A(t)) -1 w V + C (µ + A(t)) -1 w V , which gives (µ + A(t)) -1 L(V ,V) ≤ C . A similar argument gives the esti- mate (µ + A(t)) -1 L(H,V) ≤ C (µ+1) 1 2 
. The first assertion follows by interpolation. For the second one we use

(µ + A(t)) -1 L(V γ ,H) ≤ (µ + A(t)) -1 γ L(V ,H) (µ + A(t)) -1 1-γ L(H) ≤ C (µ + 1) 1-γ 2 .
We have e rA(t) L(H) ≤ 1 and e -rA(t) L(V ,H) ≤ C √ r (see e.g., [START_REF] Haak | Maximal regularity for non-autonomous evolution equations[END_REF], Proposition 6). Since V γ = [V , H] 1-γ we use interpolation and obtain the third estimate.

We make some comments on property [H4]. Let γ ∈ [0, 1] and consider for fixed t, s

∈ [0, τ ] A(t) -A(s) ∈ L(V, V γ ). (3.3) Obviously, (3.3) holds for all t, s ∈ [0, τ ] if γ = 1 since each operator A(t) is bounded from V into V . Observe that (3.3) is equivalent to |a(t, u, v) -a(s, u, v)| ≤ C t,s u V v Vγ (3.4)
for some positive constant C t,s and all u, v ∈ V. Morover, one can take

C t,s = A(t) -A(s) L(V,V γ ) .
In order to see this, one writes for u, v ∈ V

a(t, u, v) -a(s, u, v) = A(t)u -A(s)u, v , (3.5) 
and obtains immediately that (3.3) implies (3.4). For the converse, we note that by (3.5), v → A(t)u -A(s)u, v extends to a (anti-) linear continuous functional on V γ (for fixed u ∈ V). The rest of the claim is easy to check. Similarly to the previous remark, A(t)-A(s) extends to a bounded operator from V γ to V if and only if

|a(t, u, v) -a(s, u, v)| ≤ C t,s u Vγ v V (3.6)
for al u, v ∈ V.

Our next lemma shows stability of the Kato square root property if (3.4) or (3.6) holds for some γ ∈ [0, 1). Lemma 3.2. Suppose the assumptions of the previous lemma. Given t, s ∈ [0, τ ]. Suppose that there exists γ ∈ [0, 1) such that either (3.4) 

or (3.6) holds for t, s. If D(A(s) 1 2 ) = V then D(A(t) 1 2 ) = V.
Proof. Suppose that (3.4) is satisfied. Recall that

A(t) -1 2 = 1 π ∞ 0 µ -1 2 (µ + A(t)) -1 dµ.
Hence

A(t) -1 2 -A(s) -1 2 = -1 π ∞ 0 µ -1 2 (µ + A(t)) -1 (A(t) -A(s))(µ + A(s)) -1 dµ.
Using the previous lemma, we estimate the H -V norm of the term in the integral by

µ -1 2 (µ + A(t)) -1 L(V γ ,V) (µ + A(s)) -1 L(H,V) A(t) -A(s) L(V,V γ ) ≤ CC t,s µ -1 2 (1 + µ) γ 2 -1 . This implies that A(t) -1 2 -A(s) -1 2 is bounded from H to V and hence D(A(t) 1 2 ) ⊆ V. In addition, for u ∈ D(A(t) 1 2 ) u V ≤ [A(t) -1 2 -A(s) -1 2 ]A(t) 1 2 u V + A(s) -1 2 A(t) 1 2 u V ≤ A(t) -1 2 -A(s) -1 2 L(H,V) + A(s) -1 2 L(H,V) A(t) 1 2 u H ≤ C (1 + C t,s ) A(t) 1 2 u H . Suppose now that u ∈ V = D(A(s) 1 2
). Then we write as before

A(t) 1 2 u = 1 π ∞ 0 µ -1 2 A(t)(µ + A(t)) -1 u dµ so that (A(t) 1 2 -A(s) 1 2 )u = 1 π ∞ 0 µ -1 2 [A(t)(µ + A(t)) -1 u -A(s)(µ + A(s)) -1 u] dµ = -1 π ∞ 0 µ 1 2 [(µ + A(t)) -1 u -(µ + A(s)) -1 u] dµ = 1 π ∞ 0 µ 1 2 (µ + A(t)) -1 (A(t) -A(s))(µ + A(s)) -1 u dµ.
We estimate the norm in H of the term inside the integral by

µ 1 2 (µ + A(t)) -1 L(V γ ,H) (µ + A(s)) -1 L(V) A(t) -A(s) L(V,V γ ) u V ≤ CC t,s µ 1 2 (1 + µ) γ 2 -2 u V .
This gives u ∈ D(A(t)

1 2
) and

A(t) 1 2 u ≤ CC t,s u V + A(s) 1 2 u
which proves the lemma. Note that if we assume (3.6) then we argue by duality and prove the lemma for A(t) * 1 2 . It is well known that the equality 

D(A(t) * 1 2 ) = V is equivalent to D(A(t) 1 2 ) = V.
C 1 u V ≤ A(t) 1 2 u ≤ C 2 u V for all u ∈ V and all t ∈ [0, τ ].
(3.7)

Proof. All the details are already given in the proof of the previous lemma.

Definition 3.4. We say that (A(t)) (or the corresponding forms a(t)) satisfy the uniform Kato square root property if D(A(t)

1 2 ) = V for all t ∈ [0, τ ] and there exist constants C 1 , C 2 > 0 such that (3.7) is satisfied.
The uniform Kato square root property is obviously satisfied for symmetric forms. It is also satisfied for uniformly elliptic operators (not necessarily symmetric)

A(t) = - d k,l=1 ∂ k (a kl (t, x)∂ l ) on L 2 (R d ) since ∇u 2 is equivalent to A(t)
1 2 u 2 with constants depending only on the dimension and the ellipticity constants. See [START_REF] Auscher | The solution of the Kato square root problem for second order elliptic operators on R n[END_REF]. The previous proposition says that in order to have the uniform Kato square root property one needs only to check that D(A(s) (3.4) or (3.6) holds for some γ ∈ [0, 1).

1 2 ) = V for one s ∈ [0, τ ] provided
In the next lemma we show a quadratic estimate for A(t) with constant independent of t. Here we assume the uniform Kato square root property and give a short proof for the quadratic estimate. It is possible to prove the same result without the uniform Kato square root property by proving that the holomorphic functional calculus of A(t) has uniform estimate with respect to t (this is the case since the resolvent have uniform estimates). It is well known that quadratic estimates in H are intimately related to the holomorphic functional calculus, see [START_REF] Cowling | Banach space operators with a bounded H ∞ functional calculus[END_REF]. Quadratic estimates are an important tool in harmonic analysis and we will use them at several places in the proofs of maximal regularity.

Lemma 3.5. Suppose in addition to [H1]-[H3]

(with ν = 0) that the uniform Kato square root property is satisfied. Then there exists a constant C such that for every t ∈ [0, τ ]

τ 0 A(t) 1 2 e -sA(t) x 2 ds ≤ C x 2 (3.8)
for all x ∈ H.

Proof. By the uniform Kato square root property, we have

τ 0 A(t) 1 2 e -sA(t) x 2 ds ≤ C 2 τ 0 e -sA(t) x 2 V ds ≤ C τ 0
Re a(e -sA (t) x, e -sA(t) x) ds

= C τ 0
Re (A(t)e -sA (t) x, e -sA(t) x) ds

= - C 2 τ 0 d ds e -sA(t) x 2 ds = C 2 [ x 2 -e -τ A x 2 ] ≤ C 2 x 2 .
This proves the lemma.

We note that the constant C is also independent of τ . We could formulate the lemma with ∞ 0 A(t) 1 2 e -sA(t) x 2 ds. Let us also mention the following L p -version. Lemma 3.6. Suppose the assumptions of the previous lemma. Let p ≥ 2. Then there exists a constant C p such that τ 0 A(t) 1/p e -sA(t) x p ds ≤ C p x p (3.9)

for all x ∈ H.

Lemma 4.1. Suppose in addition to [H1]-[H3]

(with ν = 0) that the uniform Kato square root property is satisfied. Define

L 0 (f )(t) := t 0 e -(t-s)A(t) f (s) ds.
Then L 0 : L 2 (0, τ ; H) → L ∞ (0, τ ; V) is a bounded operator.

Proof. By the uniform Kato square root property,

L 0 (f )(t) V ≤ C 2 A(t) 1 2
t 0 e -(t-s)A(t) f (s) ds .

On the other hand, for x ∈ H |(A(t)

1 2 t 0 e -(t-s)A(t) f (s) ds, x)| = t 0 (f (s), A(t) * 1 2 e -(t-s)A(t) * x) ds ≤ f L 2 (0,τ ;H) t 0 A(t) * 1 2 e -(t-s)A(t) * x 2 ds 1 2 ≤ C f L 2 (0,τ ;H) x .
The latest inequality follows from Lemma 3.5 applied to the adjoint operator A(t) * (note that A(t) * satisfies the same properties as A(t)). The constant C is independent of t. Therefore,

L 0 (f )(t) V ≤ C 2 C f L 2 (0,τ ;H) . (4.1)
This implies immediately that L 0 : L 2 (0, τ ; H) → L ∞ (0, τ ; V) is bounded. Now we study boundedness on L 2 (0, τ ; H) of the operator

L(f )(t) := t 0 A(t)e -(t-s)A(t) f (s) ds. (4.2)
It is proved in [START_REF] Haak | Maximal regularity for non-autonomous evolution equations[END_REF] that L is bounded on L p (0, τ ; H) for all p ∈ (1, ∞) provided t → a(t, ., .) is C for some > 0 (or similarly, t → A(t) is C on [0, τ ] with values in L(V, V )). The proof for the case p = 2 is based on vectorvalued pseudo-differential operators. The extension from p = 2 to p ∈ (1, ∞) uses Hörmander's almost L 1 -condition for singular integral operators. Here we give a direct proof for the case p = 2 which does not appeal to pseudodifferential operators. It is essentially based on the quadratic estimate of Lemma 3.5.

Proposition 4.2. Suppose [H1]-[H3]

(with ν = 0) and the uniform Kato square root property. Let γ ∈ (0, 1]. If

sup s∈[0,τ ] τ s A(t) -A(s) 2 L(V,V γ ) |t -s| γ dt < ∞, (4.3) 
then the operator L is bounded on L 2 (0, τ ; H).

Proof. Fix γ ∈ [0, 1]. Take g ∈ L 2 (0, τ ; H). We have

| τ 0 t 0 (A(t)e -(t-s)A(t) f (s), g(t)) dsdt| = | τ 0 t 0 A(t) 1 2 e -(t-s) 2 A(t) f (s), A(t) * 1 2 e -(t-s) 2 A(t) * g(t) dsdt| ≤ τ 0 t 0 A(t) 1 2 e -(t-s) 2 f (s) A(t) * 1 2 e -(t-s) 2 A(t) * g(t) dsdt ≤ τ 0 t 0 A(t) 1 2 e -(t-s) 2 A(t) f (s) 2 ds 1 2 t 0 A(t) * 1 2 e -(t-s) 2 A(t) * g(t) 2 ds 1 2 dt ≤ C τ 0 t 0 A(t) 1 2 e -(t-s) 2 A(t) f (s) 2 ds 1 2 g(t) dt ≤ C τ 0 t 0 A(t) 1 2 e -(t-s) 2 A(t) f (s) 2 dsdt 1 2
g L 2 (0,τ ;H) .

Here we use the quadratic estimate of Lemma 3.5 for the adjoint operator A(t) * . It follows that for all f ∈ L 2 (0, τ ; H)

L(f ) L 2 (0,τ ;H) ≤ C τ 0 t 0 A(t) 1 2 e -(t-s) 2 A(t) f (s) 2 dsdt 1 2 . ( 4.4) 
We use again Lemma 3.5 and obtain

τ 0 t 0 A(t) 1 2 e -(t-s)A(t) f (s) 2 dsdt ≤ 2 τ 0 t 0 A(t) 1 2 e -(t-s)A(t) f (s) -A(s) 1 2 e -(t-s)A(s) f (s) 2 dsdt + 2 τ 0 τ s A(s) 1 2 e -(t-s)A(s) f (s) 2 dtds ≤ 2 τ 0 t 0 A(t) 1 2 e -(t-s)A(t) f (s) -A(s) 1 2 e -(t-s)A(s) f (s) 2 dsdt + 2C τ 0 f (s) 2 ds.
We choose a contour Γ in the positive half-plane and we write by the holo-morphic functional calculus

A(t) 1 2 e -(t-s)A(t) f (s) -A(s) 1 2 e -(t-s)A(s) f (s) = Γ λ 1 2 e -(t-s)λ [(λ -A(t)) -1 -(λ -A(s)) -1 ] dλ f (s) = Γ λ 1 2 e -(t-s)λ (λ -A(t)) -1 (A(t) -A(s))(λ -A(s)) -1 f (s) dλ.
We estimate the norm in H of the latest term. For λ = |λ|e iθ we apply Lemma 3.1 and obtain

Γ λ 1 2 e -(t-s)λ (λ -A(t)) -1 (A(t) -A(s))(λ -A(s)) -1 f (s) dλ ≤ Γ |λ| 1 2 e -(t-s)|λ| cos θ (λ -A(t)) -1 L(V γ ,H) A(t) -A(s) L(V,V γ ) × (λ -A(s)) -1 L(H,V) |dλ| f (s) ≤ C Γ |λ| 1 2 e -(t-s)|λ| cos θ 1 (1 + |λ|) 1-γ/2 1 (1 + |λ|) 1 2 A(t) -A(s) L(V,V γ ) |dλ| f (s) ≤ C A(t) -A(s) L(V,V γ ) |t -s| γ/2 f (s) .
Here and at other places we use the estimate

∞ 0 e -r(t-s) (1 + r) 1-γ 2 dr ≤ C (t -s) γ 2 (4.5)
for some constant C and all s < t. This is seen by making the change of the variable v := r(t -s) in the LHS which then coincides with

1 (t -s) γ 2 ∞ 0 e -v (t -s + v) 1-γ 2 dv.
The latter term is bounded by

1 (t -s) γ 2 ∞ 0 e -v v 1-γ 2 dv = C (t -s) γ 2
.

The previous estimates give

τ 0 t 0 A(t) 1 2 e -(t-s)A(t) f (s) -A(s) 1 2 e -(t-s)A(s) f (s) 2 dsdt ≤ C τ 0 τ s A(t) -A(s) 2 L(V,V γ ) |t -s| γ dt f (s) 2 ds ≤ C sup s∈[0,τ ] τ s A(t) -A(s) 2 L(V,V γ ) |t -s| γ dt τ 0 f (s) 2 ds. (4.6)
This proves that L is bounded on L 2 (0, τ ; H). Lemma 11 in [11] and obtain boundedness of L on L p (0, τ ; H) at least for p ∈ (1, 2 

Remark 4.3. One may argue as in the proof of

A(t) -A(s) 2 L(V,V γ ) |t -s| γ dt ≤ M 2 γ τ s |t -s| -γ dt ≤ cM 2 γ
for some constant c > 0. The result follows from Proposition 4.2.

Note that if γ ∈ (0, 1) we do not require any regularity property for A in assertion 2) of the previous proposition.

Proposition 4.5. Suppose [H1]-[H3]

(with ν = 0) and the uniform Kato square root property. Let f ∈ L 2 (0, τ ; H), u 0 ∈ V and let u be the Lions' solution to the problem (P'). 1) If A satisfies (2.1) then u ∈ L ∞ (0, τ ; V) and there exists a constant C independent of u 0 and f such that

u L ∞ (0,τ ;V) ≤ C u 0 V + f L 2 (0,τ ;H) . (4.7)
2) Let γ ∈ [0, 1) and suppose that [H4] is satisfied. Then u ∈ L ∞ (0, τ ; V) and (4.7) holds.

Proof. As we already mentioned above, by Lions' theorem there exists a unique solution u to the problem (P') such that u ∈ H 1 (0, τ ; V )∩L 2 (0, τ ; V). For 0 ≤ s ≤ t ≤ τ , we define v(s) := e -(t-s)A(t) u(s). We write v(t) = v(0) + t 0 v (s) ds and obtain as in [START_REF] Haak | Maximal regularity for non-autonomous evolution equations[END_REF] (Lemma 8)

u(t) = e -tA(t) u 0 + t 0 e -(t-s)A(t) (A(t) -A(s))u(s) ds + t 0 e -(t-s)A(t) f (s) ds (4.8) =: R 0 u 0 (t) + S 0 u(t) + L 0 f (t).
Clearly there exists a constant C > 0 such that for all u 0 ∈ V,

R 0 u 0 (t) V = e -tA(t) u 0 V ≤ C u 0 V . (4.9) By Lemma 4.1, L 0 f (t) V ≤ C f L 2 (0,τ ;H) . ( 4.10) 
Next we prove that S 0 ∈ L(L ∞ (0, τ ; V)). Let g ∈ L ∞ (0, τ ; V). We have by the uniform Kato square root property

S 0 g(t) V ≤ C 2 t 0 A(t)
1 2 e -(t-s)A(t) (A(t) -A(s))g(s) ds .

In order to estimate the term on the RHS we argue as in the proof of Lemma 4.1 and use Lemma 3.1. For x ∈ H and γ ∈ [0, 1], we have

|( t 0 A(t) 1 2 e -(t-s)A(t) (A(t) -A(s))g(s) ds, x)| = | t 0 (e -(t-s) 2 A(t) (A(t) -A(s))g(s), A(t) * 1 2 e -(t-s) 2 A(t) * x) ds| ≤ t 0 e -(t-s) 2 A(t) (A(t) -A(s))g(s) 2 ds 1 2 t 0 A(t) * 1 2 e -(t-s) 2 A(t) * x 2 ds 1 2 ≤ C x t 0 e -(t-s) 2 A(t) 2 L(V γ ,H) A(t) -A(s) 2 L(V,V γ ) ds 1 2 g L ∞ (0,t;V) ≤ C x   t 0 A(t) -A(s) 2 L(V,V γ ) (t -s) γ ds   1 2 g L ∞ (0,t;V) .
Therefore,

S 0 g(t) V ≤ CC 2   t 0 A(t) -A(s) 2 L(V,V γ ) (t -s) γ ds   1 2
g L ∞ (0,τ ;V) . (4.11)

Suppose γ = 1. It follows from the assumption (2.1) that S 0 is a bounded operator on L ∞ (0, τ ; V) with

S 0 L(L ∞ (0,τ ;V)) ≤ CC 2 sup t∈[0,τ ] t 0 A(t) -A(s) 2 L(V,V ) t -s ds 1 2 . ( 4.12) 
In order to continue we wish to take the inverse of I -S 0 . Let ε > 0 and τ 1 be as (2.1). We work on the interval [0, τ 1 ]. We have

sup t∈[0,τ 1 ] τ 1 0 A(t) -A(s) 2 L(V,V ) t -s ds < ε.
It follows from (4.12) that S 0 L(L ∞ (0,τ 1 ;V)) < 1. Therefore, u = (I -S 0 ) -1 (R 0 u 0 + L 0 f ) and we obtain from (4.9) and (4.10) that u ∈ L ∞ (0, τ 1 ; V) and (4.7) is satisfied on [0, τ 1 ]. Now repeat the same strategy. We use (2.1), we work on [τ i-1 , τ i ] and argue exactly as before. We obtain (4.7) on each sub-intervals [τ i-1 , τ i ]. This implies (4.7) on [0, τ ] for arbitrary τ > 0 and finishes the proof of assertion 1). In order to prove assertion 2), we use [H4] and (4.11). We obtain

S 0 g(t) V ≤ CC 2 M γ t 0 1 (t -s) γ ds 1 2 g L ∞ (0,τ ;V) ≤ C τ 1-γ 2 g L ∞ (0,τ ;V) .
We see that S 0 L(L ∞ (0,τ ;V)) < 1 for small τ > 0. We split [0, τ ] into a finite number of intervals with small sizes and then argue as previously.

Proposition 4.6. Suppose the assumptions of the previous proposition.

Then

u(t) ∈ V for every t ∈ [0, τ ].
Proof. This is an application of Lemma 3.7 and Proposition 4.5. Note that u(t) is well defined for every t since u ∈ C([0, τ ], H) by Lions' theorem.

The following lemma was first proved in [START_REF] Haak | Maximal regularity for non-autonomous evolution equations[END_REF] under the assumption that A(.) ∈ C α (0, τ ; L(V, V )) for some α > 1 2 . See also [START_REF] Ouhabaz | Maximal regularity for non-autonomous evolution equations governed by forms having less regularity[END_REF]. We prove it here in the case where A satisfies (2.1) and for arbitrary A if [H4] is satisfied for some γ ∈ (0, 1).

Lemma 4.7. Suppose [H1]-[H3]

(with ν = 0) and the uniform Kato square root property. Define the operator Ru 0 (t) := A(t)e -tA(t) u 0 for u 0 ∈ V and t ∈ [0, τ ]. 1) Suppose (2.1). Then R is bounded from V into L2 (0, τ ; H). 2) If [H4] is satisfied for some γ ∈ (0, 1) then R is bounded from V into L 2 (0, τ ; H).

Proof. We write Ru 0 (t) = [A(t)e -tA(t) -A(0)e -tA(0) ]u 0 + A(0)e -tA(0) u 0 =: R 1 u 0 (t) + R 2 u 0 (t).

We use Lemma 3.5 to obtain

R 2 u 0 2 L 2 (0,τ ;H) = τ 0 A(0) 1 2 e -tA(0) A(0) 1 2 u 0 2 dt ≤ C A(0) 1 2 u 0 2 ≤ C u 0
Now taking the norm in H we have

R 1 u 0 (t) ≤ Γ |λ|e -tRe λ (λ -A(t)) -1 L(V γ ,H) × A(0) -A(t) L(V,V γ ) (λ -A(0)) -1 L(V) |dλ| u 0 V ≤ C A(0) -A(t) L(V,V γ ) t γ 2 u 0 V .
The last estimate follows as in the proof of Proposition 4.2 in which we also use (4.5). It is valid for γ ∈ (0, 1]. Therefore

R 1 u 0 2 L 2 (0,τ ;H) ≤ C 2 τ 0 A(0) -A(t) 2 L(V,V γ ) t γ dt u 0 2 V . ( 4.13) 
For γ = 1 we use the assumption (2.1) and obtain

R 1 u 0 2 L 2 (0,τ ;H) ≤ C u 0 2 V
for some constant C > 0. This proves assertion 1) of the proposition. Assertion 2) follows directly from (4.13) when γ ∈ (0, 1).

Proofs of the main results

After the auxiliary results of the last two sections we are now ready to give the proofs of the main results of this paper. Note that we may assume without loss of generality that [H3] holds with ν = 0, see the beginning of Section 3.

Proof of Theorems 2.2 and 2.4. Let γ ∈ (0, 1]. We give the proof for the two theorems without considering separately the cases γ = 1 and γ ∈ (0, 1).

If γ = 1 we assume (2.1). Suppose first that A ∈ Ḣ γ 2 (0, τ ; L(V, V γ )). Let f ∈ L 2 (0, τ ; H) and u 0 ∈ V. Let u ∈ L 2 (0, τ ; V) ∩ H 1 (0, τ ; V ) be the solution of (P') given by Lions' theorem. Our aim is to prove that u ∈ H 1 (0, τ ; H) or equivalently that A(.)u(.) ∈ L 2 (0, τ ; H). Using (4.8) we have

A(t)u(t) = A(t)e -tA(t) u 0 + A(t) t 0 e -(t-s)A(t) (A(t) -A(s))u(s) ds + A(t) t 0 e -(t-s)A(t) f (s) ds =: Ru 0 (t) + (Su)(t) + (Lf )(t).
By Lemma 4.7 the operator R is bounded from V into L2 (0, τ ; H) and by Corollary 4.4 the operator L is bounded on L 2 (0, τ ; H). Concerning the operator S, we have

Su L 2 (0,τ ;H) ≤ C u L ∞ (0,τ ;V) (5.1)
for some constant C independent of f and u 0 . Suppose for a moment that (5.1) is proved. Then we apply Proposition 4.5 together with the properties of R and L we just mentioned above and obtain A(.)u(.) ∈ L 2 (0, τ ; H) with

A(.)u(.) L 2 (0,τ ;H) ≤ Ru 0 L 2 (0,τ ;H) + Su L 2 (0,τ ;H) + Lf L 2 (0,τ ;H) ≤ C u 0 V + u L ∞ (0,τ ;V) + f L 2 (0,τ ;H) ≤ C u 0 V + f L 2 (0,τ ;H) .
This proves the two theorems in the case where A ∈ Ḣ γ 2 (0, τ ; L(V, V γ )) for some γ ∈ (0, 1]. Now we prove (5.1). We have .

Su(t) = A(t) t 0 e -(t-s)A(t) (A(t) -A(s))u(s) ds ≤ sup x∈H, x =1 t 0 |(A(t)
Here we use again the quadratic estimate of Lemma 3.5. By analyticity of the semigroup together with Lemma 3.1 we have

A(t) 1 2 e -(t-s) 2 A(t) (A(t) -A(s))u(s) 2 ≤ C t -s e -(t-s) 4 A(t) (A(t) -A(s))u(s) 2 ≤ C A(t) -A(s) 2 L(V,V γ ) |t -s| 1+γ u(s) 2 V .
Therefore,

Su(t) ≤ C u L ∞ (0,τ ;V)   t 0 A(t) -A(s) 2 L(V,V γ ) |t -s| 1+γ ds   1 2
.

This gives

Su L 2 (0,τ ;H) ≤ C u L ∞ (0,τ ;V) A Ḣ γ
and finishes the proof of (5.1).

Suppose now that

A is piecewise in Ḣ γ 2 (0, τ ; L(V, V γ )). Then [0, τ ] = ∪ n i=1 [τ i-1 , τ i ]
and the restriction of A to each sub-interval is in Ḣ γ 2 . We apply the previous proof to each sub-interval and obtain a solution u i in the sub-interval [τ i-1 , τ i ] which has maximal regularity and satisfies apriori estimates. By Proposition 4.6, u i (τ i ) ∈ V and hence we can solve u i+1 (t) + A(t)u i+1 (t) = f (t) on [τ i , τ i+1 ] with u i+1 (τ i ) = u i (τ i ) and u i+1 has maximal regularity and apriori estimate on [τ i , τ i+1 ]. Now we "glue" the solutions u i and obtain a solution u of (P) on [0, τ ] such that u ∈ H 1 (0, τ ; H). The apriori estimate (2.5) on [0, τ ] follows by summing the corresponding apriori estimates on each sub-interval and by using Proposition 4.5. The uniqueness of the solution of (P) follows from this apriori estimate. Note that in Theorem 2.4 we assume merely that D(A(t 0 )

1 2 ) = V for some t 0 ∈ [0, τ ].
This assumption implies the uniform Kato square root property by Proposition 3.3.

Proof of Proposition 2.5. Set B(t)

:= A(t) -A(0) and E := H 1 (0, τ ; H) ∩ L ∞ (0, τ ; V). Then E is a Banach space for the norm u E := u H 1 (0,τ ;H) + u L ∞ (0,τ ;V) . Let f ∈ L 2 (0, τ ; H) and u 0 ∈ V. For v ∈ E, there exists a unique solution u ∈ E to the problem u (t) + A(0) u(t) = f (t) -B(t)v(t), t ∈ (0, τ ] u(0) = u 0 .
In addition, there exists a constant C, independent of u 0 , f and v such that

u E ≤ C u 0 V + f L 2 (0,τ ;H) + Bv L 2 (0,τ ;H) . ( 5.2) 
Bounding u H 1 (0,τ ;H) by the term on the RHS follows from the classical maximal regularity for the operator A(0) in the Hilbert space H. For the bound of u L ∞ (0,τ ;V) by the same term we use either Proposition 4.5 or the classical embedding

H 1 (0, τ ; H) ∩ L 2 (0, τ ; D(A(0))) → C([0, τ ]; D(A(0) 1 2 ).
Define the operator K on E by K(v) := u. We prove that for τ > 0 small, K is a contraction operator. Indeed, let

v 1 , v 2 ∈ E. Then w := K(v 1 ) -K(v 2 ) satisfies w (t) + A(0) w(t) = -B(t)(v 1 (t) -v 2 (t)), t ∈ (0, τ ] u(0) = 0.
Hence by (5.2) and [H4] with γ = 0

w E ≤ C B(v 1 -v 2 ) L 2 (0,τ ;H) = C( τ 0 (A(t) -A(0))(v 1 -v 2 )(t) 2 dt) 1 2 ≤ CM 0 √ τ v 1 -v 2 L ∞ (0,τ ;V) ≤ CM 0 √ τ v 1 -v 2 E .
This shows that for CM 0 √ τ < 1 the operator K is a contraction. Hence there exists a unique u ∈ E such that K(u) = u. This gives that u satisfies (P) on [0, τ ] for τ < 1 (CM 0 ) 2 and it follows from (5.2) that u satisfies the apriori estimate

u E ≤ C [ u 0 V + f L 2 (0,τ ;H) ].
Finally, for arbitrary τ > 0, we split [0, τ ] into a finite number of subintervals with small sizes and proceed exactly as in the previous proof.

Applications

In this section we give some applications of the previous results to concrete differential operators.

-Elliptic operators on R n . Let H = L 2 (R n ) and V = H 1 (R n ) and define the sesquilinear forms a(t, u, v) = n k,l=1 R n c kl (t, x)∂ k u∂ l v dx, u, v ∈ V.

We assume that the matrix C(t, x) = (c kl (t, x)) 1≤k,l≤n satisfies the usual ellipticity condition, that is, there exists α, M > 0 such that α|ξ| 2 ≤ Re (C(t, x)ξ. ξ) and |C(t, x)ξ.ν| ≤ M |ξ||ν| for all ξ, ν ∈ C n and a.e t ∈ [0, τ ], x ∈ R n . The forms a(t) satisfy the assumptions [H1]-[H3]. For each t, the corresponding operator is formally given by A(t) = -n k,l=1 ∂ l (c kl (t, x)∂ k ). Next we assume that C ∈ H 1 2 (0, τ ; L ∞ (C n 2 )). We note that

A(t) -A(s) L(V,V ) ≤ M C(t, .) -C(s, .) L ∞ (C n 2 )
for some contant M . This implies that A ∈ H 1 2 (0, τ ; L(V, V )). We assume in addition that each c kl is Hölder continuous of order α for some α > 0 with |c kl (t, x) -c kl (s, x)| ≤ c|t -s| α for a.e. x ∈ R n . This assumption implies in particular (2.1). We could also weaken this assumption by formulating it in terms of the modulus of continuity, see (2.3).

We are now allowed to apply Theorem 2.2. We obtain maximal L 2 -regularity and apriori estimate for the parabolic problem

u (t) + A(t)u(t) = f (t) u(0) = u 0 ∈ H 1 (R n ).
That is, for every f ∈ L 2 (0, τ ; L 2 (R n )) and u 0 ∈ H 1 (R n ) there is unique solution u ∈ H 1 (0, τ ; L 2 (R n )). Note that we also have from Proposition 4.5 that u ∈ L ∞ (0, τ ; H 1 (R n )). As we already mentioned before, the uniform Kato square root property required in Theorem 2.2 is satisfied in this setting, see [START_REF] Auscher | The solution of the Kato square root problem for second order elliptic operators on R n[END_REF]. As we mentioned in the introduction, maximal L 2 -regularity for these elliptic operators was proved recently in [START_REF] Auscher | On non-autonomous maximal regularity for elliptic operators in divergence form[END_REF] under the slightly stronger assumption that the coefficients satisfy a BMO-H 
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 3311 Suppose that [H1]-[H3] are satisfied with ν = 0. Fix s ∈ [0, τ ] and suppose that either (3.4) or (3.6) holds for some γ ∈ [0, 1) with a constant C independent of t ∈ [0, τ ] (i.e., C t,s ≤ C for all t). If D(A(s) ) = V, then D(A(t) ) = V for all t ∈ [0, τ ] and there exist positive constants C 1 , C 2 such that

1 2 1 2 1 2

 111 regularity with respect to t. The maximal L 2 -regularity we proved here holds also in the case of elliptic operators on Lipschitz domains with Dirichlet or Neumann boundary conditions. The arguments are the same. One define the previous forms a(t) with domain V = H 1 0 (Ω) (for Dirichlet boundary conditions) or V = H 1 (Ω) (for Neumann boundary conditions). -Robin boundary conditions. Let Ω be a bounded domain of R d with Lipschitz boundary ∂Ω. We denote by Tr the classical trace operator. Let β : [0, τ ] × ∂Ω → [0, ∞) be bounded and such that τ 0 τ 0 β(t, .) -β(s, .) 2 L ∞ (∂Ω) |t -s| 1+2α dsdt < ∞ (6.1) for some α > 1 4 . In particular, β(., x) ∈ H α . We define the forms a(t, u, v) := Ω ∇u.∇v dx + ∂Ω β(t, .)Tr(u)Tr(v) dσ, for all u, v ∈ V := H 1 (Ω). Formally, the associated operator A(t) is (minus) the Laplacian with the time dependent Robin boundary condition ∂u ∂n + β(t, .)u = 0 on ∂Ω. Here ∂u ∂n denotes the normal derivative in the weak sense. Note that for any ε > 0 |a(t; u, v) -a(s; u, v)| = | ∂Ω [β(t, .) -β(s, .)]Tr(u)Tr(v) dσ| ≤ β(t, .) -β(s, .) L ∞ (∂Ω) u H +ε (Ω) v H +ε (Ω) ,
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	Corollary 4.4. 1) If A satisfies (2.1) then L is bounded on L 2 (0, τ ; H).
	2) If [H4] is satisfied for some γ ∈ (0, 1) then L is bounded on L 2 (0, τ ; H).
	Proof. Assertion 1) follows directly from Proposition 4.2 by noticing that
	(2.1) implies (4.3) with γ = 1. For assertion 2) one uses [H4] to obtain
	τ
	s

V .We estimate R 1 u 0 . We argue as in the proof of Proposition 4.2. By the holomorphic functional calculus for the sectorial operators A(t) and A(0) we haveR 1 u 0 (t) = Γ λe -λt (λ -A(t)) -1 (A(t) -A(0))(λ -A(0)) -1 u 0 dλ.

(0,τ ;L(V,V γ ))
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Proof. We fix t ∈ [0, τ ] and s > 0. We define F (z)x := A(t) z/2 e -sA (t) x.

It is a classical fact that F is a holomorphic function on C + . In addition, each operator A(t), as an accretive operator on H, has bounded imaginary powers. That is A is L(H) ≤ C for some constant C and all s ∈ R. See [START_REF] Cowling | Banach space operators with a bounded H ∞ functional calculus[END_REF]. Using this one obtains immediately that

On the other hand, by Lemma 3.5 and again uniform boundedness of imaginary powers on H we obtain

We apply Stein's complex interpolation theorem to obtain that for all p ≥ 2

and we obtain the lemma.

Let u be the solution of (P') by Lions' theorem. Lions also proved that

It is very useful to know whether u(t) ∈ V for every t ∈ [0, τ ]. We prove this in the following lemma under an additional assumption that u ∈ L ∞ (0, τ ; V). We shall see later that this property holds when we assume that (2.1) is satisfied.

Lemma 3.7. Suppose [H1]-[H3] and suppose in addition that the solution

Key estimates

In this section we state and prove some other estimates which we will need in the proofs of the main results.

where we used the fat that the trace operator is bounded from H 1 2 +ε (Ω) into L 2 (∂Ω). Now assumption (6.1) allows us to apply Theorem 2.4 with γ = 1 2 +ε and obtain maximal L 2 -regularity for the corresponding evolution equation with initial data u 0 ∈ H 1 (Ω). The forms considered here are symmetric and therefore the uniform Kato square root property can be checked easily. Maximal L 2 -regularity for time dependent Robin boundary condition with β(., x) ∈ C α for some α > 1 4 was previously proved in [START_REF] Arendt | Maximal regularity for non-autonomous Robin boundary conditions[END_REF] and [START_REF] Ouhabaz | Maximal regularity for non-autonomous evolution equations governed by forms having less regularity[END_REF]. In [START_REF] Ouhabaz | Maximal regularity for non-autonomous evolution equations governed by forms having less regularity[END_REF] maximal L p -regularity is proved for all p ∈ (1, ∞) is proved.

-Operators with terms of lower order. Let Ω be a domain of R n and let b k , m : [0, τ ] × Ω → R be a bounded measurable function for each k = 1, • • • , n. We define the forms

for some constant M 0 . This means that assumption [H4] is satisfied with γ = 0. We apply Proposition 2.5 and obtain maximal L 2 -regularity for the correspond evolution equation. As we mentioned in the introduction, the domains of the corresponding operators are independent of t and one may apply the results from [START_REF] Arendt | L p -maximal regularity for non-autonomous evolution equations[END_REF] to obtain maximal regularity. Doing so, one needs to assume some regularity with respect to t for the coefficients b k (t, x) and m(t, x) whereas the result we obtain from Proposition 2.5 does not require any regularity.