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EXISTENCE OF MULTI-SOLITARY WAVES WITH LOGARITHMIC
RELATIVE DISTANCES FOR THE NLS EQUATION

EXISTENCE D’ONDES SOLITAIRES MULTIPLES AVEC DISTANCES RELATIVES
LOGARITHMIQUES DE SCHRÖDINGER NON LINÉAIRES

NGUYỄN TIẾN VINH

Abstract. We construct 2-solitary wave solutions with logarithmic distance to the nonlin-
ear Schrödinger equation,

i ∂tu + Δu + |u|p−1u = 0, t ∈ R, x ∈ Rd,

in mass-subcritical cases 1 < p < 1 + 4
d
and mass-supercritical cases 1 + 4

d
< p < d+2

d−2
, i.e.

solutions u(t) satisfying
∥
∥
∥
∥
∥
u(t) − eiγ(t)

2∑

k=1

Q(∙ − xk(t))

∥
∥
∥
∥
∥

H1

→ 0

and
|x1(t) − x2(t)| ∼ 2 log t, as t → +∞,

where Q is the ground state. The logarithmic distance is related to strong interactions
between solitary waves.
In the integrable case (d = 1 and p = 3), the existence of such solutions is known

by inverse scattering (E. Olmedilla, Multiple pole solutions of the nonlinear Schrödinger
equation, Physica D 25 (1987) 330–346; T. Zakharov, A.B. Shabat, Exact theory of two-
dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,
Sov. Phys. JETP 34 (1972) 62–69). The mass-critical case p = 1 + 4

d
exhibits a specific

behavior related to blow-up, previously studied in Y. Martel, P. Raphaël, Strongly interacting
blow up bubbles for the mass critical NLS (to appear in Ann. Sci. École Norm. Sup.).

Résumé. On construit des solutions au problème de la propagation de deux ondes solitaires
avec distance logarithmique de Schrödinger non linéaire,

i ∂tu + Δu + |u|p−1u = 0, t ∈ R, x ∈ Rd,

dans le cas d’une masse souscritique 1 < p < 1+ 4
d
et d’une masse surcritique 1+ 4

d
< p < d+2

d−2
,

autrement dit, u(t), qui satisfait
∥
∥
∥
∥
∥
u(t) − eiγ(t)

2∑

k=1

Q(∙ − xk(t))

∥
∥
∥
∥
∥

H1

→ 0

et
|x1(t) − x2(t)| ∼ 2 log(t) quand t → +∞,

où Q est l’état fondamental. La distance logarithmique est liée à l’interaction forte entre
ondes solitaires.
Dans le cas intégrable (d = 1 et p = 3), l’existence d’une telle solution est connue par

la méthode dite d’inverse scaterring (E. Olmedilla. Multiple pole solutions of the nonlinear
Schrödinger equation, Physica D 25 (1987) 330–346 ; T. Zakharov, A.B. Shabat, Exact theory
of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear
media, Sov. Phys. JETP 34 (1972) 62–69). Le cas d’une masse critique p = 1 + 4

d
introduit

un comportement spécifique lié à l’explosion, qui a été étudié précédemment par Y. Martel
et P. Raphaël (Strongly interacting blow up bubbles for the mass critical NLS (à paraître
dans Ann. Sci. École Norm. Sup.).
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1. Introduction

We consider the nonlinear Schrödinger equation in Rd, for any d ≥ 1:
{

i ∂tu = −Δu − |u|p−1u, (t, x) ∈ [0, T ) × Rd

u(0, x) = u0, u0 ∈ H1 : Rd → C.
(NLS)

It is well known (see, e.g., [2], [10]) that the NLS equation is locally well-posed in H1(Rd)
for 1 < p < d+2

d−2 (p > 1 if d = 1, 2): for any u0 ∈ H1(Rd), there exist T ? > 0 and a unique
maximal solution u ∈ C([0, T ?), H1(Rd)) of (NLS). Moreover, the following blow-up criterion
holds

T ? < +∞ implies lim
t↑T ?

‖∇u(t)‖L2 = +∞. (1.1)

Recall that the solution u satisfies the following three conservation laws:

• mass, ˆ

Rd

|u(t, x)|2dx =
ˆ

Rd

|u0(x)|2 (1.2)

• energy,

E(u(t)) =
1
2

ˆ

Rd

|∇u(t, x)|2 −
1

p + 1

ˆ

Rd

|u(t, x)|p+1dx = E(u0) (1.3)

• momentum,

M(u(t)) = Im
ˆ

Rd

∇u(t, x)ū(t, x)dx = M(u0) (1.4)

for all t ∈ [0, T ?). Recall also that (NLS) admits the following symmetries: the transformation
of initial data implies the corresponding transformation of solution:

- scaling, λ > 0, λ
2

p−1 u0(λx) 7→ λ
2

p−1 u(λ2t, λx);
- space translation, x0 ∈ Rd, u0(x + x0) 7→ u(t, x + x0);
- time translation, t0 ∈ R, ut0(x) 7→ u(t + t0, x);
- space rotation, A ∈ SO(d), u0(A ∙ x0) 7→ u(t, A ∙ x0);
- phase, γ ∈ R, u0(x)eiγ 7→ u(t, x)eiγ ;

- Galilean: β ∈ Rd, u0(x)eiβx 7→ u(t, x − βt)eiβ(x−β
2
t).

As a consequence of (1.2), (1.3), and the Gagliardo–Nirenberg inequality, all solutions to
(NLS) are global in the L2 subcritical case (1 < p < 1 + 4

d). In contrast, blow-up solutions
exist in the L2 critical case (p = 1 + 4

d) and the L2 supercritical case (1 + 4
d < p < d+2

d−2). See,
e.g., [2].

This article is concerned with the construction of special solutions to the NLS equation involv-
ing solitary wave solutions (or solitons). We recall the expression of the (standing) solitary
waves

u(t, x) = eiλ2
0tQλ0(x) with Qλ0(x) = λ

2
p−1

0 Q(λ0x)

where λ0 > 0 and Q is the ground state, i.e. the unique radial positive solution to

ΔQ − Q + Qp = 0, Q > 0, Q ∈ H1(Rd). (1.5)

The whole family of ground-state solitary waves is obtained using the above symmetries. For
more properties of Q, see, for example, [2] and [28]. Recall that in the L2 subcritical case, the
solitary waves are stable ([2, 31]), and that in the L2 critical and L2 supercritical cases, the
solitary waves are unstable [2, 12].
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1.1. Motivation. So far, the problem of multi-solitary wave solutions to (NLS) has been
studied intensively in the integrable case, i.e. for d = 1 and p = 3, as well as for some
nearly integrable models; see [9, 11, 16, 19, 32, 33]. In particular, it is known from the inverse
scattering theory that there are three possible 2-soliton behaviors in the integrable case:
(a) relative distance between solitons of order t, [33];
(b) logarithmic relative distance with symmetric solitons (double-pole solutions), [19, 33];
(c) finite relative distance periodic in time, [32, 33].

Note that (a) corresponds to a free Galilean motion, while (b) and (c) correspond to a non-
free Galilean motion. Remarkably, these solutions admit a pure 2-soliton behavior both for
t → +∞ and t → −∞. They describe perfectly elastic interactions between solitary waves in
the integrable case.
In the non-integrable cases, the problem is much less comprehended, except for multi-

solitary waves with free Galilean motion (a) in one direction of time; see Remark 1 below for
a precise statement. In the present paper, we raise the question of other possible behaviors of
multi-solitons. In other words, we ask whether the above non-generic dynamics (b), (c) of the
integrable case persist for non-integrable models. Previous works, see, e.g., [8, 11, 16], study
formally the dynamics of interacting pulses for several integrable or non-integrable models, and
predict the persistence of the logarithmic regime. Indeed, the 2-soliton dynamics is related
in some sense to the simple differential equation z̈(t) = −e−2z(t), where z(t) is half of the
distance between the solitons, and for which log t is a special solution. The main point of the
present work is to justify that 2-solitons with logarithmic relative distance engage in universal
behavior in both subcritical and supercritical NLS equations in the presence of symmetry,
thus proving rigorously the persistence of behavior (b) in the non-integrable case.

1.2. Main result. In this article, we prove the following general existence result.

Main Theorem (multi-solitary waves with logarithmic distance). Let d ≥ 1. Let

1 < p <
d + 2
d − 2

(p > 1 for d = 1, 2) and p 6= 1 +
4
d
.

There exists an H1 solution u(t) to (NLS) on [0, +∞) which decomposes asymptotically into
two solitary waves, for all t > 0,

∥
∥
∥
∥
∥
u(t) − eiγ(t)

2∑

k=1

Q(∙ − xk(t))

∥
∥
∥
∥
∥

H1(Rd)

.
1
t

(1.6)

where x1(t) = −x2(t) and

|x1(t) − x2(t)| = 2(1 + o(1)) log t, as t → +∞. (1.7)

The Main Theorem holds for any space dimension and any Ḣ1 subcritical nonlinearity,
except the mass critical power p = 1 + 4

d . Indeed, the critical nonlinearity exhibits a different
phenomenon of strong interactions due to blow-up, previously studied in [24]; see Remark 2.
Note that the result should holds with a similar proof for any number K ≥ 2 of solitons

located on a regular polygon of size log t. By scaling invariance, we can replace Q in (1.6) by
Qλ0 for any λ0 > 0. We observe that, in the result, solitons need to have the same sign, the
same scaling and the same phase; in fact, the solution is symmetric by τ : x 7→ −x. Moreover,
the solution is also symmetric by the reflection across the axis passing by the center of the two
solitons. Remark that the situation is the same with the multi-solitons constructed in [19, 33]
for the integrable case.
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Remark 1. For the NLS equation, multiple solitary wave solutions with weak interactions,
i.e. relative distance between solitons of order t, have been constructed in various settings,
both in stable and unstable contexts, see, in particular, [4, 20, 25]. A typical result of weakly
interacting dynamics is the existence of multi-solitary wave solutions to (NLS) satisfying, as
t → +∞, ∥

∥
∥
∥
∥
u(t) −

K∑

k=1

e−iΓk(t,x)Qλk
(∙ − νkt)

∥
∥
∥
∥
∥

H1(Rd)

. e−ct, c > 0, (1.8)

for any given set of parameters {νk, λk}k ∈ Rd×(0,∞), provided that the following decoupling
condition holds: νk 6= νk′ if k 6= k′.

Remark 2. For the L2 critical case (p = 1+ 4
d), the existence of bounded multi-solitary wave

solutions with logarithmic distances as (1.6)–(1.7) is ruled out. Indeed, for such solutions, one
would have ˆ

Rd

|x|2|u(t, x)|2dx ∼ log2(t) (1.9)

which is in contradiction with the virial identity

d2

dt2

ˆ

Rd

|x|2|u|2 = 16E(u0).

In fact, in the mass-critical case, the scaling instability directions are excited by the nonlinear
interactions, which leads to the infinite-time concentration, as shown by Theorem 1 in [24]:
for the L2 critical two-dimensional case, there exists a global (for t ≥ 0) solution u(t) that
decomposes asymptotically into a sum of solitary waves
∥
∥
∥
∥
∥
u(t) − eiγ(t)

K∑

k=1

1
λ(t)

Q

(
∙ − xk(t)

λ(t)

)∥∥
∥
∥
∥

H1(Rd)

→ 0, λ(t) =
1 + o(1)

log t
as t → +∞, (1.10)

where the translation parameters xk(t) converge to the vertices of a K-sided regular polygon
and the solution blows up in infinite time with the rate

‖∇u(t)‖L2 ∼ | log t| as t → +∞.

The regime justified in the present paper is thus different from the one in [24] since, for the
critical case, the interactions primarily affect the scaling parameter, leading to blow-up. This
notable difference with the sub- and supercritical cases shows that a formal approach may not
be sufficient to correctly address such subtle regimes.
We also refer to [14, 15, 17, 18, 22] for previous works on other nonlinear equations where

a refined analysis of interactions between solitons is a key point.

Remark 3. We expect solutions in Main Theorem to be unstable, even in L2 subcritical
cases, since generic perturbation can give collision or on the contrary weak interaction. Recall
that the appearance of the log regime is closely related to the equation

z̈(t) = −e−2z(t)

where log t is a solution with initial conditions z(1) = 0, ż(1) = 1. From the theory of
perturbation, for z(t) = log t + εv1 + ... with initial conditions z(1) = ε, ż(1) = 1, one has, at
the linear level,

v̈1 =
2v1

t2
, v1(1) = 1, v̇1(1) = 0,
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whose solution is 1
3 t2 + 2

3
1
t , so that we see that the log t solution is an unstable state as

t → +∞.

Remark 4. We believe that our approach is general. In particular, the strategy of this article
can be applied to construct multi-solitary waves with logarithmic relative distance for more
general nonlinearity f(s)

i ∂tu + Δu + f(|u|2)u = 0

where f(s) satisfies standard conditions for the existence of solitary waves (see [23]). Moreover,
combining the construction in this paper and the construction of multi-soliton solutions with
weak interactions in [4], [20], we prove the existence of multi-solitons, with both solitons
distant as Ct and solitons distant as C log t.

Remark 5. One can give a more precise asymptotic description of the distance (1.7) between
solitons

|x1(t) − x2(t)| = 2 log t −
d − 1

2
log(log t) − C + O(log−

1
2 (t)) as t → +∞

where C > 0 a constant depending only on d and p (see (3.22)).

The article is organized as follows. Sections 2, 3, and 4 concern the proof of the Main
Theorem in L2 subcritical cases with p > 2. In Section 2, we consider an approximate
solution (an ansatz solution) to (NLS) made of two symmetric bubbles and extract the formal
evolution system of the geometrical parameters of the bubbles (scaling, position, phase). The
key observation is that this system contains forcing terms due to the nonlinear interactions of
the waves, and has a special solution corresponding at the main order to the regime of Main
Theorem. Here, in contrast with free Galilean motion, the construction of a non-free Galilean
motion as (1.7) requires a refined control of strong interactions between the solitary waves
to bound the error terms. In Section 3, we consider, using modulation, particular backwards
solutions to (NLS) related to the special regime of Main Theorem and prove backward uniform
estimates by energy method. In Section 4, we use compactness arguments on a suitable
sequence of such backward solutions to finish the proof. Sections 5 deals with the case 1 <
p ≤ 2; in this case, there are some extra technical difficulties, even if the strategy of the proof
is similar: the interaction becomes stronger, we have to add extra terms in the approximate
solution and due to lost of regularity, we have to use some truncations. Finally, the algebraic
computations in the proof for L2 subcritical cases are still valid in L2 supercritical cases.
Section 6 presents additional arguments and modifications needed for L2 supercritical cases.

1.3. Notation. The L2 scalar product of two complex valued functions f, g ∈ L2(Rd) is
denoted by

〈f, g〉 = Re

(ˆ

Rd

f(x) g(x) dx

)

.

We denote by Q(x) := q(|x|) the unique radial positive ground state of (NLS):

q′′ +
d − 1

r
q′ − q + qp = 0, q′(0) = 0, lim

r→+∞
q(r) = 0. (1.11)

It is well known and easily checked by ODE arguments that, for some constant cQ > 0,

for all r > 1,
∣
∣
∣q(r) − cQr−

d−1
2 e−r

∣
∣
∣+
∣
∣
∣q′(r) + cQr−

d−1
2 e−r

∣
∣
∣ . r−

d−1
2

−1e−r. (1.12)
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We set

IQ =
ˆ

Qp(x) e−x1dx, x = (x1, ..., xd).

We denote by Y the set of smooth functions f such that

for all p ∈ N, there exists q ∈ N, s.t. for all x ∈ Rd, |f (p)(x)| . |x|qe−|x|. (1.13)

Let Λ be the generator of L2-scaling corresponding to (NLS):

Λf =
2

p − 1
f + x ∙ ∇f.

The linearization of (NLS) around Q involves the following Schrödinger operators:

L+ := −Δ + 1 − pQp−1, L− := −Δ + 1 − Qp−1.

From [30], recall the generalized null space relations in subcritical and super-critical cases:

L−Q = 0, L+(ΛQ) = −2Q,

L+(∇Q) = 0, L−(xQ) = −2∇Q.
(1.14)

We recall the coercivity property in L2 subcritical (see [20], [26], [30], [31]): there exists μ > 0
such that for all η ∈ H1,

〈L+ Re η, Re η〉 + 〈L− Im η, Im η〉 ≥ μ‖η‖2
H1 −

1
μ

(
〈η,Q〉2 + |〈η, xQ〉|2 + 〈η, iΛQ〉2

)
. (1.15)

In L2 supercritical (but H1 subcritical), we do not have the same situation since the negative
direction can not be controlled by the scaling parameter. We consider the operator

Lv = iL+v1 − L−v2 with v = v1 + iv2.

The spectrum σ(L) of L satisfies

σ(L) ∩ R = {−e0, 0, e0}.

It is easy to see that iQ,∇Q are independent and belong to the kernel of L. In [4], [6], [7], [13],
it is proved that there exist two eigenfunctions Y ± (normalized by ||Y ±||L2 = 1) associated
with eigenvalues ±e0

L(Y ±) = ±e0Y
± (1.16)

and Y + = Y − belong to Y ; in other words, Re Y +, Im Y + ∈ Y . Moreover, there holds a
property of positivity based on Y ±: there exists μ > 0 such that, for all η ∈ H1,

〈L+ Re η, Re η〉 + 〈L− Im η, Im η〉 ≥ μ‖η‖2
H1

−
1
μ

(
〈η, iY +〉2 + 〈η, iY −〉2 + |〈η, xQ〉|2 + 〈η, iΛQ〉2

)
. (1.17)

2. Approximate solution for p > 2

2.1. System of modulation equations. Let p > 2. Consider a time-dependent C1 function
of parameters ~q of the form

~q = (λ, z, γ, v) ∈ (0, +∞) × Rd × R× Rd,

with |v| � 1 and |z| � 1. We renormalize the flow by considering

u(t, x) =
eiγ(s)

λ
2

p−1 (s)
w(s, y), dt = λ2(s)ds, y =

x

λ(s)
, (2.1)
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so that

i∂tu + Δu + |u|p−1u =
eiγ

λ2+ 2
p−1

[

iẇ + Δw − w + |w|p−1w − i
λ̇

λ
Λw + (1 − γ̇)w

]

(2.2)

(ẇ denotes derivation with respect to s). We introduce the following ~q-modulated ground-state
solitary waves, for k ∈ {1, 2},

Pk(s, y) = eiΓk(s,y−zk(s))Q(y − zk(s)) = eivk(s)(y−zk(s))Q(y − zk(s)), (2.3)

where we set

v1(s) = −v2(s) =
1
2
v(s), z1(s) = −z2(s) =

1
2
z(s), Γk(s, y) = vk(s) ∙ y, (2.4)

Let

P(s, y) = P(y; (z(s), v(s))) =
2∑

k=1

Pk(s, y). (2.5)

Then, P is an approximate solution to the rescaled equation in the following sense.

Lemma 6 (Leading order approximate flow). Let the vectors of modulation equations be

~mk =










λ̇
λ

żk − 2vk + λ̇
λzk

γ̇ − 1 + |vk|2 − λ̇
λ(vk ∙ zk) − (vk ∙ żk)

v̇k − λ̇
λvk










, ~MV =









−iΛV

−i∇V

−V

−yV









. (2.6)

Then the error EP on the re-normalized flow (2.2) at P,

EP = iṖ + ΔP − P + |P|p−1P − i
λ̇

λ
ΛP + (1 − γ̇)P (2.7)

decomposes as

EP = [eiΓ1 ~m1 ∙ ~MQ](y − z1(s)) + [eiΓ2 ~m2 ∙ ~MQ](y − z2(s)) + G (2.8)

where the interaction term G = |P|p−1P − |P1|p−1P1 − |P2|p−1P2 satisfies

‖G‖L∞ . |z|−
d−1
2 e−|z|, ||∇G||L∞ . |z|−

d−1
2 e−|z|. (2.9)

Proof of Lemma 6. Firstly, we compute EPk
= iṖk +ΔPk−Pk +|Pk|p−1Pk−i λ̇

λΛPk +(1− γ̇)Pk.
Let yzk

= y − zk, by computations

iṖk =

[

− (v̇k ∙ yzk
)Q(yzk

) + (vk ∙ żk)Q(yzk
) − iżk ∙ ∇Q(yzk

)

]

eivk∙yzk

∇Pk =

[

∇Q(yzk
) + ivkQ(yzk

)

]

eivk∙yzk

ΔPk =

[

ΔQ(yzk
) + 2ivk ∙ ∇Q(yzk

) − v2
kQ(yzk

)

]

eivk∙yzk

ΛPk =

[
2

p − 1
Q(yzk

) + y ∙ [∇Q(yzk
) + ivkQ(yzk

)]

]

eivk∙yzk

=

[

ΛQ(yzk
) + ivk ∙ yzk

Q(yzk
) + ivk ∙ zkQ(yzk

) + zk ∙ ∇Q(yzk
)

]

eivk∙yzk .
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Therefore, we get

EPk
=

[

− i
λ̇

λ
ΛQ(yzk

) − i(żk − 2vk + zk
λ̇

λ
) ∙ ∇Q(yzk

)

− (γ̇ − 1 − vk ∙ żk + |vk|
2 − vk ∙ zk

λ̇

λ
)Q(yzk

)

− (v̇k − vk
λ̇

λ
) ∙ yzk

Q(yzk
) + ΔQ(yzk

) − Q(yzk
) + |Q(yzk

)|p−1Q(yzk
)

]

eiΓk(s,y−zk).

Since ΔQ − Q + |Q|p−1Q = 0, we have

EPk
= [eiΓk ~mk ∙ ~MQ](y − zk(s)). (2.10)

Returning to the error on the renormalized flow, we obtain

EP = EP1 + EP2 + |P|p−1P −
2∑

k=1

|Pk|
p−1Pk. (2.11)

Next, we estimate the interaction term G = |P|p−1P − |P1|p−1P1 − |P2|p−1P2. Clearly,

|G| . |P1|
p−1|P2| + |P2|

p−1|P1|.

We observe that, for z = z1 − z2, by (1.12),

Q(y)Q(y − z) . (1 + |y|)−
d−1
2 (1 + |y − z|)−

d−1
2 e−|y|e−|z|+|y| . |z|−

d−1
2 e−|z| (2.12)

which yields

|P1|
p−1|P2| . |P1| |P2||P1|

p−2 . |z|−
d−1
2 e−|z||P1|

p−2.

Thus,

|G(s, y)| . |z|−
d−1
2 e−|z|

2∑

k=1

Qp−2(y − zk(s)) (2.13)

and since p > 2, we get

||G||L∞ . |z|−
d−1
2 e−|z|. (2.14)

Similarly, by (1.12) and as |v| � 1,

||∇G||L∞ . |z|−
d−1
2 e−|z|.

�

2.2. Nonlinear forcing. For the next parts of the article, we will need the first-order and the
second-order approximations of F (u) = |u|p−1u, where u = a + ib. We consider the expansion
for |u| � 1

F (1 + u) = 1 + pa + ib +
p(p − 1)

2
a2 +

p − 1
2

b2 + (p − 1)iab + O(|u|k) (2.15)

for any 2 < k ≤ 3, from which we can deduce formally

F ′(P).ε =
p + 1

2
|P|p−1ε +

p − 1
2

|P|p−3P2ε̄ (2.16)

and
ε̄∙F ′′(P)∙ε

2
=

p − 1
2

ε2P̄|P|p−3 + (p − 1)|ε|2P|P|p−3 + (p − 1)

(
p

2
−

3
2

)
(
Re (εP̄)

)2 P|P|p−5.
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In the case p > 2, set

2+ = min(3,
p + 2

2
)∙

Remark that 2+ < 2∗ when p > 2 (where 2∗ = 2d
d−2 is the critical exponent of the Sobolev

injection). Then, from (2.15), we have

F (P + ε) = F (P) + F ′(P)∙ε + O(|ε|p) + O

(∣∣
∣
∣
ε

P

∣
∣
∣
∣

2

|P|p
)

(2.17)

and

F (P + ε) = F (P) + F ′(P)∙ε +
ε̄∙F ′′(P)∙ε

2
+ O(|ε|p) + O

(∣∣
∣
∣
ε

P

∣
∣
∣
∣

2+

|P|p
)

(2.18)

(note that for
∣
∣ ε
P

∣
∣� 1 we have F (P + ε) ∼ F (ε)).

Lemma 7 (Nonlinear interaction estimates). For |z| � 1, |v| � 1, let

H(z) = p

[ ˆ

y∙ z
|z|>− |z|

2

Qp−1(y)∇Q(y)Q(y + z)dy +
ˆ

y∙ z
|z|<− |z|

2

Qp−1(y + z)∇Q(y)Q(y)dy

]

.

(2.19)
Then the following estimates hold:
∣
∣
∣〈G, eiΓ1(y−z1(s))∇Q(y − z1(s))〉 − H(z)

∣
∣
∣ . (|v|2|z|2 + |v|2)|z|−

d−1
2 e−|z| + |z|−

3(d−1)
4 e−

3
2
|z|

(2.20)
and ∣

∣
∣
∣H(z) − Cp

z

|z|
|z|−

d−1
2 e−|z|

∣
∣
∣
∣ . |z|−

d−1
2

−1e−|z| (2.21)

where Cp > 0.

Remark 8. The estimate (2.21) on the leading order of the core part H(z) of the projection
〈G, [eiΓ1∇Q](y − z1(s))〉 is valid not only in the case p > 2 but also in the case 1 < p ≤ 2.

Proof of Lemma 7. Step 1. Nonlinear interaction estimates. We prove the estimate (2.21)
and in this step we will have p > 1. Consider

H(z) = p

ˆ

y∙ z
|z|<− |z|

2

Qp−1(y + z)∇Q(y)Q(y)dy + p

ˆ

y∙ z
|z|>− |z|

2

Qp−1(y)∇Q(y)Q(y + z)dy∙

Recall that

Q(y)Q(y + z) . |z|−
d−1
2 e−|z|

Q(y)|∇Q(y + z)| . |z|−
d−1
2 e−|z|

then with p > 2, we have
∣
∣
∣
∣
∣

ˆ

y∙ z
|z|<− |z|

2

Qp−1(y + z)∇Q(y)Q(y)dy

∣
∣
∣
∣
∣
. e−min(p−1, 3

2
)|z|

and with 1 < p ≤ 2, from the decay property of Q, we have for δ = p−1
2∣

∣
∣
∣
∣

ˆ

y∙ z
|z|<− |z|

2

Qp−1(y + z)∇Q(y)Q(y)dy

∣
∣
∣
∣
∣
. e−(p−1)|z|

∣
∣
∣
∣Q

(
|z|
2

)∣∣
∣
∣

3−p−δ ˆ
Qδ(y)dy

. e−
p+3
4

|z|.
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We claim that∣
∣
∣
∣

ˆ

y∙ z
|z|>− |z|

2

Qp−1(y)∇Q(y)Q(y + z)dy−cQ|z|
− d−1

2 e−|z|
ˆ

Qp−1(y)∇Q(y)e−y∙ z
|z| dy

∣
∣
∣
∣

. |z|−1− d−1
2 e−|z|.

(2.22)

Indeed, let 0 < θ < 1 such that pθ > 1. For |y| ≥ θ|z|, we have:
∣
∣
∣
∣

ˆ

|y|≥θ|z|

y∙ z
|z|>− |z|

2

Qp−1(y)∇Q(y)Q(y + z)dy

∣
∣
∣
∣ .e−pθ|z|

∣
∣
∣
∣

ˆ
Q(y + z)dy

∣
∣
∣
∣

. e−pθ|z|.

For |y| < θ|z|, as Q(x) = q(|x|) and |q(r) − cQr−
d−1
2 e−r| . r−

d−1
2

−1e−r, we have:
∣
∣
∣
∣Q(y + z) − cQ|y + z|−

d−1
2 e−|y+z|

∣
∣
∣
∣ . |y + z|−1− d−1

2 e−|y+z|

≤|1 − θ||z|−1− d−1
2 e−|z|e|y|.

Thus we get:
∣
∣
∣
∣

ˆ

|y|<θ|z|

y∙ z
|z|>− |z|

2

Qp−1(y)∇Q(y)∇Q(y + z)dy − cQ

ˆ

|y|<θ|z|

y∙ z
|z|>− |z|

2

Qp−1(y)∇Q(y)|y + z|−
d−1
2 e−|y+z|dy

∣
∣
∣
∣

. |z|−1− d−1
2 e−|z|

since
´

Qp−1(y)|∇Q(y)|e|y|dy < +∞. On the other hand, |y| < θ|z| implies
∣
∣
∣
∣|y + z|−k − |z|−k

∣
∣
∣
∣ . |z|−1−k|y|

for any k > 0 and ∣
∣
∣
∣

y + z

|y + z|
−

z

|z|

∣
∣
∣
∣ . |z|−1|y|.

Moreover ∣
∣
∣
∣|y + z| − |z| − y ∙

z

|z|

∣
∣
∣
∣ . |z|−1|y|2

then ∣
∣
∣
∣e

−|y+z| − e−|z|−y∙ z
|z|

∣
∣
∣
∣ . |z|−1|y|2e−|z|e|y|.

Thus we obtain that∣
∣
∣
∣|y + z|−

d−1
2 e−|y+z| − |z|−

d−1
2 e−|z|−y∙ z

|z|

∣
∣
∣
∣ . (1 + |y|2)|z|−1− d−1

2 e−|z|e|y|.

Therefore, we have
∣
∣
∣
∣

ˆ

|y|<θ|z|

y∙ z
|z|>− |z|

2

Qp−1(y)∇Q(y)|y + z|−
d−1
2 e−|y+z|dy

− cQ|z|
− d−1

2 e−|z|
ˆ

|y|<θ|z|

y∙ z
|z|>− |z|

2

Qp−1(y)∇Q(y)e−y∙ z
|z| dy

∣
∣
∣
∣ . |z|−1− d−1

2 e−|z|.
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Next we observe that

|z|−
d−1
2 e−|z|

ˆ

|y|≥θ|z|

y∙ z
|z|>− |z|

2

Qp−1(y)∇Q(y)e−y∙ z
|z| dy . e−pθ|z|

and by (1.12)
∣
∣
∣
∣
∣

ˆ

y∙ z
|z|<− |z|

2

Qp−1(y)∇Q(y)e−y∙ z
|z| dy

∣
∣
∣
∣
∣
. e−

p−1
4

|z|,

which finishes the proof of (2.22). Finally, in order to obtain (2.21) with Cp = cQIQ, we use
an integration by parts

p

ˆ
Qp−1(y)∇Q(y)e−y∙ z

|z| dy =
z

|z|

ˆ
Qp(y)e−y∙ z

|z| dy

and remark from the parity of the integral that
ˆ

Qp(y)e−y∙ z
|z| dy =

ˆ
Qp(y)e−y1dy = IQ∙

Step 2 Error bound. Recall the interaction term

G = |P|p−1P − |P1|
p−1P1 − |P2|

p−1P2∙

From (2.15), we have the following estimates: if y ∙ z
|z| > 0, then |P1| > |P2|

∣
∣
∣
∣G −

p + 1
2

|P1|
p−1P2 −

p − 1
2

|P1|
p−3P 2

1 P2

∣
∣
∣
∣ . |P2|

2|P1|
p−2 (2.23)

and, if y ∙ z
|z| < 0, then |P2| > |P1|

∣
∣
∣
∣G −

p + 1
2

|P2|
p−1P1 −

p − 1
2

|P2|
p−3P 2

2 P1

∣
∣
∣
∣ . |P1|

2|P2|
p−2. (2.24)

We combine (2.23) and (2.24) to obtain, for all y,

∣
∣
∣
∣G −

[
p + 1

2
|P1|

p−1P2 +
p − 1

2
|P1|

p−3P 2
1 P2

]

∙1y∙ z
|z|>0 −

[
p + 1

2
|P2|

p−1P1

+
p − 1

2
|P2|

p−3P 2
2 P1

]

∙1y∙ z
|z|<0

∣
∣
∣
∣ . min(|P1|

2, |P2|
2)max(|P1|

p−2, |P2|
p−2). (2.25)

step 3 Projection estimates. Since min(|P1|2, |P2|2) ≤ |P2|
3
2 |P1|

1
2 and max(|P1|p−2, |P2|p−2) ≤

|P1|p−2 + |P2|p−2, we have
ˆ

Q
3
2 (y − z)|∇Q(y)|Q

1
2 (y)(Qp−2(y) + Qp−2(y + z))dy

. |z|−
3(d−1)

4 e−
3
2
|z|
ˆ

(Qp−2(y) + Qp−2(y + z))dy . |z|−
3(d−1)

4 e−
3
2
|z|
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so we deduce from the error bound (2.25)
∣
∣
∣
∣〈G, [eiΓ1∇Q](y − z1(s))〉 −

〈[
p + 1

2
|P1|

p−1P2 +
p − 1

2
|P1|

p−3P 2
1 P2

]

∙1y∙ z
|z|>0

+

[
p + 1

2
|P2|

p−1P1 +
p − 1

2
|P2|

p−3P 2
2 P1

]

∙1y∙ z
|z|<0, [e

iΓ1∇Q](y − z1(s))

〉∣∣
∣
∣ . |z|−

3(d−1)
4 e−

3
2
|z|.

(2.26)

Using a change of variables, we have

〈|P1|
p−1P21y∙ z

|z|>0, [e
iΓ1∇Q](y − z1(s))〉

=Re
ˆ

y∙ z
|z|>− |z|

2

Qp−1(y)∇Q(y)Q(y − z2 + z1)e
iv2∙(y−z2+z1)−iv1∙ydy

=
ˆ

y∙ z
|z|>− |z|

2

Qp−1(y)∇Q(y)Q(y + z) cos(v2 ∙ (y + z) − v1 ∙ y)dy

with z(s) = z1(s) − z2(s). Note that

| cos(v2 ∙ (y + z) − v1 ∙ y) − 1| . |v|2|z|2 + |v|2|y|2

as the same method to prove (2.22), we get
∣
∣
∣
∣〈|P1|

p−1P2∙1y∙ z
|z|>0, [e

iΓ1∇Q](y − z1(s))〉 −
ˆ

y∙ z
|z|>− |z|

2

Qp−1(y)∇Q(y)Q(y + z)dy

∣
∣
∣
∣

. (|v|2|z|2 + |v|2)|z|−
d−1
2 e−|z|. (2.27)

Similarly, for the other projections, we have
∣
∣
∣
∣〈|P1|

p−3P 2
1 P2∙1y∙ z

|z|>0, [e
iΓ1∇Q](y − z1(s))〉 −

ˆ

y∙ z
|z|>− |z|

2

Qp−1(y)∇Q(y)Q(y + z)dy

∣
∣
∣
∣

. (|v|2|z|2 + |v|2)|z|−
d−1
2 e−|z| (2.28)

∣
∣
∣
∣〈|P1|

p−3P 2
1 P2∙1y∙ z

|z|<0, [e
iΓ1∇Q](y − z1(s))〉 −

ˆ

y∙ z
|z|<− |z|

2

Qp−1(y + z)∇Q(y)Q(y)dy

∣
∣
∣
∣

. (|v|2|z|2 + |v|2)|z|−
d−1
2 e−|z| (2.29)

and finally

〈|P2|
p−1P1∙1y∙ z

|z|<0, [e
iΓ1∇Q](y − z1(s))〉

= Re
ˆ

y∙ z
|z|<0

Qp−1(y − z2(s))Q(y − z1(s))∇Q(y − z1(s))dy

=
ˆ

y∙ z
|z|<− |z|

2

Qp−1(y + z)∇Q(y)Q(y)dy. (2.30)

From (2.26)–(2.30), we obtain the desired result (2.20). �
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2.3. Formal resolution and estimates of leading order. From Lemma 6, we derive a
simplified modulation system with forcing term and we determine one of its approximate
solution that is relevant for the regime of the Main Theorem. Formally, we have the following
bounds (making this rigorous will be the goal of the bootstrap estimates in Sect. 3.2)

|~m1| . |z|−
d−1
2 e−|z|, (2.31)

from which we derive a simplified system ( ~mk is defined in (2.6)):

|
λ̇

λ
| + |ż − 2v +

λ̇

λ
z| . |z|−

d−1
2 e−|z|. (2.32)

Furthermore, since we expect the interaction to be strong enough such that it will affect the
main order of the modulation equations, so by projecting EP onto the direction eiΓ1∇Q(y −
z1(s)), we obtain formally that

c2v̇1 ≈ −〈G, eiΓ1∇Q(y − z1(s))〉 ≈ −H(z)

with c2 = 〈−yQ,∇Q〉 > 0. This remark suggests us to fix

v̇ = −
2p

c2

[ ˆ
Qp−1(y)∇Q(y)Q(y + z)dy +

ˆ
Qp−1(y + z)∇Q(y)Q(y)dy

]

= −
2
c2

H(z) (2.33)

so v(s) is completely determined by z(s) and initial data vin. In consequence, there are
only three free parameters left (λ, z, γ) corresponding to the scaling, translation, and phase
parameters, which we will modulate to obtain orthogonality conditions (as shown below in
Lemma 9). We use (2.21) to estimate the main order of v̇

∣
∣
∣
∣v̇ + c

z

|z|
|z|−

d−1
2 e−|z|

∣
∣
∣
∣ . |z|−

d−1
2

−1e−|z| (2.34)

with

c =
2 Cp

c2
=

2 cQIQ

c2
> 0. (2.35)

It can be checked that for some real functions zmod(s), λmod(s), vmod(s) such that

λ−1
mod(s) = 1, vmod(s) = s−1, z

− d−1
2

mod e−zmod =
s−2

c
(2.36)

then we have the asymptotics as s → +∞

zmod(s) ∼ 2 log(s), v̇mod(s) = −cz
− d−1

2
mod (s)e−zmod(s),

|żmod(s) − 2vmod(s)| . s−1 log−1(s), |v̇mod(s)| . s−2.
(2.37)

Indeed, obviously, v̇mod(s) = −s−2 = −cz
− d−1

2
mod (s)e−zmod(s) and by differentiating the equation

of zmod, we get

−żmodz
− d−1

2
mod e−zmod −

d − 1
2

żmodz
− d−1

2
−1

mod e−zmod = −2
s−3

c

(in the case d − 1 = 0, −żmode−zmod = −2 s−3

c ) so |żmod − 2s−1| . s−1 log−1(s) thus we can
deduce |żmod(s) − 2vmod(s)| . s−1 log−1(s). The above estimates suggest that (2.36) is close
to the first-order asymptotics as s → +∞ for some particular solutions to (2.32) and matches
the regime in the Main Theorem.
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3. Modulation and backward uniform estimates

Let (λin, zin, vin) ∈ (0, +∞)× (0, +∞)×R to be chosen with |zin| � 1, |vin| � 1, Tmod > 0
and (~e1, ..., ~ed) standard basis of Rd. Recall that in this section p > 2. Let u(t, x) be the
backward solution to (NLS) with initial data

u(Tmod, x) =
1

(λin)
2

p−1

Pin
( x

λin

)
where Pin(y) = P(y; (zin ~e1, v

in)) (3.1)

on some time interval including Tmod. Note that the NLS equation is invariant by rotation
and reflection. In particular, if a solution to (NLS) is invariant by the symmetries τ : x 7→ −x
and υ : (x1, x2, ..., xd) 7→ (x1,−x2, ...,−xd) at some time, then it is invariant by the symmetry
at any time.

3.1. Decomposition of u(t). We will state a standard modulation result with the same
idea as in Lemma 3 of [20] or Lemma 2 of [27]. The choice of the special orthogonality
conditions (3.5) is related to the generalized null space of the linearized equation around Q
in (1.14) and to the coercivity property (1.15)in subcritical cases. See the proof of Lemma 12
for a technical justification of these choices. For sin � 1 fixed, one has the following.

Lemma 9 (Modulation of the approximate solution). Let u(t, x) a solution invariant by τ
and υ on an interval [T, Tmod] satisfying u(Tmod, x) ∈ H2(Rd) and

∥
∥
∥
∥e

−iγin
(λin)

2
p−1 u(Tmod, λiny) − P(y; (zin ~e1, v

in))

∥
∥
∥
∥

H1

� 1

for P(s, y) = P(y; (z(s), v(s))) as defined in (2.5). Then there exists a unique C1 function on
an open interval I 3 sin

~q(s) = (λ, z, γ, v) : I → (0, +∞) × Rd × R× Rd,

with ~q(sin) = (λin, zin ~e1, γ
in, vin) and a rescaling time function

t(s) = Tmod −
ˆ sin

s
λ2(τ)dτ (3.2)

such that u(t, x) decomposes as follows

u(t(s), x) =
eiγ(s)

λ
2

p−1 (s)
(P + ε)(s, y), y =

x

λ(s)
(3.3)

where, by setting

ε(s, y) =
[
eiΓ1η1

]
(s, y − z1), Γk(s, y) = vk(s) ∙ y, (3.4)

if initially 〈η1(sin), Q〉 = 〈η1(sin), yQ〉 = 〈η1(sin), iΛQ〉 = 0, the decomposition satisfies orthog-
onality conditions

〈η1(s), Q〉 = 〈η1(s), yQ〉 = 〈η1(s), iΛQ〉 = 0 (3.5)

and the extra relation

v̇(s) = −
2
c2

H(z(s)). (3.6)

Moreover, ε is also invariant by the symmetry τ and υ.
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Proof of Lemma 9. Step 1 Orthogonality conditions. We show that the orthogonality con-
ditions (3.5) and the extra relation (3.6) are equivalent to solve a system of ODEs. Remark
that we can go easily from the rescaled time s to t and conversely

s = s(t) = sin −
ˆ Tmod

t

dτ

λ2(τ)
(3.7)

with Tmod = t(sin). Denote

P(s, y) =
[
eiΓ1P1

]
(s, y − z1), EP(s, y) =

[
eiΓ1EP1

]
(s, y − z1)

G(s, y) = [eiΓ1G1](s, y − z1)

where G = |P|p−1P − |P1|p−1P1 − |P2|p−1P2. Let w = P + ε as in (2.1). It follows from the
equation of w (2.2) and the equation of P (2.7) that

iε̇ + Δε − ε +
(
|P + ε|p−1(P + ε) − |P|p−1P

)
− i

λ̇

λ
Λε + (1 − γ̇)ε + EP = 0. (3.8)

We rewrite the equation of ε into the following equation for η1 (see also the proof of Lemma 6)

iη̇1 + Δη1 − η1 + (|P1 + η1|
p−1(P1 + η1) − |P1|

p−1P1) + ~m1 ∙ ~Mη1 + EP1 = 0. (3.9)

Thus, for A(y), B(y) ∈ Y , we get

d
ds

〈η1, A + iB〉 = −〈Δη1 − η1 + (|P1 + η1|
p−1(P1 + η1) − |P1|

p−1P1)

+ ~m1 ∙ ~Mη1 + EP1 , iA − B〉.

Choose A = Q,B = 0 and A = yQ,B = 0 and A = 0, B = ΛQ then the conditions

d
ds

〈η1(s), Q〉 =
d
ds

〈η1(s), yQ〉 =
d
ds

〈η1(s), iΛQ〉 = 0

are equivalent to





〈
Δη1 − η1 + (|P1 + η1|p−1(P1 + η1) − |P1|p−1P1) + ~m1 ∙ ~Mη1 + EP1 , iQ

〉
= 0

〈
Δη1 − η1 + (|P1 + η1|p−1(P1 + η1) − |P1|p−1P1) + ~m1 ∙ ~Mη1 + EP1 , iyQ

〉
= 0

〈
Δη1 − η1 + (|P1 + η1|p−1(P1 + η1) − |P1|p−1P1) + ~m1 ∙ ~Mη1 + EP1 ,−ΛQ

〉
= 0.

We claim that the above system is equivalent to an autonomous system of ordinary differential
equations on (θ(s), z(s), γ(s), v(s), t(s)) where θ(s) = ln(λ(s)). Indeed, remark that

ε(s, y) = e
2

p−1
θ(s)

u(t(s), eθ(s)y) − P(y; (z(s), v(s))) (3.10)

and the expression of EP1 (from (2.7)–(2.8))

EP1 = [~m1 ∙ ~MQ](y) + [ei(Γ2(y+z)−Γ1(y)) ~m2 ∙ ~MQ](y + z) + G1
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then we get






〈~m1 ∙ ~MQ, iQ〉 + 〈ei(Γ2(y+z)−Γ1(y)) ~m2 ∙ ~MQ(y + z), iQ〉 + 〈~m1 ∙ ~Mη1, iQ〉 = F1(θ, z, γ, v, t)

〈~m1 ∙ ~MQ, iyQ〉 + 〈ei(Γ2(y+z)−Γ1(y)) ~m2 ∙ ~MQ(y + z), iyQ〉 + 〈~m1 ∙ ~Mη1, iyQ〉

= F2(θ, z, γ, v, t)

〈~m1 ∙ ~MQ,−ΛQ〉 + 〈ei(Γ2(y+z)−Γ1(y)) ~m2 ∙ ~MQ(y + z),−ΛQ〉 + 〈~m1 ∙ ~Mη1,−ΛQ〉

= F3(θ, z, γ, v, t)
(3.11)

with

F1(θ, z, γ, v, t) = −
〈
Δη1 − η1 + (|P1 + η1|

p−1(P1 + η1) − |P1|
p−1P1) + G1, iQ

〉

F2(θ, z, γ, v, t) = −
〈
Δη1 − η1 + (|P1 + η1|

p−1(P1 + η1) − |P1|
p−1P1) + G1, iyQ

〉

F3(θ, z, γ, v, t) = −
〈
Δη1 − η1 + (|P1 + η1|

p−1(P1 + η1) − |P1|
p−1P1) + G1,−ΛQ

〉
.

Note that F1,F2,F3 are C1 functions. Indeed, if we replace η1 by the expression (3.10) and its
definition, it is clear that any term not containing u is continuously differentiable. For terms
concerning u(t, x), by integration by parts and chain rule, we show how to prove that typical
terms, integrals of the form

d
dt

Re

(ˆ
u(t, x)A(x)dx

)

,
d
dt

Re

(ˆ
|u(t, x)|p−1u(t, x)A(x)dx

)

for A(x) some complex functions such that Re A(x), Im A(x) ∈ Y , are continuous. We have

d
dt

Re

(ˆ
u(t, x)A(x)dx

)

= − Im

(ˆ
u(t, x)ΔA(x)dx

)

− Im

(ˆ
|u(t, x)|p−1u(t, x)A(x)dx

)

(3.12)
and

d
dt

Re

(ˆ
|u(t, x)|p−1u(t, x)A(x)dx

)

= p Re

(ˆ
∂tu(t, x)|u(t, x)|p−1A(x)dx

)

=

− p Im

(ˆ
Δu(t, x)|u(t, x)|p−1A(x)dx

)

− p Im

(ˆ
|u(t, x)|2p−2u(t, x)A(x)dx

)

. (3.13)

Recall the persistence of H2 regularity for the NLS equation (see Theorem 5.3.1 in [2]), since
u(Tmod, x) ∈ H2(Rd) then u ∈ C1([0, Tmod], L2(Rd)) ∩ C([0, Tmod], H2(Rd)). By Sobolev’s
injection ( d+6

d−2 < 2 d
d−4), we have u ∈ C([0, Tmod], L2p−1(Rd)) and thus the right-hand sides

of (3.12), (3.13) are well-defined and continuous. Therefore, in particular, since initially

〈η1(s
in), Q〉 = 〈η1(s

in), yQ〉 = 〈η1(s
in), iΛQ〉 = 0,

the decomposition (~q, ε) will satisfy (3.5)if (3.11) holds.

step 2 System of ODEs. We show the existence of the decomposition (~q, ε) for u(t) and a
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rescaling time t(s) by solving the following system on (θ, z, γ, v, t)





〈~m1 ∙ ~MQ, iQ〉 + 〈ei(Γ2(y+z)−Γ1(y)) ~m2 ∙ ~MQ(y + z), iQ〉 + 〈~m1 ∙ ~Mη1, iQ〉 = F1(θ, z, γ, v, t)

〈~m1 ∙ ~MQ, iyQ〉 + 〈ei(Γ2(y+z)−Γ1(y)) ~m2 ∙ ~MQ(y + z), iyQ〉 + 〈~m1 ∙ ~Mη1, iyQ〉

= F2(θ, z, γ, v, t)

〈~m1 ∙ ~MQ,−ΛQ〉 + 〈ei(Γ2(y+z)−Γ1(y)) ~m2 ∙ ~MQ(y + z),−ΛQ〉 + 〈~m1 ∙ ~Mη1,−ΛQ〉

= F3(θ, z, γ, v, t)

v̇ = − 2
c2

H(z)

ṫ(s) = λ2(s).
(3.14)

On the one hand, we calculate

〈~m1 ∙ ~MQ, iQ〉 = ( λ̇
λ)〈−iΛQ, iQ〉 = −c1( λ̇

λ)

〈~m1 ∙ ~MQ, iyQ〉 = (ż − 2v + λ̇
λz)〈−i∇Q, iyQ〉 = c2(ż − 2v + λ̇

λz)

〈~m1 ∙ ~MQ,−ΛQ〉 = c1(γ̇ − 1 + |v|2 − λ̇
λ(v ∙ z) − (v ∙ ż))

with c1 = 〈ΛQ,Q〉, c2 = 〈−∇Q, yQ〉 non-zero. On the other hand, there exist a matrix
M(θ, z, γ, v, t) = (mij)5×5 and ~G(θ, z, γ, v, t) such that









〈ei(Γ2(y+z)−Γ1(y)) ~m2 ∙ ~MQ(y + z), iQ〉 + 〈~m1 ∙ ~Mη1, iQ〉
〈ei(Γ2(y+z)−Γ1(y)) ~m2 ∙ ~MQ(y + z), iyQ〉 + 〈~m1 ∙ ~Mη1, iyQ〉

〈ei(Γ2(y+z)−Γ1(y)) ~m2 ∙ ~MQ(y + z),−ΛQ〉 + 〈~m1 ∙ ~Mη1,−ΛQ〉
0
0









= (θ̇, ż, γ̇, v̇, ṫ)M(θ, z, γ, v, t) + ~G(θ, z, γ, v, t) (3.15)

where all entries of M(θ, z, γ, v, t) are small |mij | � 1 as zin � 1 and ||ε(sin)||H1 � 1 (from
hypothesis). Then the system (3.14) can be rewritten as an autonomous system

(θ̇, ż, γ̇, v̇, ṫ)A(θ, z, γ, v, t) + (θ̇, ż, γ̇, v̇, ṫ)M(θ, z, γ, v, t) = ~H(θ, z, γ, v, t) (3.16)

where

~H(θ, z, γ, v, t) =









F1(θ, z, γ, v, t)
F2(θ, z, γ, v, t) + 2c2v

F3(θ, z, γ, v, t) + c1 − c1|v|2

− 2
c2

H(z)
e2θ









− ~G(θ, z, γ, v, t)

and the matrix A is given by

A =









−c1 c2z c1(v ∙ z) 0 0
0 c2 c1v 0 0
0 0 c1 0 0
0 0 0 1 0
0 0 0 0 1









.

Therefore, the perturbed matrix (A + M)(θ, z, γ, v, t) is invertible (detA = −c2
1c2 < 0). As

same as the way to deal with F , one can check thatM, ~G are continuously differentiable, thus
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so are the entries of (A + M)−1 and ~H. Therefore,

R(θ, z, γ, v, t) = [(A + M)−1 ∙ ~H](θ, z, γ, v, t)

satisfies the hypothesis of the Cauchy–Lipschitz theorem and the system of ODEs

(θ̇, ż, γ̇, v̇, ṫ) = R(θ, z, γ, v, t) (3.17)

admits a unique solution (θ(s), z(s), γ(s), v(s), t(s)) to the initial value problem. We obtain
the decomposition (λ(s), z(s), γ(s), v(s)) of u(t) and the renormalization of time t(s).

�

Observe from (3.1) that the initial data

w(sin) = Pin(y; (zin ~e1, v
in)), λ(sin) = λin, γ(sin) = 0,

z(sin) = zin ~e1, v(sin) = vin, ε(sin) ≡ 0
(3.18)

and u(Tmod, x) satisfy the hypothesis of Lemma 9.

Proposition 10 (Uniform backwards estimates for p > 2). There exists s0 > 10 satisfying
the following condition: for all sin > s0, there is a choice of initial parameters (λin, zin, vin)
with ∣

∣
∣c−

1
2 (zin)

d−1
4 e

1
2
zin

− sin
∣
∣
∣ < sin log−

1
2 (sin), zin > 0,

λin = 1, vin = c
1
2 (zin)−

d−1
4 e−

1
2
zin

∙ ~e1,
(3.19)

such that the solution u to (NLS) corresponding to (3.1) exists. Moreover, the decomposition
of u given by Lemma 9 on the rescaled interval of time [s0, s

in]

u(s, x) =
eiγ(s)

λ
2

p−1 (s)
(P + ε)(s, y), y =

x

λ(s)
, dt = λ2(s) ds

verifies the uniform estimates for all s ∈ [s0, s
in]

| |z(s)| − 2 log(s)| . log(log(s)),
∣
∣λ−1(s) − 1

∣
∣ . s−1,

|v(s)| . s−1, ‖ε(s)‖H1 .s−1,
∣
∣
∣|z(s)|

d−1
2 e|z(s)| − cs2

∣
∣
∣ . s2 log−

1
2 (s).

(3.20)

Remark 11. The key point in Proposition 10 is that s0 and the constants in (3.20) are
independent of sin as sin → +∞. Observe that the estimates (3.20) match the discussion in
Sect. 2.3. The decomposition in Lemma 9 is only local, but the estimates in (3.20) guarantee
the global existence of the decomposition. The choice of vin is direct while the choice of zin is
based on a contradiction argument and a topological constraint.

The next subsection is devoted to the proof of Proposition 10 containing several technical
steps. The proof relies on a bootstrap argument, integration of the differential system of
geometrical parameters and energy estimates. Pick a smooth function χ̃ : [0, +∞) → [0,∞),
non increasing, with χ̃ ≡ 1 on [0, 1

10 ], χ̃ ≡ 0 on [18 , +∞). We define the localized momentum:

Mk(s, ε) = Im
ˆ

(∇ε ε̄)χk = Im
ˆ

(∇ηkη̄k)χ (3.21)

for χk(s, y) = χ̃
(
log−1(s)|y − zk(s)|

)
and χ = χ̃

(
| log−1(s)y|

)

3.2. Proof of Proposition 10.
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3.2.1. Bootstrap bounds. We shall consider the following bootstrap estimates
∣
∣
∣c−

1
2 |z|

d−1
4 e

1
2
|z| − s

∣
∣
∣ ≤ s log−

1
2 (s),

‖ε(s)‖H1 ≤ C∗s−1
(3.22)

with C∗ > 1 a constant to be chosen large enough. Note that the estimate on z and the
estimate (2.34) of v̇ imply that, for s large
∣
∣
∣
∣|z|−2 log(s)

∣
∣
∣
∣ . log(log(s)),

∣
∣
∣
∣|v̇|−s−2

∣
∣
∣
∣ . s−2 log−

1
2 (s),

∣
∣
∣
∣|v|−s−1

∣
∣
∣
∣ . s−1 log−

1
2 (s) (3.23)

where the last inequality is obtained by integrating the second one with the choice of initial
data vin in (3.19). Next, we define

s∗ = inf{τ ∈ [s0, s
in]; (3.22) holds on [τ, sin]}. (3.24)

3.2.2. Control of the modulation equations. Denote ~m∗
k the system ~mk without equation

żk − 2vk + λ̇
λzk and M∗ the vector M without the direction −i∇V .

Lemma 12 (Pointwise control of the modulation equations and the error). The following
estimates hold on [s∗, sin].

|~m∗
k(s)| . (C∗)2s−2. (3.25)

|〈η1(s), i∇Q〉| . (C∗)2s−1 log−1(s), (3.26)

|ż − 2v| . s−1 log−
3
4 (s). (3.27)

Moreover, for all s ∈ [s∗, sin], for all y ∈ R2,

|EP(s, y)| . s−1 log−
3
4 (s)

2∑

k=1

Q(y − zk(s)) + |G(s, y)|. (3.28)

Proof of Lemma 12. Since ε(sin) ≡ 0, we may define

s∗∗ = inf{s ∈ [s∗, sin]; |〈η1(τ), i∇Q〉| ≤ C∗∗τ−1 log−1(τ) holds on [s, sin]},

for some constant C∗∗ > 0 to be chosen large enough. We work on the interval [s∗∗, sin].
Recall equation for η1 (3.9) as below

iη̇1 + Δη1 − η1 + (|P1 + η1|
p−1(P1 + η1) − |P1|

p−1P1) + ~m1 ∙ ~Mη1 + EP1 = 0.

Let A(y) and B(y) be two real-valued functions in Y . We claim the following estimate on
[s∗∗, sin]
∣
∣
∣
∣

d
ds

〈η1, A + iB〉 −
[
〈η1, iL−A − L+B〉 − 〈~m1 ∙ ~MQ, iA − B〉

]∣∣
∣
∣ . (C∗)2s−2 + s−1|~m1|. (3.29)

We compute from (3.9),

d
ds

〈η1, A + iB〉 = 〈η̇1, A + iB〉 = 〈iη̇1, iA − B〉

= 〈−Δη1 + η1 − (
p + 1

2
Qp−1η1 +

p − 1
2

Qp−1η1), iA − B〉

− 〈|P1 + η1|
p−1(P1 + η1) − |P1|

p−1P1 −
p + 1

2
Qp−1η1 −

p − 1
2

Qp−1η1, iA − B〉

− 〈~m1 ∙~dη1, iA − B〉 − 〈EP1 , iA − B〉.
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First, since A and B are real-valued, we have

〈−Δη1 + η1 − (
p + 1

2
Qp−1η1 +

p − 1
2

Qp−1η1), iA − B〉 = 〈η1, iL−A − L+B〉.

Second, recall the expression of P1

P1 = Q(y) + ei(Γ2(y−(z2−z1))−Γ1(y))Q(y − (z2 − z1)).

By the expansion in (2.17), we can deduce the first order and the error of

|P1 + η1|
p−1(P1 + η1) − |P1|

p−1P1 −
p + 1

2
Qp−1η1 −

p − 1
2

Qp−1η1

=
p + 1

2
(|P1|

p−1 − Qp−1)η1 +
p − 1

2
(|P1|

p−3P2
1 − Qp−1)η1 + O(

∣
∣
∣
∣
η1

P1

∣
∣
∣
∣

2

|P1|
p) + O(|η1|

p).

By (3.22)–(3.23), for some q > 0,

|〈(|P1|
p−1 − Qp−1)η1, (iA − B)〉| + |〈(|P1|

p−3P2
1 − Qp−1)η1, (iA − B)〉|

. |z|qe−|z|‖η1‖L2 . C∗s−3 logq(s).

Using the Cauchy–Schwarz and Gagliardo–Nirenberg inequalities (as p > 2),
〈∣∣
∣
∣
η1

P1

∣
∣
∣
∣

2

|P1|
p, (iA − B)

〉

. ||ε||2L2 . (C∗)2s−2,

〈|η1|
p, (iA − B)〉 . ||ε||p

H1 . (C∗)2s−2.

Therefore,
∣
∣
∣
∣〈|P1 + η1|

p−1(P1 + η1)− |P1|
p−1P1 −

p + 1
2

Qp−1η1 −
p − 1

2
Qp−1η1, iA−B〉

∣
∣
∣
∣ . (C∗)2s−2.

(3.30)

Next, using (3.22)–(3.23), we obtain

|〈~m1 ∙~dη1, iA − B〉| . C∗s−1|~m1(s)|.

Finally, we need to prove following estimate
∣
∣
∣〈EP1 , iA − B〉 − 〈~m1 ∙ ~MQ, iA − B〉

∣
∣
∣ . s−2 + s−1|~m1|. (3.31)

Indeed, recall that we have

EP1 = [~m1 ∙ ~MQ](y) + [ei(Γ2(y−(z2−z1))−Γ1(y)) ~m2 ∙ ~MQ](y − (z2 − z1)) + G1.

From (2.14) and (3.22)–(3.23),

|〈G1, iA − B〉| . ‖G‖L∞ . |z|−
d−1
2 e−|z| . s−2.

Since A,B ∈ Y , we have

|〈ei(Γ2(y−(z2−z1))−Γ1(y))(~m2 ∙ ~MQ(∙ − (z2 − z1))), iA − B〉| . s−1|~m1|,

so the proof of (3.31) is complete.

We now use (3.29) to control the modulation vector ~m1. Note that η1 satisfies the orthogonality



SOLUTIONS WITH LOGARITHMIC DISTANCE FOR NLS 21

conditions (3.5).

〈η1, Q〉 = 0. Let A = Q and B = 0. Since L−Q = 0 and 〈~m1 ∙ ~MQ, iQ〉 = −c1( λ̇
λ), we obtain

∣
∣
∣
λ̇

λ

∣
∣
∣ . (C∗)2s−2 + s−1|~m1|. (3.32)

〈η1, iΛQ〉 = 0. Let A = 0 and B = ΛQ. Since L+(ΛQ) = −2Q, 〈η1, Q〉 = 0 and 〈~m1 ∙
~MQ,−ΛQ〉 = c1(γ̇ − 1 + |v|2 − λ̇

λ(v ∙ z) − (v ∙ ż)), we obtain
∣
∣
∣γ̇ − 1 + |v|2 −

λ̇

λ
(v ∙ z) − (v ∙ ż)

∣
∣
∣ . (C∗)2s−2 + s−1|~m1|. (3.33)

〈η1, yQ〉 = 0. Let A = yQ and B = 0. Since L−(yQ) = −2∇Q, |〈η1, i∇Q〉| . C∗∗s−1 log−1(s)

and 〈~m1 ∙ ~MQ, iyQ〉 = c2(ż − 2v + λ̇
λz), we obtain

∣
∣
∣ż − 2v +

λ̇

λ
z
∣
∣
∣ . C∗∗s−1 log−1(s) + (C∗)2s−2 + s−1|~m1|. (3.34)

By (3.23) and (3.32),
∣
∣
∣v̇ −

λ̇

λ
v
∣
∣
∣ . |v̇| +

∣
∣
∣
∣
∣
λ̇

λ

∣
∣
∣
∣
∣
|v| . s−2. (3.35)

Combining Eqs. (3.32) to (3.35), we have proved, for all s ∈ [s∗∗, sin],

|~m∗
1(s)| . (C∗)2s−2 (3.36)

and
|ż − 2v| . s−1 log−

3
4 (s). (3.37)

Now we turn to the study of localized momentum Mk:

d
ds

M1 = Im
ˆ

(∇η1 η̄1)χ̇ + 〈iη̇1, 2i∇η1 + η1∇i〉.

We claim that

1
2

d
ds

M1 =

〈
η̄1∙F ′′(P1)∙η1

2
,∇Q

〉

+

(

ż1 − 2v1 +
λ̇

λ
z1

)

〈i∇Q,∇η1〉 + O(log−1(s)‖η1‖
2
H1).

(3.38)
Note that, by direct computations,

|χ̇| . |s−1 log−2(s)yχ̃′(log−1(s)y)| . s−1 log−1(s)

and so, by (3.22)–(3.23),
∣
∣
∣
∣ Im

ˆ
(∇η1 η̄1)χ̇

∣
∣
∣
∣ . s−1 log−1(s)‖η1‖

2
H1 . s−3 log−

1
2 (s).

Now, we use the equation (3.9) of η1

iη̇1 + Δη1 − η1 + (|P1 + η1|
p−1(P1 + η1)− |P1|

p−1P1) + ~m∗
1 ∙ ~M∗η1 − (ż1 − 2v1 +

λ̇

λ
z1) ∙ i∇η1

+ ~m∗
1 ∙ ~M∗Q − (ż1 − 2v1 +

λ̇

λ
z1) ∙ i∇Q + [ei(Γ2(y−z)−Γ1(y)) ~m2 ∙ ~MQ](y − z) + G1 = 0
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to estimate 〈iη̇1, 2i∇η1 + η1∇i〉. By integration by parts, we check the following

〈Δη1, 2i∇η1 + η1∇i〉 = −2〈∇η1 ∙ ∇χ,∇η1〉 +
1
2

ˆ
|η1|

2∇(Δχ).

We have
|〈∇η1 ∙ ∇χ,∇η1〉| . log−1(s)‖η1‖

2
H1

and as |∇(Δχ)| . log−3(s) we obtain
∣
∣
∣
∣

ˆ
|η1|

2∇(Δχ)

∣
∣
∣
∣ . log−3(s)‖η1‖

2
H1 .

In conclusion for term Δη1 in the equation of η1, we get

|〈Δη1, 2i∇η1 + η1∇i〉| . log−1(s)‖η1‖
2
H1 .

For the term η1, we simply verify by integration by parts that

〈η1, 2i∇η1 + η1∇i〉 = 0.

From (3.36) and (3.37), we also have that
∣
∣
∣
∣〈~m1 ∙ ~Mη1, 2i∇η1 + η1∇i〉

∣
∣
∣
∣ . s−1 log−

1
2 (s)||η1||

2
H1 ,

∣
∣
∣
∣〈~m

∗
1 ∙ ~M∗Q, 2i∇η1 + η1∇i〉

∣
∣
∣
∣ . (C∗)2s−2||η1||H1 . s−

5
2 ,

∣
∣
∣
∣〈[~m2 ∙ ~MQ](∙ − z), 2i∇η1 + η1∇i〉

∣
∣
∣
∣ . s−1 log−

1
2 (s)e−

7
8
z||η1||H1 . s−3,

and ∣
∣
∣
∣〈G1, 2i∇η1 + η1∇i〉

∣
∣
∣
∣ . ‖G1‖L∞ log

d
2 (s)‖ε‖H1 . s−

3
2 ‖η1‖H1 .

where we use the Cauchy–Schwarz inequality and the fact that the support of χ is contained in
{|y| ≤ 1

8 log(s)}. Now we will deal with the term 〈|P1 + η1|p−1(P1 + η1)−|P1|p−1P1, 2i∇η1 +
η1∇i〉. By (2.17), we consider

|P1 + η1|
p−1(P1 + η1) − |P1|

p−1P1 = F ′(P1)∙η1 + O(|η1|
p) + O

(∣∣
∣
∣
η1

P1

∣
∣
∣
∣

2

|P1|
p

)

and, using the Gagliardo–Nirenberg inequality (note that if p > 2 then 3 < 2∗),
∣
∣
∣
∣

〈∣∣
∣
∣
η1

P1

∣
∣
∣
∣

2

|P1|
p, 2i∇η1 + η1∇χ

〉∣∣
∣
∣ . ||η1||

3
H1 . s−

5
2 ,

|〈|η1|
p, 2i∇η1 + η1∇χ〉| . ||η1||

p+1
H1 . s−2 log−2(s).

Then, we have
|〈F ′(P1)∙η1, η1∇i〉| . |∇χ| ||ε||2H1 . log−1(s)||η1||

2
H1 .

Finally, by integration by parts, we get

〈F ′(P1)∙η1, 2i∇η1〉 = −2

〈

∇P1χ,
η̄1∙F ′′(P1)∙η1

2

〉

− 〈F ′(P1)∙η1, η1∇i〉,
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therefore the collection of above bounds gives

d
ds

M1 = 2〈∇P1χ,
η̄1∙F ′′(P1)∙η1

2
〉+2

(

ż1 − 2v1 +
λ̇

λ
z1

)

〈i∇Q, i∇η1〉+O(log−1(s)‖η1(s)‖
2
H1).

(3.39)
We finish the proof of (3.38) by showing the following estimate

|〈∇P1χ, η̄1∙F
′′(P1)∙η1〉 − 〈∇Q, η̄1∙F

′′(P1)∙η1〉| .

∣
∣
∣
∣

ˆ

|y|< 1
8

log s
(η̄1∙F

′′(P1)∙η1)∇Q(∙ + z)

∣
∣
∣
∣

+

∣
∣
∣
∣

ˆ

|y|> 1
10

log s
(η̄1∙F

′′(P1)∙η1)∇Q

∣
∣
∣
∣ . s−

1
20 ||ε||2H1

,

and
(

ż1 − 2v1 +
λ̇

λ
z1

)

|〈i∇Q, i∇η1〉 − 〈i∇Q,∇η1〉| . s−1 log−
1
2 (s)

∣
∣
∣
∣

ˆ

|y|> 1
10

log s
∇Q∇η̄1

∣
∣
∣
∣

. s−1− 1
20 log−

3
4 (s)‖η1‖H1

here we use (1.12). On the other hand, from (3.29), refining up to order s−2, using L+(∇Q) = 0
and (2.18), we have that

d
ds

〈η1, i∇Q〉 =

〈
η̄1∙F ′′(P1)∙η1

2
,∇Q

〉

− c2

(

v̇1 −
λ̇

λ
v1

)

− 〈G1,∇Q〉 + 〈~m1 ∙ ~Mη1,∇Q〉 + O(s−2+
).

From (2.20) and the choice of v in (3.6), we get
∣
∣
∣
∣
∣
c2v̇1 + 〈G1,∇Q〉 − c2

λ̇

λ
v1

∣
∣
∣
∣
∣
. (|v|2|z|2 + |v|2)|z|−

1
2 e−|z| + |z|−

3(d−1)
4 e−

3
2
|z| + |v|

∣
∣
∣
∣
∣
λ̇

λ

∣
∣
∣
∣
∣
. s−3,

then, from (3.36), we obtain

|〈~m∗
1 ∙ ~M∗η1,∇Q〉| . s−2‖η1‖H1 .

Thus, we deduce that

d
ds

〈η1, i∇Q〉 =

〈
η̄1∙F ′′(P1)∙η1

2
,∇Q

〉

−

(

ż1 − 2v1 +
λ̇

λ
z1

)

〈i∇η1,∇Q〉 + O(s−2+
)∙

Note that 〈i∇η1,∇Q〉 = −〈i∇Q,∇η1〉, we obtain

d
ds

〈η1, i∇Q〉 =
1
2

d
ds

Im
ˆ

(∇η1η̄1)χ + O(log−1(s)‖η1‖
2
H1)∙

This information, combined with 〈η1(sin), i∇Q〉 = 0 and M1(tin) = 0, implies that
∣
∣
∣
∣〈η1, i∇Q〉 −

1
2
M1

∣
∣
∣
∣ . (C∗)2s−1 log−1(s).

From the bootstrap (3.22), we deduce that |〈η1, i∇Q〉| . (C∗)2s−1 log−1 so, if we take C∗∗ big
enough such that C∗∗

2 & (C∗)2, then s∗∗ = s∗. Those estimates (3.27) and (3.28) are direct
consequences of (3.23), (3.25) and (3.32). �
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3.2.3. Energy functional. Consider the nonlinear energy functional for ε

H(s, ε) =
1
2

ˆ (

|∇ε|2 + |ε|2 −
2

p + 1

(
|P + ε|p+1 − |P|p+1 − (p + 1)|P|p−1 Re (εP)

)
)

and
J =

∑

k

Jk, Jk(s, ε) = vk ∙ Mk(s, ε).

where Mk(s, ε) the localized moment defined in (3.21). Finally, we set

W(s, ε) = H(s, ε) − J(s, ε).

The functional W is coercive in ε at the main order and it is an almost conserved quantity
for the problem (see [29] for a similar functional).

Proposition 13 (Coercivity and time control of the energy functional). For all s ∈ [s∗, sin],

W(s, ε(s)) & ‖ε(s)‖2
H1 , (3.40)

and ∣
∣
∣
∣

d
ds

[W(s, ε(s))]

∣
∣
∣
∣ . s−2‖ε(s)‖H1 . (3.41)

Proof of Proposition 13. Step 1. Coercivity. The proof of the coercivity (3.40) is a standard
consequence of the coercivity property (1.15) around one solitary wave with the orthogonality
properties (3.5), (3.26), and an elementary localization argument. We refer to the proof of
Lemma 4.1 in Appendix B of [23] for a similar proof.
Step 2. Variation of the energy. We estimate the time variation of the functional H and
claim that for all s ∈ [s∗, sin],
∣
∣
∣
∣
∣

d
ds

[H(s, ε(s))] −
2∑

k=1

żk ∙ 〈∇Pk,
ε̄.F ′′(P)∙ε

2
〉

∣
∣
∣
∣
∣
. s−2‖ε(s)‖H1 + s−1 log−

3
4 (s)‖ε‖2

H1 . (3.42)

The time derivative of s 7→ H(s, ε(s)) splits into two parts

d
ds

[H(s, ε(s))] = DsH(s, ε(s)) + 〈DεH(s, ε(s)), ε̇s〉,

where Ds denotes differentiation of H with respect to s and Dε denotes differentiation of H
with respect to ε. Firstly we compute:

DsH = − Re
ˆ

[Ṗ(|P + ε|p−1(P + ε) − |P|p−1P)

−
p − 1

2
|P|p−3(ṖP + ṖP)Re (εP) − |P|p−1εṖ](y) dy

= − Re
ˆ

[Ṗ(|P + ε|p−1(P + ε) − |P|p−1P)

−
p − 1

2
|P|p−3 εP

2
Ṗ + ε|P|2Ṗ + ε|P|2Ṗ + εP2Ṗ

2
− |P|p−1εṖ](y) dy

= − 〈Ṗ, |P + ε|p−1(P + ε) − |P|p−1P −
p + 1

2
ε|P|p−1 −

p − 1
2

εP2|P|p−3〉.

We observe that Ṗk = −żk ∙ ∇Pk + iv̇k ∙ (y − zk)Pk. Denote

K = |P + ε|p−1(P + ε) − |P|p−1P −
p + 1

2
ε|P|p−1 −

p − 1
2

εP2|P|p−3
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then by (2.16), K = |P + ε|p−1(P + ε) − |P|p−1P − F ′(P)∙ε, we deduce from (2.17) that

|K| . |ε|2|P|p−2 + |ε|p

so we obtain

|〈iv̇k ∙ (y − zk)Pk,K〉| . (||ε||2H1 + ||ε||p
H1)|v̇| . s−2||ε||2H1 .

Next, we look more precisely at K

K =
ε̄∙F ′′(P)∙ε

2
+ O(

∣
∣
∣
∣
ε

P

∣
∣
∣
∣

2+

|P|p) + O(|ε|p)

as |żk| . s−1 and p − 2+ > 0, we have

∣
∣
∣
∣

〈

− żk ∙ ∇Pk,

∣
∣
∣
∣
ε

P

∣
∣
∣
∣

2+

|P|p
〉∣∣
∣
∣ . s−1||ε||2

+

H1

and

|〈−żk ∙ ∇Pk, |ε|
p〉| . s−1||ε||p

H1 .

Combining these computations, we get

DsH(s, ε) =
2∑

k=1

〈żk ∙ ∇Pk,
ε̄.F ′′(P)∙ε

2
〉 + O(s−1‖ε‖2+

H1) + O(s−2‖ε‖2
H1) + O(s−1‖ε‖p

H1). (3.43)

Secondly, we consider

DεH(s, ε) = −Δε + ε −
(
|P + ε|p−1(P + ε) − |P|p−1P

)

and note that the equation (3.8) of ε can be rewritten as

iε̇ − DεH(s, ε) − i
λ̇

λ
Λε + (1 − γ̇)ε + EP = 0

so that

〈DεH(s, ε), ε̇〉 = 〈iDεH(s, ε), iε̇〉

=
λ̇

λ
〈DεH(s, ε), Λε〉 − (1 − γ̇)〈iDεH(s, ε), ε〉 − 〈iDεH(s, ε), EP〉.

On the other hand, from (3.25) and (3.22)–(3.23), we have
∣
∣
∣
∣
∣
λ̇

λ
〈DεH(s, ε), Λε〉

∣
∣
∣
∣
∣
.

∣
∣
∣
∣
λ̇

λ

∣
∣
∣
∣

(

‖ε‖2
H1 + ‖ε‖p+1

H1

)

. (C∗)2s−2‖ε‖2
H1 ,

|(1 − γ̇)〈iDεH(s, ε), ε〉| . |1 − γ̇| (‖ε‖2
H1 + ‖ε‖p+1

H1 ) . (C∗)2s−2‖ε‖2
H1 .

For the last term, we rewrite

〈iDεH(s, ε), EP〉 =〈−iΔε + iε − i
(
|P + ε|p−1(P + ε) − |P|p−1P

)
,

[eiΓ1 ~m1 ∙ ~MQ](y − z1(s)) + [eiΓ2 ~m2 ∙ ~MQ](y − z2(s)) + G〉.



26 T.V. NGUYỄN

Recall that with η1 = η1
1 + iη2

1 for η1
1 , η

2
1 real, from the expression of operators L+ and L−

I1 =〈−iΔε + iε − i
(
|P + ε|p−1(P + ε) − |P|p−1P

)
, [eiΓ1 ~m1 ∙ ~MQ](y − z1(s))〉

=〈−iΔη1 + iη1 − i(|P1 + η1|
p−1(P1 + η1) − |P1|

p−1P1), ~m1 ∙ ~MQ〉

=〈iL+η1
1 − L−η2

1, ~m1 ∙ ~MQ〉

−

〈

i

(

|P1 + η1|
p−1(P1 + η1) − |P1|

p−1P1 −
p + 1

2
Qp−1η1 −

p − 1
2

Qp−1η1

)

, ~m1 ∙ ~MQ

〉

= −
λ̇

λ
〈η1,−2Q〉 + (v̇ −

λ̇

λ
v)〈η1,−2i∇Q〉

−

〈

i

(

|P1 + η1|
p−1(P1 + η1) − |P1|

p−1P1 −
p + 1

2
Qp−1η1 −

p − 1
2

Qp−1η1

)

, ~m1 ∙ ~MQ

〉

.

By orthogonality of η1 (3.5), (3.26) and the estimate (3.25), (3.30), we get

|I1| = O((C∗)2s−3 log−
3
4 (s)).

By symmetry, we have the same estimate for I2. Finally, from (2.13) and (3.22), we have
||G||H1 . s−2, so using an integration by parts and the Cauchy–Schwarz inequality

|〈−iΔε + iε − i
(
|P + ε|p−1(P + ε) − |P|p−1P

)
, G〉| . s−2||ε||H1 . (3.44)

The collection of above estimates finishes the proof of (3.42).

Step 3. Variation of the localized momentum. We now claim: for all s ∈ [s∗, sin],
∣
∣
∣
∣
∣

d
ds

[J(s, ε(s))] −
2∑

k=1

2vk ∙ 〈∇Pk,
ε̄.F ′′(P)∙ε

2
〉

∣
∣
∣
∣
∣
. s−2 log−

3
4 (s)‖ε(s)‖H1 . (3.45)

Indeed, we compute, for any k,

d
ds

[Jk(s, ε(s))] = v̇k ∙ Im
ˆ

(∇ε ε̄)χk + vk ∙
d
ds

Im
ˆ

(∇ε ε̄)χk.

By (3.22) and (3.23), we have
∣
∣
∣
∣v̇k ∙ Im

ˆ
(∇ε ε̄)χk

∣
∣
∣
∣ . s−2‖ε‖2

H1 .

Recall from (3.38) that

|vk|

∣
∣
∣
∣
∣

d
ds

[Mk(s, ε(s))] − 2 ∙ 〈∇Pk
ε̄∙F ′′(P)∙ε

2
〉 − 2

(

żk − 2vk +
λ̇

λ
zk

)

〈i∇Q,∇ηk〉,

∣
∣
∣
∣
∣

. s−1 log−1(s)‖ε(s)‖2
H1 .

From (3.27),

|vk|

∣
∣
∣
∣

(

żk − 2vk +
λ̇

λ
zk

)

〈i∇Q,∇ηk〉

∣
∣
∣
∣ . s−2 log−

3
4 (s)‖ε‖H1

so we get (3.45).

step 4 Conclusion. Recall that, by (3.27), |żk − 2vk| . s−1 log−
3
4 (s) so

∣
∣
∣
∣(żk − 2vk) ∙ 〈∇Pk,

ε̄∙F ′′(P)∙ε
2

〉

∣
∣
∣
∣ . s−1 log−

3
4 (s)‖ε‖2

H1 ,
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and (3.41) now follows from (3.42), (3.45). This concludes the proof of Proposition 13. �

3.2.4. End of the bootstrap argument. We close the bootstrap estimates (3.22).

Step 1. Closing the estimate in ε. By (3.41)in Proposition 13 and then (3.22)–(3.23), we
have ∣

∣
∣
∣

d
ds

[W(s, ε(s))]

∣
∣
∣
∣ . s−2‖ε‖H1 . C∗s−3.

Thus, by integration on [s, sin] for any s ∈ [s∗, sin], using ε(sin) = 0 (see (3.18)), we obtain

|W(s, ε(s))| . C∗s−2.

By (3.40), in Proposition 13 we get

‖ε(s)‖2
H1 ≤ C0C

∗s−2.

Therefore, for C∗ large enough such that C0C
∗ ≤ (C∗)2

4 , we have ‖ε‖H1 ≤ C∗

2 s−1, which
strictly improves the estimate on ||ε||H1 in (3.22).

step 2 Closing the parameter z. Now, we need to finish the bootstrap argument for z(s).
Note that ∣

∣
∣
∣v̇ + c

z

|z|
|z|−

d−1
2 e−|z|

∣
∣
∣
∣ . s−2 log−1(s)

|ż − 2v| . s−1 log−
3
4 (s)

thus we deduce ∣
∣
∣
∣v̇ ∙

z

|z|
+ c|z|−

d−1
2 e−|z|

∣
∣
∣
∣ . s−2 log−1(s)

∣
∣
∣
∣ż ∙

z

|z|
− 2v ∙

z

|z|

∣
∣
∣
∣ . s−1 log−

3
4 (s).

We get ∣
∣
∣
∣2

(

v ∙
z

|z|

)(

v̇ ∙
z

|z|

)

+ c ż ∙
z

|z|
|z|−

d−1
2 e−|z|

∣
∣
∣
∣ . s−3 log−

3
4 (s)

since |v| . s−1, |v̇| . s−2. Therefore, by the explicit choice of initial data

v(sin) =
√

c(zin)−
˜d−1
4 e−

1
2
zin

~e1, z(sin) = zin~e1,

we integrate on [s, sin] for any s ∈ [s∗, sin), if d − 1 > 0
∣
∣
∣
∣
∣

(

v ∙
z

|z|

)2

− c|z|−
d−1
2 e−|z|

∣
∣
∣
∣
∣
. s−2 log−

3
4 (s) +

ˆ sin

s
|ż||z|−

d−1
2

−1e−|z| . s−2 log−
3
4 (s),

if d−1 = 0,
∣
∣
∣2(v ∙ z

|z|)(v̇ ∙ z
|z|) + c ż ∙ z

|z|e
−|z|
∣
∣
∣ . s−3 log−

3
4 (s)(s) implies also

∣
∣
∣(v ∙ z

|z|)
2 − ce−|z|

∣
∣
∣ .

s−2 log−
3
4 (s). In both cases, combining with (3.27), we get

∣
∣
∣
∣(v ∙

z

|z|
) −

√
c|z|−

d−1
4 e−

1
2
|z|

∣
∣
∣
∣+

∣
∣
∣
∣(ż ∙

z

|z|
) − 2(v ∙

z

|z|
)

∣
∣
∣
∣ . s−1 log−

3
4 (s)

so
∣
∣
∣(ż ∙ z

|z|) − 2
√

c|z|−
d−1
4 e−

1
2
|z|
∣
∣
∣ . s−1 log−

3
4 (s). Next, note that if d − 1 > 0

d
ds

(|z|
d−1
4 e

1
2
|z|) =

1
2
ż ∙

z

|z|
|z|

d−1
4 e

1
2
|z| +

d − 1
4

ż ∙
z

|z|
|z|

d−1
4

−1e
1
2
|z|
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and if d − 1 = 0
d
ds

(e
1
2
|z|) =

1
2
ż ∙

z

|z|
e

1
2
|z|

thus ∣
∣
∣
∣

d
ds

(
|z|

d−1
4 e

1
2
|z|
)
− c

1
2

∣
∣
∣
∣ . log−

3
4 (s) +

d − 1
4

|ż||z|
d−1
4

−1e
1
2
|z| . log−

3
4 (s) (3.46)

here we use |z| . log−1(s) and |ż| . s−1. Next, we need to adjust the initial choice of
zin through a topological argument (see [4] for a similar argument). We define ζ and ξ the
following two functions on [s∗, sin]

ζ(s) = c−
1
2 |z|

d−1
4 e

1
2
|z|, ξ(s) = (ζ(s) − s)2s−2 log(s). (3.47)

Then, (3.46) writes

|ζ̇(s) − 1| . log−
3
4 (s). (3.48)

According to (3.22), our objective is to prove that there exists a suitable choice of

ζ(sin) = ζ in ∈ [sin − sin log−
1
2 (sin), sin + sin log−

1
2 (sin)],

so that s∗ = s0. Assume for the sake of contradiction that for all ζ] ∈ [−1, 1], the choice

ζ in = sin + ζ]sin log−
1
2 (sin)

leads to s∗ = s∗(ζ]) ∈ (s0, s
in). Since all estimates in (3.22) except the one on z(s) have been

strictly improved on [s∗, sin], it follows from s∗(ζ]) ∈ (s0, s
in] and continuity that

|ζ(s∗(ζ])) − s∗| = s∗ log−
1
2 s∗ i.e. ζ(s∗(ζ])) = s∗ ± s∗ log−

1
2 s∗.

We need a transversality condition to reach a contradiction. We compute:

ξ̇(s) = 2(ζ(s) − s)(ζ̇(s) − 1)s−2 log(s) − (ζ(s) − s)2(2s−3 log(s) − s−3). (3.49)

At s = s∗, this gives
|ξ̇(s∗) + 2(s∗)−1| . (s∗)−1 log−

1
4 (s∗).

Thus, for s0 large enough,
ξ̇(s∗) < −(s∗)−1. (3.50)

A consequence of the transversality property (3.50) is the continuity of the function ζ] ∈
[−1, 1] 7→ s∗(ζ]). Indeed, let ε > 0, then there exists δ > 0 such that ξ(s∗(ζ]) − ε) > 1 + δ
and ξ(s∗(ζ]) + ε) < 1 − δ. Moreover, by definition of s∗(ζ]) (choosing δ small enough) for all
s ∈ [s∗(ζ]) + ε, sin], we have ξ(s) < 1 − δ. But from the continuity of the flow, there exists
ι > 0 such that for all |ζ̃] − ζ]| < ι

∀s ∈ [s∗(ζ]) − ε, sin], |ξ̃(s) − ξ(s)| ≤ δ/2

so we obtain that s∗(ζ]) − ε ≤ s∗(ζ̃]) ≤ s∗(ξ]) + ε and the continuity of s∗(ζ]), as expected.
Thus we deduce the continuity of the function Φ defined by

i : ζ] ∈ [−1, 1] 7→ (ζ(s∗) − s∗)(s∗)−1 log
1
2 (s∗) ∈ {−1, 1}.

Moreover, for ζ] = −1 and ζ] = 1, ξ(sin) = 1 in these two cases; from (3.49) we have that
ξ̇(sin) < 0, thus s∗ = sin. Therefore, Φ(−1) = −1 and Φ(1) = 1, but this is a contradiction
with continuity.
In conclusion, there exists at least a choice of

ζ(sin) = ζ in ∈ (sin − sin log−
1
2 (sin), sin + sin log−

1
2 (sin))
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such that s∗ = s0. This concludes our bootstrap argument.

Step 3. Estimate on the parameter λ. From (3.25), we obtain
∣
∣
∣
∣
∣
λ̇

λ

∣
∣
∣
∣
∣
. s−2.

By integration on [s, sin], for any s ∈ [s0, s
in], using the value λ(sin) = λin = 1 (see (3.19)),

we have
|log(λ(s))| . s−1,

and thus
|λ(s) − 1| . s−1

or in other words ∣
∣λ−1(s) − 1

∣
∣ . s−1. (3.51)

�

4. Compactness arguments

4.1. Construction of a sequence of backwards solutions.

Lemma 14. There exist t0 > 1 and a sequence of solutions un ∈ C([t0, Tn], H1) of (NLS),
where

Tn → +∞ as n → +∞, (4.1)

satisfying the following estimates, for all t ∈ [t0, Tn],

| |zn(t)| − 2 log t| . log(log t),
∣
∣λ−1

n (t) − 1
∣
∣ . t−1,

|vn(t)| . t−1, ‖εn(t)‖H1 .t−1,
∣
∣
∣|zn(t)|

d−1
2 e|zn(t)| − ct2

∣
∣
∣ . t2 log−

1
2 (t),

(4.2)

where (λn, zn, γn, vn) are the parameters of the decomposition of un, i.e.

un(t, x) =
eiγn(t)

λ
2

p−1
n (t)

(
2∑

k=1

[
eiΓk,nQ

]
(

x

λn(t)
+

(−1)k

2
zn(t)

)

+ εn

(

t,
x

λn(t)

))

, (4.3)

with Γk,n(t, x) = (−1)k+1

2 vn(t) ∙ x
λn(t) .

Proof of Lemma 14. Applying Proposition 10 with sin = n for any large n, there exists a
solution un(t) of (NLS) defined on the time interval [0, Tn] where

Tn =
ˆ n

s0

λ2
n(s)ds.

and whose decomposition satisfies the uniform estimates (3.20). First, we see that Tn →
+∞ as n → +∞, which follows directly from the estimate on λn(s). From the definition of
the rescaled time s (see (3.2)), for any s ∈ [s0, n], we have

t(s) =
ˆ s

s0

λ2
n(s′) ds′ where |λ2

n(s) − 1| . s−1.

Fix t0 = s̄0 with s̄0 > s0 large enough and independent of n such that, for all s with n ≥ s > s̄0,

1
2
s ≤

ˆ s

s0

λ2
n(s′) ds′ = s

(
1 + O(s−1)

)
≤

3
2
s
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then, for all t ∈ [t0, Tn],

t(s) = s
(
1 + O(s−1)

)
≥

1
2
s

and
s = t

(
1 + O(t−1)

)
∙

Thus, we get from (3.20)

| |zn(s)| − 2 log(s)| . log(log(s)) ⇔ | |zn(s(t))| − 2 log(t)| . log(log(t))
∣
∣λ−1

n (s) − 1
∣
∣ . s−1 ⇔

∣
∣λ−1

n (s(t)) − 1
∣
∣ . t−1

‖εn(s)‖H1 . s−1 ⇔ ‖εn(s(t))‖H1 . t−1

|vn(s)| . s−1 ⇔ |vn(s(t))| . t−1.

�

4.2. Compactness argument. Next, we claim a strong compactness result in L2(Rd).

Lemma 15. There exist u0 ∈ H1(Rd) and a sub-sequence, still denoted un, such that

un(t0) ⇀ u0 weakly in H1(Rd)

un(t0) → u0 in Hσ(Rd), for 0 ≤ σ < 1

as n → ∞.

Proof of Lemma 15. By interpolation, it is enough to prove that the sub-sequence un(t0)
L2

−→
u0 as n → ∞. First, we claim the following: ∀δ1 > 0, δ1 � 1, ∃n0 � 1, ∃K1 = K1(δ1) > 0
such that ∀n ≥ n0 ˆ

|x|>K1

|un(t0, x)|2dx < δ1. (4.4)

Indeed, denote xn(t) = zn(t)λn(t) and

R̃n(t, x) = eiγn(t)
2∑

k=1

[
eiΓk,nQλ−1

n (t)

]
(

x +
(−1)k

2
xn(t)

)

Rn(t, x) = eiγn(t)
2∑

k=1

Q

(

x +
(−1)k

2
xn(t)

)

then we have

||un(t) − Rn(t)||H1 ≤ ||εn(t)||H1 + 2||R̃n(t) − Rn(t)||H1

. ||εn(t)||H1 +
∣
∣λ−1

n (t) − 1
∣
∣+ |vn(t)| . t−1. (4.5)

We get a direct consequence of the above estimate

||un(t)||H1 < C (4.6)

for all t ∈ [t0, Tn] since ||Rn(t)||H1 ≤ 2||Q||H1 . Furthermore, for fixed δ1, there exists t1 > t0
such that

||un(t1) − Rn(t1)||H1 . (t1)
−1 <

√
δ1

for n large enough that Tn > t1; in others words, we have
ˆ

|un(t1, x) − Rn(t1, x)|2dx < δ1.
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Besides, |xn(t1) − 2 log(t1)| . log(log t1) then for K2 � 1 large enough, we have
ˆ

|x|>K2

|Rn(t1, x)|2dx < δ1.

Consider now a C1 cut-off function g : R → [0, 1] such that : g ≡ 0 on (−∞, 1], 0 < g′ < 2
on (1, 2) and g ≡ 1 on [2, +∞). Since ||un(t)||H1 < C bounded in H1 independently of n and
t ∈ [t0, Tn], we can choose γ1 > 0 independent of n such that

γ1 ≥
2
δ1

(t1 − t0) C2.

We have by direct calculations, for t ∈ [t0, Tn]
∣
∣
∣
∣
d
dt

ˆ
|un(t, x)|2g

(
|x| − K2

γ1

)

dx

∣
∣
∣
∣ =

∣
∣
∣
∣

1
γ1

Im
ˆ

u

(

∇ū ∙
x

|x|

)

g′
(
|x| − K2

γ1

)∣∣
∣
∣

≤
2
γ1

sup
Tn≥t≥t0

||un(t)||2H1 ≤
δ1

t1 − t0
.

By integration from t0 to t1
ˆ

|un(t0, x)|2g

(
|x| − K2

γ1

)

dx −
ˆ

|un(t1, x)|2g

(
|x| − K2

γ1

)

dx

≤
ˆ t1

t0

∣
∣
∣
∣
d
dt

ˆ
|un(t, x)|2g

(
|x| − K2

γ1

)

dx

∣
∣
∣
∣ ≤ δ1.

From the properties of g we conclude:
ˆ

|x|>2γ1+K2

|un(t0, x)|2dx ≤
ˆ

|un(t0, x)|2g

(
|x| − K2

γ1

)

dx

≤
ˆ

|un(t1, x)|2g

(
|x| − K2

γ1

)

dx + δ1 ≤
ˆ

|x|>K2

|un(t1, x)|2dx + δ1 ≤ 5δ1.

Thus (4.4) is proved. As ||un(t0)||H1 < C, there exists a subsequence of (un) (still denoted by
(un)) and u0 ∈ H1 such that

un(t0) ⇀ u0 weakly in H1(R2),

un(t0) → u0 in L2
loc(R

d), as n → +∞

and by (4.4), we conclude that un(t0)
L2

−→ u0 as required. �

Let us finish the proof of the Main Theorem in subcritical cases with p > 2. We consider u
the solution to (NLS) corresponding to u(t0) = u0. By continuous dependence of the solution
upon the initial data (see [2] and [3]), for all 0 ≤ σ < 1, for all t ∈ [t0, +∞),

un(t) → u(t) in Hσ(Rd).

Moreover, the decomposition (~q, ε) of u satisfies, for all t ≥ t0,

~qn(t) → ~q(t), εn(t) → ε(t) in Hσ, εn(t) ⇀ ε(t) in H1 (4.7)

(see, e.g., [26], Claim p. 598). In particular, for all t ∈ [t0, +∞), u(t) decomposes as

u(t, x) =
eiγ(t)

λ
2

p−1 (t)

(
2∑

k=1

[
eiΓkQ

]
(

x + (−1)k

2 λ(t)z(t)

λ(t)

)

+ ε

(

t,
x

λ(t)

))

, (4.8)
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where Γk(t, y) = (−1)k+1

2 v(t) ∙ y, and it follows from the uniform estimates (4.2) that

| |z(t)| − 2 log t| . log(log t),
∣
∣λ−1(t) − 1

∣
∣ . t−1,

|v(t)| . t−1, ‖ε(t)‖H1 .t−1,
∣
∣
∣|z(t)|

d−1
2 e|z(t)| − ct2

∣
∣
∣ . t2 log−

1
2 (t).

(4.9)

We obtain |x1(t) − x2(t)| = λ(t)|z(t)| → 2(1 + o(1)) log t; more precisely

| |x1(t) − x2(t)| − 2 log(t)| . log(log(t))

and the following estimate
∥
∥
∥
∥
∥
u(t) − eiγ(t)

2∑

k=1

Q (x − xk(t))

∥
∥
∥
∥
∥

H1

. ||ε(t)||H1 + |λ−1(t) − 1| + |v(t)| . t−1. (4.10)

5. Sub-critical cases with 1 < p ≤ 2

In this section, we show the difficulties occurring and sketch the proof of the Main Theorem
in the case 1 < p ≤ 2. In this case, let

2+ = min(2∗,
p + 3

2
).

Note that p − 2+ > −1. From (2.15), we deduce the following Taylor expansions:

F (P + ε) = F (P) + F ′(P)∙ε + O(|ε|p) (5.1)

F (P + ε) = F (P) + F ′(P)∙ε + O

(∣∣
∣
∣
ε

P

∣
∣
∣
∣

2

|P|p
)

(5.2)

(since |ε| > |P|
2 then |ε|p . | ε

P |2|P|p and |ε| ≤ |P|
2 then | ε

P |2|P|p . |ε|p) and

F (P + ε) = F (P) + F ′(P)∙ε +
ε̄∙F ′′(P)∙ε

2
+ O

(∣∣
∣
∣
ε

P

∣
∣
∣
∣

2+

|P|p
)

. (5.3)

In the following remark, we identify new problems compared with the case p > 2.

Remark 16. Let us try to control the nonlinear interaction term

G(y; (z(s), v(s))) = |P|p−1P − |P1|
p−1P1 − |P2|

p−1P2∙

Since |P1| > |P2| for y ∙ z
|z| > 0 and |P2| > |P1| for y ∙ z

|z| < 0, one has, by (2.15),

|G(y; (z(s), v(s)))| =
∣
∣|P1 + P2|

p−1(P1 + P2) − |P1|
p−1P1 − |P2|

p−1P2

∣
∣

. |P1|
p−1|P2|∙1y∙ z

|z|>0 + |P2|
p−1|P1|∙1y∙ z

|z|<0.
(5.4)

Using the asymptotic behavior of Q, on the half space {y ∙ z
|z| > 0},

|P1|
p−1|P2|∙1y∙ z

|z|>0 . |P1P2|
p−1|P2|

2−p∙1y∙ z
|z|>0 . |z|−

(p−1)(d−1)
2 e−(p−1)|z||P2|

2−p∙1y∙ z
|z|>0

. |z|−
(p−1)(d−1)

2 e−(p−1)|z|
∣
∣
∣
z

2

∣
∣
∣
− (2−p)(d−1)

2
e−

2−p
2

|z| . |z|−
d−1
2 e−

p
2
|z|.

(5.5)
By symmetry, we have the same estimate on the other half space {y ∙ z

|z| < 0} and thus

‖G‖L∞ . |z|−
d−1
2 e−

p
2
|z| ∼ s−p (5.6)



SOLUTIONS WITH LOGARITHMIC DISTANCE FOR NLS 33

(to be compared with (2.9)). Now for the projection of interaction, we recall that its core part
(as identified in the proof of Lemma 7 and in step 4 of Proposition 17) is given by

H(z) = p

ˆ

y∙ z
|z|>− |z|

2

Qp−1(y)∇Q(y) Q(y + z) dy + p

ˆ

y∙ z
|z|<− |z|

2

Qp−1(y + z)∇Q(y) Q(y) dy

and the following estimate of H(z) is still valid for 1 < p ≤ 2 (see Lemma 7)
∣
∣
∣
∣H(z) − cQIQ

z

|z|
|z|−

d−1
2 e−|z|

∣
∣
∣
∣ . |z|−1− d−1

2 e−|z|. (5.7)

In summary, the projection 〈G, eiΓ1∇Q(y − z1(s))〉 and thus v̇ are still of order s−2; however,
the interaction G is of order s−p � s−2 in L∞ norm. Therefore, there still exist some terms in
the interaction that perturb our regime and prevent us from closing the bootstrap arguments
(for example, (3.44)).

In view of the above remark, we look for a refined approximate solution P of the form

P(s, y) = P(y; (z(s), v(s))) =
2∑

k=1

eivk(s)(y−zk(s))Q(y − zk(s)) + W (y; (z(s), v(s)))

=
2∑

k=1

Pk(s, y) + W (y; (z(s), v(s))),

(5.8)

where W (y; (z(s), v(s))) is to be determined.

Proposition 17 (Expansion of the refined approximate solution). There exists a series of
(J + 1) functions Rj(y; (z(s), v(s))) that are invariant by τ and υ such that by setting

W (y; (z(s), v(s))) =
J∑

j=0

Rj(y; (z(s), v(s))),

the error EP defined as in (2.7) admits the decomposition

EP = [eiΓ1 ~m1 ∙ ~MQ](y − z1(s)) + [eiΓ2 ~m2 ∙ ~MQ](y − z2(s)) + G0, (5.9)

where under the bootstrap assumptions (3.22) and the pointwise control of the modulation
equations (3.25)–(3.27)

|z| . log(s), |ż| . s−1, |v| . s−1, |v̇| . s−2,

∣
∣
∣
∣
∣
λ̇

λ

∣
∣
∣
∣
∣
. (C∗)2s−2, |γ̇ − 1| . (C∗)2s−2,

the corrected interaction term G0 satisfies

‖G0‖L2 . s−2, ‖∇G0‖L2 . s−2. (5.10)

Moreover, G0 is symmetric and
∣
∣
∣
∣〈G0, e

iΓ1(y−z1(s))∇Q(y − z1(s))〉 − Cp
z

|z|
|z|−

d−1
2 e−|z|

∣
∣
∣
∣ . s−2 log−1(s) (5.11)

with Cp > 0.

Remark 18. In fact, before the pointwise control of the modulation equations in Lemma 12,
we bound ‖G0‖L2 , ‖∇G0‖L2 by z, v and s−p|~m1|, then once we have the control on ~m1, we
will obtain (5.10).
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Proof of Proposition 17. Step 1. Properties of the Helmholtz operators. We recall well-known
properties of (−Δ + 1)us(y) = fs(y) in Rd. The operator (−Δ + 1)−1 is continuous from L2

to H1, in particular
‖u‖H1 ≤ ‖f‖L2 .

It is self-adjoint
〈u, (−Δ + 1)g〉 = 〈(−Δ + 1)u, g〉 = 〈f, g〉, (5.12)

invariant by τ , υ and (−Δ+1)u̇s(y) = ḟs(y) (ḟ denotes the derivative with respect to time s).
Moreover, by theory of elliptic equation (see, e.g., [1]), we have an explicit kernel representation
Ed for (−Δ + 1)−1 as follows

Ed(x) = −(2π)−
d
2

(
1
|x|

)d
2
−1

Kd
2
−1(|x|)

u(x) =
ˆ

Rd

Ed(x − y)f(y)dy (5.13)

where Kα is a modified Bessel function of second kind that is decreasing exponentially when
|x| → +∞. This is a convolution of type L1 ? L∞, so we deduce that

‖u‖L∞ . ‖f‖L∞ . (5.14)

Next, we claim the exponential decay property: assume that a regular function f is exponen-
tially decreasing in the direction ej , eδ|yj ||f(y)| ≤ C with 0 < δ < 1, then so is the solution u
of (−Δ + 1)−1.
Indeed, we consider

eδ|xj ||u(x)| = eδ|xj |

∣
∣
∣
∣

ˆ

Rd

Ed(x − y)f(y)dy

∣
∣
∣
∣

. C

∣
∣
∣
∣
∣

ˆ

Rd

(
1

|x − y|

)d
2
−1

e−|x−y|eδ(|xj |−|yj |)dy

∣
∣
∣
∣
∣
. C

∥
∥
∥
∥
∥

(
1
|x|

)d
2
−1

e−(1−δ)|x|

∥
∥
∥
∥
∥

L1

. C.

Step 2. Iteration of Rj . We introduce a suitable smooth cut-off function that localizes the
points whose distances to center of two solitons are smaller than |z|. Denote ψ0 : R → [0, 1]
such that

0 ≤ ψ′
0 ≤ C, ψ0 ≡ 0 on (−∞,−1], ψ0 ≡ 1 on [0, +∞)

and

ψ(y; z(s)) = ψ0

(

|z(s)| −

∣
∣
∣
∣y +

z(s)
2

∣
∣
∣
∣

)

ψ0

(

|z(s)| −

∣
∣
∣
∣y −

z(s)
2

∣
∣
∣
∣

)

∙

Recall the definition of G

G(y; (z(s), v(s))) = |P1 + P2|
p−1(P1 + P2) − |P1|

p−1P1 − |P2|
p−1P2

and denote pri the projection on the direction ∇Q around each soliton

pri(f) =
〈f(∙),∇Q(∙ + (−1)i

2 z(s))〉

‖∇Q(∙ + (−1)i

2 z(s))‖2
L2

∇Q(∙ +
(−1)i

2
z(s))∙

Setting
A0(y; (z(s), v(s))) = G(y; (z(s), v(s)))ψ(y; z(s)),

Ã0 = A0 − pr1(A0) − pr2(A0),
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A1 = |P1 + P2 + R0|
p−1(P1 + P2 + R0) − |P1 + P2|

p−1(P1 + P2),

Ã1 = A1 − pr1(A1) − pr2(A1)

and for j ≥ 2

Aj = |P1 + P2 +
j−1∑

k=0

Rk|
p−1(P1 + P2 +

j−1∑

k=0

Rk) − |P1 + P2 +
j−2∑

k=0

Rk|
p−1(P1 + P2 +

j−2∑

k=0

Rk),

Ãj = Aj − pr1(Aj) − pr2(Aj)∙

Observe that
J∑

j=1

Aj = |P1 + P2 +
j−1∑

k=0

Rk|
p−1(P1 + P2 +

j−1∑

k=0

Rk) − |P1 + P2|
p−1(P1 + P2). (5.15)

Then let
Rj(y; (z(s), v(s))) = (−Δ + 1)−1Ãj ∙

We will show by induction on j the following properties.
— Rj is almost orthogonal to ∇(Qp)(∙ ± 1

2z), i.e.

〈Rj(∙),∇(Qp)(∙ ±
1
2
z)〉 . s−3. (5.16)

— The L∞, H1 norm of Rj satisfies

‖Rj+1‖L∞ . s−(p−1)‖Rj‖L∞ . s−p,

‖Rj+1‖H1 . s−(p−1−κ)‖Rj‖H1 . s−p logdp(s)

with 0 < κ � 1 to be determined (see (5.33), (5.34)).
— After a finite number (J + 1) of steps, the function RJ satisfies the two following esti-
mates: there is ε > 0

|Qp−1(y)RJ (y +
z

2
)| + |Qp−1(y)RJ (y +

z

2
)| . e−ε|y|s−2 (5.17)

‖RJ‖
p
H1 + sp(p−1)‖RJ‖H1 � s−2 (5.18)

independently of z, v ((5.18) means thats there exists δ > 0 such that ‖RJ‖
p
H1 +

s−p(p−1)‖RJ‖H1 . s−2−δ).
Note that a direct consequence of the above estimates is

‖AJ+1‖L2

=

∥
∥
∥
∥
∥
∥
|P1 + P2 +

J∑

j=0

Rj |
p−1(P1 + P2 +

J∑

j=0

Rj) − |P1 + P2 +
J−1∑

j=0

Rj |
p−1(P1 + P2 +

J−1∑

j=0

Rj)

∥
∥
∥
∥
∥
∥

L2

.

∥
∥
∥
∥
∥
∥
|P1 + P2 +

J−1∑

j=0

Rj |
p−1|RJ | + |RJ |

p

∥
∥
∥
∥
∥
∥

L2

. ‖Qp−1(∙)RJ(∙ +
z

2
)‖L2 + ‖RJ‖

p
L2 + sp(p−1)‖RJ‖L2 . s−2

(5.19)
since ‖Rj‖L∞ . ‖R0‖L∞ . s−p, ∀j = 1, J .
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Let us begin with R0. We have that

|G(y; (z(s), v(s)))| =
∣
∣|P1 + P2|

p−1(P1 + P2) − |P1|
p−1P1 − |P2|

p−1P2

∣
∣

. |P1|
p−1|P2|∙1y∙ z

|z|>0 + |P2|
p−1|P1|∙1y∙ z

|z|<0.

Consider

|P1|
p−1|P2|∙1y∙ z

|z|>0 . e−(p−1)(z1−y∙ z
|z| )
∣
∣
∣
z

2

∣
∣
∣
− d−1

2
e−(y∙ z

|z|−z2)

. |z|−
d−1
2 e−

p
2
|z|e−(2−p)y∙ z

|z| . s−pe−(2−p)y∙ z
|z| |z|−

(2−p)(d−1)
2 ,

(5.20)

by symmetry, we also have the same estimate on {y ∙ z
|z| < 0}. Thus, from the definition of ψ,

we get

‖e(2−p)|y∙ z
|z| |A0(y; (z(s), v(s)))‖L∞ . s−p|z|−

(2−p)(d−1)
2 . s−p (5.21)

and

‖A0(y; (z(s), v(s)))‖L2 . s−p logd(s). (5.22)

The estimate (5.21) yields

|A0(y +
z

2
)| . e−(2−p)|y∙ z

|z|+
z
2
|
s−p|z|−

(2−p)(d−1)
2

. e(2−p)|y∙ z
|z| |e−(2−p)

|z|
2 |z|−

(2−p)(d−1)
2 s−p . e(2−p)|y∙ z

|z| |s−2

so it gives a control on projections of A0
∣
∣
∣
∣

ˆ

Rd

A0(y +
z

2
)∇Q(y) dy

∣
∣
∣
∣ . s−2. (5.23)

Therefore, from definition of Ã0

‖e(2−p)|y∙ z
|z| |Ã0‖L∞ . s−p|z|−

(2−p)(d−1)
2 , ‖Ã0‖L2 . s−p logd(s)∙

From step 1, we can transfer these properties to R0(y; (z(s), v(s)))

‖e(2−p)|y∙ z
|z| |R0(y; (z(s), v(s)))‖L∞ . s−p|z|−

(2−p)(d−1)
2 , (5.24)

‖R0(y; (z(s), v(s)))‖H1 . s−p logd(s). (5.25)

To show the almost orthogonality condition, we note that (−Δ+1)∇Q = ∇(Qp), so from the
self-adjoint property (5.12) of (−Δ + 1), we have

∣
∣
∣〈R0,∇(Qp)(∙ +

z

2
)〉
∣
∣
∣ =

∣
∣
∣〈A0 − pr1(A0) − pr2(A0),∇Q(∙ +

z

2
)〉
∣
∣
∣

=
∣
∣
∣〈pr1(A0),∇Q(∙ +

z

2
)〉
∣
∣
∣ . s−2〈∇Q(∙ −

z

2
),∇Q(∙ +

z

2
)〉 . s−3.

If 3
2 < p ≤ 2, we see that R0 satisfies already the conditions (5.17), (5.18) as

‖R0‖
p
H1 . s−p2

logdp(s) ≤ s−
9
4 logdp(s) � s−2

sp(p−1)‖R0‖H1 . s−
3
4 s−

3
2 � s−2

and |R0(y + z
2)| . e−(2−p)|y∙ z

|z|+
z
2
|
s−p|z|−

(2−p)(d−1)
2 . e(2−p)|y∙ z

|z| |s−2 so for ε = 2 p − 3 > 0

|Qp−1(y)R0(y +
z

2
)| . e(2−p)|y∙ z

|z| |Q(2−p)(y)s−2Q(2p−3)(y) . e−ε|y|s−2.
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Thus J = 0 and W = R0(y; (z(s), v(s))) in this case.

If 4
3 < p ≤ 3

2 , we consider A1(y; (z(s), v(s))), by (2.15), we obtain

∣
∣
∣
∣|P1 + P2 + R0|

p−1(P1 + P2 + R0) − |P1 + P2|
p−1(P1 + P2)

−
p + 1

2
|P1 + P2|

p−1R0 −
p − 1

2
|P1 + P2|

p−3(P1 + P2)
2R0

∣
∣
∣
∣ . |R0|

p. (5.26)

Next remark that for 1 < p ≤ 2,
∣
∣|P1 + P2|p−1 − |P1|p−1 − |P2|p−1

∣
∣ . min(|P1|p−1, |P2|p−1)

so the main part of A1 = |P1 + P2 + R0|p−1(P1 + P2 + R0) − |P1 + P2|p−1(P1 + P2) can be
computed by

∥
∥
∥
∥

p + 1
2

|P1 + P2|
p−1R0 +

p − 1
2

|P1 + P2|
p−3(P1 + P2)

2R0 − p|P1 + P2|
p−1R0

∥
∥
∥
∥

L2

.

∥
∥
∥
∥(|v|

2|y|2 + |v|2|z|2)|R0|(|P1|
p−1 + |P2|

p−1)

∥
∥
∥
∥

L2

� s−2

(5.27)

∣
∣
∣
∣|P1 + P2|

p−1R0 − (|P1|
p−1 + |P2|

p−1)R0

∣
∣
∣
∣ . min(|P1|

p−1, |P2|
p−1)|R0| (5.28)

here in (5.27) we use the bootstrap assumptions and the control of modulation equations. Let
estimate R0(y)Qp−1(y + z

2), from the decreasing properties of R0 (5.24), we have

|R0(y)Qp−1(y +
z

2
)| . e−(2−p)|y∙ z

|z| |s−p|z|−
(2−p)(d−1)

2 e(p−1)|y∙ z
|z| |e−(p−1)

|z|
2

. e−(3−2p)|y∙ z
|z| |s−(2p−1)|z|−

(3−2p)(d−1)
2

(5.29)

so for κ � 1 determined later in (5.33)

‖R0(y) Qp−1(y +
z

2
)‖L2 . s−(2p−1−κ). (5.30)

The collection of above estimates gives a bound on norm L2 and on the decay property of A1

‖A1‖L2 . ‖R0‖
p
L2 + ‖R0|P2|

p−1‖L2 + ‖R0|P2|
p−1‖L2

. s−p2
logdp(s) + s−(2p−1−κ) ≤ s−(2p−1−κ),

‖e(3−2p)|y∙ z
|z| |A1‖L∞

. ‖e(3−2p)|y∙ z
|z| ||R0|

p‖L∞ + ‖e(3−2p)|y∙ z
|z| |R0|P2|

p−1‖L∞ + ‖e(3−2p)|y∙ z
|z| |R0|P2|

p−1‖L∞

. s−p2
+ s−(2p−1)|z|−

(3−2p)(d−1)
2 ≤ s−(2p−1)|z|−

(3−2p)(d−1)
2



38 T.V. NGUYỄN

as the decay e−(2−p)|y∙ z
|z| | of R0 is faster than the one of e−(3−2p)|y∙ z

|z| |. Finally, we consider
∣
∣
∣〈A1,∇Q(y +

z

2
)〉 − p

〈
Qp−1(y −

z

2
)R0 + Qp−1(y +

z

2
)R0,∇Q(y +

z

2
)
〉∣∣
∣

.
〈
|R0|

p,∇Q(y +
z

2
)
〉

+
〈
min(|P1|

p−1, |P2|
p−1)|R0|,∇Q(y +

z

2
)
〉

.
〈
e−(2−p)p|y∙ z

|z| |s−p2
|z|−

(2−p)p(d−1)
2 e(2−p)p|y∙ z

|z| |e−(2−p)p
|z|
2 , Q1−(2−p)p(y +

z

2
)
〉

+
〈
s−(p−1)e−(2−p)|y∙ z

|z| |s−p|z|−
(2−p)(d−1)

2 e(2−p)|y∙ z
|z| |e−(2−p)

|z|
2 , Q1−(2−p)(y +

z

2
)
〉

. s−2p + s−(p+1) � s−2.

We can deduce from the almost orthogonality (5.16) that

〈A1,∇Q(y ±
z

2
)〉 � s−2, (5.31)

in other words, we have

‖pri(A1)‖L2 � s−2, i = 1, 2. (5.32)

Therefore, we have the following estimates for Ã1 = A1 − pr1(A1) − pr2(A2)

‖Ã1‖L2 . s−(2p−1−κ), ‖e(3−2p)|y∙ z
|z| |Ã1‖L∞ . s−(2p−1)|z|−

(3−2p)(d−1)
2

and the analogue for R1

‖R1‖H1 . s−(2p−1−κ), ‖e(3−2p)|y∙ z
|z| |R1‖L∞ . s−(2p−1)|z|−

(3−2p)(d−1)
2 ∙

There exists 0 < κ � 1 such that for all p > 4
3

−(2p − 1 − κ)p < −2, −(2p − 1 − κ) − p(p − 1) < −2 (5.33)

so ‖RJ‖
p
H1 + sp(p−1)‖RJ‖H1 . s−(2p−1−κ)p + s−(2p−1−κ)−p(p−1) � s−2 and for ε = 3p − 4 > 0

|Qp−1(y)R1(y +
z

2
)| . e−(3−2p)|y∙ z

|z|+
z
2
|
s−(2p−1)|z|−

(3−2p)(d−1)
2 Qp−1(y)

≤ e(3−2p)|y∙ z
|z| |Q(3−2p)(y)s−2Q(3p−4)(y) . e−ε|y|s−2.

The almost orthogonal property of V1 is a direct consequence of 〈Ã1(∙ ± z
2),∇Q〉 . s−3. Thus

J = 1 and W = R0(y; (z(s), v(s))) + R1(y; (z(s), v(s))) in this case.

If J+3
J+2 < p ≤ J+2

J+1 , we proceed the same way and after (J + 1) steps, our process will finish
with

W =
J∑

j=0

Rj(y; (z(s), v(s))),

ε = (J + 2)p − (J + 3) > 0 and 0 < κ � 1 such that for all J+2
J+1 < p ≤ J+1

J

−((J + 1)p − J − κ)p < −2, −((J + 1)p − J − κ) − p(p − 1) < −2. (5.34)
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Step 3. Estimate of G0. Let P = P1 +P2 +W and put into the definition EP, it follows from
the computations in Lemma 6 that

EP = [eiΓ1 ~m1 ∙ ~MQ](y − z1(s)) + [eiΓ2 ~m2 ∙ ~MQ](y − z2(s)) + |P|p−1P− |P1|
p−1P1 − |P1|

p−1P1

+
J∑

j=0

(Δ − 1)Rj +
J∑

j=0

[iṘj − i
λ̇

λ
ΛRj + (1 − γ̇)Rj ]. (5.35)

Note that
J∑

j=1

(Δ − 1)Rj = −
J∑

j=1

Ãj = −
J∑

j=1

Aj +
J∑

j=1

[pr1(Aj) + pr2(Aj)]

thus following (5.9) and (5.15), we have the explicit expression of G0

G0 = |P1 + P2 +
J∑

j=0

Rj |
p−1(P1 + P2 +

J∑

j=0

Rj) − |P1 + P2 +
J−1∑

j=0

Rj |
p−1(P1 + P2 +

J−1∑

j=0

Rj)

+
J∑

j=1

[Aj + (Δ − 1)Rj ] + |P1 + P2|
p−1(P1 + P2) − |P1|

p−1P1 − |P2|
p−1P2 + (Δ − 1)R0

+
J∑

j=0

[iṘj − i
λ̇

λ
ΛRj + (1 − γ̇)Rj ]

= |P1 + P2 +
J∑

j=0

Rj |
p−1(P1 + P2 +

J∑

j=0

Rj) − |P1 + P2 +
J−1∑

j=0

Rj |
p−1(P1 + P2 +

J−1∑

j=0

Rj)

+
J∑

j=1

[pr1(Aj) + pr2(Aj)] + G + (Δ − 1)R0 +
J∑

j=0

[iṘj − i
λ̇

λ
ΛRj + (1 − γ̇)Rj ]

= AJ+1+
J∑

j=1

[pr1(Aj)+pr2(Aj)]+pr1(Gψ)+pr2(Gψ)+G(1−ψ)+
J∑

j=0

[iṘj−i
λ̇

λ
ΛRj+(1−γ̇)Rj ].

We bound the first term by (5.19)

‖AJ+1‖L2 . s−2.

Next, from pointwise control of the modulation equations, we have
∣
∣
∣ λ̇λ

∣
∣
∣ , |1 − γ̇| . (C∗)2s−2

and ‖Rj‖H1 < ‖R0‖H1 . s−p logd(s); therefore,
∥
∥
∥
∥
∥
∥

J∑

j=0

i
λ̇

λ
ΛRj − (1 − γ̇)Rj

∥
∥
∥
∥
∥
∥

L2

� s−2. (5.36)

We recall (5.23) that

‖pr1(Gψ)‖L2 + ‖pr2(Gψ)‖L2 . s−2

and similarly to (5.32), we have

‖pr1(Aj)‖L2 + ‖pr2(Aj)‖L2 � s−2, ∀j ≥ 1∙
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The term
‖G(1 − ψ)‖L2 . |z|−

d−1
2 e−|z|(‖P1‖

p−1
L2 + ‖P2‖

p−1
L2 ) . s−2

is a consequence of the choice of localized cut-off function ψ and the decay property of Q. For

the last term, we have Ṙj = (−Δ + 1)−1 ˙̃Aj , so

‖Ṙj‖H1 ≤ ‖ ˙̃Aj‖L2 ∙

We consider R0 and A0; proceeding in the same way as when we controlled G in (5.4), we
have that Ġ decays more rapidly because of extra terms ż and v̇. In fact, we have

|Ġ| ≤

∣
∣
∣
∣(Ṗ1 + Ṗ2)|P1 + P2|

p−1 − Ṗ1|P1|
p−1 − Ṗ2|P2|

p−1

∣
∣
∣
∣

+

∣
∣
∣
∣(Ṗ1 + Ṗ2)|P1 + P2|

p−2(P1 + P2) − Ṗ1|P1|
p−2P1 − Ṗ2|P2|

p−2P2

∣
∣
∣
∣

and
Ṗk = żk∇Pk + i v̇k(y − zk)Pk∙

Then for |P1| > |P2|, we deduce from the asymptotic behavior of Q,∇Q at infinity that
∣
∣
∣
∣(∇P1 −∇P2)|P1 + P2|

p−1 −∇P1|P1|
p−1 + ∇P2|P2|

p−1

∣
∣
∣
∣

=

∣
∣
∣
∣∇P1|P1|

p−1

[(

1 −
∇P2

∇P1

) ∣∣
∣
∣1 +

P2

P1

∣
∣
∣
∣

p−1

− 1 +
∇P2

∇P1

∣
∣
∣
∣
P2

P1

∣
∣
∣
∣

p−1 ]∣∣
∣
∣ . |P1|

p−1|P2|∙1y∙ z
|z|>0

and
∣
∣
∣
∣(∇P1 −∇P2)|P1 + P2|

p−2(P1 + P2) −∇P1|P1|
p−2P1 + ∇P2|P2|

p−2P2

∣
∣
∣
∣

=

∣
∣
∣
∣∇P1|P1|

p−2P1

[(

1 −
∇P2

∇P1

) ∣∣
∣
∣1 +

P2

P1

∣
∣
∣
∣

p−2(

1 +
P2

P1

)

− 1 +
∇P2

∇P1

∣
∣
∣
∣
P2

P1

∣
∣
∣
∣

p−2 P2

P1

]∣∣
∣
∣

. |P1|
p−1|P2|∙1y∙ z

|z|>0.

We do the same way in case |P2| > |P1| and for function (y−zk)Pk; thus, we obtain from (5.20)
that

|Ġ| . |ż|s−p + |v̇|s−p . s−(p+1)

so
∥
∥
∥Ȧ0

∥
∥
∥

L2
. ‖Ġi‖L2 + |ż|‖G∇i‖L2 � s−2. Next remark that for a function f

∣
∣
∣
∣

d
ds
pri(f)

∣
∣
∣
∣ .

∣
∣
∣pri(ḟ)

∣
∣
∣+ |ż||pri(f)|, i = 1, 2 (5.37)

thus
∥
∥
∥ ˙̃A0

∥
∥
∥

L2
� s−2, by properties of (−Δ + 1)−1, this implies ‖Ṙ0‖L2 � s−2. We will prove

by induction that
‖Rj‖L2 , ∀j ≥ 1∙

For Aj (j ≥ 1), we have

|Ȧj | .

∣
∣
∣
∣(Ṗ1 + Ṗ2 +

j−1∑

k=0

Ṙk)|P1 + P2 +
j−1∑

k=0

Rk|
p−1 − (Ṗ1 + Ṗ2 +

j−2∑

k=0

Ṙk)|P1 + P2 +
j−2∑

k=0

Rk|
p−1

∣
∣
∣
∣.
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As ‖Ṙk‖L2 � s−2 for 0 ≤ k < j, it is sufficient to prove that
∣
∣
∣
∣(Ṗ1 + Ṗ2)|P1 + P2 +

j−1∑

k=0

Rk|
p−1 − (Ṗ1 + Ṗ2)|P1 + P2 +

j−2∑

k=0

Rk|
p−1

∣
∣
∣
∣� s−2. (5.38)

Let us estimate

Bj =

∣
∣
∣
∣(∇P1 −∇P2)|P1 + P2 +

j−1∑

k=0

Rk|
p−1 − (∇P1 −∇P2)|P1 + P2 +

j−2∑

k=0

Rk|
p−1

∣
∣
∣
∣∙

We have three cases to consider.
At a given point x, if it holds max(|P1|, |P2|, |V0|, ..., |Vj−1|) > max(|P1|, |P2|), then

Bj .
j−1∑

k=0

|Vk|
p . s−p;

otherwise, if max(|P1|, |P2|, |V0|, ..., |Vj−1|) = |P1|, then, by the first-order Taylor expansion

Bj =

∣
∣
∣
∣∇P1|P1|

p−1

[
1 −∇P2/∇P1

1 + P2/P1 +
∑j−1

k=0 Rk/P1

(

1 +
P2

P1

j−1∑

k=0

Rk

P1

) ∣∣
∣
∣
∣
1 +

P2

P1

j−1∑

k=0

Rk

P1

∣
∣
∣
∣
∣

p−1

− (1 −
∇P2

∇P1
)

∣
∣
∣
∣
∣
1 +

P2

P1
+

j−2∑

k=0

Rk

P1

∣
∣
∣
∣
∣

p−1 ]∣∣
∣
∣ . |P1|

p−1|P2|∙1y∙ z
|z|>0 +

j−1∑

k=0

|P1|
p−1|Rk|

. s−p,

and similarly for the case max(|P1|, |P2|, |V0|, ..., |Vj−1|) = |P2|. Thus, Bj . s−p, from which
we deduce (5.38). Recall the estimate for the derivative of a projection (5.37), so we get∥
∥
∥ ˙̃Aj

∥
∥
∥

L2
� s−2. In conclusion, we have ‖G0‖L2 . s−2. Similarly, the same estimate holds for

∇G0, which finishes the proof of (5.10).
Step 4. Estimate of projection. From step 3, the terms whose norm L2 is of order s−2

are AJ+1, pr1(Gψ), pr2(Gψ), G(1 − ψ). As |〈pr2(Gψ), eiΓ1(y−z1(s))∇Q(y − z1(s))〉| � s−2 and
similarly to (5.32), we can show that |pr1(AJ+1)| � s−2; thus

〈G0, e
iΓ1(y−z1(s))∇Q(y − z1(s))〉 = 〈G, eiΓ1(y−z1(s))∇Q(y − z1(s))〉 + o(s−2)∙

For 1 < p ≤ 2, we also have the analogous estimates of (2.23), (2.24)
∣
∣
∣
∣|P|

p−1P− |P1|
p−1P1 − |P2|

p−1P2 −

[
p + 1

2
|P1|

p−1P2 +
p − 1

2
|P1|

p−3P 2
1 P2

]

∙1y∙ z
|z|>0

−

[
p + 1

2
|P2|

p−1P1 +
p − 1

2
|P2|

p−3P 2
2 P1

]

∙1y∙ z
|z|<0

∣
∣
∣
∣ . min(|P1|

p, |P2|
p). (5.39)

We note that, for δ = p−1
2 > 0,

∣
∣
∣
∣
∣

ˆ

y∙ z
|z|>− |z|

2

Qp(y + z)∇Q(y)dy

∣
∣
∣
∣
∣
. |z|−

d−1
2 e−|z|Q(p−1)−δ

(
|z|
2

) ˆ
Qδ(y)dy

. s−(p+1−δ) � s−2 log−1(s),
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∣
∣
∣
∣
∣

ˆ

y∙ z
|z|<− |z|

2

Qp(y)∇Q(y)dy

∣
∣
∣
∣
∣
. Q(p+1)−δ

(
|z|
2

) ˆ
Qδ(y)dy . s−(p+1−δ) � s−2 log−1(s)∙

We repeat the approach in step 3 of Lemma 7 and combine it with (5.7) to conclude that
∣
∣
∣
∣〈G0, e

iΓ1(y−z1(s))∇Q(y − z1(s))〉 − Cp
z

|z|
|z|−

d−1
2 e−|z|

∣
∣
∣
∣ . |z|−1− d−1

2 e−|z| . s−2 log−1(s)

as required. �

The modulation part remains the same as for p > 2 (see Lemma 9), except that the extra
relation will be

v̇ = −
2
c2

H0(v, z) (5.40)

where

H0(v, z) =

〈

G0(y; (v(s), z(s))), ei
v(s)
2

(y− z(s)
2

(s))∇Q

(

y −
z(s)
2

)〉

= 〈G0, e
iΓ1(y−z1(s))∇Q(y − z1(s))〉.

(5.41)

Remark that by (5.11), the main order of v̇ still remains
∣
∣
∣
∣v̇ + c

z

|z|
|z|−

d−1
2 e−|z|

∣
∣
∣
∣ . |z|−

d−1
2

−1e−|z|∙

We claim the following analogue of Proposition 10in the context 1 < p ≤ 2 for L2 subcritical.

Proposition 19 (Uniform backwards estimates for 1 < p ≤ 2). There exists s0 � 1 satisfying
the following condition: for all sin > s0, there is a choice of initial parameters (λin, zin, vin)
such that the solution u to (NLS) corresponding to (3.1) exists. Moreover, the decomposition
of u with extra relation (5.40) on the rescaled interval of time [s0, s

in]

u(s, x) =
eiγ(s)

λ
2

p−1 (s)
(P + ε)(s, y), y =

x

λ(s)
, dt = λ2(s)ds

verifies the uniform estimates for all s ∈ [s0, s
in]

| |z(s)| − 2 log(s)| . log(log(s)),
∣
∣λ−1(s) − 1

∣
∣ . s−1,

|v(s)| . s−1, ‖ε(s)‖H1 .s−1,
∣
∣
∣|z(s)|

d−1
2 e|z(s)| − cs2

∣
∣
∣ . s2 log−

1
2 (s).

(5.42)

Proof of Proposition 19. We only sketch the proof, since it is very similar to Section 3.2, the
main difference is the localization to avoid singularities due to the small power p in Taylor
expansions (5.1)–(5.3).
Step 1. Modulation equations. Consider

d
ds

〈η1, A + iB〉 = 〈η1, iL−A − L+B〉 − 〈~m1 ∙~dη1, iA − B〉 − 〈EP1 , iA − B〉

− 〈|P1 + η1|
p−1(P1 + η1) − |P1|

p−1P1 −
p + 1

2
Qp−1η1 −

p − 1
2

Qp−1η1, iA − B〉
(5.43)

where the expression of P1 is given by

P1 = Q(y) + ei(Γ2(y−(z2−z1))−Γ1(y))Q(y − (z2 − z1)) +
J∑

j=0

e−iΓ1(y)Rj(y + z1).
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Let C the set such that max (|R0(y + z1)|, ..., |RJ(y + z1)|) ≥ 1
J+2Q(y) then for y ∈ C

|Q(y)| . ‖Ri‖L∞ ≤ s−p, for some i ∈ {0, ...J}∙

Since |A|, |B| . |x|qe−|x|, from the asymptotic behavior (1.12) of Q, over the set C, we have

|A| + |B| . s−p logq s. (5.44)

Next, denote

Γ(s, y) = Γ2(y − (z2 − z1)) − Γ1(y) = −
1
2
iv ∙ (y + z) −

1
2
iv ∙ y, (5.45)

from the estimates ||z| − 2 log(s)| . log(log(s)) and
∣
∣|v| − s−1

∣
∣ . s−1 log−1(s), there exists

a constant c0 (independent of sin) such that if |y| ≤ c0s then |Γ(s, y)| ≤ π
2 . Let D = {y ∈

Rd, |y| > c0s} , we have for y ∈ Cc ∩ Dc

1
J + 2

Q(y) ≤ |P1(y)| . 1 (5.46)

since |R0(y + z1)|, ..., |RJ (y + z1)| < 1
J+2Q(y) and Re [eiΓQ(y + z)] > 0. And we have for

y ∈ C ∪ D, using A,B ∈ Y and (5.44),

|A(y)| + |B(y)| . min(e−
c0
2

s, s−p logq(s)) . s−1+
(5.47)

with 1+ = p+1
2 . We denote

ϕ(s, y) = 1Dc1Cc . (5.48)

A consequence of (5.46) and (5.47) is that

|P1(y)|−mQ(y)nϕ(s, y) . 1 for n ≥ m > 0 (5.49)

and
(|A(y)| + |B(y)|)(1 − ϕ(s, y)) . s−1+

. (5.50)

By the Cauchy–Schwarz and Gagliardo–Nirenberg inequalities,

|〈|P1 + η1|
p−1(P1 + η1) − |P1|

p−1P1 −
p + 1

2
Qp−1η1 −

p − 1
2

Qp−1η1, (iA − B)(1 − ϕ(s, y))〉|

. 〈|η1| + |η1|
p, (iA + B)(1 − ϕ(s, ∙))〉 . s−1+

(‖η1‖H1 + ‖η1‖
p
H1) . C∗s−(1+1+).

From the expansion in (5.1), we get
[

|P1 + η1|
p−1(P1 + η1) − |P1|

p−1P1 −
p + 1

2
Qp−1η1 −

p − 1
2

Qp−1η1

]

ϕ(s, y)

=

[
p + 1

2
(|P1|

p−1 − Qp−1)η1 +
p − 1

2
(|P1|

p−3P2
1 − Qp−1)η1 + O(

∣
∣
∣
∣
η1

P1

∣
∣
∣
∣

2

|P1|
p)

]

ϕ(s, y).

We control the first two terms as before in the case p > 2

|〈(|P1|
p−1 − Qp−1)η1, (iA − B)ϕ(s, ∙)〉| + |〈(|P1|

p−3P2
1 − Qp−1)η1, (iA − B)ϕ(s, ∙)〉|

. C∗s−(p+1) logq(s)

and, for the last term, we use (5.49) to remark that |P1|p−2|iA − B|ϕ(s, ∙) . 1, then deduce
the inequality

〈∣∣
∣
∣
η1

P1

∣
∣
∣
∣

2

|P1|
p, (iA − B)ϕ(s, ∙)

〉

. ||ε||2L2 . (C∗)2s−2.
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To summarize, we have shown that
〈

|P1 + η1|
p−1(P1 + η1) − |P1|

p−1P1 −
p + 1

2
Qp−1η1 −

p − 1
2

Qp−1η1, iA − B

〉

. s−2.

(5.51)
Next, it is obvious that we still have, as before,

|〈~m1 ∙~dη1, iA − B〉| . C∗s−1|~m1(s)|.

To prove the estimate
∣
∣
∣〈EP1 , iA − B〉 − 〈~m1 ∙ ~MQ, iA − B〉

∣
∣
∣ . s−2 + s−1|~m1|, (5.52)

we recall EP1 = [~m1 ∙ ~MQ](y)+[ei(Γ2(y−(z2−z1))−Γ1(y)) ~m2 ∙ ~MQ](y−(z2−z1))+e−iΓ1(y)G0(y+z1).
From (5.10)

|〈e−iΓ1(y)G0(y + z1), iA − B〉| . ‖G0‖L2 . s−2

and finally since A,B ∈ Y , we have

|〈ei(Γ2(y−(z2−z1))−Γ1(y))(~m2 ∙ ~MQ(∙ − (z2 − z1))), iA − B〉| . s−1|~m1|,

which yields the estimate (3.29)in the case 1 < p ≤ 2. We project η1 onto three null spaces of
the linearized equation around Q and obtain the almost orthogonality for the forth null space
by the localized momentum thanks to the special choice of v̇ in (5.41) (as in Section 3.2.2).
Indeed, proceeding in the same way as in (5.43), taking into account the terms of order s−2,
we have that

d
ds

〈ηk, i∇Q〉 =

〈
η̄k∙F ′′(Pk)∙ηk

2
,∇Q

〉

+

(

żk − 2 vk +
λ̇

λ
zk

)

〈i∇Q,∇ηk〉 + O(C∗s−(1+1+)).

For the estimate of localized momentum Mk: for all s ∈ [s∗, sin],

1
2

d
ds

Mk =

〈
η̄k∙F ′′(Pk)∙ηk

2
,∇Q

〉

+

(

żk − 2 vk +
λ̇

λ
zk

)

〈i∇Q,∇ηk〉 + O(log−1(s)‖ηk‖
2
H1).

(5.53)
Recall that from the equation of iη̇k (3.9), we have

d
ds

Mk = Im
ˆ

(∇ηk η̄k)χ̇ − 〈Δηk − ηk + (|Pk + ηk|
p−1(Pk + ηk) − |Pk|

p−1Pk)

+ ~m∗
k ∙ ~M∗ηk − (żk − 2 vk +

λ̇

λ
zk) ∙ i∇ηk + ~m∗

k ∙ ~M∗Q − (żk − 2 vk +
λ̇

λ
zk) ∙ i∇Q

+ [ei(Γj(y−z)−Γk(y)) ~mj ∙ ~MQ](y ± z) + Gk, 2i∇ηk + ηk∇i〉.

We proceed the same way as in Lemma 12 for L2 subcritical cases with p > 2, except for the
term

〈|Pk + ηk|
p−1(Pk + ηk) − |Pk|

p−1Pk, 2i∇ηk + ηk∇χ〉∙

First, by (5.1)

|Pk + ηk|
p−1(Pk + ηk) − |Pk|

p−1Pk = F ′(Pk)∙ε + O(|ηk|
p)

and then we have
|〈|ηp|

p, 2i∇ηk + ηk∇χ〉| . ||ε||p+1
H1 . s−2 log−2(s).



SOLUTIONS WITH LOGARITHMIC DISTANCE FOR NLS 45

Second, we consider

|〈F ′(Pk)∙ηk, ηk∇i〉| . |∇χ| ||ηk||
2
H1 . log−1(s)||ε||2H1 .

Finally, by integration by parts, we obtain

〈F ′(Pk)∙ηk, i∇ηk〉 = −
1
2
〈∇Pkχ, η̄k∙F

′′(Pk)∙ηk〉 −
1
2
〈F ′(Pk)∙ηk, ηk∇i〉.

These estimates yield (5.53), since in the support of χ, we have |Pk| & s−
1
8 ≥ ‖Vj‖L∞ , ∀j = 0, J

so ϕk ≡ 1, then
∣
∣〈∇Pkχ, η̄k∙F

′′(P)∙ηk〉 − 〈ϕk∇Pk, η̄k∙F
′′(Pk)∙ηk〉

∣
∣

.

[∑

j 6=k

∣
∣
∣
∣

ˆ

|y|< 1
8

log s
(η̄k∙F

′′(Pk)∙ηk)∇Q

∣
∣
∣
∣+

∣
∣
∣
∣

ˆ

|y|> 1
10

log s
ϕk(η̄k∙F

′′(Pk)∙ηk)∇Q(y ± z)

∣
∣
∣
∣

]

. s−
p−1
20 ||ε||2H1

and

|〈i∇Q, i∇ηk〉 − 〈i∇Q,∇ηk〉| .

∣
∣
∣
∣

ˆ

|y|> 1
10

log s
∇Q∇η̄k

∣
∣
∣
∣ . s−

1
20 ‖ηk‖H1

here we use the property (5.49) of ϕk that ϕk 6= 0 implies
∣
∣
∣
∇Pj

P

∣
∣
∣ . 1 and

∣
∣
∣∇Pk

P

∣
∣
∣ . 1.

Step 2. Control the energy functional. We still consider the energy functional

W(s, ε) =H(s, ε) − J(s, ε)

=
1
2

ˆ (

|∇ε|2 + |ε|2 −
2

p + 1

(
|P + ε|p+1 − |P|p+1 − (p + 1)|P|p−1 Re (εP)

)
)

−
2∑

k=1

vk ∙ Im
ˆ

(∇ε ε̄)χk

and remark that we still have the coercivity property

W(s, ε(s)) & ‖ε(s)‖2
H1

(see for example [17], [22]). Define

ϕ1(s, y) = ϕ(s, y − z1(s)) (5.54)

a function localized to the first soliton P1. Similarly, we can define an analogous function
ϕ2(s, y) localized to the second soliton P2.
We claim an estimate on the derivative of H by żk ∙ 〈∇Pk,

ε̄.F ′′(P)∙ε
2 〉, but now localized by ϕk

∣
∣
∣
∣
∣

d
ds

[H(s, ε(s))] −
2∑

k=1

żk ∙ 〈ϕk∇Pk,
ε̄.F ′′(P)∙ε

2
〉

∣
∣
∣
∣
∣
. s−2‖ε(s)‖H1 + s−2‖ε‖2

H1 . (5.55)

Recall that we have
d
ds

[H(s, ε(s))] = DsH(s, ε(s)) + 〈DεH(s, ε(s)), ε̇s〉,

and

DsH = 〈Ṗ,K〉, 〈DεH(s, ε), ε̇〉 =
λ̇

λ
〈DεH(s, ε), Λε〉 − (1 − γ̇)〈iDεH(s, ε), ε〉 − 〈iDεH(s, ε), EP〉
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with K = |P + ε|p−1(P + ε)− |P|p−1P− p+1
2 ε|P|p−1 − p−1

2 εP2|P|p−3. We observe from (5.47)

that for Ṗk = −żk ∙ ∇Pk + iv̇k ∙ (y − zk)Pk, over the set C ∪ D , |Ṗk| . s−(1+1+), then

|〈Ṗk,K(1 − ϕk)〉| . s−(1+1+)||ε||H1 .

From (5.1), |K| . |ε|2|P|p−2, so we obtain

|〈iv̇k ∙ (y − zk)Pk,Kϕk〉| . |v̇| ||ε||2H1 . s−2||ε||2H1

since Q(y−zk)
|P|ϕk

. 1 by (5.49). Next we look more precisely at K

K =
ε̄.F ′′(P)∙ε

2
+ O(

∣
∣
∣
∣
ε

P

∣
∣
∣
∣

2+

|P|p)

since |żk| . s−1 and p − 2+ > −1, we also have
∣
∣
∣
∣

〈

− żk ∙ ∇Pk,

∣
∣
∣
∣
ε

P

∣
∣
∣
∣

2+

|P|pϕk

〉∣∣
∣
∣ . s−1||ε||2

+

H1 .

We deal the first two terms of 〈DεH(s, ε), ε̇〉 as in the case p > 2
∣
∣
∣
∣
∣
λ̇

λ
〈DεH(s, ε), Λε〉

∣
∣
∣
∣
∣
.

∣
∣
∣
∣
λ̇

λ

∣
∣
∣
∣

(

‖ε‖2
H1 + ‖ε‖p+1

H1

)

. (C∗)2s−2‖ε‖2
H1 ,

|(1 − γ̇)〈iDεH(s, ε), ε〉| . |1 − γ̇| (‖ε‖2
H1 + ‖ε‖p+1

H1 ) . (C∗)2s−2‖ε‖2
H1 .

Recall that for the last term we have

〈iDεH(s, ε), EP〉 =〈−iΔε + iε − i
(
|P + ε|p−1(P + ε) − |P|p−1P

)
,

[eiΓ1 ~m1 ∙ ~MQ](y − z1(s)) + [eiΓ2 ~m2 ∙ ~MQ](y − z2(s)) + G0〉

so from the properties of operators L+ and L−

I1 =〈−iΔε + iε − i
(
|P + ε|p−1(P + ε) − |P|p−1P

)
, [eiΓ1 ~m1 ∙ ~MQ](y − z1(s))〉

= −
λ̇

λ
〈η1,−2Q〉 + (v̇ −

λ̇

λ
v)〈η1,−2i∇Q〉

−

〈

i

(

|P1 + η1|
p−1(P1 + η1) − |P1|

p−1P1 −
p + 1

2
Qp−1η1 −

p − 1
2

Qp−1η1

)

, ~m1 ∙ ~MQ

〉

.

By the same way to prove (5.51), combining with the orthogonality of η1 (3.5), (3.26) and the
estimate of modulation equation (3.25), we get

|I1| = O((C∗)4s−4) + O((C∗)2s−4).

Finally, using integration by parts and the Cauchy–Schwarz inequality, from the bound for
H1 norm of G0 (5.10), we obtain

|〈−iΔε + iε − i
(
|P + ε|p−1(P + ε) − |P|p−1P

)
, G0〉| . s−2||ε||H1 .

Combining these computations, the proof of (5.55) is finished.We still have the same estimate
for the localized momentum Jk: for all s ∈ [s∗, sin],

∣
∣
∣
∣
∣

d
ds

[J(s, ε(s))] −
2∑

k=1

2 vk ∙ 〈ϕk∇Pk,
ε̄.F ′′(P)∙ε

2
〉

∣
∣
∣
∣
∣
. s−2 log−

3
4 (s)‖ε(s)‖H1 . (5.56)
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(by using (5.53)). Then we can deduce from the modulation equation |żk−2vk| . s−1 log−
3
4 (s)

that ∣
∣
∣
∣

d
ds

[W(s, ε(s))]

∣
∣
∣
∣ . s−2‖ε(s)‖H1 .

The rest of the proof stays unchanged in comparison to the case p > 2 in Section 3.2.4. �

From the uniform backwards estimates in Proposition 19, since ‖Rj‖H1 � s−1 for j = 0, J ,
we have that
∥
∥
∥
∥u(t(s), x) −

eiγ(s)

λ
2

p−1 (s)

2∑

k=1

[
eiΓkQ

]
(

x

λ(s)
+

(−1)k

2
z(s)

)∥∥
∥
∥

H1

.‖ε(s)‖H1 +
J∑

j=0

‖Rj(s)‖H1

. s−1

then we proceed like in Section 4 to obtain the existence of a solution u(t) satisfying the
regime (1.6)in subcritical cases with 1 < p ≤ 2

∥
∥
∥
∥
∥
u(t) − eiγ(t)

2∑

k=1

Q(∙ − xk(t))

∥
∥
∥
∥
∥

H1

.
1
t
.

6. Supercritical cases

In this section, we will present the necessary modifications to prove the result in the L2

supercritical cases (1 + 4
d < p < d+2

d−2) (see [4]). For k ∈ {1, 2}, z1(s) = −z2(s) = 1
2z(s),

v1(s) = −v2(s) = 1
2v(s), denote

Y ±
k (s, y) = eiΓk(s,y−zk(s))Y ±(y − zk(s)) (6.1)

Zk(s, y) = eiΓk(s,y−zk(s))iΛQ(y − zk(s))

Vk(s, y) = eiΓk(s,y−zk(s))i∇Q(y − zk(s))

Wk(s, y) = eiΓk(s,y−zk(s))(y − zk(s))Q(y − zk(s)).

Let

Y±(s, y) = Y±(y; (z(s), v(s))) =
2∑

k=1

Y ±
k (s, y),Z(s, y) = Z(y; (z(s), v(s))) =

2∑

k=1

Zk(s, y),

V(s, y) = V(y; (z(s), v(s))) = V1(s, y) − V2(s, y),

W(s, y) = W(y; (z(s), v(s))) = W1(s, y) − W2(s, y)∙

We need some extra parameters to control the instability created by Y ±. Consider a solution
to the NLS equation with symmetric initial data like those below: for b = (b+, b−, b1, b2, b3) ∈
R5, ||b|| ≤ C(sin)−

3
2 (the constant C is independent of sin and given in Lemma 20):

u(Tmod, x) =
1

(λin)
2

p−1

w(sin, y), y =
x

λin
(6.2)

with

w(sin) = Pin(y; (zin~e1, v
in)) + b+iY+(y; (zin~e1, v

in)) + b−iY−(y; (zin~e1, v
in))

+ b1Z(y; (zin~e1, v
in)) + b2V(y; (zin~e1, v

in)) + b3W(y; (zin~e1, v
in)). (6.3)
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Then we get

ε(sin) = b+iY+(y; (zin~e1, v
in)) + b−iY−(y; (zin~e1, v

in))

+ b1Z(y; (zin~e1, v
in)) + b2V(y; (zin~e1, v

in)) + b3W(y; (zin~e1, v
in)).

Lemma 20 (Modulated data in direction Y ±). There exists C > 0 such that for all sin ≥ s0

and for all ain ∈ [−(sin)−
3
2 , (sin)−

3
2 ], there is a unique b so that ||b|| ≤ C|ain| (C independent

of sin) and the initial data satisfies

〈η1(s
in), iY −〉 = ain, 〈η1(s

in), iY +〉 = 〈η1(s
in), iΛQ〉 = 〈η1(s

in), yQ〉 = 〈η1(s
in), i∇Q〉 = 0

(6.4)
with η1 defined as in (3.4).

Proof of Lemma 20. Let

c = (〈η1(s
in), iY +〉, 〈η1(s

in), iY −〉, 〈η1(s
in), iΛQ〉, 〈η1(s

in), i∇Q〉, 〈η1(s
in), yQ〉)∙

We consider the linear maps

Ψ : R5 → H1(Rd) Φ : H1(Rd) → R5

b 7→ ε(sin) ε(sin) → c

and Ω = i ◦ Ψ : R5 → R5. We compute

Ψ(h) = (iY+(y; (zin~e1, v
in)), iY−(y; (zin~e1, v

in)),

Z(y; (zin~e1, v
in)),V(y; (zin~e1, v

in)),W(y; (zin~e1, v
in))) ∙ h

and

Φ(v) =

















ˆ
v(y)[e−iΓ1 iY +](y −

1
2
zin~e1) dy

ˆ
v(y)[e−iΓ1 iY −](y −

1
2
zin~e1) dy

ˆ
v(y)[e−iΓ1 iΛQ](y −

1
2
zin~e1) dy

ˆ
v(y)[e−iΓ1 i∇Q](y −

1
2
zin~e1) dy

ˆ
v(y)[e−iΓ1yQ](y −

1
2
zin~e1) dy

















then we can deduce that for some complex functions A(y), B(y) ∈ Y

Ω = i ◦ Ψ = N + O(
∣
∣〈A(y + zin~e1), B(y)〉

∣
∣) = N + O(e−|zin|)

where

N =









〈iY +, iY +〉 〈iY −, iY +〉 〈iΛQ, iY +〉 〈i∇Q, iY +〉 〈yQ, iY +〉
〈iY +, iY −〉 〈iY −, iY −〉 〈iΛQ, iY −〉 〈i∇Q, iY −〉 〈yQ, iY −〉
〈iY +, iΛQ〉 〈iY −, iΛQ〉 〈iΛQ, iΛQ〉 〈i∇Q, iΛQ〉 〈yQ, iΛQ〉
〈iY +, i∇Q〉 〈iY −, i∇Q〉 〈iΛQ, i∇Q〉 〈i∇Q, i∇Q〉 〈yQ, i∇Q〉
〈iY +, yQ〉 〈iY −, yQ〉 〈iΛQ, yQ〉 〈i∇Q, yQ〉 〈yQ, yQ〉








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and Ω(0) = 0. Remark that N is the Gramian matrix of iY +, iY −, iΛQ, i∇Q, yQ, which are
linearly independent since, if for some m,n, p, q, r ∈ R (not all zeros),

m iY + + n iY − + p iΛQ + q yQ + r i∇Q = 0

then mY + + nY − + p ΛQ − q iyQ + r∇Q = 0. We apply L to both sides of the equality
(L+(ΛQ) = −2Q,L−(xQ) = −2∇Q,L+(∇Q) = 0) and get

me0Y
− − ne0Y

− − 2 p i Q − 2 q∇Q = 0

so m = n = p = q = 0 as Y +, Y −, iQ,∇Q are linearly independent thus r = 0, a contradiction.
Therefore, det N 6= 0 and with |zin| � 1, we have that Ω is invertible around 0 and

||Ω−1|| ≤ ||Gram(iY +, iY −, iΛQ, i∇Q, yQ)|| + 2

Therefore, for any ain ∈ [−(sin)−
3
2 , (sin)−

3
2 ], we can choose

b = Ω−1((0, ain, 0, 0, 0)), ||b|| ≤ ||Ω−1|| |ain|

to conclude the lemma. �

In fact, the coefficients b1, b2, and b3 can be determined explicitly from b+, b− as follows

b1 =
1

‖ΛQ‖2
L2 + 〈eiΓ0(∙)iΛQ(∙ + zin~e1), iΛQ〉

(
b+〈iY +, iΛQ〉

+ b+〈eiΓ0(∙)iY +(∙ + zin~e1), iΛQ〉 + b−〈iY −, iΛQ〉 + b−〈eiΓ0(∙)iY −(∙ + zin~e1), iΛQ〉
)

b2 =
1

‖∇Q‖2
L2 − 〈eiΓ0(∙)[i∇Q](∙ + zin~e1), i∇Q〉

(
b+〈iY +, i∇Q〉

+ b+〈eiΓ0(∙)iY +(∙ + zin~e1), i∇Q〉 + b−〈iY −, i∇Q〉 + b−〈eiΓ0(∙)iY −(∙ + zin~e1), i∇Q〉
)

b3 =
1

‖yQ‖2
L2 − 〈eiΓ0(∙)[yQ](∙ + zin~e1), yQ〉

(
b+〈iY +, yQ〉

+ b+〈eiΓ0(∙)iY +(∙ + zin~e1), yQ〉 + b−〈iY −, yQ〉 + b−〈eiΓ0(∙)iY −(∙ + zin~e1), yQ〉
)

where Γ0(y) = −1
2 i vin ∙ (y + zin~e1) − 1

2 i vin ∙ y. This specific choice is made so that, initially,
we have the following orthogonality conditions

〈η1(s
in), iΛ〉 = 〈η1(s

in), yQ〉 = 0 (6.5)

and 〈η1(sin), i∇Q〉 = 0. We recall the decomposition of u(t): there exists a C1 function

~q(t) = (λ, z, γ, v) : [s0, s
in] → (0, +∞) × Rd × R× Rd

such that we can modulate u(t) on [s0, s
in] as

u(t(s), x) =
eiγ(s)

λ(s)
(P + ε)(s, y)

and 〈η1(s), iΛ〉 = 〈η1(s), yQ〉 = 0. Here we obtain only two orthogonality conditions, as the
initial data satisfies only two (6.5). The proof of uniform estimates will remain the same,
except for some modifications that we will clarify immediately. Denote

a±(s) = 〈η1(s), iY
±〉, (6.6)
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Lemma 20 allows us to establish a one-to-one mapping between the choice of (b+, b−) and the
constraints a+(sin) = 0, a−(sin) = ain for any choice of ain. We now define the maximal time
interval [S(ain), sin] on which (3.22) holds and

|a±(s)| ≤ s−
3
2 (6.7)

for all s ∈ [S(ain), sin]. We will prove that there exists a choice of

ain ∈ [−(sin)−
3
2 , (sin)−

3
2 ]

and zin such that S(ain) = s0. The first thing changed is that ε(sin) may not be zero, but
we still have ε(sin) . ||b|| . (sin)−

3
2 . This is enough to conclude that |W(s, ε(s))| . C∗s−2

from the fact that
∣
∣ d
dsW(s, ε(s))

∣
∣ . C∗s−3. Next, from 〈η1(sin), i∇Q〉 = 0, we still deduce

that |〈η1, i∇Q〉| . (C∗)2s−1 log−1(s) by considering the localized momentum Mk. The second
thing that needs to be modified is the coercivity of W. By (1.17),

W(s, ε(s)) & ‖ε(s)‖2
H1 + O(s−3)

the process in Section 3 is still valid as long as we have (6.7). We claim the following prelimi-
nary estimates on the parameters a±(s).

Lemma 21. For all s ∈ [S(ain), sin],
∣
∣
∣
∣
da±

ds
(s) ∓ e0a

±(s)

∣
∣
∣
∣ . ||ε||2H1 (6.8)

Proof of Lemma 21. Applying the inequality (3.29) with A = − Im Y +, B = Re Y + and using
the equation of Y ± (1.16)
∣
∣
∣
∣

d
ds

〈η1, i Re Y + − Im Y +〉 −
[
〈η1,−iL−( Im Y +) − L+(Re Y +)〉

− 〈~m1 ∙ ~MQ,−i Im Y + − Re Y +〉
]
∣
∣
∣
∣ . (C∗)2s−2 + s−1|~m1| (6.9)

so we get
∣
∣
∣
∣

d
ds

〈η1, iY
+〉 − 〈η1, iL(Y +)〉

∣
∣
∣
∣ . (C∗)2s−2 + s−1|~m1| + |〈~m1 ∙ ~MQ,Y +〉|.

This implies

∣
∣
∣
∣
da+

ds (s) − e0a
+(s)

∣
∣
∣
∣ . ||ε||2H1 . In the same way, we also obtain

∣
∣
∣
∣
da−

ds
(s) + e0a

−(s)

∣
∣
∣
∣ . ||ε||2H1

as desired. �

By the same arguments in Section 3, we improve all estimates in the bootstrap bounds,
except those of a±(s) and z(s). It seems to us that the reasoning to close the bootstrap bound
of z(s) still works; in fact, it does; however, we will control a±(s) through a suitable value of
ain also by a topological argument, so we have to choose (zin, ain) at the same time.

Lemma 22 (Control of a+(s)). For all ain ∈ [−(sin)−
3
2 , (sin)−

3
2 ], the following inequality holds

for all s ∈ [S(ain), sin]
∣
∣a+(s)

∣
∣ ≤

1
2
s−

3
2 . (6.10)
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Proof of Lemma 22. It follows from (3.22), (6.8) and a+(sin) = 0 that, for all s ∈ [S(ain), sin],

|a+(s)| . (C∗)2ee0s

ˆ sin

s
e−e0τ τ−2dτ

=
(C∗)2

e0
ee0s[e−e0ss−2 − e−e0sin

(sin)−2] − 2
(C∗)2

e0
ee0s

ˆ sin

s
e−e0τ τ−3dτ

≤
(C∗)2

e0
s−2 ≤

1
2
s−

3
2

for s0 to be large enough. �

Lemma 23 (Control of a−(s) and closing the parameter z). There exist zin and ain ∈
[−(sin)−

3
2 , (sin)−

3
2 ] such that S(ain) = s0.

Proof of Lemma 23. We argue by contradiction. Consider ζ(s), ξ(s) as defined in (3.47) and

N (s) = s3(a−(s))2.

Suppose for all (ζ], a]) ∈ D = [−1, 1] × [−1, 1], the choice of

ζ in = sin + ζ]sin log−
1
2 (sin), ain = a](sin)−

3
2

gives us S(ain) = S(ζ], a]) ∈ (s0, s
in). Recall that

ξ̇(s) = 2(ζ(s) − s)(ζ̇(s) − 1)s−2 log(s) − (ζ(s) − s)2(2s−3 log(s) − s−3). (6.11)

On the other hand, for s ∈ (S(ζ], a]), sin], then by (3.22) and (6.8), we have

Ṅ (s) = s3(3s−1a−(s) + 2
da−

ds
(s))a−(s)

= s3(3s−1 − 2e0)(a
−(s))2 + O

(
||ε||2H1s

3|a−(s)|
)
.

Due to the bound on ||ε||2H1 , we obtain

Ṅ (s) ≤ s3(3s−1 − 2e0)(a
−(s))2 + C(C∗)2s−

1
2

√
N (s)

then, for s0 large enough ( 3
s0

< 1
2e0 and C(C∗)2s

− 1
2

0 < 1
2e0), the estimate becomes

Ṅ (s) ≤ −
3
2
e0N (s) + C(C∗)2s−

1
2

√
N (s). (6.12)

Denote
Ψ1(s) = (ζ(s) − s)(s)−1 log

1
2 (s),

Ψ2(s) = a−(s)(s)
3
2 .

From the definition of S(ain) and the continuity of the flow, at the limit S(ζ], a]), we have
one of the following situations:

Ψ1(S(ζ], a])) = ±1, Ψ2 ∈ [−1, 1] (6.13)

or
Ψ2(S(ζ], a])) = ±1, Ψ1 ∈ [−1, 1]. (6.14)

Remark that, in the first case, we have

ξ̇(S(ζ], a])) < −(S(ζ], a]))−1 < 0
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and in the second case, we have N (S(ζ], a])) = 1

Ṅ (S(ζ], a])) ≤ −e0 < 0.

A consequence of the above transversality property is the continuity of the map (ζ], a]) 7→
S((ζ], a])), thus the following map

Ψ : D → ∂D
(ζ], a]) 7→ (Ψ1(S(ζ], a])), Ψ2(S(ζ], a]))),

where ∂D is the boundary of D, is also continuous. Note that if a] = ±1, then from (6.12),
Ṅ (sin) < 0, we have S(ζ], a]) = sin and if ζ] = ±1, then from (6.11), ξ̇(sin) < 0, we also have
S(ζ], a]) = sin. Thus Ψ(ζ], a]) = (ζ], a]) for all (ζ], a]) ∈ ∂D, which means that the restriction
of Ψ to the boundary of D is the identity. But the existence of such a map contradicts
the Brouwer fixed-point theorem. In conclusion, there exist final data (zin, ain) such that
S(ain) = s0. �

Finally, we still have the strong compactness result as in Lemma 15

un(t0) ⇀ u0 weakly in H1(Rd)

un(t0) → u0 in Hσ(Rd), for 0 ≤ σ < 1

then we also consider u, the solution to the NLS equation corresponding to u0, by local well-
posedness and continuous dependence (in [3]) for L2 super-critical of (NLS), we have, for all
t ∈ [t0, +∞),

un(t) → u(t) in Hσ(Rd), sc ≤ σ < 1

where sc is the critical exponent sc = d
2 − 2

p−1 < 1. Thus we can pass to the limit the
decomposition (~q, ε) and get

∥
∥
∥
∥
∥
u(t) − eiγ(t)

2∑

k=1

Q (x − xk(t))

∥
∥
∥
∥
∥

H1

. t−1. (6.15)
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