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Bifurcation theory provides a powerful framework to analyze the dynamics of differential systems as a function of specific parameters. Abou-Jaoudé et al. [JTB, 258(4):561-577 (2009)] introduced the concept of logical bifurcation diagrams, an analog of bifurcation diagrams for the logical modeling framework. In this work, we propose a formal definition of this concept. Since logical models are inherently discrete, we use the piecewise differential (PWLD) framework to introduce the underlying bifurcation parameters. Given a regulatory graph, a set of PWLD models is mapped to a set of logical models consistent with this graph, thereby linking continuous changes of bifurcation parameters to sequences of valuations of logical parameters. A logical bifurcation diagram corresponds then to a sequence of valuations of the logical parameters (with their associated set of attractors) consistent with at least one bifurcation diagram of the set of PWLD models. Necessary conditions on logical bifurcation diagrams in the general case, as well as a characterization of these diagrams in the Boolean case, exploiting a partial order between the logical parameters, are provided. We also propose a procedure to determine a logical bifurcation diagram of maximum length, starting from an initial valuation of the logical parameters, in the Boolean case. Finally, we apply our methodology to the analysis of a biological model of the p53-Mdm2 network.

Introduction

The behavior of biological systems relies on complex regulatory networks which understanding requires the use of computational modeling approaches. Different formalisms, operating at different levels of abstraction, have been used to model complex biological networks. Among these formalisms, the logical framework, initially introduced by René Thomas [START_REF] Thomas | Biological Feedback[END_REF], has proven to be particularly useful to model such networks, in particular when precise quantitative data are lacking, with applications in a wide range of biological systems including cell differentiation in developmental processes [START_REF] Fauré | A discrete model of drosophila eggshell patterning reveals cell-autonomous and juxtacrine effects[END_REF], haematopoiesis [START_REF] Collombet | Logical modeling of lymphoid and myeloid cell specification and transdifferentiation[END_REF], T-cell activation and differentiation [START_REF] Abou-Jaoudé | Model checking to assess T-helper cell plasticity[END_REF] or cell cycle control [START_REF] Faure | Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle[END_REF] (see [START_REF] Abou-Jaoudé | Logical modeling and dynamical analysis of cellular networks[END_REF] for additional applications).

In the logical modeling formalism, regulatory networks are modeled in terms of a logical regulatory graph, where nodes represent regulatory components, while edges denote regulatory interactions [START_REF] Thomas | Biological Feedback[END_REF]. Each component is associated with a discrete variable representing its (current) functional level of activity. In addition, a logical rule defines the evolution of this level, depending on the values of the regulators of the component. A logical rule can be specified using either a logical function, or logical parameters [START_REF] Thomas | Biological Feedback[END_REF][START_REF] Snoussi | Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach[END_REF]. When several component levels are called to update, an updating scheme (e.g., synchronous, asynchronous) has to be specified to define the state successor(s). The resulting dynamics can be represented in terms of a state transition graph, where nodes denote states, while directed edges represent state transitions.

Bifurcation theory provides a powerful framework to analyze qualitative changes in the dynamics of ODEs depending on specific parameters. This analysis can be represented in a bifurcation diagram, where the attractors (oscillatory regimes or steady states) and their stability are represented as a function of the parameter(s) of interest (e.g., reaction rate or external stimuli) [START_REF] Strogatz | Nonlinear Dynamics and Chaos: With Applications to Physics[END_REF]. In [START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF], Abou-Jaoudé et al. introduced the concept of logical bifurcation diagram, an analog to ODE bifurcation diagrams for the logical modeling framework. Given a regulatory graph of a model, a logical bifurcation diagram corresponds to a sequence of valuations of the logical parameters associated with a model component (with its corresponding attractors), upon a change of an implicit parameter (e.g., a degradation rate in [START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF]). However, a formal definition of this concept is still lacking.

In this work, we propose a formal definition of logical bifurcation diagrams.

To do so, we use the piecewise linear differential (PWLD) framework to explicitly introduce the underlying bifurcation parameters and formally associate monotonous and continuous changes of these parameters to sequences of valuations of logical parameters. More precisely, we map a set of piecewise linear differential models associated with a given regulatory graph to the set of the logical models whose logical parameter values are consistent with the regulatory graph. A logical bifurcation diagram then corresponds to a sequence of valuations of the logical parameters (with their associated set of attractors) consistent with at least one bifurcation diagram in the class of PWLD models. This manuscript is organized as follows. We start in Section 2 by describing the case study of the model of the core of the p53-Mdm2 network, proposed by Abou-Jaoudé et al. [START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF]. In Section 3, we introduce the class of logical models associated with a regulatory graph, from a partial order defined in the set of the logical parameters. In Section 4, we propose a formal definition of logical bifurcation diagrams associated to a model component, as well as a procedure to compute one logical bifurcation diagram of maximum length, starting from a given valuation of the logical parameters, in the case where the component is Boolean. Finally, Section 5 is devoted to a bifurcation analysis of our case study using our methodology. Details on the building of the set of PWLD models associated to a regulatory graph, and the definition of the pertinent objects to consider in the class of PWLD models for the mappings to the set of logical models are presented in Appendix A. Details on the mappings between the two sets of PWLD and logical models, and the link between their dynamics are presented in Appendix B.

A case study: the p53-Mdm2 network

We consider the model of the core of the p53-Mdm2 network, proposed by Abou-Jaoudé et al. [START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF], which encompasses the following components: the protein p53; the ubiquitin ligase Mdm2 in the cytoplasm; and the ubiquitin ligase Mdm2 in the nucleus. p53 plays an essential role in the control of cell proliferation in mammals by regulating a large number of genes involved notably in growth arrest, DNA repair or apoptosis. Its level is tightly regulated by the ubiquitin ligase Mdm2. Nuclear Mdm2 down-regulates the level of active p53, both by accelerating p53 degradation through ubiquitination and by blocking the transcriptional activity of p53. In return, p53 activates Mdm2 transcription and down-regulates the level of nuclear Mdm2 by inhibiting Mdm2 nuclear translocation.

These interactions are modeled in the regulatory graph shown in Figure 1(a), in which we focus on the case where p53 (denoted by p53) is active on nuclear Mdm2 (M n ) above its first threshold, and on cytoplasmic Mdm2 (M c ) above its second threshold. To enable a systematic characterization of all the asymptotic behaviors consistent with a given regulatory graph, in the framework of logical modelling, Abou-Jaoudé et al. introduced the concept of logical bifurcation diagram [START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF], an analog of bifurcation analysis for ODE systems, based on the following two main ideas:

(i) the inference of constraints between the values of the logical parameters of a component (M n in [START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF]) from the regulatory graph, relying on the idea that a negative influence of a component (p53) tends to lower the level of its target(s) (M n ) whereas the positive influence of a component (M c ) tends to increase the level of its target(s) (M n ); (ii) the fact that logical parameters represent discretized ratios of the production and degradation rates of a component, thereby allowing to link changes of the logical parameter values of a component (M n in [START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF]) with the variation of an implicit continuous parameter (the degradation rate of M n in [START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF]), under the inferred constraints.

Figure 1(b) shows one of the logical bifurcation diagrams derived in [START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF], corresponding to one admissible ordering of the logical parameter values, where the attractors (steady states, limit cycles) of the model are displayed as a function of the degradation rate of M n . In the following, we propose a formalization of the concept of logical bifurcation diagram introduced in [START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF]. We will see that the constraints on the logical parameters values inferred in [START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF] from the regulatory graph, can be formalized in terms of a partial order in the set of the logical parameters (Section 3.2). Regarding the formalization of the link between the implicit bifurcation parameter and the logical parameter values, we will use the piecewise linear differential (PWLD) framework to introduce the underlying bifurcation parameter and link it to sequence of valuations of the logical parameters (Section 4). A class of PWLD models is first associated with the regulatory graph and then formally linked to the set of the logical models consistent with the partial order. We now first recall some key aspects of the logical modeling framework.

Logical models

Regulatory graph and logical parameters

We start by recalling the definition of a regulatory graph, adapted from [START_REF] Chaouiya | Qualitative analysis of regulatory graphs: A computational tool based on a discrete formal framework[END_REF], in the framework of the logical modeling formalism. Definition 1. A regulatory graph (G, Γ, sign, T ) is defined by: (i) A set of regulatory components G = {g 1 , g 2 , . . . , g n }, where n is the number of components; (ii) A set of regulatory interactions Γ defined as a subset of the set G × G; (iii) A mapping, sign, from the set Γ to the set {-1, 1}, defining the sign of the interactions; (iv) A set T = {t g,g } (g,g )∈Γ of sets of thresholds associated with Γ, where, for all (g, g ) ∈ Γ, t g,g is a subset of the set of strictly positive integers, which fulfills the following condition: for all g ∈ G, there exists a strictly positive integer k g such that:

(g,g )∈Γ t g,g = 1, k g .

We denote by Γ + (resp. Γ -) the subset of Γ defined as follows: (g, g ) ∈ Γ + (resp. (g, g ) ∈ Γ -) if and only if sign((g, g )) = 1 (resp. sign((g, g )) = -1). For all g of G, we denote by R g the subset of G defined as follows: g ∈ R g if and only if (g , g) ∈ Γ.

In Definition 1, each element (g, g ) of Γ represents a regulatory interaction, either positive if sign((g, g )) = 1 or negative if sign((g, g )) = -1. We thus discard cases of dual interactions. The elements of Γ + (resp. Γ -) are the positive (resp. negative) interactions of the regulatory graph, whereas the elements of R g represent the regulators of component g. Note that we account for cases where a regulatory interaction (g, g ) has multiple thresholds (that is to say that when the set t g,g has more than one element).

Example 1. Let us illustrate the definition of a regulatory graph on our case study (Figure 1). Following Definition 1, its regulatory graph (G, Γ, sign, T ) is described as follows:

p53 M c M n +2 -1 +1 -1 (a)
Valuation of the logical parameters (i) the set G of regulatory components is defined as: G = {p53, M c , M n };

K M n,{(p53,1),(Mc,0)} 1 0 0 0 K M n,{(p53,0),(Mc,0)} 1 1 0 0 K M n,{(p53,1),(Mc,1)} 1 1 1 0 K M n,{(p53,0),(Mc,1)} 1 1 1 1,0 Attractors [001] [001]
(ii) the set Γ of regulatory interactions is defined as:

Γ = {(p53, M c ), (M c , M n ), (p53, M n ), (M n , p53)};
(iii) the mapping, sign, from the set Γ to the set {-1, 1} is defined as:

sign((p53, M c )) = 1, sign((M c , M n )) = 1,
sign((p53, M n )) = -1, and sign((M n , p53)) = -1;

(iv) the set T = {t p53,Mc , t Mc,Mn , t p53,Mn , t Mn,p53 } of sets of thresholds is defined as:

t p53,Mc = {2}, t
Mc,Mn = {1}, t p53,Mn = {1}, and t Mn,p53 = {1}.

To specify a logical regulatory graph, one has to define a regulatory graph (G, Γ, sign, T ), and associate to each component g ∈ G:

(i) a multivalued discrete variable X g ∈ 0, max(X g ) (a Boolean one if X g = 1) and; (ii) a logical rule defining the target value of the component at each state.

A logical rule can be specified using either a logical function, or logical parameters. In this work, we choose to specify logical rules using logical parameters ( [START_REF] Thomas | Biological Feedback[END_REF][START_REF] Snoussi | Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach[END_REF]). More precisely, to each component is associated a set of logical parameters, each corresponding to a combination of values of its regulators (see Table 1 for an example). The value of a logical parameter defines the target value of the component for the corresponding combination ( [START_REF] Thomas | Regulatory networks seen as asynchronous automata: A logical description[END_REF][START_REF] Thieffry | The modularity of biological regulatory networks[END_REF]). At each state, the state successor(s) are determined from the target values of the components and the chosen updating scheme (e.g., asynchronous, synchronous), thereby defining the dynamics of the model. More formally, we define the logical parameters of a component g as follows:

Definition 2. Let (G, Γ, sign, T ) be a regulatory graph and g a component of G. The set K g of the logical parameters associated with g is defined as follows:

K g = {K g,α | α ∈ Ω g }
where Ω g is the set of all the combinations of values of the regulators of g, defined as follows:

Ω g = g ∈Rg {(g , l g ) | l g ∈ {0 ∪ t g,g }}
The set V g of the valuations of the logical parameters associated with a component g is defined as follows:

V g = α∈Ωg {(K g,α , l α ) | l α ∈ 0, max(X g ) }
For all L ∈ V g and all (K g,α , l α ) ∈ L, l α will be called the value of the logical parameter K g,α .

In Definition 2, a logical parameter K g,α ∈ K g of component g is defined by a combination α ∈ Ω g of levels l g ∈ {0 ∪ t g,g } of the regulators g of g, where Ω g is the set of all these combinations. A valuation L ∈ V g of the set K g of the logical parameters of g then specifies the discrete target level l α ∈ 0, max(X g ) of g for each context α ∈ Ω g .

Example 2. Consider our case study (Figure 1), and let us focus on component M n . Its regulators are p53 and M c , which interactions on M n are associated with the following sets of thresholds: t p53,Mn = {1} and t Mc,Mn = {1}. The contexts of regulations of M n (i.e. the elements of the set Ω Mn ) are thus:

(i) {(p53, 1), (M c , 0)}, for which p53 level equals its threshold 1, and M c level is 0; (ii) {(p53, 1), (M c , 1)}, for which both levels of p53 and M c equal their threshold 1; (iii) {(p53, 0), (M c , 0)}, for which both levels of p53 and M c equal 0;

(iv) {(p53, 0), (M c , 1)}, for which p53 level is 0, and M c level equals 1.

Following Definition 2, the set K Mn of the logical parameters of M n is:

K Mn = {K Mn,{(p53,1),(Mc,0)} , K Mn,{(p53,1),(Mc,1)} , K Mn,{(p53,0),(Mc,0)} , K Mn,{(p53,0),(Mc,1)} }.

Partial order and class of logical models associated to a regulatory graph

Let us now assume that a regulatory graph has been defined. To be consistent with this graph, relative values of the logical parameters of a component should be constrained by the sign of the incoming interactions. For example, let us focus on the logical parameters of M n of our case study. The value of K Mn,{(p53,0),(Mc,1)} for which the level of the inhibitor p53 equals to 1 and of the activator M c equals to 0 should be higher that the one of K Mn,{(p53,0),(Mc,0)} , K Mn,{(p53,1),(Mc,1)} , and K Mn,{(p53,1),(Mc,0)} , for which either the level of the activator has been decreased or the level of the inhibitor has been increased. On the contrary, other pairs of logical parameters will not be comparable, as for example K Mn,{(p53,0),(Mc,0)} and K Mn,{(p53,1),(Mc,1)} . We thus see that the sign of the incoming interactions of a component induces a partial order in the set of the logical parameters associated to this component.

More formally, given a regulatory graph, the set K g of the logical parameters of component g can be equipped with a partial order K defined as follows.

Definition 3. Let (G, Γ, sign, T ) be a regulatory graph. Let g be a component of G, and K g the set of the logical parameters associated with g. We define the partially ordered set (K g , K ) as follows: let K g,α and K g,α be two elements of K g where: α = {(g , l g )} g ∈Rg and α = {(g , l g )} g ∈Rg , with (l g , l g ) ∈ {0 ∪ t g ,g } 2 for all g ∈ R g . Then K g,α K K g,α if and only if the following conditions hold: (i) for all g ∈ R g such that (g , g) ∈ Γ + , we have: l g ≤ l g ;

K p53,{(Mn,1)} K p53,{(Mn,0)} (a) K Mc,{(p53,0)} K Mc,{(p53,1)} (b) K Mn,{(p53,
(ii) for all g ∈ R g such that (g , g) ∈ Γ -, we have: l g ≥ l g .

According to Definition 3, the logical parameter K g,α is smaller than the logical parameter K g,α in the partially ordered set (K g , K ) of the logical parameters associated to component g (i.e. K g,α K K g,α ), if and only if:

(i) the level of each activator of g is lower in α than in α (condition (i));

(ii) the level of each inhibitor of g is higher in α than in α (condition (ii)).

Of note such a way to structure the set of the logical parameters has been previously considered in [START_REF] Thieffry | The modularity of biological regulatory networks[END_REF]. The elements of a partially ordered set can be graphically represented by a so-called Hasse diagram [START_REF] Birkhoff | Lattice theory[END_REF], where nodes represent logical parameters and edges represent the partial order relations. In the Hasse diagram, two logical parameters are said to be comparable if there exists an all ascending or an all descending path between the nodes representing these parameters (see Figure 2 for an example).

Example 3. Let us consider our case study (Figure 1). Following Definition 3, the partially ordered sets (K p53 , K ), (K Mc , K ) and (K Mn , K ) of the logical parameters are represented in the Hasse diagrams shown in Figure 2.

Let us focus on the logical parameters K Mn,α and K Mn,α , associated to M n , for which:

α = {(p53, 1), (M c , 0)} and α = {(p53, 0), (M c , 1)}.
The level of the activator of M n , M c , is smaller in α than in α , while the level of the inhibitor of M n , p53, is higher in α than in α . Thus K Mn,α and K Mn,α are comparable and we have K Mn,α K K Mn,α . However, in the case where: α = {(p53, 0), (M c , 0)} and α = {(p53, 1), (M c , 1)}, the levels of the activator M c and the inhibitor p53 are both smaller in α. Thus K Mn,α and K Mn,α are not comparable.

Given a regulatory graph, we can then define, from the partial order K , the set V a g of the admissible valuations of the logical parameters associated to a component g as follows.

Definition 4. Let (G, Γ, sign, T ) be a regulatory graph, and g a component of G. The set V a g of the admissible valuations of the logical parameters of g is the subset of V g defined as follows: let L be an element of V g , where:

L = {(K g,α1 , l 1 ), • • • , (K g,αq g , l qg )},
and q g is the number of elements of K g . Then L is an element of V a g if and only if, for all (j, j ) ∈ 1, q g 2 such that K g,αj K K g,α j , we have:

l j ≤ l j .
The condition defining the set V a g in Definition 4 states that if a logical parameter K g,αj is lower than K g,α j , for the partial order K , then its value l j should be lower that the value l j of K g,α j . Of note, the set of the admissible valuations of the logical parameters corresponds to the set of the consistent combinations of logical parameters as defined in [START_REF] Thieffry | The modularity of biological regulatory networks[END_REF], and also to the set of monotone (Boolean or multivalued) logical functions, since a regulator cannot have activator and inhibitor roles on the same target (we discard dual interactions). Note that such constraints do not impede non-functional interactions, and hence do not exclude degenerate logical functions [START_REF] Crama | Boolean Functions: Theory, Algorithms, and Applications[END_REF]. The cardinality of the set of all monotone Boolean functions is known as the Dedekind number [START_REF] Dedekind | Über zerlegungen von zahlen durch ihre grössten gemeinsamen theiler[END_REF], which follows a double exponential growth closely bound to the set of all Boolean functions (2 2 m , where m is the number of regulators). Studying this set of functions would quickly become computationally impossible even for small numbers of m. To circumvent this issue, one can use a method proposed in [START_REF] Cury | Partial order in Boolean functions of gene regulatory networks[END_REF] which exploits a partial order of monotone Boolean functions to locally explore neighbouring functions, from a Boolean function of reference.

Example 4. In our case study, let us consider a valuation of the logical parameters of M n :

L = { K Mn,{(p53,1),(Mc,0)} , l 1 , K Mn,{(p53,1),(Mc,1)} , l 2 , K Mn,{(p53,0),(Mc,0)} , l 3 , K Mn,{(p53,0),(Mc,1)} , l 4 }.
where the values l 1 , l 2 , l 3 , and l 4 equal to 0 or 1. The logical parameters of the partially ordered set (K Mn , K ) are ordered as follows: 2(c)). Therefore, following Definition 4, the valuation L is admissible if and only if:

(i) K Mn,{(p53,1),(Mc,0)} K K Mn,{(p53,1),(Mc,1)} , (ii) K Mn,{(p53,1),(Mc,0)} K K Mn,{(p53,0),(Mc,0)} , (iii) K Mn,{(p53,1),(Mc,1)} K K Mn,{(p53,0),(Mc,1)} , (iv) K Mn,{(p53,0),(Mc,0)} K K Mn,{(p53,0),(Mc,1)} , (see Hasse diagram in Figure
Truth table Logical Regulators Logical functions parameters p53 M c false ¬p53 ∧ M c ¬p53 M c ¬p53 ∨ M c true K Mn,{(p53,0),(Mc,0)} 0 0 0 0 1 0 1 1 K Mn,{(p53,0),(Mc,1)} 0 1 0 1 1 1 1 1 K Mn,{(p53,1),(Mc,0)} 1 0 0 0 0 0 0 1 K Mn,{(p53,1),(Mc,1)} 1 1 0 0 0 1 1 1
Table 1: Truth table for the regulators of Mn in our case study (Figure 1), listing the admissible valuations of the logical parameters of Mn (i.e. the elements of V a Mn ) with the corresponding logical functions. The symbols ¬, ∧ and ∨ denote the logical operators NOT, AND and OR, respectively.

(i) l 1 ≤ l 2 , (ii) l 1 ≤ l 3 , (iii) l 2 ≤ l 4 , and (iv)

l 3 ≤ l 4 .
The set V a Mn of the admissible valuations of the logical parameters of M n is presented in Table 1.

Finally, we define the class of logical models associated with a regulatory graph as follows.

Definition 5. The class of logical models associated with the regulatory graph (G, Γ, sign, T ) is the set of logical models satisfying the following conditions:

(i) their regulatory graph is (G, Γ, sign, T ); (ii) for all components g i ∈ G, the valuation of the logical parameters associated with g i belongs to V a gi .

Logical bifurcation diagrams

In this section, we propose a formal definition of the concept of logical bifurcation diagram, introduced in [START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF] in the logical modeling framework. To introduce the underlying bifurcation parameters, we take advantage of the piecewise linear differential (PWLD) formalism. Indeed: (i) this semi-quantitative modeling framework is such that it can be formally linked to logical modeling framework (as we will see in the following); (ii) its dynamics depends on continuous parameters (contrary to logical modeling which parameters are inherently discrete), which can thus be chosen as bifurcation parameters; (iii) monotonous and continuous changes of each parameter can be mapped to sequences of valuations of logical parameters (as we will see in the following).

A logical bifurcation diagram would then correspond to a sequence of valuations of the logical parameters (with their associated set of attractors) which can be mapped to a change of at least one bifurcation parameter.

More precisely, we first associate a class PWLD models with a regulatory graph (G, Γ, sign, T ). Roughly speaking, each component g i ∈ G is associated with a non-negative variable x i describing the level of g i , a basal constant a i and a degradation rate d i , while each interaction (g i , g j ) ∈ Γ of the regulatory graph is associated with a set of step functions of magnitude k l ij with l ∈ t gi,gj (either increasing or decreasing functions depending on the sign of the interaction), the order between the thresholds of the step functions being consistent with the order between the thresholds of the regulatory graph. The differential equation describing the evolution of x i is built by summing the step functions associated with the incoming interactions on g i . Details about the construction of this class of models can be found in Appendix A.1.

We then map this class of PWLD models to the class of logical models associated to (G, Γ, sign, T ). More precisely, the i th coordinates of a so-called focal function (i.e. the elements of the set denoted F i ) are mapped to the logical parameters of component g i (i.e. the elements of K gi ), and a relative position of these i th coordinates with respect to the thresholds (i.e. an element of the set denoted P i ) is mapped to an admissible valuation of the logical parameters of g i (i.e. an element of V a gi ), thereby mapping each model of the class of PWLD models to a specific model of the corresponding class of logical models. Briefly speaking, the focal function describes the values towards which the variables x i tend according to the relative positions of x i with the thresholds. A qualitative description of the dynamics of a PWLD model, called state transition graph, can be deduced from the positionings of the coordinates of the focal function. We show that the image of the state transition graph of a PWLD model is the asynchronous state transition graph of the image of the PWLD model by the mapping. Details on the definition of the pertinent objects to consider in the class of PWLD models for the mappings (focal function, positioning of the coordinates of the focal function, partial order, state transition graph) can be found in Appendix A. Details on the mapping between the two classes of models, and the link between their dynamics can be found in Appendix B. A logical bifurcation diagram would then correspond to a sequence of valuations of the logical parameters (with their associated set of attractors) consistent with at least one bifurcation diagram of the class of PWLD models. Of note a given set of attractors can correspond to distinct valuations of the logical parameters. Table 2 summarizes the correspondences between the class of logical models and the class of PWLD models, associated with a regulatory graph.

Let us now define the type of bifurcation analysis in PWLD models that we consider in our work. Generally speaking, a bifurcation analysis of a differential model is the analysis of the attractors as a function of one (or several) parameters. Here, we restrict our study to bifurcation analysis depending on one parameter, called bifurcation parameter, and focus on the attractors of the state transition graph of a PWLD model. A bifurcation diagram of a PWLD model then corresponds to the sequence of attractors in the state transition graph of the system upon monotonous (i.e. increasing or decreasing) and continuous variation of one bifurcation parameter. Note that the state transition graph depends on the positioning of the coordinates of the focal function (i.e. on the sets P i ), and not on the precise values of the parameters of the PWLD model. What matters then is to understand how the positioning of the coordinates of 

Logical models PWLD models Components {g1, g2, • • • , gn} Variables (Xg i ) 1≤i≤n ∈ n i=1 0, max(Xg i ) (xi) 1≤i≤n ∈ (R + ) n Thresholds tg i,gj ⊆ 1, max(Xg i ) θ l ij l∈tg i,gj ∈ (R + ) |tg i,gj | Interactions / Step functions (gi, gj) ∈ Γ, sign((gi, gj)) ∈ {-1, 1} s sign((gi,gj )) ( . , θ l ij ) l∈tg i,gj ∈ (R + → {0, 1}) |tg i,gj | Logical parameters/ (Kg 1 , • • • , Kg n ) (F1, • • • , Fn) Coordinates of the focal function Valuations of logical parameters/ Positioning of the coordinates V a g1 , • • • , V a gn (P1, • • • , Pn) of the
G = {g 1 , g 2 , • • • , gn} and T = {tg i ,g j } (g i ,g j )∈Γ (Definition 1)
. |tg i ,g j | denotes the number of elements of the set tg i ,g j . More details on the definitions related to the class of PWLD models can be found in Appendix A.

the focal function varies when changing the value of the bifurcation parameter.

Actually, the evolution of these positionings is restricted by constraints on the relative positions between the coordinates of the focal function. Part of these constraints can be formalized in the frame of a partial order F on the sets of these coordinates (i.e. on the sets F i ) (see Appendix A.4). More formally, given a component g i , the set P pwl bdi of the sequences of positionings of the i th coordinates of the focal function upon monotonous and continuous change of a bifurcation parameter is defined as follows. Definition 6. Let (G, Γ, sign, T ) be a regulatory graph, and let us consider the class of PWLD models associated with (G, Γ, sign, T ). Let g i be a component of G, and P i the set of the positionings of the i th coordinates of the focal function for the class of PWLD models.

We define the set P pwl bdi ⊆ P i as follows: let (P j ) 0≤j≤k be an element of P i where:

P j = { (f 1 , F 1 ) , l j 1 , • • • , (f qi , F qi ) , l j qi }, with q i = |F i |, ((f 1 , F 1 ), • • • , (f qi , F qi )) ∈ F qi i , and (l j 1 , • • • , l j qi ) ∈ 0, max(X gi
) qi for all j ∈ 0, k , such that for all j ∈ 0, k-1 , there exists m ∈ 1, q i satisfying l j m = l j+1 m . Then (P j ) 0≤j≤k ∈ P pwl bdi if and only if there exist:

(i) a parameter p l ;

(ii) a set Θ 0 i of threshold values of the outgoing interactions of g i ; (iii) a set p \ p 0 l of values of all the parameters except p l ; (iv) two values p in l and p f in l of the parameter p l ; such that, there exists a continuous and monotonous function γ from the set [0, 1]

to the set p in l , p f in l satisfying γ(0) = p in l and γ(1) = p f in l , and a subdivision

t 0 < t 1 < • • • < t k-1 of [0, 1] such that: (i) (h m i ([0, t 0 [)) 1≤m≤qi = l 0 m 1≤m≤qi , (ii) (h m i (]t j-1 , t j [)) 1≤m≤qi = l j m 1≤m≤qi for all integers j between 1 and k-1, (iii) (h m i (]t k-1 , +∞[)) 1≤m≤qi = l k m 1≤m≤qi ,
where h m i is the function from the set [0, 1] to the set 0, max(X gi ) defined, for all integers m between 1 and q i , as follows:

h m i : [0, 1] → 0, max(X gi ) t → α Θ 0 i R f m γ(t), p \ p 0 l ,
where α

Θ 0 i R is a mapping from the set R + to the set 0, max(X gi ) , defined in Appendix A.2.
Following Definition 6, a sequence (P 0 , P 1 , • • • , P k ) belongs to the set P pwl bdi if there exists a parameter p l and a continuous and monotonous change of p l , from an initial value p in l to a final value p f in l , such that the evolution of the relative position l j 1 , ..., l j qi of the i th coordinates (f 1 , F 1 ), ..., (f qi , F qi ) of the focal function with respect to the thresholds Θ 0 i , upon the change of p l , is the sequence (P 0 , P 1 , • • • , P k ), for all integers j from 1 to k. Note that we discard sequences containing identical successive valuations of the logical parameters in the definition of the set P pwl bdi . Then using the mappings Ψ i introduced in Appendix B, we can associate to each positioning of the coordinates of the focal function a valuation of the logical parameters (and thus a logical model) in the corresponding class of logical models. Given a component g i , a logical bifurcation diagram should now be a sequence of valuations of the logical parameters of g i (with its associated sets of attractors) which corresponds to at least one bifurcation diagram in the corresponding class of PWLD models (i.e. one element of the set P pwl bdi ). More formally, these sequences of valuations of logical parameters are defined by the set P log bdg i of sequences of elements of V a gi , as follows.

Definition 7. Let (G, Γ, sign, T ) be a regulatory graph, and g i a component of G.

We define the set P log bdg i ⊆ (V a gi ) as follows: (L j ) 0≤j≤k ∈ P log bdg i if and only if:

Ψ -1 i (L j ) 0≤j≤k ∈ P pwl bdi .
In Definition 7, the sequence (L 0 , L 1 , • • • , L k ) of valuations of the logical parameters of a component g i belongs to the set P log bdg i if and only if the sequence where, for all integers j between 0 and k:

Ψ -1 i (L 0 ), Ψ -1 i (L 1 ), • • • , Ψ -1 i (L k ) of
L j = {(K gi,α1 , l j 1 ), • • • , (K gi,αq g i , l j qg i )}.
Then, the following condition holds:

(i) either, for all r ∈ 1, q gi and for all j ∈ 0, k -1 :

l j+1 r -l j r = 0 or l j+1 r -l j r = 1; (ii)
or, for all r ∈ 1, q gi and for all j ∈ 0, k -1 :

l j+1 r -l j r = 0 or l j+1 r -l j r = -1.
The proof of this property is detailed in Appendix D. In Property 1, the condition states that the values l j r of the logical parameters K gi,αr either all increase (statement (i)), or all decrease (statement (ii)), along a sequence (L j ) 0≤j≤k of the set P log bdg i (which results from the monotonic variation of the coordinates of the focal function upon a change of a bifurcation parameter), and that this change cannot exceed 1 (which results from the continuous variation of the coordinates of the focal function upon a change of a bifurcation parameter).

Studying the whole set P log bdg i would quickly become computationally intractable even for small numbers of regulators of component g i . Instead, starting from a given valuation of the logical parameters, one could explore the logical bifurcation diagrams of given length around this valuation, or determine one possible logical bifurcation diagram of maximum length. In the following, we focus on the determination of one possible logical bifurcation diagram of maximum length.

To do so, we first exploit the constraints imposed by the partial order F on the relative position of the coordinates of the focal function, upon a continuous and monotonous change of a bifurcation parameter, to determine necessary conditions for a sequence of valuations of the logical parameters of a component g i to belong to the set P log bdg i . These constraints can actually be transfered on the partial order K operating in the sets of the logical parameters (see Section 3.2), as it is the partial order induced by the mappings Ψ i from the partial order

F (see Appendix B).
The following property provides necessary conditions, accounting for the partial order K , on the elements of P log bdg i , in the case where the values of the logical parameters increase along a sequence (the other case where the values of the logical parameters decrease can be treated similarly). Property 2. Let (G, Γ, sign, T ) be a regulatory graph, and g i a component of G. Let (L j ) 0≤j≤k be an element of P log bdg i where, for all integers j between 0 and k:

L j = {(K gi,α1 , l j 1 ), • • • , (K gi,αq g i , l j qg i )},
such that, for all j ∈ 0, k -1 and for all r ∈ 1, q gi , we have l j r ≤ l j+1 r . Let, for all m ∈ 0, max( (gi,g )∈Γ t gi,g ) , K j,m gi be the subset of K gi for which, for all j ∈ 0, k -1 and for all r ∈ 1, q gi , K gi,αr ∈ K j,m gi if and only if

380 l j r = m. Let K j,m,up
gi be the subset of K gi defined, for all integers m from 0 to max( (gi,g )∈Γ t gi,g )-1, as follows:

K j,m,up gi = {K ∈ K gi | l j+1 i > l j
i , l j i = m}, and K j,up gi the union of these sets K j,m,up gi for all the integers m from 0 to max( (gi,g )∈Γ t gi,g ) -1:

K j,up gi = m∈ 0,max( (g i ,g )∈Γ t g i ,g )-1 K j,m,up gi .
We define the partially ordered sets (K gi , j K ), for all integers j between 0 and k -1, as follows:

(i) (K gi , 0 K )=(K gi , K ); (ii) for all (K, K ) / ∈ K j,up
gi , we have:

K j K K =⇒ K j+1 K K ;
(iii) for all m ∈ 0, max( (gi,g )∈Γ t gi,g ) -1 , for all (K, K ) ∈ K j,m,up gi , we have:

K j+1 K K and K j+1 K K;
(iv) for all m ∈ 0, max( (gi,g )∈Γ t gi,g ) -1 , for all K ∈ K j,m,up gi , and for all K ∈ K j,m gi ∩ K j,up gi , we have:

K j+1 K K.
Let M j m be the set of the maximal elements of the partially ordered set (K j,m gi , j K ), for all j ∈ 0, k -1 and for all m ∈ 0, max( (gi,g )∈Γ t gi,g ) -1 , and M j the union of these sets M j m for all m ∈ 0, max( (gi,g )∈Γ t gi,g ) -1 , for all j ∈ 0, k -1 :

M j = m∈ 0,max( (g i ,g )∈Γ t g i ,g )-1 M j m .
Then, we have, for all integers j from 0 to k -1:

K j,up gi ⊆ M j .
The proof of this property is detailed in Appendix D. In Property 2, the partial ordered sets (K gi , j K ) are defined by induction on j, starting from the partial order K . After each transition from the valuation L j to the valuation L j+1 along the sequence, the partial order j K is updated to record the new constraints on the order between the logical parameters appearing after this transition. The condition of the property imposes that the set K j,up gi of the logical parameters whose value increases from L j to L j+1 has to belong to the set of the maximal elements M j of the partially ordered sets (K j,m gi , j K ), for all integers j between 0 and k -1. The other case where the values of the logical parameters decrease can be treated similarly by considering the sets of the logical parameters whose values decrease along a sequence, adapting consequently the inequalities in the updating of the partial orders, and considering the sets of the minimal elements of the partially ordered sets.

As explained above, Property 2 defines necessary conditions accounting for constraints imposed by the partial order K but not sufficient ones, regarding the elements of the set P log bdg i . To illustrate the additional constraints we have to account for, let us consider the following example 5.

Example 5. We focus on the case of a regulatory graph which contains a Boolean component g i regulated by three activators g 1 , g 2 and g 3 , which sets of thresholds are t g1,gi = t g2,gi = t g3,gi = {1}.

Let us consider the class of logical models associated to the regulatory graph. We start from the valuation: L 0 = {0, 0, 0, 0, 0, 0, 0, 1} of the logical parameters associated to component g i , where the logical parameters are ordered as follows:

(i) K gi,{(g1,0),(g2,0),(g3,0)} , (ii) K gi,{(g1,1),(g2,0),(g3,0)} , (iii) K gi,{(g1,0),(g2,1),(g3,0)} , (iv) K gi,{(g1,0),(g2,0),(g3,1)} , (v) K gi,{(g1,1),(g2,1),(g3,0)} , (vi) K gi,{(g1,1),(g2,0),(g3,1)} , (vii) K gi,{(g1,0),(g2,1),(g3,1)} , (viii) K gi,{(g1,1),(g2,1),(g3,1)} .

Let K 0 g i be the set of logical parameters whose value in L 0 is 0. The maximal elements of the partially ordered set (K 0 g i , K ) (whose Hasse diagram is shown in Figure 3) are: K gi,{(g1,1),(g2,1),(g3,0)} , K gi,{(g1,1),(g2,0),(g3,1)} and K gi,{(g1,0),(g2,1),(g3,1)} .

The set of successors of the valuation L 0 , authorized by Property 2, are thus:

(i) {0, 0, 0, 0, 1, 0, 0, 1}, (ii) {0, 0, 0, 0, 0, 1, 0, 1}, (iii) {0, 0, 0, 0, 0, 0, 1, 1}, (iv) {0, 0, 0, 0, 1, 1, 0, 1}, (v) {0, 0, 0, 0, 1, 0, 1, 1}, (vi) {0, 0, 0, 0, 0, 1, 1, 1}, 425 (vii) {0, 0, 0, 0, 1, 1, 1, 1}.

Let us choose as a successor of L 0 the valuation L 1 = {0, 0, 0, 0, 1, 0, 0, 1}.

Following Property 2, the partial order 0 K = K is updated to the partial order 1 K to account for the additional constraints appearing with the transition L 0 -→ L 1 , that is to say that:

(i) K gi,{(g1,1),(g2,0),(g3,1)} 1 K K gi,{(g1,1),(g2,1),(g3,0)} , (ii) K gi,{(g1,0),(g2,1),(g3,1)} 1 K K gi,{(g1,1),(g2,1),(g3,0)} . Now let us consider the corresponding constraints between the i th coordinates of the focal function, via the mapping χ i (Appendix B.1), in the class of PWLD models associated to the regulatory graph:

(i) k 1 1i + k 1 3i < k 1 1i + k 1 2i (ii) k 1 2i + k 1 3i < k 1 1i + k 1 2i holding for all (k 1 1i , k 1 2i , k 1 3i ) ∈ (R + ) 3 .
It follows after simplification that the following inequalities hold, for all

(k 1 1i , k 1 2i , k 1 3i ) ∈ (R + ) 3 : (i) k 1 3i < k 1 2i (ii) k 1 3i < k 1 1i
that is to say that:

(i) χ -1 i (K gi,{(g1,0),(g2,0),(g3,1)} ) 1 (p) < χ -1 i (K gi,{(g1,0),(g2,1),(g3,0)} ) 1 (p) (ii) χ -1 i (K gi,{(g1,0),(g2,0),(g3,1)} ) 1 (p) < χ -1 i (K gi,{(g1,1
),(g2,0),(g3,0)} ) 1 (p) for all values of the parameter vector p, and thus all along any bifurcation sequence. These last inequalities forbid that the value K gi,{(g1,0),(g2,0),(g3,1)} increases before the value of K gi,{(g1,1),(g2,0),(g3,0)} and K gi,{(g1,0),(g2,1),(g3,0)} along a sequence of valuations belonging to P log bdg i . It can then be showed that there exists, from L 1 , sequences of valuations respecting Property 2 but which violate this constraint, for example sequences containing the following transition: {0, 0, 0, 0, 1, 1, 1, 1} → {0, 0, 0, 1, 1, 1, 1, 1}.

From this example, we see that additional constraints appear from the fact that the coordinates of the focal function are not independent. The following property gives a characterization of the set P log bdgi , accounting for the dependencies between the coordinates of the focal function, in the case where X g i is Boolean (i.e. max(X g i ) = 1) and where the values of the logical parameters increase along a sequence (the other case where the values of the logical parameters decrease can be treated similarly).

Property 3. Let (G, Γ, sign, T ) be a regulatory graph, and g i a component of G. We assume that max(X g i ) = 1 (Boolean case). Let (L j ) 0≤j≤k be an element of (V a gi ) , where, for all integers j between 0 and k:

L j = {(K gi,α1 , l j 1 ), • • • , (K gi,αq g i , l j qg i )},
such that, the following conditions hold, for all integers j from 0 to k -1:

K g i ,{(g 1 ,0),(g 2 ,0),(g 3 ,0)} Figure 3:
Hasse diagram of the partially ordered set (K 0 g i , K ), where K 0 g i is the set of the logical parameters whose value in L 0 is 0, in the case of Example 5.

(i) for all r ∈ 1, q gi , we have l j r ≤ l j+1 r , and

(ii) K j,up gi ⊆ M j ,
where the sets K j,up gi and M j are defined in Property 2. We define the subset C j of the set (R + ) |DF p |-n × (R + ) n , where |DF p | denotes the number of all the parameters except the thresholds, as follows, for all 460 integers j between 0 and k:

(i) p ∈ C 0 , if and only if, for all (r, r ) ∈ 1, q gi 2 such that l 0 r = 0 and l 0 r = 1, we have:

χ -1 i (K gi,αr ) 1 (p) < χ -1 i (K gi,α r ) 1 (p); (ii) p ∈ C j ,
for all integers j between 1 and k, if and only if:

-for all (r, r ) ∈ 1, q gi 2 such that l j-1 r < l j r and l j r = 0, we have:

χ -1 i (K gi,α r ) 1 (p) < χ -1 i (K gi,αr ) 1 (p);
-for all (r, r ) ∈ 1, q gi 2 such that l j-1 r < l j r and l j-1 r < l j r , we have:

χ -1 i (K gi,αr ) 1 (p) = χ -1 i (K gi,α r ) 1 (p);
and the set C as the intersection between the sets C j for all integers j between 0 and k:

C = k j=0 C j . Then, (L j ) 0≤j≤k ∈ P log bdg i if and only if C = ∅.
The proof of this property is detailed in Appendix D. In Property 3, the characterization of the set P log bdg i relies on the existence of a solution of a system 465 C of equalities and inequalities involving the i th coordinates χ -1 i (K gi,αr ) of the focal function. Roughly speaking, this system gathers the constraints on these coordinates appearing along a sequence (L 0 , L 1 , • • • , L k ) which already satisfies the necessary conditions stated in Property 2, that is to say that:

-the constraints C 0 at the initial valuation L 0 (condition (i)); -the constraints C j appearing at each transition (L j-1 , L j ), for all integers j from 1 to k (condition (ii)); imposing, at each step j of the sequence, an order between the χ -1 i (K gi,αr ) which relative positions with the threshold are different. Briefly speaking, proof of Property 3 relies on the fact that the order between the i th coordinates of the focal function which depend on a particular parameter does not change upon a variation of this parameter (Lemma 1 in Appendix D). The case where the values of the logical parameters decrease along a sequence can be treated similarly.

Based on Properties 2 and 3, we propose a procedure to incrementally construct a logical bifurcation diagram of maximum length associated to a component g i , starting from an initial valuation of the logical parameters, in the case where max(X gi ) = 1 (Boolean case). The full procedure is detailed in Appendix E. A generic Java implementation for the multilevel case, accounting for the necessary conditions stated in Property 2, is made publicly available (see section Availability). The core of the procedure is described in Algorithm 1 which computes a valid successor L k+1 (parentFunc), if it exists, of an element

(L 0 , L 1 , • • • , L k ) of P log bdgi , that is to say that a valuation L k+1 such that (L 0 , L 1 , • • • , L k , L k+1 ) ∈ P log bdgi .
The main steps of Algorithm 1 are described as follows:

(i) the input depGraph of the algorithm represents the updated partially ordered set (K g i , k K ) accounting for the accumulated constraints on the logical parameters along the sequence (L 0 , L 1 , • • • , L k ), whereas the input func represents the valuation L k of the logical parameters of component g i ;

(ii) in line 4, the algorithm iterates over each logical parameter lp, discarding those whose value lp.state already reached their maximum lp.max (lines 5 to 7); (iii) in line 8, given a logical parameter lp, the set of its immediate parents lpNeighborList in the partially ordered set depGraph is obtained. If none of the parents equals to the value of lp in func (lines 10 to 15) (i.e., lp belongs to the set of the maximal elements M j ), then lp is added to the list changeLPCand of the logical parameters whose value can increase (lines 16 to 18). Of note the computation of the immediate parents/childrens of a logical parameter is inspired by the computation of immediate parents/childens of a Boolean function in Cury et al. -the logical parameters which are equal in the partially ordered set dep-Graph are picked together in the selected combination lpComb (see Algorithm 3 in Appendix E for more details on the function isValidLPSet)

(lines 22 to 24); -the selected combination satisfies Property 3 (lines 25 to 27); (vi) finally, the value of each logical parameter of the selected combination is increased to generate the successor parentFunc of func (lines 29 to 32).

Application

We consider our case study of the model of the core of the p53-Mdm2 network proposed in [START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF], described in Section 2, and focus on the analysis of the logical bifurcation diagrams associated with the component M n , using our methodology described in the previous section. Table 1 in Section 3.2 lists the logical parameters of M n , and their admissible valuations in the class of logical models associated to the regulatory graph (Figure 1(a)). For illustration, we selected three logical bifurcation diagrams, with distinct sequences of attractors, corresponding to the three sequences of valuations of the logical parameters indi- In each case, we start from an initial valuation where the values of all the logical parameters are equal to 1, for which the model shows the unique stable state 001, and ends at the valuation where all the logical parameters are equal to 0, for which the model shows the unique stable state 210. Starting from the valuation L 0 = {1, 1, 1, 1}, the set of the parameters whose value equals 1 in L 0 is K Mn , that is to say that:

{K Mn,{(p53,1),(Mc,0)} , K Mn,{(p53,1),(Mc,1)} , K Mn,{(p53,0),(Mc,0)} , K Mn,{(p53,0),(Mc,1)} }.
Therefore, the set of its minimal elements, ordered by K , is {K Mn,{(p53,1),(Mc,0)} } (see Figure 2(c)). Following the necessary conditions stated in Property 2, the only admissible successor of L 0 is then:

L 1 = {0, 1, 1, 1},
for which the value of K Mn,{(p53,1),(Mc,0)} has been decreased, leading to the transition L 0 -→ L 1 , with no updating of the partial order K . Focusing on L 1 , the set of the minimal elements of the set of the parameters whose value equals 1 in L 1 , ordered by K , is: respectively. In L 2 (resp. L 3 ), the set of the minimal elements of the set of the parameters whose value equals to 1, ordered by the updated partial order, is K Mn,{(p53,0),(Mc,0)} (resp. K Mn,{(p53,1),(Mc,1)} ), leading to the transition L 2 -→ L 4 (resp. L 3 -→ L 4 ), with no updating of K . Finally, the only successor of L 4 is {0, 0, 0, 0}, as there is only one parameter whose value equals to 1 in L 4 . It can then be checked that each of these sequences of valuations respects Property 3, thereby proving that these sequences are logical bifurcation diagrams. Focusing on the attractors shown in the bifurcation diagram in green in Figure 4(a), the system is characterized by a cyclic attractor, with high amplitude oscillations of p53, for the valuation L 2 = {0, 0, 1, 1} of the logical parameters. In contrast, in the diagram displayed in red, the system shows instead a bistable behavior, with the coexistence of two stable states (001 and 210), for the valuation L 3 = {0, 1, 0, 1}. Finally, in the sequence displayed in blue, the system jumps from a monostable behavior to another one, without showing any oscillatory or bistable behavior. As an example, the state transition graphs representing the dynamics corresponding to the sequence showing bistability are described in Figure 9 in Appendix C.

Conclusion

We have proposed a formalization of the concept of logical bifurcation diagrams, an analog of ODE bifurcation diagrams for the logical modeling framework, introduced in [START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF]. Moreover, necessary conditions on a sequence of logical parameters valuations to be a logical bifurcation diagrams in the general case, as well as a characterization of these diagrams in the Boolean case, exploiting a partial order between the logical parameters, are provided. We have also designed a procedure to determine one logical bifurcation diagram of maximum length, starting from an initial valuation of the logical parameters, in the case where the component is Boolean. We have illustrated our methodology to the bifurcation analysis of a model of the core network of the p53-Mdm2 network proposed in [START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF], focusing on the case where p53 first activates nuclear Mdm2. Notably, this analysis allowed to recover the two bifurcation diagrams described in [START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF], one showing a bistable behavior, the other displaying an oscillatory regime.

Interestingly, our study shows that an additional bifurcation diagram can occur, in which none of these behaviors appears.

It is worth recalling that Property 3 only applies to the case where the component of a logical bifurcation diagram is Boolean. To cope with this limitation, we plan to generalize this property characterizing logical bifurcation diagrams to the multilevel case. Moreover, details on how to implement Property 3 in the designed procedure is still lacking. This property relies on the existence of a solution of a system of equalities and inequalities. One could for example, adapt the Fourier-Motzkin algorithm to this specific problem in order to determine whether a solution of such system exists [START_REF] Kroening | Decision procedures[END_REF]. Apart from the determination of one logical bifurcation diagram of maximum length, our methodology could be also used to explore logical bifurcation diagrams of a given length around an initial valuation of the logical parameters, thereby providing a rational way to assess the sensitivity of an attractor to parameter changes. Another prospect of this work would be to extend the proposed definition of logical bifurcation diagrams to changes of more than one bifurcation parameter in the corresponding class of PWLD models, for example by adapting the approach described in [START_REF] Cummins | Dsgrn: Examining the dynamics of families of logical models[END_REF] to our methodology. Finally, it is known that the functionality of circuits plays a crucial role in the dynamics of regulatory networks [START_REF] Comet | On circuit functionality in Boolean networks[END_REF]. A future prospect would be to use our methodology to study the functionality of a circuit along logical bifurcation diagrams.

where:

f i (x) = a i + gj ∈Rg i l∈tg j ,g i s(x j , θ l ji ),
for all integers i from 1 to n.

We denote by DF p the set of all the parameters except the thresholds, that is to say that:

DF p = {k l ji , a i , d i | ∀i ∈ 1, n , ∀(g j , g i ) ∈ Γ, ∀l ∈ t gj ,gi }.
Note that the step functions are not defined at the thresholds (i.e. for Definition 8). Moreover, we opted here for summing the step functions in the differential system describing the evolution of the class of PWLD models (statement (iii) in Definition 8). Such a way to define a class of PWLD models associated to a regulatory graph has also been considered in [START_REF] Cummins | Dsgrn: Examining the dynamics of families of logical models[END_REF]. Example 6. To illustrate Definition 8, let us consider our case study described in Section 2. Following this definition, the evolution of the class of PWLD models associated with the regulatory graph of our case study (Figure 1) is described by the following piecewise linear differential equations:

x i = θ l ij ) (statement (ii) in
             dx 1 dt = a 1 + k 1 31 • s(x 3 , θ 1 31 ) -d 1 • x 1 dx 2 dt = a 2 + k 2 12 • s(x 1 , θ 2 12 ) -d 2 • x 2 dx 3 dt = a 3 + k 1 23 • s(x 2 , θ 1 23 ) + k 1 13 • s(x 1 , θ 1 13 ) -d 3 • x 3
where x 1 , x 2 and x 3 denote the variables associated to the components p53, M c and M n , respectively, and θ 1 13 < θ 2 12 according to the constraints on the definition of the thresholds.

A.2. Mapping of values and states

We introduce the following mapping between the set non-negative real numbers and a finite set of integers. Definition 9. Let p be an integer ≥ 1, and Θ = {θ i } 1≤i≤p be a set of distinct positive real numbers, ranked by increasing order, i.e. θ 1 < θ 2 < • • • < θ p . We define the mapping of values α Θ R from the set R + to the set 0, p as follows.

α Θ R : R + → 0, p x → min{{p} ∪ {k ∈ 0, p -1 , x < θ k+1 }}.
In this mapping, we partition the set of non-negative real numbers into intervals (delimited by the set Θ), and then map each interval to an integer: the interval [0, θ 1 [ is mapped to 0, the interval [θ k , θ k+1 [ is mapped to k, for k from 1 to p -1, and the interval [θ p , +∞[ to p.

From the mapping defined above, we introduce the mapping α Θ s between the set of states (R + ) n and a finite set of integer vectors as follows.

Definition 10. Let (p i ) 1≤i≤n be a vector of integers ≥ 1. Let Θ = {Θ i } 1≤i≤n be a set of sets of distinct positive real numbers, ranked by increasing order. We define the following mapping of states α Θ s between the set (R + ) n and the set n i=1 0, p i as follows:

α Θ s : (R + ) n → n i=1 0, p i (x i ) 1≤i≤n → (α Θ1 R (x 1 ), . . . , α Θn R (x n )).
In this mapping, we partition the state space (R + ) n into a set of domains delimited by Θ, and then map each domain to a vector of integers by applying the mappings of values α Θi R coordinate by coordinate.

A.3. Focal function and state transition graph

We now introduce the focal function of a class of PWLD models associated with a regulatory graph. Definition 11. Let (G, Γ, sign, T ) be a regulatory graph. Let us consider the class of PWLD models associated with (G, Γ, sign, T ). For all i ∈ 1, n , let Θ i = {θ l ji } gj ∈Rg i ,l∈tg j ,g i be the set of thresholds of the step functions associated to the incoming interactions to g i . The focal function Φ of the class of PWLD models is a function from the subset of states n i=1 (R + Θ i ) to the set of vectors of functions (R + ) |DF p |-n × (R + ) n → R + n , defined as follows:

Φ :        n i=1 (R + Θ i ) → (R + ) |DF p |-n × (R + ) n → R + n x → p → a i + gj ∈Rg i l∈tg j ,g i s(x j , θ l ji ) d i 1≤i≤n , where p = (k l ij ) (gi,gj )∈Γ,l∈tg i ,g j , (d i ) 1≤i≤n , (a i ) 1≤i≤n and |DF p | is the number of elements of DF p .
Note that, in Definition 11, we discard the cases where the value of a variable x i is at a threshold since the step functions are not defined at their threshold. The image of x 0 by the focal function, Φ(x 0 ), is a vector of functions defined from the space of parameters (R + ) |DF p|-n × (R + ) n to the set R + . Actually, Φ(x 0 ) defines the point towards which the system tends monotonically, starting from point x 0 , for each vector p 0 = (k l ij 0 ) (gi,gj )∈Γ,l∈tg i ,g j , (d 0 i ) 1≤i≤n , (a 0 i ) 1≤i≤n of parameter values. It is obtained by solving the system of Equations 1 at the stationary states with the initial conditions x 0 , i.e. by solving the following equations, for all integers i between 1 and n, considering the initial condition x 0 : dx i dt = 0, which, from Equations 1, straightforwardly leads to:

Φ i (x 0 )(p 0 ) = a 0 i + gj ∈Rg i l∈tg j ,g i s(x 0j , θ l ji ) d 0 i ,
for all integers i between 1 and n.

Focusing on the i th coordinate of Φ, we see that Φ i (x) only depends on the relative positions of the j th coordinates of x such that g j ∈ R gi , with respect to the set of thresholds {θ l ji } l∈tg j ,g i . More precisely, we can explicit Φ i (x) for all x ∈ n i=1 (R + ) Θ i as follows:

Φ i (x) =(p → a i + (gj ,gi)∈Γ + l∈tg j ,g i ∩ 1,lji k l ji d i + (gj ,gi)∈Γ - l∈tg j ,g i ∩ lji+1,max(tg j ,g i ) k l ji d i ), (2) 
where for all i ∈ 1, n and for all g j ∈ R gi , l ji is defined as follows:

l ji = max{0 ∪ {l ∈ t gj ,gi , θ l ji < x j }}, which can also be expressed as follows:

l ji = max 0, α Θi R (x j ) ∩ {0 ∪ t gj ,gi } .
where Θ i = {θ l ji } gj ∈Rg i ,l∈tg j ,g i and the mappings α Θi R have been introduced in Definition 9.
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Let us now consider the set of all the functions the i th coordinate of the focal function can take, that is to say that the set of the functions Φ i (x) for all x ∈ n i=1 (R + Θ i ). Before, let us introduce, for all integers i between 1 and n, the mapping β i from the set gj ∈Rg i {0 ∪ t gj ,gi } to the set of subsets of n k=1 (R + Θ k ), defined as follows:

β i : gj ∈Rg i {0 ∪ t gj ,gi } → ℘ ( n k=1 (R + Θ k )) l → {x ∈ (R + ) n , γ i (x) = l}.
where γ i is a mapping from the set n k=1 (R + Θ k ) to the set gj ∈Rg i {0∪t gj ,gi }, defined as follows:

γ i :    n k=1 (R + Θ k ) → gj ∈Rg i {0 ∪ t gj ,gi } (x i ) 1≤i≤n → max 0, α Θi R (x j ) ∩ {0 ∪ t gj ,gi } gj ∈Rg i .
In the mapping γ i , we partition the state space (R + ) n in a set of subspaces delimited by the set Θ i of thresholds and then map each of these subspaces (from which we discard the thresholds) to an integer point of the set gj ∈Rg i {0∪t gj ,gi } representing the relative positions of the j th coordinates of x for which g j ∈ R gi , with respect to the thresholds {θ l ji } l∈tg j ,g i . Inversely, the mapping β i associates to each integer vector of the set gj ∈Rg i {0 ∪ t gj ,gi } the corresponding subspace as described above.

We can now define the sets F i of the functions the i th coordinate of the focal function Φ can take, for all integers i between 1 and n, using the mappings defined above, as follows.

Definition 12. Let (G, Γ, sign, T ) be a regulatory graph, and let us consider its associated class of PWLD models. Let g i be a component of G. We define the set F i as follows: (x, y) ∈ F i if and only if there exists a vector of integers l = (l ji ) gj ∈Rg i ∈ gj ∈Rg i {0 ∪ t gj ,gi } such that:

(i) x = Φ i β i (l) and, (ii) y = {(g j , l ji )} gj ∈Rg i .
Following Definition 12, each element of the set F i is a couple Φ i β i (l ji ) gj ∈Rg i , {(g j , l ji )} gj ∈Rg i which:

(i) first coordinate is the function Φ i takes in the subspace of states β i (l ji ) gj ∈Rg i ; (ii) second coordinate records the corresponding set of positionings l ji of x j , for all the regulators g j of g i .

The following property holds on the sets F i :

Property 4. Let i ∈ 1, n .
Then, for all ((f, F ), (f, F )) ∈ F 2 i , we have:

F = F ⇐⇒ f = f .
Proof. Let i ∈ 1, n , and (f, F ) and (f, F ) two elements of the set F i where:

-f = Φ i β i (l) , F = {(g j , l ji )} gj ∈Rg i , and -f = Φ i β i (l ) , F = {(g j , l ji )} gj ∈Rg i .
Assume that F = F . Then, l = l . Moreover, by definition of the focal function and of β i , we have:

Φ i (β i (l)) =(p → a i + (gj ,gi)∈Γ + r∈tg j ,g i ∩ 1,lji k r ji d i + (gj ,gi)∈Γ - r∈tg j ,g i ∩ lji+1,max(tg j ,g i ) k r ji d i ),
and:

Φ i (β i (l )) =(p → a i + (gj ,gi)∈Γ + r∈tg j ,g i ∩ 1,l ji k r ji d i + (gj ,gi)∈Γ - r∈tg j ,g i ∩ l ji +1,max(tg j ,g i ) k r ji d i ).
Since k r ji = 0 for all r, j, i (statement (ii) in Definition 8) and (l, l ) ∈ ( gj ∈Ri {0∪ t gj ,gi }) 2 , it follows that Φ i (β i (l)) = Φ i (β i (l )), that is to say that:

f = f .
Assume now that F = F . Then, l = l , and thus β i (l) = β i (l ), that is to say that: f = f , which ends the proof.
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Example 7. For illustration, let us consider the class of PWLD models associated with the regulatory graph of our case study (Figure 1). Following Definition 12, the sets F 1 , F 2 and F 3 (corresponding to the components p53, M c and M n , respectively) are:

F 1 = {f 1 , f 2 }, F 2 = {f 1 , f 2 }, F 3 = {f 1 , f 2 , f 3 , f 4 },
where:

       f 1 = p → a 1 d 1 , {(M n , 1)} , f 2 = p → a 1 + k 1 31 d 1 , {(M n , 0)} ,        f 1 = p → a 2 d 2 , {(p53, 0)} , f 2 = p → a 2 + k 2 12 d 2 , {(p53, 1)} ,
and:

                       f 1 = p → a 3 d 3 , {(p53, 1), (M c , 0)} , f 2 = p → a 3 + k 1 23 d 3 , {(p53, 1), (M c , 1)} , f 3 = p → a 3 + k 1 13 d 3 , {(p53, 0), (M c , 0)} , f 4 = p → a 3 + k 1 13 + k 1 23 d 3 , {(p53, 0), (M c , 1)} .
We next define the sets P i of the positionings of the i th coordinates of the focal function, for all integers i between 1 and n. Definition 13. Let (G, Γ, sign, T ) be a regulatory graph, and let us consider its associated class of PWLD models. Let g i be a component of G, Θ i the set of thresholds of the outgoing interactions from g i , ranked by increasing order, and

775 F i = {(f j , F j )} 1≤j≤qi , where q i = |F i |.
We define the set P i as follows:

{(x j , y j )} 1≤j≤qi ∈ P i if and only if there exists a value p 0 ∈ (R + ) |DF p |-n × (R + ) n of the parameter vector such that, for all j ∈ 1, q i , we have:

(i) x j = (f j , F j ) and, (ii) y j = α Θi R f j (p 0 ) .
In Definition 13, each element of

P i is a couple (f j , F j ), α Θi R f j (p 0 ) which: (i) first element (f j , F j ) is a i th coordinate of the focal function; (ii) second element α Θi R f j (p 0
) is the relative position of this coordinate with respect to the thresholds Θ i of the outgoing interactions from g i , for the parameter value p 0 . Example 8. For illustration, let us consider the class of PWLD models associated to the regulatory graph our case study (Figure 1). Following Definition 13, the sets P 1 , P 2 and P 3 of positionings of the coordinates of the focal function are:

P 1 ={{(f 1 , 0), (f 2 , 0)}, {(f 1 , 0), (f 2 , 1)}, {(f 1 , 0), (f 2 , 2)}, {(f 1 , 1), (f 2 , 1)}, {(f 1 , 1), (f 2 , 2)}, {(f 1 , 2), (f 2 , 2)}}, P 2 = {{(f 1 , 0), (f 2 , 0)}, {(f 1 , 0), (f 2 , 1)}, {(f 1 , 1), (f 2 , 1)}} , P 3 ={{(f 1 , 0), (f 2 , 0), (f 3 , 0), (f 4 , 0)}, {(f 1 , 0), (f 2 , 0), (f 3 , 0), (f 4 , 1)}, {(f 1 , 0), (f 2 , 1), (f 3 , 0), (f 4 , 1)}, {(f 1 , 0), (f 2 , 0), (f 3 , 1), (f 4 , 1)}, {(f 1 , 0), (f 2 , 1), (f 3 , 1), (f 4 , 1)}, {(f 1 , 1), (f 2 , 1), (f 3 , 1), (f 4 , 1)}}.
where From the positioning of the coordinates of the focal function (that is to say that, given an element of P i , for all integers i between 1 and n), one can build a qualitative representation of the dynamics of a PWLD model, called a state transition graph [START_REF] Glass | Stable oscillations in mathematical models of biological control systems[END_REF][START_REF] Gouzé | A class of piecewise linear differential equations arising in biological models[END_REF]. In this graph, the nodes represent the domains of the space state delimited by the thresholds of the step functions while the directed edges denote the possible transitions of the trajectories from a domain to the adjacent ones. More formally, a state transition graph T G of a PWLD model can be defined as follows.

f 1 , f 2 , f 1 , f 2 , f 1 , f 2 , f 3 ,
Definition 14. Let (G, Γ, sign, T ) be a regulatory graph and let us consider the associated class of PWLD models. Let Θ = {Θ i } 1≤i≤n , with Θ i = {θ l ij } (gi,gj )∈Γ,l∈tg i ,g j , be a set of threshold values and p 0 ∈ (R + ) |DF p |-n × (R + ) n a vector of parameter values, thus defining a PWLD model of the considered class.

Let D be the set of subspaces of (R + ) n delimited by Θ, from which we discard the threshold values. The state transition graph T G associated with a PWLD model is a couple (V, T ), defined as follows:

(i) V = D;
(ii) T is a set of subsets of D × D defined as follows. Let D and D be two domains of D, then:

-if D and D are not adjacent, then (D, D ) ∈ T ; -if D and D are adjacent, let i 0 ∈ 1, n , j 0 ∈ 1, n and l 0 ∈ t g i 0 ,g j 0 be three integers such that the hyperplane of equation:

x i 0 = θ l 0 i 0 j 0 , is the hyperplane separating D and D . Let m be the element of gj ∈R g 0 i {0 ∪ t gj ,g i 0 } such that:

D ⊆ β i 0 (m).
Then:

(i) if α Θ s (D) i 0 < α Θ s (D ) i 0 , then (D, D ) ∈ T if and only if: α Θ i 0 R Φ i 0 β i 0 (m) (p 0 ) ≥ α Θ i 0 R (θ l 0 i 0 j 0 ), (ii) if α Θ s (D) i 0 > α Θ s (D ) i 0 , then (D, D ) ∈ T if and only if: α Θ i 0 R Φ i 0 β i 0 (m) (p 0 ) ≤ α Θ i 0 R (θ l 0 i 0 j 0 ).
In Definition 14, on can check that a state transition graph does not depend on the precise value of the parameters but on the positioning of the coordinates of the focal function, that is to say that, an element of the set n i=1 P i completely defines a state transition graph. The reader can refer to [START_REF] Glass | Stable oscillations in mathematical models of biological control systems[END_REF][START_REF] Gouzé | A class of piecewise linear differential equations arising in biological models[END_REF] for more details regarding state transition graphs of PWLD models.

Example 9. To illustrate Definition 14, let us consider the class of PWLD models associated with the regulatory graph of our case study (Figure 1). We focus on the model of this class defined by the following positionings P 1 ∈ P 1 , P 2 ∈ P 2 and P 3 ∈ P 3 of the coordinates of the focal function: 

P 1 ={(f 1 , 0), (f 2 , 2)}, P 2 ={(f 1 , 0), (f 2 , 1)}, P 3 ={(f 1 , 0), (f 2 , 0), (f 3 , 1), (f 4 , 1)}, where f 1 , f 2 , f 1 , f 2 , f 1 , f 2 , f 3 ,
                                               D 000 = {x | 0 ≤ x 1 < θ 1 13 , 0 ≤ x 2 < θ 1 23 , 0 ≤ x 3 < θ 1 31 } D 001 = {x | 0 ≤ x 1 < θ 1 13 , 0 ≤ x 2 < θ 1 23 , x 3 > θ 1 31 }, D 010 = {x | 0 ≤ x 1 < θ 1 13 , x 2 > θ 1 23 , 0 ≤ x 3 < θ 1 31 }, D 011 = {x | 0 ≤ x 1 < θ 1 13 , x 2 > θ 1 23 , x 3 > θ 1 31 }, D 100 = {x | θ 1 13 < x 1 < θ 2 12 , 0 ≤ x 2 < θ 1 23 , 0 ≤ x 3 < θ 1 31 }, D 101 = {x | θ 1 13 < x 1 < θ 2 12 , 0 ≤ x 2 < θ 1 23 , x 3 > θ 1 31 }, D 110 = {x | θ 1 13 < x 1 < θ 2 12 , x 2 > θ 1 23 , 0 ≤ x 3 < θ 1 31 }, D 111 = {x | θ 1 13 < x 1 < θ 2 12 , x 2 > θ 1 23 , x 3 > θ 1 31 }, D 200 = {x | x 1 > θ 2 12 , 0 ≤ x 2 < θ 1 23 , 0 ≤ x 3 < θ 1 31 }, D 201 = {x | x 1 > θ 2 12 , 0 ≤ x 2 < θ 1 23 , x 3 > θ 1 31 }, D 210 = {x | x 1 > θ 2 12 , x 2 > θ 1 23 , 0 ≤ x 3 < θ 1 31 }, D 211 = {x | x 1 > θ 2 12 , x 2 > θ 1 23 , x 3 > θ 1 31 },

A.4. Partial order

We now equip the sets F i of the i th coordinates of the focal function with the partial order F , for all integers i between 1 and n, defined as follows.

Definition 15. Let (G, Γ, sign, T ) be a regulatory graph and let us consider its associated class of PWLD models. Let g i be a component of G.

We define the partially ordered set (F i , F ) as follows: let (f, F ) and (f , F ) be two elements of F i .

Then, (f, F ) F (f , F ) if and only if, for all vectors of parameter values p 0 ∈ (R + ) |DF p |-n × (R + ) n , we have:

f (p 0 ) ≤ f (p 0 ).
This partial order can be defined from the signs of the incoming interactions of a component g i according to the following property. Property 5. Let g i be a component of G, and (f, F ) and (f , F ) two elements of F i where: F = {(g j , l ji )} gj ∈Rg i , and:

F = {(g j , l ji )} gj ∈Rg i .
Then, (f, F ) F (f , F ) if and only if the following conditions hold:

(i) for all j ∈ 1, |R gi | such that (g j , g i ) ∈ Γ + , we have: l ji ≤ l ji , and;

(ii) for all j ∈ 1, |R gi | such that (g j , g i ) ∈ Γ -, we have: l ji ≥ l ji .

Proof. Let i ∈ 1, n , and let (f, F ) and (f , F ) be two elements of F i where:

F = {(g j , l ji )} gj ∈Rg i ,
and:

F = {(g j , l ji )} gj ∈Rg i .
Let us first prove the necessary condition of the property. Assume that (f, F ) F (f , F ). Then, by Definition 15, we have, for all vectors of parameter values

p 0 ∈ (R + ) |DF p |-n × (R + ) n : f (p 0 ) ≤ f (p 0 ). (3) 
It follows, from the expression of f and f as a function of the parameters (see Equation 2 in Section A.3), that the following condition holds, for all p 0 ∈ (R + ) |DF p |-n × (R + ) n :

d i f (p 0 ) -f (p 0 ) =   a i + (gj ,gi)∈Γ + l∈tg j ,g i ∩ 1,lji k l ji + (gj ,gi)∈Γ -l∈tg j ,g i ∩ lji+1,max(tg j ,g i ) k l ji   -   a i + (gj ,gi)∈Γ + l∈tg j ,g i ∩ 1,l ji k l ji +
(gj ,gi)∈Γ -l∈tg j ,g i ∩ l ji +1,max(tg j ,g i )

k l ji   = (gj ,gi)∈Γ +   l∈tg j ,g i ∩ 1,lji k l ji - l∈tg j ,g i ∩ 1,l ji k l ji   + (gj ,gi)∈Γ -   l∈tg j ,g i ∩ lji+1,max(tg j ,g i ) k l ji - l∈tg j ,g i ∩ l ji +1,max(tg j ,g i ) k l ji   ≤ 0. ( 4 
) Now let j 0 ∈ 1, |R gi | . By tending k l ji to 0 for all j = j 0 , we get: (i)

l∈tg j 0 ,g i ∩ 1,l j 0 i k l j 0 i - l∈tg j 0 ,g i ∩ 1,l j 0 i k l j 0 i ≤ 0,
if (g j 0 , g i ) ∈ Γ + , and: (ii) l∈tg j 0 ,g i ∩ l j 0 i +1,max(tg j 0 ,g i )

k l j 0 i - l∈tg j 0 ,g i ∩ l j 0 i +1,max(tg j 0 ,g i ) k l j 0 i ≤ 0, if (g j 0 , g i ) ∈ Γ -. 830 
It thus follows, from the previous inequalities, that:

(i) l j 0 i ≤ l j 0 i , if (g j 0 , g i ) ∈ Γ + , (ii) l j 0 i ≥ l j 0 i , if (g j 0 , g i ) ∈ Γ -, which ends the proof of the necessary condition.

Let us now prove the sufficient condition of the property. Assume that:

(i) for all j ∈ 1, |R gi | such that (g j , g i ) ∈ Γ + , we have: l ji ≤ l ji , and;

(ii) for all j ∈ 1, |R gi | such that (g j , g i ) ∈ Γ -, we have:

l ji ≤ l ji .
Then, it follows that the inequality in Equation 4is satisfied, for all p 0 ∈ (R + ) |DF p |-n × (R + ) n , which implies that:

f (p 0 ) ≤ f (p 0 ), (5) 
for all p 0 ∈ (R + ) |DF p|-n × (R + ) n , that is to say that:

(f, F ) F (f , F ),
which ends the proof of the sufficient condition of the property, and thus also the proof of the property.

The partial order F imposes constraints on the relative positions between the coordinates of the focal function. The following property gives necessary conditions on the sets P i of the positionings of the coordinates of the focal function, imposed by the partial order F . Property 6. Let i ∈ 1, n , and F i = {(f i , F i )} 1≤i≤qi , with q i = |F i |. Let P be an element of the set qi i=1 ((f i , F i ) × N) where:

P = {((f 1 , F 1 ), l 1 ), • • • , ((f qi , F qi ), l qi )}.
Assume that P ∈ P i . Then the following condition holds, for all (k, k ) ∈ 0, q i 2 :

(f k , F k ) F (f k , F k ) =⇒ l k ≤ l k .
Proof. We take the same notations as in the statement of Property 6.

Let i ∈ 1, n , Θ i the set of the thresholds of the step functions for the outgoing interactions of g i , and P an element of the set qi i=1 ((f i , F i ) × N) where:

P = {((f 1 , F 1 ), l 1 ), • • • , ((f qi , F qi ), l qi )}.
Assume that P is an element of P i , and let k and k be two integers of 0, q i . Now assume that (f k , F k ) F (f k , F k ). Then, according to Definition 15, the following condition holds, for all vectors of parameter values It follows, by definition of the mapping α Θi R , that, for all p 0 ∈ (R + ) |DF p |-n × (R + ) n , we have:

p 0 ∈ (R + ) |DF p|-n × (R + ) n : f k (p 0 ) ≤ f k (p 0 ).
α Θi R f k (p 0 ) ≤ α Θi R f k (p 0 ) ,
that is to say that:

l k ≤ l k ,
by definition of the set P i (Definition 13), which ends the proof.

Example 10. To illustrate the partial order F introduced above, let us consider the class of PWLD models associated to the regulatory graph of our case study (Figure 1). B. From PWLD models to logical models

B.1. Mapping between PWLD and logical models

Let (G, Γ, sign, T ) be a regulatory graph. Let us consider its associated 855 classes of logical models and PWLD models (as defined in Section 3.2 and Appendix A.1). We define the mapping χ i between the set F i of the i th coordinates of the focal function and the set K gi of the logical parameters of component g i , for all integers i between 1 and n, as follows.

Definition 16. Let i ∈ 1, n . We define the mapping χ i between the set F i and the set K gi as follows:

χ i : F i → K gi (f, F ) → K gi,F
Let us check that χ i is well defined, that is to say that:

χ i (F i ) ⊆ K gi .
Let K ∈ χ i (F i ). Then, there exists (f, F ) ∈ F i such that K = K gi,F . By definition of F i , there exists (l ji ) gj ∈Rg i ∈ gj ∈Rg i {0 ∪ t gj ,gi }, such that F = {(g j , l ji )} gj ∈Rg i . It follows, from Definition 2, that F ∈ Ω, which implies that

K = K gi,F ∈ K gi .
The following property holds: Property 7. Let i ∈ 1, n . Then, (i) χ i defines a bijection between the sets F i and K gi , (ii) let (K gi , ) be the partially ordered set defined as follows: for all (K, K ) ∈ K gi × K gi , K K if and only if:

χ -1 i (K) F χ -1 i (K ).
Then we have:

(K gi , ) = (K gi , K ).
Proof. We take the same notations as in the statement of Property 7. Let i ∈ 1, n . Let us prove statement (i), by first showing that χ i is injective. Let (f, F ) and (f , F ) be two elements of F i , such that:

χ i (f, F ) = χ i (f , F ).
Then, K gi,F = K gi,F , and thus F = F . It follows, from Property 4, that f = f . Therefore, χ i is injective.

Moreover we have |F

i | = | gj ∈Rg i {0 ∪ t gj ,gi }| = |K gi |. Thus, χ i is bijective.
Let us now prove statement (ii). Let K gi,F and K gi,F be two elements of K gi , and (f, F ) and (f , F ) the antecedents of K gi,F and K gi,F , respectively, by χ i . By definition of the partial order , the following inequality:

K gi,F K gi,F is equivalent to the following one: (f, F ) F (f , F ),
which, from Property 5 and Definition 3, is equivalent to the following inequality:

K gi,F K K gi,F ,
which ends the proof. Property 7 (ii) states that the partial order in the set K gi , induced by the mapping χ i from the partial order F in the set F i , is the partial order K in the set K gi introduced in Definition 3.

We next define the mapping Ψ i between the set P i of the positionings of the i th coordinates of the focal function, and the set V a gi of the admissible valuations of the logical parameters of component g i , for all integers i between 1 and n, as follows.

Definition 17. Let i ∈ 1, n . We define the mapping Ψ i between the set P i and the set V a gi as follows:

Ψ i : P i → V a gi {((f j , F j ), l j )} 1≤j≤qi → {(χ i ((f j , F j )), l j )} 1≤j≤qi
where q i = |F i |.

In Definition 17, the mappings Ψ i associate each model of the class of PWLD models (i.e. each element of the set P i ) to a specific model of the class of logical models (i.e. an element of the set V a gi ). It is the logical model which value of the logical parameter K gi,Fj is the positioning l j of the corresponding i th coordinate (f j , F j ) of the focal function, for all integers i ∈ 1, n and j ∈ 1, q i . Note that Ψ i does not define a bijection. Let us check that Ψ i is well defined, that is to say that:

Ψ i (P i ) ⊆ V a gi .
Let L ∈ Ψ i (P i ). Then, by definition of χ i , there exists {((f j , F j ), l j )} 1≤j≤qi ∈ P i such that:

L = {(χ i ((f j , F j )) , l j )} 1≤j≤qi = { K gi,Fj , l j } 1≤j≤qi .
Now let (K gi,Fj , K gi,F k ) ∈ K gi × K gi , and assume that K gi,Fj K K i,F k . From Property 7(ii), it follows that: (f j , F j ) F (f k , F k ). From Property 6, we then have: l j ≤ l k .

We have thus shown that for all (K gi,Fj , K

gi,F k ) ∈ K gi × K gi , if K gi,Fj K K i,F k , then l j ≤ l k , that is to say that: L ∈ V a gi ,
by definition of V a gi (Definition 4). Example 11. To illustrate the mappings χ i introduced in Definition 16, let us consider our case study (Figure 1). Following Definition 16, the mappings χ 1 , χ 2 and χ 3 between the sets F 1 and K p53 , F 2 and K Mc , and F 3 and K Mn respectively, are defined as follows: Example 12. To illustrate the mappings Ψ i introduced in Definition 17, let us consider our case study (Figure 1). Let us focus, as an example, on the component M c . Following Definition 17, the mapping Ψ 2 between the sets P 2 and V a Mc , is defined as follows:

χ 1 (f 1 ) = K p53,{(Mn,1)} , χ 1 (f 2 ) = K p53,{(Mn,0)} , χ 2 (f 1 ) = K Mc,{(p53,0)} , χ 2 (f 2 ) = K Mc,{(p53,1)} , and:          χ 3 (f 1 ) = K Mn,{(p53,1),(Mc,0)} , χ 3 (f 2 ) = K Mn,{(p53,1),(Mc,1)} , χ 3 (f 3 ) = K Mn,{(p53,0),(Mc,0)} , χ 3 (f 4 ) = K Mn,{(p53,0),(Mc,1)} , where f 1 , f 2 , f 1 , f 2 , f 1 , f 2 , f 3 ,
     Ψ 2 ({(f 1 , 0), (f 2 , 0)}) = {(K Mc,{(p53,0)} , 0), (K Mc,{(p53,1)} , 0)}, Ψ 2 ({(f 1 , 0), (f 2 , 1)}) = {(K Mc,{(p53,0)} , 0), (K Mc,{(p53,1)} , 1)}, Ψ 2 ({(f 1 , 1), (f 2 , 1)}) = {(K Mc,{(p53,0)} , 1), (K Mc,{(p53,1)} , 1)},
where f 1 and f 2 are defined in Example 7.

B.2. Dynamical analysis

Let (G, Γ, sign, T ) be a regulatory graph, and let us consider its associated classes of logical models and PWLD models (as defined in Sections 3.2 and A.1). We focus in this section on the link between the dynamics of a PWLD model of this class and its corresponding logical model via the mappings Ψ i defined in Appendix B.1.

The following theorem states a link between the state transition graphs of these two models. Theorem 1. Let (P i ) 1≤i≤n be an element of n i=1 P i in the considered class of PWLD models, and T G = (D, T ) be the corresponding state transition graph. Let us consider the model in the considered class of logical models which valuation of the logical parameters is Ψ i (P i ), for all integers i between 1 and n, and let (V , T ) be its asynchronous state transition graph.

We define the graph (V , T ) as follows:

(i) V = V , (ii) 
T is a set of subset of V × V defined as follows: let s = (s i ) 1≤i≤n and s = (s i ) 1≤i≤n be two elements of V . Then (s, s ) ∈ T if and only if:

n i=1 (α Θi R ) -1 (s i ) Θ i , n i=1 (α Θi R ) -1 (s i ) Θ i ∈ T .
where Θ i is the set of the thresholds of the step functions of the outgoing transitions from g i , for all i ∈ 1, n .

It follows, by definition of D, D and β i 0 , that, for all g j ∈ R g i 0 , we have:

s j = m j . (10) 
Moreover, by definition of T , D and D , the following conditions hold:

(i) if s i 0 < s i 0 , then: l k ≥ α Θi R (θ l 0 i 0 j 0 ), (11) 
(ii) if s i 0 > s i 0 , then:

l k ≤ α Θi R (θ l 0 i 0 j 0 ), (12) 
where l k is the integer such that ((f k , F k ), l k ) is the element of P i 0 satisfying:

F k = {(g j , m j )} gj ∈Rg i .
Since L i 0 = Ψ i (P i 0 ), l k is also the value of the logical parameter K g i 0 ,F k . It thus follows, from Equations 7, 8, 9, 10, 11, and 12, that: (s, s ) ∈ T , thereby proving the inclusion of Equation 6.

The proof of the opposite inclusion, that is to say that T ⊆ T , is deduced by proceeding by equivalence, which ends the proof of Theorem 1.
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Example 13. To illustrate Theorem 1, let us consider the classes of PWLD models and logical models associated with the regulatory graph of our case study (Figure 1). Let us focus on the PWLD model which positionings P 1 ∈ P 1 , P 2 ∈ P 2 and P 3 ∈ P 3 of the coordinates of the focal function are those given in Example 9. Figure 6(a) shows the corresponding state transition graph. Then, the state transition graph defined in Theorem 1 (shown in Figure 6(b)) is the asynchronous state transition graph of the logical model which valuations L 1 , L 2 and L 3 of the logical parameters are:

L 1 = Ψ 1 (P 1 ), L 2 = Ψ 2 (P 2 ) and L 3 = Ψ 3 (P 3 ).

C. Correspondence between logical models and PWLD models for the case study

We consider the model of the core of the p53-Mdm2 network, proposed by Abou-Jaoudé et al. [START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF], described in Section 2. The evolution of the class of PWLD models associated to its regulatory graph (shown in Figure 1) is 935 described by the system of differential equations given in Example 6. Table 3 gives the correspondence between the sets F i of the coordinates of the focal function and the sets K gi of the logical parameters of the class of logical models associated to the regulatory graph, via the mappings χ i described in the previous Table 3: Correspondence table between the logical parameters and the coordinates of the focal function for the case study (Figure 1). Logical parameters and coordinates of the focal function are formally linked by the mappings χ i (Definition 16 in Appendix B.1). For sake of clarity, we omitted to mention the combinations of levels of the regulators in the coordinates of the focal function.

section. Figure 7 shows the Hasse diagrams of the partial order F in the sets F i with the corresponding Hasse diagrams of the partial order K in the sets K gi . We now focus on the three logical bifurcation diagrams associated to component M n considered in Figure 4. (iii) in green is k 1 13 > k 1 23 . This constraint comes from the transition: {0, 1, 1, 1} -→ {0, 0, 1, 1} for which the coordinate Now let γ be the function defined for all t ∈ [0, 1] as follows:

γ(t) = (d f in i -d in i )t + d in i .
We have γ(0) = d in i , γ(1) = d f in i and γ is straightforwardly continuous and monotonous (decreasing) over [0, 1].

From the continuity of t → χ -1 i (K) 1 (p 0 \ d i , γ(t)) for all K ∈ K gi , and from Equations 39, 40 and 41, it follows that for all j ∈ 0, k -1 and for all m such that l j m < l j+1 m , there exists t j ∈ [0, 1] such that:

χ -1 i (K gi,αm ) 1 p 0 \ d i , γ(t j ) = θ 0 i . (42) 
Let us choose such a subdivision t 0 < t 1095 for all K ∈ K gi , that the following conditions hold, for all integers m between 1 and q gi : (i)

h m i ([0, t 0 [) = l 0 m , (43) 
(ii)

h m i (]t j-1 , t j [) = l j m , (44) 
for all integers j between 1 and k -1, (iii)

h m i (]t k-1 , +∞[) = l k m . ( 45 
)
where h m i is the function from the set [0, 1] to the set 0, max(X gi ) defined for all integers m between 1 and q gi as follows:

h m i : [0, 1] → 0, max(X gi ) t → α Θ 0 i R χ -1 i (K gi,αm ) 1 γ(t), p \ p 0 j .
Therefore, by Definition 6, we have:

(L j ) 0≤j≤k ∈ P log bdg i , thus proving the sufficient condition of the property.

Figure 1 :

 1 Figure 1: (a) Regulatory graph of the model of the core p53-Mdm2 network, adapted from Figure2(a) in[START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF], in the case where p53 (denoted by p53) is active on nuclear Mdm2 (denoted by Mn) above its first threshold, and on cytoplasmic Mdm2 (denoted by Mc) above its second threshold. Green edges correspond to activations, whereas red blunt ones denote inhibitions. Ellipses denote Boolean components (0 or 1), whereas the rectangle represents a ternary one (0, 1 or 2). (b) Logical bifurcation diagram, adapted from Figure3(a) in[START_REF] Abou-Jaoudé | From structure to dynamics: Frequency tuning in the p53-mdm2 network[END_REF], corresponding to the regulatory graph in (a) in the case where the logical parameters of Mn respect the following constraints:K Mn,{(p53,1),(Mc,0)} ≤ K Mn,{(p53,0),(Mc,0)} ≤ K Mn,{(p53,1),(Mc,1)} ≤ K Mn,{(p53,0),(Mc,1)} (see Example 2 for more details on these parameters). The values taken for the logical parameters of p53 and Mc are: 0 for K p53,{(Mn,1)} , 2 for K p53,{(Mn,0)} , 0 for K Mc,{(p53,0)} , 1 for K Mc,{(p53,2)} .

Figure 2 :

 2 Figure 2: Hasse diagrams of the partially ordered sets (a) (K p53 , K ), (b) (K Mc , K ), and (c) (K Mn , K ), for our case study.

KFigure 4 :

 4 Figure 4: (a) Figure representing the three logical bifurcation diagrams associated with Mn considered for the bifurcation analysis in Section ??, each represented with a different color. The diagram in green corresponds to the one shown in Figure 1(b). Ellipses represent the attractors of the model for the corresponding valuation of the logical parameters, where the values of the components are ordered as follows: p53, Mc, Mn. The values of the logical parameters of Mn are ordered as follows: {K Mn,{(p53,1),(Mc,0)} , K Mn,{(p53,1),(Mc,1)} , K Mn,{(p53,0),(Mc,0)} , K Mn,{(p53,0),(Mc,1)} }. The values taken for the logical parameters associated to p53 and Mc are indicated in caption of Figure 1. (b) Hasse diagram of the partially ordered set (K Mn , K). The subset of (K Mn , K ) indicated in black corresponds to the partial order in the set of the logical parameters whose value is equal to 1 in the valuation L 1 = {0, 1, 1, 1}.

cated in Figure 4

 4 (a). Correspondence between the classes of logical and PWLD models associated to the regulatory graph, and examples of PWLD bifurcation diagrams corresponding to the logical bifurcation ones are detailed in Appendix C.

{K

  Mn,{(p53,1),(Mc,1)} , K Mn,{(p53,0),(Mc,0)} }, (see Figure 4(b)). According to Property 2, there are now 3 admissible successors: (i) L 2 = {0, 0, 1, 1}, (ii) L 3 = {0, 1, 0, 1} and (iii) L 4 = {0, 0, 0, 1}, corresponding to the following 3 possible subsets of the set of the minimal elements: (i) {K Mn,{(p53,1),(Mc,1)} }, (ii) {K Mn,{(p53,0),(Mc,0)} } and (iii) {K Mn,{(p53,1),(Mc,1)} , K Mn,{(p53,0),(Mc,0)} }, respectively, leading to the corresponding transitions, with the following updating of the partial order K : (i) K Mn,{(p53,1),(Mc,1)} K K Mn,{(p53,0),(Mc,0)} , (ii) K Mn,{(p53,0),(Mc,0)} K K Mn,{(p53,1),(Mc,1)} , (iii) K Mn,{(p53,1),(Mc,1)} = K Mn,{(p53,0),(Mc,0)} ,

and f 4

 4 are defined in Example 7.

and f 4

 4 are defined in Example 7. Let T G = (V, T ) be the state transition graph of this model. Then, following Definition 14, the set of vertexes V is: V = {D 000 , D 001 , D 010 , D 011 , D 100 , D 101 , D 110 , D 111 , D 200 , D 201 , D 210 , D 211 } where:

  and the set of transitions T is: T ={(D 000 , D 100 ), (D 000 , D 001 ), (D 100 , D 200 ), (D 200 , D 210 ), (D 010 , D 110 ), (D 010 , D 011 ), (D 010 , D 000 ), (D 110 , D 210 ), (D 101 , D 001 ), (D 101 , D 100 ), (D 201 , D 211 ), (D 201 , D 200 ), (D 201 , D 101 ), (D 011 , D 001 ), (D 111 , D 011 ), (D 111 , D 110 ), (D 111 , D 101 ), (D 211 , D 111 ), (D 211 , D 210 )}.

Figure 6 (

 6 Figure 6(a) shows the state transition graph of the considered PWLD model.

KFigure 5 :

 5 Figure 5: Hasse diagrams of the partially ordered set (F 3 , F ) (a), and (K Mn , K ) (b), in the case of Example 1. The Hasse diagrams of (K M n, K ) and (F 3 , F ) are linked by the mapping χ 3 (Property 7). For sake of clarity, we omitted the levels of the regulators associated to the coordinates of the focal function in the writing of the elements of F 3 .

Figure 5 (

 5 a) shows the Hasse diagram representing the par-850 tially ordered set (F 3 , F ), associated to component M n , following Definition 15.

and f 4

 4 are defined in Example 7.Figure 5(b) shows the Hasse diagram of the partially ordered set (K Mn , K ), induced by the mapping χ 3 .

Figure 6 :KFigure 7 : 3 Ka 3 d 3 K 3 K

 67333 Figure 6: (a) State transition graph of the PWLD models of the case study (Figure 1) corresponding to the positionings P 1 , P 2 and P 3 of the coordinates of the focal function of Example 9. x 1 , x 2 and x 3 denote the variables associated to the components p53, Mc and Mn, respectively. (b) Asynchronous state transition graph of the logical model of our case study which valuations of the logical parameters are Ψ 1 (P 1 ), Ψ 2 (P 2 ) and Ψ 3 (P 3 ). The values of the components in each state are ordered as follows: p53, Mc, Mn. Ellipses represent the steady states of the model.

  Figures 8 describes corresponding bifurcation diagrams in the associated class of PWLD models upon an increase of the parameter d 3 , chosen as the bifurcation parameter. In each case, we choose: (i) as initial value of d 3 a value such that all the 3 rd coordinates of the focal function are above the threshold θ 1 31 , which corresponds to the valuation {1, 1, 1, 1} of the logical parameters of M n ; and (ii) as final value of d 3 a value such that all the 3 rd coordinates of the focal function are below the threshold θ 1 31 , which corresponds to the valuation {0, 0, 0, 0} of the logical parameters of M n . The constraints on the values of the PWLD parameters corresponding to the logical bifurcation diagram:(i) in red is k1 13 < k 1 23 . This constraint comes from the transition: {0, 1, 1, 1} -→ {0, 1, 0, 1} for which the coordinate in blue is k 1 13 = k 1 23 . This constraint comes from the transition: {0, 1, 1, 1} -→ {0, 0, 0, 1} for which the coordinates

  function cross the threshold at the same time;

Figure 8 :

 8 Figure 8: Logical bifurcation diagrams considered in Figure 4 for the case study, and corresponding PWLD bifurcation diagrams as a function of the parameter d 3 . The PWLD bifurcation diagrams show the successive positionings of the 3 rd coordinates of the focal function, relative to the threshold, upon the increase of d 3 . Ellipses represent the attractors of the logical model for the corresponding valuation of the logical parameters.The components in the states are ordered as follows: p53, Mc, Mn.The logical parameters of Mn in its valuations are ordered as follows: {K Mn,{(p53,1),(Mc,0)} , K Mn,{(p53,1),(Mc,1)} , K Mn,{(p53,0),(Mc,0)} , K Mn,{(p53,0),(Mc,1)} }.

Figure 9 :

 9 Figure 9: Sequence of valuations of the logical parameters of Mn corresponding to the logical bifurcation diagram in red in Figure 4 for our case study, with the corresponding state transition graphs. Gray dashed arrows represent the transitions differing with respect to the preceding graph along the logical bifurcation diagram. The ellipses denote the stable states of the model for each valuation of the logical parameters. The order of the components in the states and of the logical parameters in the valuations are indicated in caption of Figure 8.

  focal function Partial order in the sets Kg i /

K F Partial order in the sets Fi Bifurcation parameters / {k l ij } (gi,gj )∈Γ,l∈tg i,gj , (ai)1≤i≤n, (di)1≤i≤n Dynamics Asynchronous state transition graph State transition graph

Table 2 :

 2 

Table of correspondence between the class of logical models and the class of PWLD models, associated with a regulatory graph (G, Γ, sign, T ) where

  positionings of the i th coordinates of the focal function belongs to P pwl bdi . The following property holds on the set P log bdg i , for all components g i of G: Property 1. Let (G, Γ, sign, T ) be a regulatory graph, and g i a component of G. Let (L j ) 0≤j≤k be an element of P log bdg i

  1 < • • • < t k-1 of [0, 1]. It follows, by definition of α

	Θ 0

i R and from the monotonicity of t → χ -1 i (K) 1 (p 0 \ d i , γ(t))
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Appendices

A. Piecewise linear differential models A.1. Class of PWLD models associated with a regulatory graph Here, we associate a class of piecewise linear differential (PWLD) models to a regulatory graph. Definition 8. Let (G, Γ, sign, T ) be a regulatory graph, as introduced in Definition 1. We proceed as follows to define a class of PWLD models associated with (G, Γ, sign, T ):

(i) for all integers i from 1 to n, we associate to each component g i ∈ G:

-a non-negative real variable x i ∈ R + . This variable denotes the level of the component g i in the PWLD models;

-a positive real degradation constant d i ∈ R + ;

-a non-negative real production constant a i ∈ R + .

We denote by x the vector of variables (x 1 , • • • , x n ). (ii) To each regulatory interaction (g i , g j ) ∈ Γ, we associate a set of step functions defined, for all integers l in t gi,gj , as follows:

if sign((g i , g j )) = 1 or:

if sign((g i , g j )) = -1, where, the k l ij and the θ l ij are positive real constants, such that, for all ((g i , g j ), (g i , g j )) ∈ Γ × Γ and for all (l, l ) ∈ t gi,gj × t gi,g j , the following constraints hold:

ij and θ l ij will be called the kinetic rate and the threshold of the associated step function, respectively. (iii) The evolution of the class of PWLD models associated with (G, Γ, sign, T ) is described by the following system of piecewise linear differential equations:

Then, we have:

Proof. We take the same notations as in the statement of Theorem 1.

Let (G, Γ, sign, T ) be a regulatory graph, and let us consider its associated classes of logical models and PWLD models.

Let (P i ) 1≤i≤n ∈ n i=1 P i in the considered class of PWLD models, and T G = (D, T ) the corresponding state transition graph.

Let us consider the logical model which valuation L i of the logical parameters associated to g i is:

for all i ∈ 1, n , and let (V , T ) be its asynchronous state transition graph.

Let us now prove the following inclusion:

Let s = (s i ) 1≤i≤n and s = (s i ) 1≤i≤n be two elements of V . Assume that (s, s ) ∈ T . It follows that:

where D and D are defined as follows:

By definition of T (Definition 14), D and D are adjacent domains, which implies, by definition of D and D , that there exists i 0 ∈ 1, n such that the following two conditions hold:

or

(ii)

for all i = i 0 .

Let i 0 be such an integer. Then there exists j 0 ∈ 1, n and l 0 ∈ t g i 0 ,g j 0 such that D and D are separated by the hyperplane of equation:

Let m = (m j ) gj ∈Rg i 0 be the element of gj ∈R i 0 {0 ∪ t gj ,g i 0 } such that:

D. Proofs

Property 1. Let (G, Γ, sign, T ) be a regulatory graph, and g i a component of G. Let (L j ) 0≤j≤k be an element of P log bdg i

where, for all integers j between 0 and k:

Then, the following condition holds:
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(i) either, for all r ∈ 1, q gi and for all j ∈ 0, k -1 :

(ii) or, for all r ∈ 1, q gi and for all j ∈ 0, k -1 :

Proof. Let g i be a component of G and (L j ) 0≤j≤k be an element of P log bdg i

where, for all integers j between 0 and k:

Then, according to Definition 6 and Definition 7, there exists: to the set p in l , p f in l satisfying γ(0) = p in l and γ(1) = p f in l , and a subdivision

(ii)

for all integers j between 0 and k -1, (iii)

for all integers m between 1 and q gi , where h m i is the function from the set [0, 1] to the set 0, max(X gi ) defined for all integers m between 1 and q gi as follows:

Let γ be a function satisfying the conditions stated above. Then, for all integers m between 1 and q gi , the function:

is also continuous and monotonous as the composition of the two continuous and monotonous functions, γ and x → χ -1 i (K gi,αm ) 1 x, p \ p 0 l .

By definition of the mapping α

R and from the monotony of the function t → χ -1 i (K gi,αm ) 1 γ(t), p \ p 0 l , it follows that h m i is monotonous for all integers m between 1 and q gi , which implies, from Equations 14, 15 and 16, that the following conditions hold: (i) either, for all m ∈ 1, q gi and for all j ∈ 0, k -1 :

(ii) or, for all m ∈ 1, q gi and for all j ∈ 0, k -1 :

Moreover, by definition of the mapping α

R and from the continuity of the function t → χ -1 i (K gi,αm ) 1 γ(t), p \ p 0 l , it follows, from Equations 14, 15 and 16, that the following conditions hold, for all j ∈ 0, k -1 and all m ∈ 1, q gi :

Therefore, from Equations 17, 18 and 19, the following conditions hold:

(i) either, for all r ∈ 1, q gi and for all j ∈ 0, k -1 :

(ii) or, for all r ∈ 1, q gi and for all j ∈ 0, k -1 :

which ends the proof.

Property 2. Let (G, Γ, sign, T ) be a regulatory graph, and g i a component of G. Let (L j ) 0≤j≤k be an element of P log bdg i

where, for all integers j between 0 and k:

such that, for all j ∈ 0, k -1 and for all r ∈ 1, q gi , we have l j r ≤ l j+1 r . Let, for all m ∈ 0, max( (gi,g )∈Γ t gi,g ) , K j,m gi be the subset of K gi for which, for all j ∈ 0, k -1 and for all K ∈ K j,m gi , the value of K in L j is m. Let K j,m,up gi be the subset of K gi defined, for all integers m from 0 to max( (gi,g )∈Γ t gi,g )-1, as follows:

and K j,up gi the union of these sets K j,m,up gi for all the integers m from 0 to max( (gi,g )∈Γ t gi,g ) -1:

We define the partially ordered sets (K gi , j K ), for all integers j between 0 and k -1, as follows:

gi , we have:

(iii) for all m ∈ 0, max( (gi,g )∈Γ t gi,g ) -1 , for all (K, K ) ∈ K j,m,up gi , we have:

(iv) for all m ∈ 0, max( (gi,g )∈Γ t gi,g ) -1 , for all K ∈ K j,m,up gi , and for all K ∈ K j,m gi ∩ K j,up gi , we have:

Let M j m be the set of the maximal elements of the partially ordered set (K j,m gi , j K ), for all j ∈ 0, k -1 and for all m ∈ 0, max( (gi,g )∈Γ t gi,g ) -1 , and M j the union of these sets M j m for all m ∈ 0, max( (gi,g )∈Γ t gi,g ) -1 , for all j ∈ 0, k -1 :

Then, we have, for all integers j from 0 to k -1:

Before proving Property 3, we give the following two lemmas: 990 Lemma 1. Let i ∈ 1, n and p r a parameter involved in the equation of evolution of x i of a class of PWLD models:

r be a vector of values of all the parameters except p r . Let (f, F ) and (f , F ) be two distinct elements of F i , such that f and f depend on p j . Then, the following condition holds:

We consider the class of PWLD models associated to a regulatory graph (G, Γ, sign, T ). Let g i be a component of G, and (f, F ) and (f , F ) two distinct elements of the set F i .

If (f, F ) F (f , F ), then, for all vectors of parameter values p 0 ∈ (R + ) |DF p |-n × (R + ) n of the parameter vector, we have:

Proof. We take the same notations as in the statement of Property 2.

Let g i be a component of G. Let (L j ) 0≤j≤k be an element of P log bdg i

, where, for all integers j between 0 and k:

Then, according to Definition 6, there exists:

(i) a parameter p l ;

(ii) a set Θ 0 i of threshold values of the outgoing interactions of g i ; (iii) a set p \ p 0 l of values of all the parameters except p l ; (iv) two values p in l and p f in l of the parameter p l ; such that the conditions of Definition 6 are satisfied.

Let j be an integer between 0 and k -1. Then, (L j ) 0≤j ≤j is also an element of P log bdg i

, and, for all integers j between 0 and j, there exists a value p j l ∈ R + of parameter p l , such that:

(i) for all m ∈ 0, max( (gi,g )∈Γ t gi,g ) -1 , for all (K, K ) ∈ K j ,m,up gi , we have:

(ii) for all m ∈ 0, max( (gi,g )∈Γ t gi,g ) -1 , for all K ∈ K j ,m,up gi , and for all

, we have:

Moreover, by hypothesis, the values of the logical parameters increases along (L j ) 0≤j ≤j . Therefore, χ -1 i (K) 1 (p \ p 0 l , p l ) increases along (L j ) 0≤j ≤j for all

It follows, from Lemma 1, that, for all integers j between 0 and j, and for all values q ≥ max{p j l | j ∈ 0, j } (resp. for all values q ≤ min{p j

) is a decreasing function) for all K ∈ K gi , Equations 20 and 21 are satisfied, for all integers j between 0 and j, that is to say that:

(i) for all m ∈ 0, max( (gi,g )∈Γ t gi,g ) -1 , for all (K, K ) ∈ K j ,m,up gi , we have:

(ii) for all m ∈ 0, max( (gi,g )∈Γ t gi,g ) -1 , for all K ∈ K j ,m,up gi , and for all

, we have:

We can assume without loss of generality that

Moreover, from Property 7, we have, for all pairs of logical parameters (K, K ) such that K K K :

Since χ i is bijective (Property 7), it follows, from Lemma 2, that, for all pairs of logical parameters (K, K ) such that K = K , we have, for all q > 0:

Therefore, it follows, from Equations 22, 23 and 24, and by definition of j K , that the following condition holds, for all pairs of logical parameters (K, K ) such that K = K :

for all q ≥ max{p j l | j ∈ 0, j }. Now let us prove that K j,up gi ⊆ M j by proving its contraposition. Let K be a logical parameter which does not belong to the set M j , that is to say that:

and let m be the value of K in L j . Then, by definition of M j , there exists

for all q ≥ max{p j l | j ∈ 0, j }.

Therefore, the value of K remains the same from L j to L j+1 . Thus, we have:

We have thus proved by contraposition that:

which ends the proof.

Property 3. Let (G, Γ, sign, T ) be a regulatory graph, and g i a component of G. We assume that max(X g i ) = 1 (Boolean case). Let (L j ) 0≤j≤k be an element of (V a gi ) , where, for all integers j between 0 and k:

such that, the following conditions hold, for all integers j from 0 to k -1:

(i) for all r ∈ 1, q gi , we have l j r ≤ l j+1 r , and

where the sets K j,up gi and M j are defined in Property 2. We define the subset C j of the set (R + ) |DF p |-n × (R + ) n , where |DF p | denotes the number of all the parameters except the thresholds, as follows, for all integers j between 0 and k: (i) p ∈ C 0 , if and only if, for all (r, r ) ∈ 1, q gi 2 such that l 0 r = 0 and l 0 r = 1, we have:

for all integers j between 1 and k, if and only if:

-for all (r, r ) ∈ 1, q gi 2 such that l j-1 r < l j r and l j r = 0, we have:

-for all (r, r ) ∈ 1, q gi 2 such that l j-1 r < l j r and l j-1 r < l j r , we have:

and the set C as the intersection between the sets C j for all integers j between 0 and k:

Then, (L j ) 0≤j≤k ∈ P log bdg i if and only if C = ∅.

Proof. We take the same notations as in the statement of Property 3.

Let g i be a component of G and let us assume that max(X gi ) = 1 (Boolean case). Let (L j ) 0≤j≤k be an element of (V a gi ) , where, for all integers j between 0 and k:

such that, we have, for all integers j from 0 to k -1:

(i) for all r ∈ 1, q gi , we have l j r ≤ l j+1 r , and (ii) K j,up gi ⊆ M j , where the sets K j,up gi and M j are defined in Property 2.

We start by first proving the necessary condition of the property, that is to say that:

Assume that (L j ) 0≤j≤k ∈ P log bdg i

. Then, according to Definitions 6 and 7, there exists:

(i) a parameter p l ; (ii) a set Θ 0 i = {θ 0 i } of threshold values of the outgoing interactions of g i (Θ 0 i is a singleton since X gi is Boolean); (iii) a set p \ p 0 l of values of all the parameters except p l ;

(iv) two values p in l and p f in l of the parameter p l ; such that, there exists a continuous and monotonous function γ from the set [0, 1] to the set p in l , p f in l satisfying γ(0) = p in l and γ(1) = p f in l , and a subdivision t 0 < t 1 < • • • < t k-1 of [0, 1] such that, for all m ∈ 1, q gi , we have:

for all integers j between 1 and k -1, (iii)

where h m i is the function from the set [0, 1] to the set 0, max(X gi ) defined for all integers m between 1 and q gi as follows:

Let γ be a function satisfying the conditions stated above. Then, for all integers m between 1 and q gi , the function:

is also continuous and monotonous as the composition of the two continuous and monotonous functions, γ and x → χ -1 i (K gi,αm ) 1 x, p \ p 0 l .

By definition of the mapping α Θ 0 i R and of the functions h m i , it follows: (i) from Equation 28, that, for all t ∈ [0, t 0 [ and for all (r, r ) ∈ 1, q gi 2 such that l 0 r = 0 and l 0 r = 1, we have:

(ii) from Equations 29, that, for all j ∈ 1, k -1 , for all t ∈ ]t j-1 , t j [, for all (r, r ) ∈ 1, q gi 2 such that l j-1 r < l j r and l j r = 0, we have:

(iii) from Equation 30, that, for all t ∈ ]t k-1 , +∞[, for all (r, r ) ∈ 1, q gi 2 such that l j-1 r < l j r and l j r = 0, we have:

Now let j ∈ 1, k and r ∈ 1, q gi such that l j-1 r < l j r . From the continuity of the function t → χ -1 i (K gi,αr ) 1 γ(t), p \ p 0 l , we have:

It thus follows, for all (r, r ) ∈ 1, q gi 2 such that l j-1 r < l j r and l j-1 r < l j r , that:

From Lemma 1, it follows that Equations 31, 32, 33 and 34 are satisfied for all t > t k-1 , that is to say that, by definition of C:

which implies, in particular, that:

which ends the proof of the necessary condition of the property.
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Let us now prove the sufficient condition of the property, that is to say that:

Assume that C = ∅. Then, by definition of C, there exists a vector p 0 ∈ (R + ) |DF p |-n × (R + ) n of the parameter values such that we have:

(i) for all (r, r ) ∈ 1, q gi 2 such that l 0 r = 0 and l 0 r = 1:

(ii) for all integers j between 1 and k, and:

-for all (r, r ) ∈ 1, q gi 2 such that l j-1 r < l j r and l j r = 0:

-for all (r, r ) ∈ 1, q gi 2 such that l j-1 r < l j r and l j-1 r < l j r :

Let us choose such a value p 0 . Let us further choose:

(i) d i as the parameter of bifurcation;

(ii) a positive threshold value θ 0 i ; and (iii) the vector of values p 0 \ d i for the values of all the parameters except d i .

By definition of the set F i , χ -1 i (K) depends on d i for all K ∈ K gi . It follows, from Lemma 1, that Equations 36, 37 and 38 are satisfied for all d i ∈ R + , that is to say that, the following conditions hold, for all d i ∈ R + : (i) for all (r, r ) ∈ 1, q gi 2 such that l 0 r = 0 and l 0 r = 1:

(ii) for all integers j between 1 and k, and:

-for all (r, r ) ∈ 1, g i 2 such that l j-1 r < l j r and l j r = 0:

-for all (r, r ) ∈ 1, g i 2 such that l j-1 r < l j r and l j-1 r < l j r :

Moreover, the function

) is continuous and decreasing from the set R + to the set R + , for all K ∈ K gi , as it is inversely proportional to d i by definition of the set F i .

It follows, from the continuity of the function d i → χ -1 i (K) 1 (p 0 \ d i , d i ) over the sets R + , and:

(i) from Equation 39, that there exists a value

i for all r such that l 0 r = 1, (ii) from Equations 39, 40 and 41, that there exists a value

i for all r such that l 0 r = 1.

E. Algorithms

The high level procedure computing a logical bifurcation diagram of maximum length starting from an initial valuation of the logical parameters is described in Algorithm 2. Given a logical model (model ), and a component g i (node):

(i) the algorithm first constructs, with the procedure genBifurcationPath, a sequence (L 0 , ..., L j0 , ..., L k ) of valuations of the logical parameters associated to node (bifurcPath) which: -belongs to the set P log bdg i , -contains the valuation of the logical parameter L j0 of model, -is of maximum length, (lines 1 and 2); (ii) then, for each valuation L j (function) of the sequence, the attractors of the corresponding logical model are computed (lines 3-8); (iii) finally, the algorithm returns the corresponding sequence of pairs (function, associated model attractors) (attractorList).

The structure bifurcDiag contains information relative to model. The procedure genBifurcationPath receives bifurcDiag and a component g i (node), and returns a sequence (L 0 , L 1 , ..., L k ) of valuations of the logical parameters associated to node (bifurcPath) as follows:

(i) the procedure first gets the set of regulators (regList) of the component node, and the valuation L j0 of the logical parameters associated to the component node (funcRef ) of the logical model defined in bifurcDiag (lines 12-13); (ii) it then verifies if the valuation funcRef is consistent with the signs of the incoming interactions on node (lines 14-16);

(iii) if it is, it constructs the partial order K in the set K gi of the logical parameters associated to node (depGraph) and verifies if the valuation funcRef satisfies Property 3 (lines 17-20); (iv) if it does, the partial order depGraph is updated with the constraints imposed by funcRef (line 21);

(v) it then initializes the bifurcation diagram (bifurcPath) with funcRef (line 22), and:

-calls the procedure getParentFunction which, considering the current depGraph and the current valuation of the logical parameters L j (f ), returns a valid valuation L j+1 (i.e. a valuation such that (L j0 , ..., L j , L j+1 ) ∈ P log bdg i

), for which logical parameter values have been increased from L j to L j+1 , and updates depGraph accordingly (lines 24-26); -analogously calls the procedure getChildFunction to return a valid valuation L j-1 (i.e. a valuation such that (L j-1 , L j , ..., L j0 ) ∈ P log bdg i

),

for which logical parameter values have been decreased from L j to L j-1 , and updates depGraph accordingly (lines 27-30);

until the bifurcation diagram has reached its maximum length.

Algorithm 3 describes three auxiliary procedures used in Algorithm 1 and Algorithm 2. The first one, getParentFunction, proceeds as follows:

(i) it calls the procedure getValidParentFunction, described in Algorithm 1, to compute a valid successor (func) if it exists (line 2); (ii) the set of the logical parameters whose values have increased (chang-ingLPs) is retrieved (line 4); (iii) the partial order depGraph is updated with the constraints imposed by changingLPs (lines 5-6).

The second procedure, getCombinations, computes all the subsets of a given set of logical parameters.

The third procedure, isValidLPSet takes as inputs a partial order (dep-Graph) and a list of logical parameters (listLPs), and proceeds as follows:

(i) for each logical parameter in listLPs, it gets the set of logical parameters which are equal for the partial order depGraph (equalLPset) (lines 21-22); (ii) then, if equalLPset is not empty and is not a subset of listLPs, the procedure returns false (line 24); (iii) if, for each element of listLPs, equalLPset is either empty or is a subset of listLPs, the procedure returns true (line 26). regList ← regulators(bif urcDiag, node) for all lp ∈ listLP s do