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We consider the problem of pricing and advertising a one-time entertainment event. Three pricing policies are characterized and contrasted, namely, dynamic price (DP), constant price (CP) and two-market price (TMP). In this last scenario, the selling season is composed of a regular price period and a last-minute price period, with the switching date between the two markets being determined endogenously.

We show that the price is monotonically increasing over time in the DP scenario and that the last-minute price is larger than the regular price in the TMP scenario. In all three cases, advertising is non-increasing over time, which is a feature often encountered in finite-horizon dynamic optimization advertising models. Finally, we compute the cost of simplification, which is the difference in profits under dynamic pricing and constant pricing. Among other results, we obtain that this loss is independent of the market size and increasing in the number of available tickets.

Introduction

The current research deals with the design of optimal pricing and advertising decisions for an entertainment event which could be a classical, pop or rock concert, an opera or a ballet or a theatre performance. We confine our interest to a situation in which the event takes place only once.

Our primary aim is to provide recommendations to the organizers of the event who must decide what will be their advertising and pricing policies. Assuming that the duration of the selling season has been decided, three pricing scenarios will be investigated: Dynamic Pricing (DP): Price can be varied continuously throughout the selling season Constant Pricing (CP): Price is constant throughout the selling season Two-Market Pricing (TMP): Tickets are sold in two, non-overlapping markets, henceforth referred to as the regular market and the last-minute market, respectively. In each market, price is constant. The last-minute price can be higher (markup) or lower (markdown) than the regular price.

DP is a policy in which the price of a product or service is changed continuously, taking into account past and current demand and supply information. In our setup, the latter is the number of tickets not yet sold. In many industries, including the entertainment business, short-term capacity is fixed and dynamic pricing then can be used to balance supply and demand. Dynamic pricing policies have been applied to the sales of tickets for entertainment events. 1The CP and TMP policies are those most often used in practice. These policies reflect either total or partial "price-stickiness". [START_REF] Courty | An economic guide to ticket pricing in the entertainment industry[END_REF] observed that organizers of performances that were sold-out for long periods did not increase prices in order to exploit the high demand. On the other hand, ticket prices for performances that did not sell very many tickets were not lowered to try to stimulate demand. It should be added that the TMP has gained some popularity in recent years. For example, theaters selling tickets at a reduced price as of 6 p.m. for a play starting at 8 p.m. The TMP policy has a long history in markets for perishable or seasonal products where firms quite often reduce their prices as the end of the selling season approaches. The rationale of this obviously is to sell as much as possible of a stock that will have little or no value at the end of the season.

The objectives of our research are to 1. Characterize optimal pricing and advertising strategies in the three scenarios.

2. Determine the profits earned in each of the three scenarios and comparing these profits.

3. Determine and compare consumer's surplus in the three scenarios.

We believe that our paper contributes to the literature in three ways. First, we introduce a new way to modeling sales dynamics, namely, the instantaneous demand function shifts upwards as cumulative sales grow. Our approach reflects the fact that, at any instant of time, a potential attendee can observe the number of still available seats, and the scarcer they are, the more urgent it becomes to purchase. This feature seems to be absent in most models in the dynamic pricing literature. Second, compared to dynamic pricing and revenue management literature, our model takes into account not only price and inventory but also for advertising, which seems to be unusual in dynamic revenue works.

Remark 1 An effect that works in the opposite direction is the so-called "inventory-depletion" effect in which demand decreases as the inventory level decreases (see, for instance, [START_REF] Talluri | The Theory and Practice of Revenue Management[END_REF]). 2Our problem has many elements in common with the problem of extraction of exhaustible resources: There is a fixed initial stock of a nonrenewable resource (a fixed number of tickets) that the decision maker wishes to extract (to sell) in order to earn money. The decision maker controls the extraction rate (the demand rate that is determined by selecting optimal control variables values). In exhaustible resource problems, as here, the terminal value of the stock (resource, number of tickets) must be nonnegative. A relevant question is whether it is optimal to exhaust the resource or not. However, there is also a notable difference between the two problems. In the ticket selling problem, the horizon date is given whereas it is endogenously determined in an exhaustible resource problem.

Finally, by also comparing the optimal solutions in the three models, we shed a light on their profitability. (Note that CP and TMP are constrained instances of the DP problem and the organizers will always earn the highest profit using DP). Comparing the profits earned under DP and CP then allows us to compute the loss of profits induced by using CP instead of DP. However, for various reasons a DP strategy may not be usable and choosing CP instead of DP the organizers will suffer an "opportunity loss" or, put differently, "the cost of simplicity". We shall see if choosing TMP instead of DP leads to a smaller opportunity loss than that incurred with CP.

The paper proceeds as follows. Section 2 provides a review of the literature that is relevant to our problem. Section 3 presents our model of ticket sales. Sections 4, 5, and 6 deal with dynamic pricing (DP), constant pricing (CP) and two-market pricing (TMP), respectively. Section 7 compares the three pricing strategies and Section 8 summarizes our findings and provides some managerial recommendations.

2 Literature Review [START_REF] Courty | An economic guide to ticket pricing in the entertainment industry[END_REF] studied the entertainment industry and discussed the ticket pricing practices that are used in the industry. The paper also addressed the question whether pricing theory is consistent with what we can observe in real markets for tickets. Talluri and Van Ryzin (2004, pp. 567-574) provide an illustrative overview of various practices used for real life ticket sales, e.g., for theater performances or sporting events.

The current research is related to a subset of works in revenue management that deal with situations in which a decision maker has a perishable asset and wishes to design optimal dynamic pricing and possibly also advertising strategies. This literature has been reviewed in a number of survey papers, for example [START_REF] Weatherford | A taxonomy and research overview of perishableasset revenue management: Yield management, overbooking, and pricing[END_REF], [START_REF] Bitran | An overview of pricing models for revenue management[END_REF], [START_REF] Elmaghraby | Dynamic pricing in the presence of inventory considerations: Research overview, current practices, and future directions[END_REF]. See also [START_REF] Talluri | The Theory and Practice of Revenue Management[END_REF].

Recently there has been an interest in studying pricing as well as advertising, still maintaining the assumption of stochastic demand. Schlosser (2015) assumed a risk averse manager while MacDonald and Rasmussen (2009) and [START_REF] Helmes | Dynamic advertising and pricing with constant demand elasticities[END_REF] supposed that the manager maximizes expected profit. These problems are stochastic optimal control problems. The current research assumes that the organizers can foresee without any uncertainty how demand will evolve over time, given the pricing and advertising strategies chosen by the organizers. Therefore, the current research belongs to the field of deterministic optimal control.

Gallego and Van Ryzin (1994) studied a problem of designing a pricing policy for a perishable product under stochastic demand. It was shown that the value function (i.e., the optimal expected revenue) is increasing and concave in the initial capacity and in the duration of the selling season. Therefore a higher initial stock and/or more time to sell will increase expected revenue. 3 Moreover, at any instant of time the optimal price is smaller the larger the initial inventory. Given the initial inventory, the optimal price rises if the duration of the selling season increases. These findings are intuitive. The authors also studied a problem in which price cannot be varied continuously over time. A model with deterministic demand was formulated and its solution was used to construct a simple, constant price heuristic. When the manager has many items in stock initially she ends up with a positive terminal stock. On the other hand, if the initial stock is small the price is raised to guarantee the all items are sold. [START_REF] Feng | Optimal starting times for end-of-season sales and optimal stopping times for promotional fares[END_REF] studied the problem of selling a fixed stock over a finite horizon. Demand is stochastic and depends on price only. The manager wishes to determine optimally (i) the time to change price from one predetermined level to another predetermined level and (ii) the direction of the change (i.e., a markup or a markdown). It was shown that it is optimal to decrease (increase) the price from its initial level as soon time-to-go is below (above) a threshold that depends on the current inventory. This is intuitive. 4Smith and Achabal (1998) considered a deterministic optimal control problem. This paper seems to be the one which comes closest to the current research. Since the demand function has some similarity with the one we employ, it will be presented briefly. The demand rate is x(t), price is p(t), and the current inventory is I(t). The authors used the following demand specification (which has convenient properties):

x(t) = κ(t)y(I(t))e -γp(t) ,
in which κ(t) is a seasonal component. Function y(I) is specified in such a way that demand is decreased by low inventory levels but is unaffected by high inventory levels. The reason for decreasing demand could be incomplete assortments, reduced merchandise selection, and the stock being insufficient to make an attractive in-store display. An optimal policy is to adjust price such that demand is proportional to κ(t) at any instant of time. The authors also identified a pricing policy that will sell all of the initial stock. [START_REF] Jørgensen | Optimal pricing and advertising policies for an entertainment event[END_REF] considered the TMP strategy, assuming that advertising is done in the regular market only. There may be a markup or a markdown at the start of the last-minute market. Regular market demand depends on advertising, price, and cumulative demand. The latter is included to model demand learning (a diffusion effect). The hypothesis is that as the number of sold tickets increases, and since potential customers learn about this, demand increases. The authors found that advertising should be decreased over time. 5It is important to note the difference between the problem that the current research deals with and the above literature on dynamic pricing and advertising. In the latter, the main focus is on the determination of optimal pricing and advertising strategies in -most often -a stochastic optimal control problem. Our problem deals with optimal pricing and advertising strategies as well but a main objective is to see how the two classical pricing strategies CP and TMP behave vis-a-vis dynamic pricing.

A Model of Ticket Sales

The model is constructed to represent ticket sales dynamics for a unique event featuring top performers. Considerable excess demand is often observed for such events but, since the number of tickets is fixed, backlogging is impossible. Customers are served on a first-comefirst-served basis. It is an explicit objective of the organizers that the event will be sold out. (Given the type of event we have in mind, this may happen very early). The organizers use advertising to (i) create awareness of the event and (ii) to provide an incentive to participate. 6Our model has the following elements:

1. The number of tickets offered for sale is denoted q > 0 (for mathematical convenience, a real number) and corresponds to the capacity (typically, the number of seats) of the location where the event takes place. The number q is fixed. This assumption means that any demand exceeding q will not be satisfied.

2. The decision to have the event has been made and is irreversible. The cost of providing capacity (e.g., rental cost of the location and salaries to performers) then is sunk and will be disregarded. It is plausible that the variable costs of having the event are negligible compared to the sunk costs. Variable costs therefore are disregarded.

3. Time t is continuous and the event takes place at time t = T > 0. The date T is fixed and the planning period of the organizers then is the time interval [0, T ]. Ticket sales start at time t = 0 where the organizers advertise the date T to the public. For events like the one we have in mind, tickets are quite expensive and we assume that any customer who purchased a ticket will show up.

4. In practice, some seats often are more expensive than others, students and senior citizens may obtain a discount when they buy a ticket, and seats are priced differently on different days of the week. Taking features like these into consideration would complicate the model considerably and we make the following simplification: At any instant of time the same price applies to all seats and all buyers.

5. In the case of a TMP strategy we suppose that during the initial selling period, potential attendees do not know -or do not care -whether there will be a last-minute sale. This means that potential customers cannot act strategically, in the sense that they would take advantage of knowing that there will be a last-minute market.

6. The demand function features a simple kind of strategic behavior, in the sense that any potential customer observes the current inventory of tickets and base her purchase decision on this information. The hypothesis that customers are able to figure out how many tickets that are currently in stock is not unrealistic. It applies in situations where tickets are sold online and the organizers' website -where tickets are sold -offers a plan over the location, showing which seats are still available by time t. This is not uncommon in, e.g., opera houses and theaters.

7. Other profits than those from ticket sales, typically coming from selling food, drinks, or merchandise, are disregarded.

8. Advertising costs are given by a quadratic function, a specification that often has been used in the literature. 9. Demand is taken to be a linear function of price, advertising, and the remaining stock of tickets. Linear demand functions are often assumed in the literature, mainly for their simplicity. Also, a linear demand function can be derived from consumer's maximization of quadratic utility function.

10. Since the planning period of the organizers is (relatively) short, we do not discount future profits.

Price and advertising efforts are the decision variables of the organizers. In the TMP problem, the organizers also decide the time at which they switch from one constant price to another.

To construct the model, let p ≥ 0 denote the price of a ticket. 7 In the DP model, price can have any value during the selling season and is required to be at least a piecewise continuous function of time, denoted p(t). In the CP model we have

p = p = const. ≥ 0 for all t,
and in the TMP model

p = p1 = const. ≥ 0, for t ∈ [0, t 1 ) , p2 = const. ≥ 0, for t ∈ (t 1 , T ],
where p2 can be smaller, equal to, or larger than p1 . Denote by a(t) ≥ 0 the advertising rate (at least piecewise continuous). The cost of advertising, denoted C (a) , is a quadratic function such that C (a) = ca 2 /2 where c > 0 is a constant. The use of quadratic advertising cost functions is quite common in the literature (see the surveys in [START_REF] Huang | Recent developments in dynamic advertising research[END_REF], [START_REF] Jørgensen | A survey of game-theoretic models of cooperative advertising[END_REF]) and reflects diminishing returns to scale.

To keep track of the utilization of capacity q, let the state variable s(t) (a nonnegative real number) represent the inventory of tickets by time t. It holds that s(0) = q. Further, the terminal constraint s(T ) ≥ 0 must be satisfied.

Let x(t) (a nonnegative real number) represent the demand rate. By definition, x(t) = 0 whenever s(t) = 0. The current inventory of tickets, s(t), evolves according to the simple dynamics ṡ(t) = -x(t), s(0

) = q, ( 1 
)
and demand is affected by three factors: the price, the advertising rate, and the number of tickets still for sale (s(t) > 0). The evolution of demand is modelled as follows: DP:

x (t) = α -p(t) + ka(t) -ϕs(t), t ∈ [0, T ],
CP:

x (t) = α -p + ka(t) -ϕs(t), t ∈ [0, T ], TMP: x (t) = α -p 1 + ka 1 (t) -ϕs(t), α -p 2 + ka 2 (t) -ϕs(t), t ∈ [0, t 1 ), t ∈ (t 1 , T ].
where k, α and ϕ are time-invariant parameters. This assumption seems plausible in view of the duration of the period for which the organizers are planning. The parameter k measures the effectiveness of advertising in creating demand and ϕ reflects our assumption that potential attendees observe that available seats become scarcer which induces them to purchase now. Since ϕ > 0, demand is positively influenced as customers see the inventory of tickets decrease over time. We shall assume α > ϕq, which means that demand is positive if the firm gives all the tickets away for free at the initial time and does not advertise the event.

The assumption can be satisfied if α (the market potential) is sufficiently large compared to the number of tickets available for sale. The objective functional, to be maximized by the organizers, is defined as follows:

DP : J(p, a) = T 0 p(t)x(t) - c 2 a 2 (t) dt, CP : J(p, a) = T 0 px(t) - c 2 a 2 (t) dt, TMP : J(p 1 , p 2 , a) = t 1 0 p 1 x(t)dt - t 1 0 c 2 a 2 1 (t) dt + T t 1 p 2 x(t)dt - T t 1 c 2 a 2 2 (t) dt.
The optimization problem includes the following constraints: The inventory dynamics and its initial condition

ṡ(t) = -x(t) for t ∈ [0, T ]; s(0) = q, s (T ) ≥ 0.
and nonnegativity of prices and advertising rates

p(t) ≥ 0, p ≥ 0, p 1 ≥ 0, p 2 ≥ 0, a(t) ≥ 0, a 1 (t) ≥ 0, a 2 (t) ≥ 0.
Remark 2 If the demand x (t) is nonnegative at each instant of time, then ṡ(t) is nonpositive, and it follows that s(t) ≥ 0 for all t. To have a nonnegative demand, we can either add formally the constraint x (t) ≥ 0, for all t, or check ex-post that the optimal demand is indeed nonnegative under some restrictions on the parameter values, to be introduced in the sequel. We shall follow this second approach, which is simpler and often used in the literature. Now, if ṡ(t) ≤ 0 for all t and s(T ) ≥ 0, then the path constraint s(t) ≥ 0 is satisfied for all t < T .

Dynamic Pricing

In practice, prices of tickets for entertainment events most often do not change continuously over time. Therefore, we shall see this scenario as a benchmark. If it were possible to adjust the price continuously, then a profit-maximizing firm would do so because this would increase its profits compared to any other solution in which constraints on price-changes are imposed. The following proposition characterizes the optimal solution. The optimal values are superscripted with D for "dynamic" pricing.

Proposition 1 In the dynamic pricing scenario, the optimal advertising and pricing policies are given by

p D (t) = α + q (k 2 -2c) + cq + cqϕ (t -T ) T c , (2) 
a D (t) = kq T c . (3) 
The optimal demand rate and final inventory are given by

x D (t) = q T , (4) 
s (T ) = 0, (5) 
and the optimal profit by

J D = q (2q (k 2 -c) + T c (2α -qϕ) -k 2 q) 2T c . ( 6 
)
Proof. The Appendix contains the proofs of all propositions.

The results in the proposition deserve some comments. The optimal price p D (t) increases over time, a policy that is often encountered in dynamic pricing and revenue management. The advertising rate is constant, i.e., the organizers should use the simple policy of even spending. Demand is constant over time which seems to be an effect of the demand function term ϕs that counterbalances the effect of the increasing price.

The stock s (t) of remaining tickets decreases over time which has the implication that the shadow price of the stock s(t) is non-decreasing. This is expected: as time passes and the stock of unsold tickets decreases, the value of getting an extra ticket to sell increases. This result may seem counterintuitive because one may think that having a seat earlier is always better than having it later, because one can always simply ignore the additional seat for that time interval. However, this logic does not apply in our model because of our assumption that demand at each point in time is negatively affected by the number of unsold seats. This makes it costly (in terms of demand) to have the empty seat early on.

Putting the above argument briefly, the non-decreasing shadow price is a consequence of the simple facts that (i) ṡ(t) < 0, and (ii) ϕ > 0. The latter assumption is, as already said, a main ingredient of the model.

The proof of Proposition 1 assumes that an optimal solution is interior. This is in fact the case because it is easy to verify that the pairs (a = 0, p > 0) and (a = 0, p = 0) cannot be optimal. Hence, it is suboptimal to refrain from advertising. What remains is the pair (a > 0, p = 0), a policy in which the firm advertises and gives tickets away for free. Obviously, such a policy cannot be optimal because the organizers can do better by choosing a = 0.

Constant Pricing

This section analyzes the situation in which the price of a ticket is constant. This is a nondiscriminatory policy, in the sense that all buyers pay the same price no matter at what time they make their purchase. The policy is the one that traditionally has been used when selling tickets for entertainment events. The proposition below gives the optimal solution in which optimal values have superscript C for "constant" pricing.

The profit functional is

J p C , a = T 0 p C (α -p + ka(t) -ϕs(t)) - c 2 a 2 (t) dt,
and the constraints are

ṡ (t) = -x(t), s(0) = q, s(T ) ≥ 0, a(t) ≥ 0, p C ≥ 0.
Proposition 2 Assuming an interior solution, the optimal constant price and the optimal advertising rate are given by

p C = 2c α 1 -e -ϕT -qϕ + qϕk 2 1 + e -ϕT 2c (1 -e -ϕT ) , (7) 
a C (t) = kϕqe -ϕt c (1 -e -ϕT ) . ( 8 
)
The optimal demand rate and the profit are

x C (t) = qϕ 1 + e -ϕT k 2 e -2ϕt + (2c -k 2 ) e -ϕT 2c (e ϕT -e -ϕT ) e -ϕ(T +t) , (9) 
J C = k 2 q 2 ϕ 1 + e -ϕT + 4cq α 1 -e -ϕT -qϕ 4c (1 -e -ϕT ) . ( 10 
)
In contrast to the scenario where the price was time-variant and advertising effort constant over time, the price now is constant (by assumption) and the advertising rate a C (t) is strictly positive and decreases over time. Optimal advertising policies that recommend decreasing effort over time have been reported quite often in the literature, typically for the reason that the objective does not have a salvage value term at the horizon date. 9 Further, as in the dynamic price scenario, it is also optimal in this case to sell all tickets, that is, we have s (T ) = 0.

To have a positive price, parameters must satisfy

Condition A : α > qϕ 2c -k 2 1 + e -ϕT 2c (1 -e -ϕT ) . ( 11 
)
Recall that we assumed α > qϕ, which states that the market potential is sufficiently large compared to the number of tickets available for sale. Given this assumption, Condition A, which involves all model parameters, is automatically satisfied whenever

2c-k 2 (1+e -ϕT ) 2c(1-e -ϕT ) < 1 
or, equivalently, when c < k 2 (1+e ϕT )

2

. This inequality is easier to satisfy when the cost of advertising is low, compared to the ability of advertising to stimulate demand, and when the planning horizon is sufficiently large. Otherwise, the larger the ratio 2c-k 2 (1+e -ϕT ) 2c(1-e -ϕT ) , the more restrictive is Condition A.

Two-Market Pricing

This section analyzes the problem where the organizers have the option to create two markets. The price in each market is constant. We denote the switching time between the regular market and the last-minute market by t 1 ∈ [0, T ]. If t 1 = 0 there is no regular market; if t 1 = T there is no last-minute market. Notice a new feature of the organizers' optimization problem, the determination of an optimal switching position (s(t 1 ), t 1 ) (s 1 , t 1 ) .

It may be optimal to have one market only, that is, having the regular market for all t ∈ [0, T ] or starting the last-minute market at t = 0. Although these two situations formally are the same as the one in the constant-price scenario, there is an important difference. In the previous section, the organizers have decided in advance that one price only will be charged.

If we get a one-price solution in the two-market problem, that is, t 1 = 0 or t 1 = T, it is because such a solution is optimal.

Remark 3 The solution technique that we shall use to solve the two-stage optimal control problem was developed in [START_REF] Tomiyama | Two-stage optimal control problems and optimality conditions[END_REF] and [START_REF] Amit | Petroleum reservoir exploitation: Switching from primary to secondary recovery[END_REF]. [START_REF] Boucekkine | Technology adoption under embodiment: A two-stage optimal control problem[END_REF][START_REF] Boucekkine | Environmental quality versus economic performance: A dynamic game approach[END_REF] and [START_REF] Saglam | Optimal pattern of technology adoptions under embodiment: A multistage optimal control approach[END_REF] applied it to problems of the adoption of new technology and pollution abatement. The technique relies on a dynamic programming argument and solves the problem backwards in time.

The problem still has state s (t) and control a i (t) , i = 1, 2 but now there are three control parameters (real numbers) p 1 , p 2 , and t 1 . These quantities must be determined so as to maximize the objective functional

J(a, p 1 , p 2 , t 1 ) = J 1 (a 1 , p 1 , t 1 ) + J 2 (a 2 , p 2 , t 1 ), = t 1 0 p 1 x(t) - c 2 a 2 1 (t) dt + T t 1 p 2 x(t) - c 2 a 2 2 (t) dt,
subject to the state equations

ṡ (t) = -x(t) = -α + p 1 -ka 1 (t) + ϕs(t), t ∈ [0, t 1 ]; s(0) = q, ṡ (t) = -x(t) = -α + p 2 -ka 2 (t) + ϕs(t), t ∈ (t 1 , T ]; s(T ) ≥ 0,
and

p i ≥ 0, a i (t) ≥ 0, i ∈ {1, 2} , for t ∈ [0, T ]. The switching time t 1 must satisfy 0 ≤ t 1 ≤ T .
If it happens that s 1 = q (no tickets were sold in the regular market), all tickets need to be sold in the last-minute market. If s 1 = 0, all tickets were sold in the regular market and there is nothing to sell in a last-minute market. We briefly describe the procedure for finding an optimal switching position (s 1 , t 1 ) . Let η 1 (t) and η 2 (t) be costate variables associated with the state in the regular and last minute markets, respectively. Let H * 1 and H * 2 denote the maximized Hamiltonians and note that the integrands of J 1 and J 2 as well as the right-hand sides of the dynamics are C 2 functions. A necessary condition for an interior optimal switching time t * 1 ∈ (0, T ) to exist is that the costate and the maximized Hamiltonian are continuous at t = t * 1 , that is,

η 1 (t * 1 ) = η 2 (t * 1 ), (12) 
H * 1 (s * 1 , t * 1 ) = H * 2 (s * 1 , t * 1 ). ( 13 
)
If there is no interior solution, two corner solutions are candidates for optimality: No regular market (t

* 1 = 0) if H * 1 (q, 0) ≤ H * 2 (q, 0), no last-minute market (t * 1 = T ) if H * 1 (0, T ) ≥ H * 2 (0, T ).
We shall see that the optimal payoff J * 2 (s * 1 , t * 1 ) is a C 2 function and hence it holds that

∂J * 2 ∂s 1 = η 2 (t * 1 ); ∂J * 2 ∂t 1 = H * 2 (s * 1 , t * 1 ), (14) 
and the conditions in ( 12) and ( 13) are satisfied. The first equation in ( 14) states, as is well known, that the partial derivative of the value function with respect to state equals the costate. The second equation is the Hamilton-Jacobi-Bellman equation.

Last-Minute Market

Supposing that there was a switch from regular to last-minute market at time t 1 we have t ∈ [t 1 , T ] . This switching time is considered as fixed and then the state s(t 1 ) = s 1 also is fixed. 10 The optimization problem is 10 We assume s 1 > 0 since otherwise there is no problem to solve.

max a 2 ≥0,p 2 ≥0 J 2 (a 2 , p 2 ) = T t 1 p 2 x(t) - c 2 a 2 2 (t) dt .
Proposition 3 Assuming interior policies, the optimal price, advertising rate and profit in the last-minute market are given by

p * 2 = α -ϕs 1 1 1 -e ϕ(t 1 -T ) - k 2 2c 1 + e -ϕ(T -t 1 ) 1 -e -ϕ(T -t 1 ) , (15) 
a * 2 (t) = kϕs 1 c (e -ϕt 1 -e -ϕT ) e -ϕt , (16) 
J * 2 (s 1 , t 1 ) = p * 2 s 1 + k 2 ϕs 2 1 e -2ϕT -e -2ϕt 1 4c (e -ϕt 1 -e -ϕT ) 2 . ( 17 
)
A few comments on the results of Proposition 3 are in order. First, the optimal advertising rate is positive and decreases over time, which, as alluded to before, is a common feature in finite-horizon dynamic optimization problems with no salvage values. Second, for price to be positive, the following condition must be satisfied:

Condition B : α > ϕs 1 1 (1 -e ϕ(t 1 -T ) ) - k 2 2c 1 + e ϕ(T -t 1 ) 1 -e ϕ(T -t 1 ) , (18) 
which, as in the constant-price scenario, requires that the market potential be sufficiently large. Moreover, the lower the number of remaining tickets to be sold in the last-minute market, the easier it is to satisfy the inequality. The time instant t 1 is a decision variable and Condition B can only be checked after having found t * 1 . Finally, the term p * 2 s 1 in the optimal profit is the revenue gained by selling s 1 tickets. The term k 2 ϕs 2 1 e -2ϕT -e -2ϕt 1 / 4c e -ϕt 1 -e -ϕT 2 is negative and is the total advertising cost incurred in the last-minute market.

Regular Market

Suppose that there is a regular market, starting at time zero. The optimization problem is

max a 1 ,p 1 ,t 1 t 1 0 p 1 x(t) - c 2 a 2 1 (t) dt + J * 2 (s 1 , t 1 ) ,
subject to the usual constraints. The term J * 2 (s 1 , t 1 ), which plays the role of a salvage value, is given by (41). The initial inventory is given, s(0) = q, while the terminal inventory s(t 1 ) = s 1 is free. 11 Proposition 4 Assuming an interior solution, the optimal price, advertising rate and profit in the regular market are given by

p * 1 = α -ϕ q -s 1 1 -e ϕt 1 + s 1 4c -k 2 1 + e ϕ(t 1 -T ) 2c (1 -e ϕ(t 1 -T ) ) , (19) 
a * 1 (t) = kϕ (q -s 1 ) c (e ϕt 1 -1) e ϕ(t 1 -t) , (20) 
J * 1 (s 1 , t 1 ) = p * 1 (q -s 1 ) + k 2 ϕ (q -s 1 ) 2 (1 + e ϕt 1 ) 4c (1 -e ϕt 1 ) . ( 21 
)
11 We now have a problem with free-end point s 1 and free-terminal time t 1 .

As before, we obtain that the advertising rate is strictly positive and decreasing over time. Also, the larger the number of tickets that the organizers wish to sell in the regular market (i.e., q -s 1 ), the higher the advertising rate. We note that at time t 1 optimal advertising rates in the two markets are given by a * 1 (t 1 ) = k(p 1 -η 1 (t 1 ))/c and a * 2 (t 1 ) = k(p 2 -η 2 (t 1 ))/c, respectively. Hence, the optimal advertising trajectory is discontinuous at t 1 (unless prices are equal which is a hairline case). 12 The market with the highest price will have the highest advertising rate at t 1 .

Further, to have a positive price, and hence an interior solution, the following condition on the parameter values must be satisfied:

Condition C : α > ϕ q -s 1 1 -e ϕt 1 + s 1 4c -k 2 1 + e ϕ(t 1 -T ) 2c (1 -e ϕ(t 1 -T ) ) . ( 22 
)
The maximized Hamiltonian can be derived from the transversality condition

H * 1 (s 1 , t 1 )+ ∂J * 2 (s 1 , t 1 )/∂t 1 = 0, which becomes (p * 1 -η 1 ) x * - c 2 (a * ) 2 + ∂ ∂t 1 p * 2 s 1 + k 2 ϕs 2 1 e -2ϕT -e -2ϕt 1 4c (e -ϕt 1 -e -ϕT ) 2 = 0,
in which η 1 , x * , and a * are evaluated at (s 1 , t 1 ). The derivative in the above equation is

∂J * 2 (s 1 , t 1 ) ∂t 1 = - k 2 ϕ 2 s 2 1 e
-ϕT e -ϕt 1 2c (e -ϕT -e -ϕt 1 ) 2 , which shows, as expected, that optimal profits in the last-minute market decrease, the later the organizers switch to this market. Summarizing, we have

H * 1 (s 1 , t 1 ) = - ∂J * 2 (s 1 , t 1 ) ∂t 1 = k 2 ϕ 2 s 2 1 e
-ϕT e -ϕt 1 2c (e -ϕT -e -ϕt 1 ) 2 > 0.

Optimal Switching Time

The maximized Hamiltonians are given by

H * 2 (s 1 , t 1 ) = α + 2ϕs 1 e ϕ(t 1 -T ) -1 + k 2 ϕs 1 2c e ϕT + e ϕt 1 e ϕT -e ϕt 1 , (23) 
H * 1 (s 1 , t 1 ) = k 2 ϕ 2 s 2 1 e -ϕT e -ϕt 1 2c (e -ϕT -e -ϕt 1 ) 2 . ( 24 
)
To determine the optimal switching time, one considers the following possibilities:

Regular market only : t * 1 = T Last-minute market only : t * 1 = 0 Both markets exist : t * 1 ∈ (0, T ) .

The following proposition shows that both one-market solutions are suboptimal. 12 The discontinuity is not an issue as the advertising rate only needs to be piecewise continuous.

Proposition 5 Choosing t * 1 = T or t * 1 = 0 is not optimal.

Hence, if there exists an optimal switching time, it must be interior switching time. Such a solution exists if the equation H * 1 (s 1 , t 1 ) = H * 2 (s 1 , t 1 ) has a unique solution t * 1 ∈ (0, T ) . It is easy to check that H * 1 (s 1 , t 1 ) -H * 2 (s 1 , t 1 ) is a polynomial of degree 2 in t 1 . Solving H * 1 (s 1 , t 1 ) -H * 2 (s 1 , t 1 ) = 0 with respect to t 1 provides two candidates for an optimal interior switching time given by

t 1(1) = T + 1 ϕ ln k 2 ϕ 2 s 2 1 + 4c (α -ϕs 1 ) + ϕs 1 Γ 2 (2cα -k 2 ϕs 1 ) T + 1 ϕ ln Ω, t 1(2) = T + 1 ϕ ln k 2 ϕ 2 s 2 1 + 4c (α -ϕs 1 ) -ϕs 1 Γ 2 (2cα -k 2 ϕs 1 ) T + 1 ϕ ln Λ, where Γ 4 (2c -k 2 ) 2 + k 4 ϕ 2 s 2 1 + 8ck 2 (α -ϕs 1 ) > 0, Ω = k 2 ϕ 2 s 2 1 + 4c (α -ϕs 1 ) + ϕs 1 Γ 2 (2cα -k 2 ϕs 1 ) , Λ = k 2 ϕ 2 s 2 1 + 4c (α -ϕs 1 ) -ϕs 1 Γ 2 (2cα -k 2 ϕs 1 )
.

For the first solution to exist and be interior, we must have 0 < Ω < 1 and T + 1 ϕ ln Ω > 0. As the numerator of Ω is positive, its denominator must be positive for t 1(1) to be admissible which requires that

α ϕs 1 > k 2 2c
Now, for Ω to be less than 1,we must have

ϕs 1 k 2 ϕs 1 + 2 k 2 -2c + Γ < 0,
which is false because the left-hand side is obviously strictly positive under the above assumption. We conclude that t 1(1) is infeasible.

For the second solution to exist and be interior, we must have 0 < Λ < 1 and T + 1 ϕ ln Λ > 0. Now, Λ < 1 is equivalent to have

ϕs 1 k 2 ϕs 1 + 2 k 2 -2c -Γ < 0,
which is true. For Λ to be positive, the numerator and the denominator must have the same sign. Consider the numerator. We have

N um ≶ 0 ⇔ k 2 ϕ 2 s 2 1 + 4c (α -ϕs 1 ) ≷ ϕs 1 Γ ⇔ k 2 ϕ 2 s 2 1 + 4c (α -ϕs 1 ) 2 ≷ ϕ 2 s 2 1 4 2c -k 2 2 + k 4 ϕ 2 s 2 1 + 8ck 2 (α -ϕs 1 ) ⇔ 4 2c (α -ϕs 1 ) + k 2 -2c ϕs 1 2αc -k 2 ϕs 1 ≶ 0.
14 Under our assumptions α-ϕs (0) > 0, which implies α-ϕs 1 > 0, and k 2 -2c > 0 (see Remark 4 in the Appendix), the sign of the numerator is the same as the sign of (2αc -k 2 ϕs 1 ), which is precisely the denominator. Therefore, Λ is positive. Finally, for t 1(2) to be interior we still need to have T + 1 ϕ ln Λ > 0. Since Λ is independent of T , and in order to have a two-market problem, we assume that the parameter values satisfy Condition D :

t * 1 = T + 1 ϕ ln Λ > 0.
The final expression of the optimal switching time then is

t * 1 = T + 1 ϕ ln   k 2 ϕ 2 s 2 1 + 4c (α -ϕs 1 ) -ϕs 1 4 (2c -k 2 ) 2 + k 4 ϕ 2 s 2 1 + 8ck 2 (α -ϕs 1 ) 2 (2cα -k 2 ϕs 1 )   .
Not surprisingly, the above expression is too complicated to be amenable to a qualitative analysis. Still, two observations can be made. First, the longer the planning horizon, the later the date at which the last-minute market starts. Second, the switching date is independent of the initial number of tickets, q, while -as one would expect -it depends on the number of remaining tickets s 1 .

The only remaining point is the determination of the sales at the switching point, that is, s (t * 1 ) = s 1 . To determine s 1 , we solve for the dynamics

ṡ (t) = -α + p 1 -ka 1 (t) + ϕs(t), t ∈ [0, t 1 ]; s(0) = q,
to get s (t) = qe ϕt + (1 -e ϕt ) ϕ (α -p 1 ) + k 2 q (e -ϕt -e ϕt ) 2c (1 -e -ϕT ) .

In particular

s (t * 1 ) = s 1 = qe ϕt * 1 + 1 -e ϕt * 1 ϕ (α -p * 1 ) + k 2 q e -ϕt * 1 -e ϕt * 1 2c (1 -e -ϕT
) .

As t * 1 and p * 1 depend on s 1 , we obtain t * 1 as an implicit function which however does not seem to have an analytical solution. Therefore, we can determine s 1 only numerically.

Substituting for t * 1 in ( 15)-( 17), and in ( 19)-( 21), we obtain optimal price, advertising and profit in the last-minute market and regular market, respectively.

Evaluation of Policies

After having characterized the optimal solutions in the three pricing strategies, which was our first objective, now we turn to our second and third objectives, namely, comparing dynamic pricing (DP), constant pricing (CP), and two-market pricing (TMP) scenarios, from the firm's and consumer's perspectives. Table 1 summarizes the results. 

kq T c α + q(k 2 -2c)+cq+cqϕ(t-T ) T c q(2q(k 2 -c)+T c(2α-qϕ)-k 2 q) 2T c CP kϕqe -ϕt c(1-e -T ϕ ) 2c(α(1-e -ϕT )-qϕ)+qϕk 2 (1+e -ϕT ) 2c(1-e -ϕT ) k 2 q 2 ϕ(1+e -ϕT )+4cq(α(1-e -ϕT )-qϕ) 4c(1-e -ϕT ) TMP 0 ≤ t ≤ t * 1 kϕ(q-s 1 )e ϕ(t * 1 -t) c e ϕt * 1 -1 α -ϕ q-s 1 1-e ϕt * 1 + s 1 4c-k 2 1+e ϕ(t * 1 -T ) 2c 1-e ϕ(t * 1 -T ) p * 1 (q -s 1 ) + k 2 ϕ(q-s 1 ) 2 1+e ϕt * 1 4c 1-e ϕt * 1 t * 1 < t ≤ T kϕs 1 e -ϕt c e -ϕt * 1 -e -ϕT α -ϕs 1 1 1-e ϕ(t * 1 -T ) -k 2 2c 1+e -ϕ(T -t * 1 )
1-e -ϕ(T -t * 1 )

p * 2 s 1 + k 2 ϕs 2 1 e -2ϕT -e -2ϕt * 1 4c e -ϕt * 1 -e -ϕT 2 
Propositions 6-10 characterize the advertising and pricing policies in the three scenarios.

Proposition 6

Advertising is (i) constant in the dynamic-pricing scenario; (ii) monotonically decreasing over time in the constant-pricing; and (iii) monotonically decreasing during each time interval in the two-market pricing scenario.

As already noted, advertising being non-increasing over time is a feature frequently encountered in finite-horizon optimization problems, typically in the absence of a salvage value which is the case in our problem. Note in the two-market pricing scenario that the decrease in advertising effort occurs in each market, but does not specify the shape of the overall advertising path. The next proposition completes the picture in this scenario.

Proposition 7 At the switching date t * 1 in the TMP scenario we have

a * 2 (t * 1 ) -a * 1 (t * 1 ) is    < 0, for t * 1 < t, = 0, for t * 1 = t, > 0, for t * 1 > t, where t = - 1 ϕ ln s 1 1 -e -T ϕ + qe -T ϕ q > 0.
Proposition 7 shows that there is a jump in advertising at t * 1 , unless t * 1 = t (which is a hairline case). The sign of the jump depends on the parameter values.

Proposition 8 There exists an instant of time t ∈ (0, T ) such that

a D (t) -a C (t) is    < 0, for t < t, = 0, for t = t, > 0, for t > t, where t = - 1 ϕ ln 1 -e -ϕT ϕT .
At any instant of time, the advertising rate is higher with DP than in CP.

Recalling that in the DP scenario the advertising policy is constant and is monotonically decreasing in the CP scenario, Proposition 8 shows that the DP advertising is "averaging" the advertising path with CP.

Proposition 9 In the TMP scenario, the price in the last-minute market is higher than in the regular market.

This result is a 'simpler version' of the result that was obtained in the DP scenario. The price jumps from a lower to a higher level, in contrast to the DP case where price increases continuously over time.

Proposition 10 There exists an instant of time t ∈ (0, T ) such that

p D (t) -p C    < 0, for t < t, = 0, for t = t, > 0, for t > t, where t = 2c 1 -e -T ϕ -T ϕe -T ϕ -2k 2 1 -e -T ϕ + T k 2 ϕ 1 + e -T ϕ 2cϕ (1 -e -T ϕ
) .

As for advertising, the above proposition shows that a constant price is 'averaging' the dynamic price p D (t) which starts out at a lower level than p C and overtakes p C at time t. Now we turn to comparing profits and recall that the ordering of profits is as follows:

J D > J * > J C .
It holds that J * > J C because otherwise a constant price would have been the optimal solution of the TMP problem. (Recall that we proved that the boundary solutions for t 1 were suboptimal.) Similarly, J D > J * because otherwise two constant prices would have been the optimal solution of the dynamic pricing problem. The only issues that are pending issues are the determination of the differences between profits as well as an assessment of the impact that key parameters have on the differences in profits. As already said, the difference J D -J C can be thought of as the cost of simplicity (CoS). Similarly, the difference J * -J C can be seen as the benefit of having a last-minute market (BLM M ).

Straightforward computations give

CoS = J D -J C = q 2 (2c -k 2 ) 4T c (1 -e -T ϕ ) e -T ϕ (2 + T ϕ) -(2 -T ϕ) ,
and it is easy to confirm that CoS is positive. The fraction is positive due to Condition D.

To show that the second term is also positive, define the function

g (ϕT ) = e -ϕT (2 + ϕT ) -(2 -ϕT ) ,
for which it holds that g (0) = 0, g (ϕT ) = 1 -e -ϕT -ϕT e -ϕT > 0.

We know from the proof of Proposition 8 that g (T ϕ) is positive for all T ϕ > 0. Hence, the result.

The following proposition provides a sensitivity analysis of CoS with respect to key model parameters.

Proposition 11 CoS is independent of α, increasing in q, c and ϕ, and decreasing in k.

The market potential α factors out in CoS and is irrelevant for the evaluation of profit differences. The two advertising parameters play an opposite role: the cost parameter (c) has a positive impact on CoS while the impact of advertising on demand (k) has a negative effect. Further, the larger the initial number of tickets for sale (q), and the marginal impact on inventory on demand (ϕ), the larger the loss when using constant pricing.

Comparing the constant and dynamic pricing results to TMP is not analytically feasible and we shall proceed numerically. 13 Consider the following parameter values:

T = 12, q ∈ {270, 230, 150} , α = 200, ϕ = 0.3, k = 1, c = 1, ( 25 
)
that is, we have fixed all parameter values but q. For this parameter we used the three values stated above. This calibration satisfies Conditions A-E. Table 2 gives the optimal profits in the three scenarios for the three values of q. All three profits are increasing in q which is expected. The loss in profit due to the use of a constant price, instead of the dynamic price, is less than 10%. This loss diminishes if the organizers choose to have a two markets. In fact, for low values of q, the TMP profit is very close to the DP profit. These comments do not justify the use of non-optimal pricing policy, but are intended to give an indication of the magnitude of the loss. As alluded to above, there might be other reasons making the organizers to select CP or TMP, e.g., ease of implementation and tradition. Such factors are not accounted for in our model.

Figure 1 shows optimal advertising, price, and demand trajectories in the three pricing scenarios for the values of q listed in Table 2. The figure shows the following:

(a) Generally speaking, we observe that DP advertising, price, and sales trajectories 'average' the corresponding CP trajectories. Similarly, the TMP trajectories 'average' the DP trajectories; Here the approximation is done in two pieces.

(b) The larger the value of q, the earlier the switch to the last-minute market in the TMP scenario. This result may be counterintuive in view of the fact that we require all tickets to be sold and p * 2 > p * 1 , that is, price is marked-up in the last-minute market. One explanation of this result is that in TNP the organizers increases advertising efforts in the last-minute market. This allows for charging a higher price.

(c) The advertising trajectory in CP scenario is between the two branches of advertising in TMP. When q is higher (lower), a C (t) is closer to a * 2 (t) (a * 1 (t)). One explanation is that a higher q requires more advertising, which is the case with a * 2 (t). This research has investigated a problem of how to sell tickets to one-time entertainment events. The organizers of an event, acting so as to maximize profits, must choose optimal pricing and advertising policies. The decision problem has been simplified in order to yield results obtained (mainly) by analytic methods. 14The objective of the research was to identify how three ticket pricing policies, all wellknown from practice, would work. We analyzed the following policies:

(CP) A policy with a single constant price (TMP) A policy with a constant price within each of two periods. A markup or markdown of the price may be implemented at the end of the first period (DP) A policy where price changes continuously. One contribution of the research lies in the analytical derivation of optimal pricing and advertising strategies for each of the three types of pricing policy. With this at hand, we calculated the optimal demand rate and profits for each of the three strategies. For strategy TMP we showed that there should be a markup in price, at an interior instant of time, and we derived the optimal instant at which to make the markup.

In DP, the advertising and the demand rates are constant over time, i.e., the organizers should use the simple advertising strategy of even spending. In CP, the advertising rate is strictly decreasing over time while the demand rate is increasing. The former result is what one usually obtains in optimal control models of advertising when there is no salvage value at the horizon date. It was also shown that the optimal advertising rate is higher with strategy DP than CP. Therefore, the cost of advertising is higher with DP than CP. In TMP it turned out that it is suboptimal to have one market only. The price is changed at an interior instant of time, from a lower to a higher level (i.e., a markup policy).

DP always yields a higher profit than TMP which in turn provides a higher profit than CP. Thus, there is a "cost of simplicity" (loss of profit by choosing a "simple" pricing strategy).

Having obtained these results we compared -and this is another contribution -the "simplistic" strategies CP and TMP with the "sophisticated" strategy DP. 15 It turned out that advertising is constant under strategy DP but decreasing under CP and TMP.

As recommendations to event organizers we propose the following. DP yields the highest profits although it is more costly in terms of advertising expenditure than CP. Numerical simulations suggest that if the initial stock of tickets is sufficiently small, profits under strategies TMP and DP do not differ very much, that is, TMP is a good approximation to DP. Profits under DP is higher than those under CP, that is, the manager pays "cost of simplicity" when she chooses the CP strategy. This cost is larger, (i) the larger the number of tickets to sell and (ii) the larger the impact of demand on inventory (i.e., the parameter ϕ).

Our model is simple and can be extended in many different directions. Here are a few:

• A key assumption is that demand is deterministic. Introducing stochastic demand would surely complicate computations (that already are quite complicated).

• An obvious extension of the model would be to let the organizers decide the starting day for ticket sales and for advertising and -possibly -the date of the event. In reality, the performers also have an influence on the latter.

• The demand function is based on myopic customers and could be modified to take into account for consumer reactions to policies decided by the organizers. The argument here is that customers are not myopic decision makers but form their own expectations of future prices; These expectations influence their purchase behavior, that is, consumers act strategically (see, e.g., [START_REF] Göensch | Dynamic prices with strategic consumers[END_REF] and Talluri and Van Ryzin (2004)).

Appendix Proof of Proposition 1

To solve the dynamic pricing problem, introduce the Hamiltonian

H (s, p, a, λ) = (p -λ) (α -p + ka -ϕs) - c 2 a 2 ,
where λ = λ(t) is the costate associated with state s(t). Necessary optimality conditions are as follows. Suppose that the triple (a D (t) , p D (t) , s D (t)) solves the optimal control problem.

Then, there exists a piecewise continuously differentiable function λ(t) such that for all t ∈ [0, T ], except at points where a D (t) and/or p D (t) are discontinuous, it holds that

H s D , p D , a D , λ = max a≥0, p≥0
H s D , p, a, λ ,

λ(t) = - ∂H D ∂s = ϕ p D (t) -λ (t) , λ (T ) θ, ( 26 
)
where θ is the Lagrange multiplier associated with the constraint s (T ) ≥ 0. It must hold that θ ≥ 0, s (T ) ≥ 0, θs (T ) = 0.

The first-order optimality conditions for advertising rate and price are

∂H ∂a = k(p -λ) -ca D ≤ 0 if a D = 0, = 0 if a D > 0, (27) 
∂H ∂p = x -p D + λ ≤ 0 if p D = 0, = 0 if p D > 0.
It is readily shown that H is strictly concave in a and p. Then, a D (t) and p D (t) are uniquely determined and continuous. We shall assume k 2 -2c > 0 which will imply the satisfaction of a sufficiency condition. Indeed, we have Remark 4 Under the assumption k 2 -2c > 0, the solution derived above satisfies a sufficiency condition [START_REF] Seierstad | Optimal Control Theory with Economic Applications[END_REF]) that the maximized Hamiltonian is concave in the state s, for fixed values of λ and t. Inserting p * and a * from (28) and (29) into the Hamiltonian H yields the maximized Hamiltonian

H * = - c (sϕ -α + λ) 2 2(k 2 -2c) ,
from which it follows that ∂ 2 H * /∂s 2 = -cϕ 2 / (k 2 -2c) . This derivative is negative for k 2 -2c > 0.

Assuming interior solutions one obtains from (27)

p D (t) = α + λ(t) + ka D (t) -ϕs(t) 2 ; a D (t) = k p D (t) -λ(t) c
and solving these equations for p D and a D yields the optimal controls as functions of state and costate, that is,

p D (s, λ) = c (ϕs -α -λ) + k 2 λ k 2 -2c , (28) 
a D (s, λ) = k (ϕs -α + λ) k 2 -2c . ( 29 
)
Substituting p D (s, λ) and a D (s, λ) into the demand function yields

x D = c (ϕs -α + λ) k 2 -2c (30) 
and inserting p D (s, λ) and a D (s, λ) from ( 28), (29) into the state and costate equations gives

ṡ(t) = c (α -ϕs(t) -λ(t)) k 2 -2c , (31) 
λ(t) = - ϕc (α -ϕs(t) -λ(t)) k 2 -2c , (32) 
from which it follows that λ(t) = -ϕ ṡD (t).

This differential equation has the solution

λ (t) = ϕ s D (T ) -s D + θ,
in which we recall that θ λ (T ) . Substituting in (31) and solving provides

s D (t) = c α -ϕs D (T ) -θ t k 2 -2c + q, and 
λ (t) = ϕ k 2 -2c k 2 -2c s D (T ) -q -c α -ϕs D (T ) -θ t + θ.
If s D (T ) > 0, then θ = 0 and

s D (t) = c α -ϕs D (T ) t k 2 -2c + q, λ (t) = ϕ k 2 -2c s D (T ) k 2 -2c + ctϕ -k 2 q + 2cq -ctα .
From the first equation we get

s D (T ) = αcT + q (k 2 -2c) k 2 -2c + ϕcT ,
and consequently

s D (t) = ct (α -qϕ) k 2 -2c + T cϕ + q; λ (t) = cϕ (T -t) (α -qϕ) k 2 -2c + T cϕ .
Invoking our assumptions α -qϕ > 0 and k 2 -2c > 0 shows that s D (t) > q for all t ∈ (0, T ]. Clearly, it cannot happen that the inventory exceeds its initial size q.

Therefore, s D (T ) = 0 and we get

s D (t) = c (α -θ) t k 2 -2c + q, λ (t) = - ϕ k 2 -2c k 2 -2c q + c (α -θ) t + θ.
At T we have

s D (T ) = c (α -θ) T k 2 -2c + q = 0 ⇒ θ = (k 2 -2c) q + T cα T c ,
which shows that the multiplier θ is positive. Substituting θ into s D (t) and λ (t) yields the unique trajectories for state and costate variables:

s D (t) = q (T -t) T ; λ (t) = (k 2 -2c) q + T c (α -qϕ) + cqtϕ T c . (34) 
Finally, optimal price, advertising, and demand trajectories are

p D (t) = α + q (k 2 -2c) + cq + cqϕ (t -T ) T c , (35) 
a D (t) = kq cT , x * (t) = q T
and the optimal profit is

J D = q (2q (c + k 2 -2c) + T c (2α -qϕ) -k 2 q) 2T c .

Proof of Proposition 2

The Hamiltonian is

H (s, p, a, µ) = (p -µ) (α -p + ka -ϕs) - c 2 a 2 ,
where µ = µ(t) is the costate associated with state s(t). With the exception of the determination of the price, the proof follows the same steps as in the proof in the dynamic pricing scenario and we shall skip some details. Assuming an interior solution, necessary optimality conditions are16 

∂H ∂a = k (p -µ) -ca = 0, T 0 ∂H ∂p dt = T 0 (α -2p + ka(t) -ϕs(t) + µ(t)) dt = 0.
The above conditions are equivalent to

a(t) = k c (p -µ(t)), q = T 0 (p -µ(t)) dt.
The costate equation is μ(t) = ϕ (p -µ(t)) , µ(T ) = θ, and the complementarity conditions are θ ≥ 0, s (T ) ≥ 0, θs (T ) = 0.

Solving the differential equation for µ(t) yields

µ(t) = p 1 -e ϕ(T -t) + θe ϕ(T -t) , (36) 
and an optimal advertising rate then is

a(t) = k c (p -θ)e ϕ(T -t) .
Substituting a(t) into the state equation, and using (36), provides

ṡ (t) = -α + p - k 2 c (p -θ)e ϕ(T -t) + ϕs,
which has the solution

s(t) = α -p ϕ 1 -e ϕt + qe ϕt + k 2 (p -θ) 2cϕ e ϕ(T -t) -e ϕ(T +t) .
From the condition q = T 0 (p -µ(t)) dt we obtain the optimal price p = ϕq + θ e ϕT -1 e ϕT -1 .

In summary, the optimal solution is given by

p = ϕq + θ e ϕT -1 e ϕT -1 ; a(t) = kϕqe ϕ(T -t) c (e ϕT -1) ; µ(t) = ϕq e ϕT -1 1 -e ϕ(T -t) s(t) = (α -θ) e ϕT -1 -ϕq ϕ (e ϕT -1)
1 -e ϕt + qe ϕt + k 2 q 2c (e ϕT -1) e ϕ(T -t) -e ϕ(T +t) , s(T ) = (α -θ) e ϕT -1 -ϕq ϕ (e ϕT -1) 1 -e ϕT + qe ϕT + k 2 q 2c (e ϕT -1)

1 -e 2ϕT . Now suppose that s(T ) > 0. Setting θ equal to zero in the last equation above provides

s (T ) = α 1 -e ϕT ϕ + 2c -k 2 2c q 1 + e ϕT < 0,
which violates the state constraint that s (t) ≥ 0 must hold for all t ∈ [0, T ]. Therefore, s(T ) = 0 and the optimal solution (indicated by superscript C) is given by

p C = 2c α 1 -e -ϕT -qϕ + qϕk 2 1 + e -ϕT 2c (1 -e -ϕT ) , a C (t) = kϕqe -ϕt c (1 -e -ϕT ) µ C (t) = 2cα 1 -e -ϕT -2cϕq (1 + e -ϕt ) + qϕk 2 1 + e -ϕT 2c (1 -e -ϕT ) , s C (t) = (α -θ) e ϕT -1 -ϕq ϕ (e ϕT -1) 1 -e ϕt + qe ϕt + k 2 q 2c (e ϕT -1) e ϕ(T -t) -e ϕ(T +t) , θ = α + (k 2 -2c) ϕq 1 + e T ϕ 2c (e T ϕ -1) > 0.
Finally, substituting the optimal paths into the demand and profit functions provides

x C (t) = qϕ 1 + e -ϕT k 2 e -2ϕt -(k 2 -2c) e -ϕT 2c (e ϕT -e -ϕT ) e -ϕ(T +t) , J C = k 2 q 2 ϕ 1 + e -ϕT + 4cq α 1 -e -ϕT -qϕ 4c (1 -e -ϕT
) .

Proof of Proposition 3

The Hamiltonian is

H 2 (s, a 2 , p 2 , η 2 ) = (p 2 -η 2 ) x - c 2 a 2 2 ,
where η 2 = η 2 (t) is the costate variable associated with s(t). Suppose that the optimal price and advertising rate are positive for all t. Then a * 2 (t) = k (p 2 -η 2 (t)) /c and the optimal price p * 2 can be found from

T t 1 ∂H 2 ∂p 2 dt = 0 ⇔ s 1 = T t 1 (p 2 -η 2 (t))dt. (37) 
State and costate equations are

ṡ(t) = -α + p 2 - k 2 (p 2 -η 2 (t)) c + ϕs(t); s(t 1 ) = s 1 , η2 (t) = ϕ (p 2 -η 2 (t)) , η 2 (T ) = θ,
and we have the endpoint constraint and complementarity conditions s (T ) ≥ 0, θ ≥ 0, θs (T ) = 0, and s 1 is fixed. Now, the state and costate equations, as well as the endpoint conditions are the same as in the dynamic-pricing solution. Therefore, replicating the same steps as those in Proposition 1, it can be shown that s (T ) > 0 cannot occur in an optimal solution. Consequently, s (T ) = 0.

The unique solution of state and costate equations is

η 2 (t) = p 2 - 2c k 2
(α -p 2 ) e ϕt 1 -e ϕT + ϕs 1 e ϕT e ϕT e -ϕt 1 -e -ϕT e ϕt 1 e -ϕt , (38)

s * (t) = α -p 2 ϕ - (α -p 2 ) e -ϕt 1 -e -ϕT + ϕs 1 e -ϕT
ϕ (e ϕ(T -t 1 ) -e -ϕ(T -t 1 ) ) e ϕt + (α -p 2 ) e ϕt 1 -e ϕT + ϕs 1 e ϕT ϕ (e ϕ(T -t 1 ) -e -ϕ(T -t 1 ) ) e -ϕt .

To determine the optimal price p 2 , substitute η 2 (t) into (37):

s 1 + T t 1 (η 2 (t) -p 2 )dt = 0 ⇔ s 1 + 2c ϕk 2 (α -p 2 ) e ϕt 1 + (ϕs 1 -α + p 2 ) e ϕT e ϕ(T -t 1 ) -e -ϕ(T -t 1 )
e -ϕT -e -ϕt 1 = 0, the solution of which is

p * 2 = α -ϕs 1 1 1 -e ϕ(t 1 -T ) - k 2 2c 1 + e ϕ(T -t 1 ) 1 -e ϕ(T -t 1 ) . (39) 
Using ( 39) and (38) yields the optimal advertising rate

a * 2 (t) = kϕs 1 c (e -ϕt 1 -e -ϕT ) e -ϕt . (40) 
Substituting for p * 2 and a * 2 (t) in the profit function, we obtain

J * 2 (s 1 , t 1 ) = p * 2 s 1 + k 2 ϕs 2 1 e -2ϕT -e -2ϕt 1 4c (e -ϕt 1 -e -ϕT ) 2 . (41) 
Finally, inserting p * 2 into η 2 (t 1 ) (given by (38)) yields

η 2 (t 1 ) = α + ϕs 1 k 2 1 + e ϕ(t 1 -T ) -4c 2c (1 -e ϕ(t 1 -T ) ) (42) 
which verifies the equality ∂J * 2 (s 1 , t 1 )/∂s 1 = η 2 (t 1 ) in ( 14). Using the other equality in [START_REF] Jørgensen | A survey of game-theoretic models of cooperative advertising[END_REF], i.e., ∂J * 2 (s 1 , t 1 )/∂t 1 = H * 2 (s 1 , t 1 ) , yields the maximized Hamiltonian for the last minute market:

H * 2 (s 1 , t 1 ) = α + 2ϕs 1 e ϕ(t 1 -T ) -1 + k 2 ϕs 1 2c
e ϕT + e ϕt 1 e ϕT -e ϕt 1 .

Proof of Proposition 4

The Hamiltonian is

H 1 (s, a 1 , p1 , η 1 ) = (p 1 -η 1 ) x -ca 2 1 /2,
where η 1 = η 1 (t) is the costate variable. Suppose that price and advertising rate are positive. The optimal advertising rate is given by a * 1 (t) = k(p 1 -η 1 (t))/c and the optimal price p * 1 is the solution of the equation

t 1 0 ∂H 1 ∂p 1 dt = 0 ⇔ q -s 1 = t 1 0 (p 1 -η 1 (t)) dt, (43) 
in which q -s 1 is the number of tickets sold in the regular market. The costate equation η1 (t) = ϕ (p 1 -η 1 (t)) has the solution η 1 (t) = p 1 + C 1 e -ϕt and we determine C 1 such that the costate matching (or continuity) condition η 1 (t 1 ) = η 2 (t 1 ) in ( 12) is satisfied. The right-hand side of this equation is

η 2 (t 1 ) = α + ϕs 1 k 2 1 + e ϕ(t 1 -T ) -4c 2c (1 -e ϕ(t 1 -T ) ) ,
and the costate η 1 (t) then is

η 1 (t) = p 1 -p 1 -α + ϕs 1 k 2 e -ϕ(T -t 1 ) + 1 -4c 2c (e -ϕ(T -t 1 ) -1) e ϕ(t 1 -t) . (44) 
Using this result, the optimal price can be found from (43):

p * 1 = ϕ(q -s 1 ) e ϕt 1 -1 -ϕs 1 k 2 e ϕ(t 1 -T ) + 1 -4c 2c (e ϕ(t 1 -T ) -1) + α, (45) 
and, using (44) and (45), the optimal advertising rate is

a * 1 (t) = kϕ (q -s 1 ) c (e ϕt 1 -1) e ϕ(t 1 -t) . ( 46 
)
To determine the optimal state trajectory one inserts p * 1 and a * (t) from ( 45) and (46) into the state equation: ṡ (t) = -α + p * 1 -ka * (t) + ϕs(t), = ϕ(q -s 1 ) e ϕt 1 -1 -ϕs 1 k 2 e ϕ(t 1 -T ) + 1 -4c 2c (e ϕ(t 1 -T ) -1) -k 2 ϕ (q -s 1 ) c (e ϕt 1 -1) e ϕ(t 1 -t) + ϕs(t).

Solving this equation with initial condition s(0) = q yields s * (t) = q -s 1 e ϕt 1 -1 e ϕt -1 + k 2 e ϕt 1 (e -ϕt -e ϕt ) 2c (47) + s 1 (e ϕt -1) e ϕ(t 1 -T ) -1 2 -k 2 e ϕ(t 1 -T ) + 1 2c + qe ϕt . Now we can determine the optimal state at which the switch between markets occur (still supposing that a switch occurs). Using (47) provides the optimal terminal state in the regular market s * (t 1 ) = q -s 1 e ϕt 1 -1 e ϕt 1 -1 + k 2 e ϕt 1 (e -ϕt 1 -e ϕt 1 ) 2c + s 1 (e ϕt 1 -1) e ϕ(t 1 -T ) -1 2 -k 2 e ϕ(t 1 -T ) + 1 2c + qe ϕt 1 , and we have s * (t 1 ) = s 1 as the (arbitrary) initial state in the last minute market. Since the state variable must be continuous for all t, we equate these two values of s and solve for s 1 :

s * 1 = q e ϕ(t 1 -T ) -1 2 (e -ϕT -1) e -ϕt 1 + 1 .

Finally, optimal profits in the regular market are J * 1 (s 1 , t 1 ) = p * 1 (q -s 1 ) + k 2 ϕ (q -s 1 ) 2 (e ϕt 1 + 1) 4c (1 -e ϕt 1 ) .

(49)

Proof of Proposition 5

For t * 1 = T we have s 1 = 0. For t * 1 = T to be optimal, it is necessary that H * 1 (0, T ) ≥ H * 2 (0, T ) . Setting s 1 = 0 and t 1 = T in (23) and 24), we obtain H * 2 (0, T ) = 0 and H * 1 (0, T ) = α. Therefore, H * 1 (0, T ) ≥ H * 2 (0, T ) cannot be true and we conclude that t 1 = T is suboptimal. For t * 1 = 0 we have s 1 = q and it is necessary that H * 1 (q, 0) ≤ H * 2 (q, 0). To see if this inequality is satisfied we compute H * 1 (q, 0) -H * 2 (q, 0) = k 2 ϕ 2 q 2 e -ϕT 2c (e -ϕT -1) 2 -α + 2ϕq e -ϕT -1 + k 2 ϕq 2c e ϕT + 1 e ϕT -1 = 1 2c (e -ϕT -1) 2 (e ϕT -1) k 2 ϕ 2 q 2 e -ϕT e ϕT -1e -ϕT -1 2αc e -ϕT -1 + 4ϕqc e ϕT -1 + k 2 ϕq e ϕT + 1 e -ϕT -1 and using the assumption α > ϕq yields H * 1 (q, 0) -H * 2 (q, 0) = 1 2c (e -ϕT -1) 2 (e ϕT -1) k 2 ϕ 2 q 2 e -ϕT e ϕT -1e -ϕT -1 2αc e -ϕT -1 e ϕT -1 + 4ϕqc e ϕT -1 + k 2 ϕq e ϕT + 1 e -ϕT -1 , ≥ 1 2c (e -ϕT -1) 2 (e ϕT -1) k 2 ϕ 2 q 2 e -ϕT e ϕT -1 --e -ϕT -1 2ϕqc e -ϕT -1 e ϕT -1 + 4ϕqc e ϕT -1 + k 2 ϕq e ϕT + 1 e -ϕT -1 , = 1 2c (e -ϕT -1) 2 (e ϕT -1) k 2 ϕ 2 q 2 e -ϕT e ϕT -1e -ϕT -1 2ϕqc e ϕT -1 1 + e -ϕT + k 2 ϕq e ϕT + 1 e -ϕT -1 ≥ 0.

Therefore, H * 1 (q, 0) ≤ H * 2 (q, 0) cannot be true and we conclude that t 1 = 0 cannot be optimal.

Proof of Proposition 6 It suffices to compute the time derivatives to obtain ȧD (t) = 0, ȧC (t) = -kϕ 2 qe -ϕt c (1 -e -ϕT ) < 0, for t ∈ [0, T ] ȧ * 1 (t) = -kϕ 2 (q -s 1 ) e ϕ(t * 1 -t)

c (e ϕt 1 -1) < 0, for 0 ≤ t < t 1 ȧ * 2 (t) = -kϕ 2 s 1 e -ϕt c (e -ϕt *

1 -e -ϕT ) < 0, for t 1 < t ≤ T.

Proof of Proposition 7

The difference between the advertising rates for the regular and last-minute market, evaluated at the switching instant t * 1 , is given by a * 2 (t * 1 ) -a * 1 (t * 1 ) = kϕe -ϕt * 1 s 1 -s 1 e -ϕT -qe -ϕt * 1 + qe -ϕT c (1 -e -ϕt * 1 ) (e -ϕt * 1 -e -ϕT )

.

Define a function f (z) by f (z) = s 1 -s 1 e -ϕT -qe -ϕz + qe -ϕT .

We have f (z) = ϕqe -ϕz > 0, f (z) = -ϕ 2 qe -ϕz < 0 f (z) = 0 ⇔ ẑ = -1 ϕ ln s 1 1 -e -ϕT + qe -ϕT q f (0) = (s 1 -q) 1 -e -ϕT < 0, f (T ) = s 1 1 -e -ϕT > 0.

Function f (z) is convex and increasing. It takes negative values on 0, -1 ϕ ln s 1( 1-e -ϕT )+qe -ϕT q and positive values for -1 ϕ ln .

In the proof of Proposition 8 we showed that 1 -e -ϕT -ϕT e -ϕT > 0. Define function f (ϕT ) = 1 -e -ϕT -ϕT. Clearly, f (0) = 0, f (ϕT ) = e -ϕT -1 < 0 which implies f (ϕT ) ≤ 0 for all ϕT ≥ 0. Combining this result with the assumption 2c -k 2 > 0 shows that t < T . Next we show that t > 0. We have t = 2c 1 -e -ϕT -ϕT e -ϕT -k 2 2 -2e -ϕT -ϕT -ϕT e -ϕT 2cϕ (1 -e -ϕT )

and have to show that f (ϕT ) = 2 -2e -ϕT -ϕT -ϕT e -ϕT , is negative for all ϕT > 0. Indeed, this is true because f (0) = 0, f (ϕT ) = e -ϕT -1 + ϕT e -ϕT < 0.

Proof of Proposition 11

The derivatives of CoS with respect to the parameters are given by

∂CoS ∂q = q (2c -k 2 ) 2T c (1 -e -ϕT )
e -ϕT (2 + ϕT ) -(2 -ϕT ) > 0,

∂CoS ∂c = q 2 k 2 4T c 2 (1 -e -ϕT )
e -ϕT (2 + ϕT ) -(2 -ϕT ) > 0,

∂CoS ∂k = - q 2 k 2T c (1 -e -ϕT )
e -ϕT (2 + ϕT ) -(2 -ϕT ) < 0, ∂CoS ∂ϕ = q 2 (2c -k 2 ) 4c (1 -e -ϕT ) 2 1 -e -2ϕT -2ϕT e -ϕT > 0.

To establish the sign of the first three derivatives, it suffices to consider the function g (ϕT ) = e -ϕT (2 + ϕT ) -(2 -ϕT ) , and note that g (0) = 0 and g (T ϕ) > 0. Similarly for the last derivative.
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Figure 1 :

 1 Figure 1: Trajectories of advertising, price and demand in the three scenarios

Table 1 :

 1 Optimal advertising, prices and profits

	Advertising	Price	Total Profit
	DP		

Table 2 :

 2 Profits in the three pricing scenarios

	q	270	230	150
	J D	40, 027.5 35, 860.8 25, 687.5
	J C	37, 290.3 33, 874.6 24, 842.7
	J *	38, 306.4 35, 295.5 25, 188.1
	J C /J D (%) 93.1	94.4	96.7
	J * /J D (%) 95.6	98.4	98.1

  -ϕs 1 ) -ϕs 1 4 (2c -k 2 ) 2 + k 4 ϕ 2 s 2 1 + 8ck 2 (α -ϕs 1 ) 2 (2cα -k 2 ϕs 1 ) -e -ϕT + qe -ϕT q × k 2 ϕ 2 s 2 1 + 4c (α -ϕs 1 ) -ϕs 1 4 (2c -k 2 ) 2 + k 4 ϕ 2 s 2 1 + 8ck 2 (α -ϕs 1 ) 2 (2cα -k 2 ϕs 1 )

						a * 2 (t * 1 ) -a * 1 (t * 1 )	 	< 0 for t * 1 < = 0 for t * 1 =	x x
							> 0 for t * 1 >	x
	and				
	t * 1 = T +	1 ϕ	ln	 	k 2 ϕ 2 s 2 1 + 4c (α  
	×	s 1 1		

s 1( 1-e -ϕT )+qe -ϕT q , T . Consequently,

For some examples, see https://www.economist.com/business/2011/01/20/pricing-the-piper, https://digitalcommons.kennesaw.edu/amj/vol5/iss3/4/, https://www.mlb.com/yankees/tickets/pricing/dynamicpricing-faq, https://www.mlb.com/cardinals/tickets/dynamic-pricing.We thank a reviewer for providing these examples.

A similar effect has been noted in retail sales, typically supermarkets. The idea here is that a large displayed stock can somehow induce consumers to buy.

The model does not include any costs.

We shall address this problem in our deterministic model, to be developed below.

The switching time between the two sub-periods can be optimally determined in a simplified version of the model

Awareness and incentives to participate can also be created through word-of-mouth. Of increasing importance here is communication through social media.

If price p is zero, tickets are given away for free.

Our deterministic demand has been often caled fluid approximation in revenue management literature, see, e.g.,[START_REF] Maglaras | Dynamic pricing strategies for multiproduct revenue management problems[END_REF].

See Jørgensen and Zaccour (2004).

We ran many numerical experiments. In all cases we got the same qualitative results that are presented below. The Mathematica program used for the numerical analysis is available from the authors upon request.

In some cases, however, this did not work and we had to resort to numerical simulations

Note that CP and TMP are special cases of DP.

Note that the optimality condition for the price is not the usual one, i.e., ∂H ∂p = 0; see, for example Léonard and Long (1992, Section 7.11).

Research supported by NSERC, Canada, grant RGPIN-2016-04975. The authors would like to thank Baris Vardar, the three anonymous Reviewers, and Editor Herbert Dawid for their helpful and constructive comments.

Proof of Proposition 8

It holds that

1 -e -ϕT -ϕT e -ϕt .

Defining function g (t) = 1 -e -ϕT -ϕT e -ϕt it is easy to verify that for

we have g ( t). Noting that g (t) is positive completes the proof.

Proof of Proposition 9

Compute the difference between prices to obtain

q e -ϕt 1 -e -ϕT + s 1 e -ϕT -1 .

We have q > s 1 . Consequently, to show that p * 2 -p * 1 > 0 it suffices to show that e -ϕt 1 -e -ϕT > e -ϕT -1 . This is true. Indeed e -ϕt 1 -e -ϕT -e -ϕT -1 = e -ϕt 1 -2e -ϕT + 1 > e -ϕT -2e -ϕT + 1 = -e -ϕT + 1 > 0.

Proof of Proposition 10

Compute the difference

and observe that

Suppose there exists an instant of time, say t, such that p D t -p C = 0. Then

-ϕT e -ϕT -2k 2 + 2k 2 e -ϕT + ϕT k 2 + ϕT k 2 e -ϕT 2cϕ (1 -e -ϕT ) .

We wish to show that t ∈ (0, T ) . First we shall show that t > T . Compute t -T = 2c 1 -e -ϕT -T ϕe -ϕT -2k 2 + 2k 2 e -ϕT + ϕT k 2 + ϕT k 2 e -ϕT 2cϕ (1 -e -ϕT ) -T = 1 2cϕ (1 -e -ϕT ) 2c -k 2 1 -e -ϕT -ϕT -k 2 1 -e -ϕT -ϕT e -ϕT .