Eigenvalue and gap estimates of isometric immersions for the Dirichlet-to-Neumann operator acting on p-forms

- To cite this version:

Deborah Michel. Eigenvalue and gap estimates of isometric immersions for the Dirichlet-toNeumann operator acting on p-forms. Comptes Rendus. Mathématique, 2019, 357, pp.180-187. 10.1016/j.crma.2019.01.006 . hal-03485968

HAL Id: hal-03485968

https://hal.science/hal-03485968

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

©®®

EIGENVALUE AND GAP ESTIMATES OF ISOMETRIC IMMERSIONS FOR THE DIRICHLET-TO-NEUMANN OPERATOR ACTING ON p-FORMS

DEBORAH MICHEL

Abstract

In this paper, we study the first eigenvalue of the Dirichlet-toNeumann operator acting on differential forms of a Riemanian manifold with boundary isometrically immersed in some Euclidean space. We give a lower bound of the integral energy of p-forms in terms of its first eigenvalue associated with $(p-1)$-forms.We also find a lower bound for the gap between two consecutive first eigenvalues in terms of the curvature of the boundary.

\section*{Estimations de valeurs propres et du gap de l'opérateur de Dirichlet-à-Neumann agissant sur les p-formes pour les immersions isométriques}

Abstract

RÉSumÉ. Dans cet article, nous étudions la première valeur propre de l'opérateur de Dirichlet-à-Neumann agissant sur les formes différentielles d'une variété riemannienne à bord plongée isométriquement dans un espace euclidien. Nous obtenons une borne inférieure de l'énergie des p-formes en termes de sa première valeur propre associée aux $(p-1)$-formes. Nous trouvons aussi une borne inférieure pour l'écart entre deux premières valeurs propres consécutives par rapport à la courbure de la frontière.

1. Introduction

Let (M, g) be an $(n+1)$-dimensional compact oriented Riemmanian manifold with smooth boundary ∂M isometrically immersed in some Euclidean space \mathbb{R}^{d}. In [?], P. Guerini and A. Savo studied the first eigenvalue of the Hodge Laplacian acting on p-differential forms of a manifold with boundary, as well as the gap for consecutive values of the degree p. For all $p=0, \ldots, n+1$, the Laplacian Δ_{p} (often denoted Δ when no confusion is possible) is defined on the space of p-forms of M, $\Lambda^{p}(M)$, by:

$$
\Delta_{p} \omega:=(d \delta+\delta d) \omega, \forall \omega \in \Lambda^{p}(M)
$$

where d is the exterior derivative and δ the co-differential. They considered the absolute boundary condition problem:

$$
\left\{\begin{array}{l}
\Delta \omega=\mu \omega \\
J^{*} i_{\tilde{\nu}} \omega=J^{*} i_{\tilde{\nu}} d \omega=0
\end{array}\right.
$$

where $J: \partial M \hookrightarrow M$ is the natural inclusion and $\tilde{\nu}$ is the inward unit normal vector field at each point of ∂M. Among other things, they obtained (see [?]) a general lower bound for the integral energy of a co-closed p-form on M and a lower bound for the gap $\mu_{1, p}^{\prime \prime}-\mu_{1, p}^{\prime}$ in terms of the curvature term W_{p} of Bochner formula and
the shape operator of the immersion T_{p} (see section 2). Here, $\mu_{1, p}^{\prime \prime}$ (resp. $\mu_{1, p}^{\prime}$) is the first positive eigenvalue of the absolute problem restricted to co-closed (resp. closed) p-forms. In this paper, we apply the method developped in [?] to the Dirichlet-to-Neumann operator defined by Raulot and Savo in [?].

2. Definitions and Basic facts

First, let us recall some facts about the Dirichlet-to-Neumann operator.
Originally, the Dirichlet-to-Neumann operator T, also called Steklov operator, acts on smooth functions on ∂M. It is defined for all $f \in C^{\infty}(\partial M)$ by :

$$
T f:=-\frac{\partial \hat{f}}{\partial \tilde{\nu}}
$$

where \hat{f} is the harmonic extension of f on M. Steklov operator has been widely studied, initially because of its applications. In fact, if we consider a steady state distribution of temperature in a body for given temperature values on the body surface, then the resulting heat flux is a Steklov operator. It is also used to solve inverse boundary problems such as electrical impedance tomography problems. Especially, its first eigenvalues have already been estimated, for example in [?] and [?].

We extend this operator on functions to an operator $T^{[p]}$ acting on the bundle of p-forms, $\Lambda^{p}(\partial M)$ for $0 \leq p \leq n$. The following definition is the one developped in [?].

For ω a p-form on ∂M, there exits a unique p-form (see [?]) $\hat{\omega}$ on M such that:

$$
\left\{\begin{array}{l}
\Delta \hat{\omega}=0 \text { on } M \tag{1}\\
J^{*} \hat{\omega}=\omega, i_{\tilde{\nu}} \hat{\omega}=0
\end{array}\right.
$$

If we let:

$$
\begin{equation*}
T^{[p]} \omega=-i_{\tilde{\nu}} d \hat{\omega} \tag{2}
\end{equation*}
$$

then $T^{[p]}: \Lambda^{p}(\partial M) \rightarrow \Lambda^{p}(\partial M)$ defines a pseudo-differential linear operator which is elliptic, self-adjoint and positive. It possesses a discrete spectrum denoted by:

$$
0 \leq \nu_{1, p}(M) \leq \nu_{2, p}(M) \leq \ldots \nearrow \infty
$$

Moreover, one has the variational characterization for the eigenvalues:

$$
\begin{equation*}
\nu_{1, p}(M)=\inf \left\{\left.\frac{\int_{M}\|d \omega\|^{2}+\|\delta \omega\|^{2}}{\int_{\partial M}\|\omega\|^{2}} \right\rvert\, \omega \in \Lambda^{p}(M), i_{\tilde{\nu}} \omega=0 \text { on } \partial M\right\} \tag{3}
\end{equation*}
$$

We note that $\nu_{1, p}$ could be zero and its multiplicity is given by the p-th Betti number (see [?]). In particular, one has $\nu_{1,0}=0$, with multiplicity one and associated eigenfunction given by the constants. Thus, the Dirichlet-to-Neumann is closely related to the shape of the boudary and encodes some of its curvature properties.

The main result in this paper is Theorem 4 which extends previously mentioned estimates to arbitrary compact manifolds with boundary immersed in \mathbb{R}^{n}, provided that a suitable curvature condition holds. Namely, let M be a $(n+1)$ dimensional
compact oriented Riemanian manifold with smooth boundary ∂M, and fix $x \in \partial M$ and $p=0, \ldots, n$. We denote :

$$
\begin{aligned}
& \sigma_{p}(x):=\text { sum of the } \mathrm{p} \text { smallest principal curvatures of } \partial M, \\
& \sigma_{p}:=\inf _{x \in \partial M} \sigma_{p}(x)
\end{aligned}
$$

Then, one has :

$$
\nu_{1, p}(M) \geq \nu_{1, p-1}(M)+\frac{\sigma_{p}}{p}
$$

provided that $W_{p} \geq T_{p}$, where W_{p} is the curvature term in the Bochner-Weitzenbock formula (see Proposition 1) and T_{p} is a symmetric endomorphism acting on p-forms and defined in (6) below.

This estimate depends itself on the estimate of Theorem 3, which is of its own independent interest and extends to the Dirichlet-to-Neumann case a corresponding result obtained for the Hodge Laplacian in [?].

3. Gap of ISOMETRIC IMMERSIONS

From now on, we consider an isometric immersion of the Riemannian manifold M^{n+1} into some Euclidean space $\mathbb{R}^{d}, d \geq n+1$.

If ν is a vector normal to M, we introduce the shape operator S_{ν} characterized by:

$$
\begin{equation*}
\left\langle S_{\nu}(X), Y\right\rangle=\langle L(X, Y), \nu\rangle \tag{4}
\end{equation*}
$$

for all $X, Y \in T M$, where L is the second fundamental form of the immersion.
Then we can extend S_{ν} to a selfadjoint endomorphism of $\Lambda^{p}(M)$, denoted by S_{ν}^{p} and given by:

$$
\begin{equation*}
S_{\nu}^{p}(\omega)\left(X_{1}, \ldots, X_{p}\right)=\sum_{i=1}^{p} \omega\left(X_{1}, \ldots, S_{\nu}\left(X_{i}\right), \ldots, X_{p}\right) \tag{5}
\end{equation*}
$$

If $\left(\nu_{1}, \ldots, \nu_{m}\right)$ is an orthonormal basis of the normal bundle of M at any fixed point (i.e. $m=d-n-1$), then

$$
\begin{equation*}
T_{p}=\sum_{\alpha=1}^{m}\left(S_{\nu_{\alpha}}^{p}\right)^{2} \tag{6}
\end{equation*}
$$

defines a selfadjoint nonnegative endomorphism of $\Lambda^{p}(M)$ which does not depend on the orthonormal basis chosen. In particular, for all $\omega \in \Lambda^{p}(M)$:

$$
\begin{equation*}
\left\langle T_{p}(\omega), \omega\right\rangle=\sum_{\alpha=1}^{m}\left\|S_{\nu_{\alpha}}^{p}(\omega)\right\|^{2} \tag{7}
\end{equation*}
$$

Last but not least are the very usefull Bochner-Weitzenbock and Reilly formulas, which can be found in [?] and [?] respectively.
Proposition 1. If ω is a p-form, then:

$$
\langle\Delta \omega, \omega\rangle=\|\nabla \omega\|^{2}+\frac{1}{2} \Delta\|\omega\|^{2}+\left\langle W_{p} \omega, \omega\right\rangle .
$$

Here, W_{p} is a symmetric endomorphism acting on $\Lambda^{p}(M)$, called the Bochner curvature term. For $p=1$, one has $W_{1}=$ Ric, the Ricci tensor ; hence W_{1} is non-negative provided that M has non-negative Ricci curvature. Moreover, from
the work of Gallot and Mayer (in [?]), we know that if γ is a lower bound of the eigenvalues of the Riemann curvature operator, then:

$$
\begin{equation*}
W_{p} \geq p(n+1-p) \gamma \tag{8}
\end{equation*}
$$

We deduce from this that, if the curvature operator of M is non-negative, then also $W_{p} \geq 0$ for all degrees p.

Proposition 2. Let ω be a p-form on M, then:
$\int_{M}\|d \omega\|^{2}+\|\delta \omega\|^{2}=\int_{M}\|\nabla \omega\|^{2}+\left\langle W_{p} \omega, \omega\right\rangle+2 \int_{\partial M}\left\langle i_{\tilde{\nu}} \omega, \delta^{\partial M}\left(J^{*} \omega\right)\right\rangle+\int_{\partial M} B(\omega, \omega)$,
where :

$$
B(\omega, \omega)=\left\langle S^{p}\left(J^{*} \omega\right),\left(J^{*} \omega\right)\right\rangle+n H\left\|i_{\tilde{\nu}} \omega\right\|^{2}-\left\langle S^{p-1}\left(i_{\tilde{\nu}} \omega\right), i_{\tilde{\nu}} \omega\right\rangle
$$

$\delta^{\partial M}$ is the co-derivative on ∂M and ∇ the Levi-Civita connection on M and that S denotes the shape operator of the immersion of ∂M in M.

On the immersed manifold M, we focus on the family of all vector fields which are the orthogonal projection of unit parallel vector fields on the ambient Euclidean space \mathbb{R}^{d}. This family is naturally parametrized by the sphere S^{d-1}. Its typical elements will be denoted by \bar{V}.

At any point of M, we can split :

$$
\begin{equation*}
\bar{V}=V+V^{\perp} \tag{9}
\end{equation*}
$$

where $V \in T M$ is the orthogonal projection of \bar{V} onto $T M$ and $V^{\perp} \in T M^{\perp}$. Hence, any $\bar{V} \in S^{d-1}$ gives rise to a vector field V on M.

Remark 1. As in [?], it can be easily proved that if $\omega, \phi \in \Lambda^{p}(M)$, then at any point of M, we have:

$$
\begin{equation*}
\int_{S^{d-1}}\left\langle i_{V} \omega, i_{V} \phi\right\rangle d \bar{V}=c_{d} p\langle\omega, \phi\rangle . \tag{10}
\end{equation*}
$$

Here, $c_{d}=\frac{\left|S^{d-1}\right|}{d}$.
In order to prove our main result, we wish to integrate some inequalities with respect to \bar{V} and the canonical measure of S^{d-1} which will be denoted by $d \bar{V}$. To this scope, we complete lemma 4.8 in [?].

Lemma 1. Let $\omega \in \Lambda^{p}(M), p=1, \ldots, n+1$. At any point of M :

$$
\begin{aligned}
& \int_{S^{d-1}}\left\|i_{V} \omega\right\|^{2} d \bar{V}=c_{d} p\|\omega\|^{2} \\
& \int_{S^{d-1}}\left\|d i_{V} \omega\right\|^{2} d \bar{V}=c_{d}\left\{\|\nabla \omega\|^{2}+\left\langle T_{p}(\omega), \omega\right\rangle+(p-1)\|d \omega\|^{2}\right\} \\
& \int_{S^{d-1}}\left\|\delta i_{V} \omega\right\|^{2} d \bar{V}=c_{d}(p-1)\|\delta \omega\|^{2}
\end{aligned}
$$

Proof. (1) The first and the last equations can be found in [?]. They are proved using remark 1 and the Cartan formula :

$$
\begin{equation*}
L_{V} \omega=d i_{V} \omega+i_{V} d \omega \tag{11}
\end{equation*}
$$

(2) Now, remarking that for any vector field V, which is the gradient of a smooth function, one has $\delta i_{V}=-i_{V} \delta$. Indeed, the projected fields V are gradients of restrictions to M of suitable distance functions to hyperplanes in R^{n+1}. Thus,

$$
\begin{equation*}
\delta i_{V}=-i_{V} \delta \tag{12}
\end{equation*}
$$

Using remark 1, we obtain:

$$
\begin{aligned}
\int_{S^{d-1}}\left\|\delta i_{V} \omega\right\|^{2} d \bar{V} & =\int_{S^{d-1}}\left\|i_{V} \delta \omega\right\|^{2} d \bar{V} \\
& =c_{d}(p-1)\|\delta \omega\|^{2} .
\end{aligned}
$$

Remark 2. We have:

$$
\begin{aligned}
\nabla_{e_{i_{j}}} V & =\nabla_{e_{i_{j}}}\left(\sum_{k=1}^{d}\left\langle\bar{V}, e_{k}\right\rangle e_{k}\right) \\
& =\sum_{k=1}^{n}\left(e_{j}\left\langle\bar{V}, e_{k}\right\rangle\right) e_{k}+\sum_{k=1}^{n}\left\langle\bar{V}, e_{k}\right\rangle \nabla_{e_{i_{j}}} e_{k}
\end{aligned}
$$

Let $\tilde{\nabla}$ be the Levi-Civita connection on \mathbb{R}^{d}. By its compatibility with the metric and the fact that \bar{V} is parallel, we get:

$$
\nabla_{e_{i_{j}}} V=\left(\sum_{k=1}^{n}\left\langle\bar{V}, \tilde{\nabla}_{e_{j}} e_{k}\right\rangle e_{k}\right)
$$

Moreover, if we choose $\left(e_{1}, \ldots, e_{n}\right)$ to be geodesic at $x \in M$,

$$
\tilde{\nabla}_{e_{i}} e_{j}=\nabla_{e_{i}} e_{j}+\left(\nabla_{e_{i}} e_{j}\right)^{\perp}=\left(\nabla_{e_{i}} e_{j}\right)^{\perp}
$$

Thus,

$$
\begin{aligned}
\left\langle\bar{V}, \tilde{\nabla}_{e_{j}} e_{k}\right\rangle & =\left\langle\bar{V},\left(\tilde{\nabla}_{e_{j}} e_{k}\right)^{\perp}\right\rangle \\
& =\left\langle V^{\perp},\left(\tilde{\nabla}_{e_{j}} e_{k}\right)^{\perp}\right\rangle=\left\langle V^{\perp},\left(\tilde{\nabla}_{e_{j}} e_{k}\right)\right\rangle \\
& =\left\langle S_{V^{\perp}} e_{j}, e_{k}\right\rangle
\end{aligned}
$$

Eventually, we obtain:

$$
\nabla_{e_{i_{j}}} V=S_{V^{\perp} e_{j}}
$$

Lemma 2. Let $\omega \in \Lambda^{p}(M)$ such that $i_{\tilde{\nu}} \omega=0$ on ∂M, with $\tilde{\nu}$ the unit inner vector field normal to the boundary. Then, for all $\bar{V} \in S^{d-1}$:

$$
\begin{equation*}
\nu_{1, p-1}(M) \int_{\partial M}\left\|i_{V} \omega\right\|^{2} \leq \int_{M}\left\|d i_{V} \omega\right\|^{2}+\left\|\delta i_{V} \omega\right\|^{2} \tag{13}
\end{equation*}
$$

Proof. If $p \geq 1$ and ω is tangential, then $i_{\tilde{\nu}} i_{V} \omega=-i_{V} i_{\tilde{\nu}} \omega=0$. So, $i_{V} \omega$ is a tangential $(p-1)$-form. Hence, for all $\bar{V} \in S^{d-1}, i_{V} \omega$ is a relevant choice as a test form for $\nu_{1, p-1}(M)$. We apply the min-max principle and get (13).

Integrating these inequality on S^{d-1} and using lemma 1 , we obtain the following theorem :

Theorem 3. Let $M^{n+1} \rightarrow \mathbb{R}^{d}$ an isometric immersion, with M a Riemanian compact and oriented manifold with smooth boundary ∂M. Let also ω be a p-form on $M, p=1, \ldots, n+1$, satisfying $i_{\tilde{\nu}} \omega=0$ on ∂M. Then:

$$
\int_{M}\left\{\|\nabla \omega\|^{2}+\left\langle T_{p} \omega, \omega\right\rangle+(p-1)\left(\|d \omega\|^{2}+\|\delta \omega\|^{2}\right)\right\} \geq p \nu_{1, p-1}(M) \int_{\partial M}\|\omega\|^{2}
$$

The inequality is sharp for any harmonic extension on B^{n+1} of an eigenform associated with $\nu_{1, p}\left(B^{n+1}\right)$ for $\frac{n+3}{2} \leq p \leq n$.

Proof. Integrating (13) on S^{d-1} gives:

$$
\int_{S^{d-1}} \nu_{1, p-1}(M) \int_{\partial M}\left\|i_{V} \omega\right\|^{2} d \bar{V} \leq \int_{S^{d-1}} \int_{M}\left\|d i_{V} \omega\right\|^{2}+\left\|\delta i_{V} \omega\right\|^{2} d \bar{V}
$$

Then, using lemma 1 as well as Fubini's theorem, we get theorem 3.
Concerning the sharpness, let $\omega \in \Lambda^{p}\left(S^{n}\right)$ an eigenform of unit L^{2} norm associated with $\nu_{1, p}$ ad $\hat{\omega}$ its harmonic extension on the ball. Applying theorem 3 to $\hat{\omega}$, one gets:

$$
\begin{equation*}
\int_{B^{n+1}}\left\{\|\nabla \hat{\omega}\|^{2}+\left\langle T_{p} \hat{\omega}, \hat{\omega}\right\rangle+(p-1)\left(\|d \hat{\omega}\|^{2}+\|\delta \hat{\omega}\|^{2}\right)\right\} \geq p \nu_{1, p-1}(M) \int_{S^{n}}\|\hat{\omega}\|^{2} \tag{14}
\end{equation*}
$$

Clearly, we have :

- $\int_{B^{n+1}}\|d \hat{\omega}\|^{2}+\|\delta \hat{\omega}\|^{2}=\nu_{1, p}$ by the variational characterization;
- $\left\langle T_{p} \hat{\omega}, \hat{\omega}\right\rangle=0$ since B^{n+1} is open in \mathbb{R}^{n+1};
- $\int_{S^{n}}\|\hat{\omega}\|^{2}=\int_{S^{n}}\|\omega\|^{2}=1$.

Now, by Reilly formula in Proposition 2 applied to $\hat{\omega}$, and the fact that in the given range $\nu_{1, p}\left(B^{n+1}\right)=p+1$.

$$
\int_{B^{n+1}}\|\nabla \hat{\omega}\|^{2}=(p+1)-\int_{S^{n}}\left\langle S^{p} \omega, \omega\right\rangle
$$

because $\hat{\omega}$ is tangential and $W_{p}=0$. Since S^{n} is totally umbilical with constant mean curvature equals to 1 , we obtain:

$$
S^{p} \omega=p \omega
$$

Finally: $\int_{B^{n+1}}\|\nabla \hat{\omega}\|^{2}=1$. Next, by the results in [?]:

$$
\nu_{1, p}\left(B^{n+1}\right)=\left\{\begin{array}{l}
\frac{n+3}{n+1} p \text { if } 1 \leq p \leq \frac{n+1}{2} \\
p+1 \text { if } \frac{n+1}{2} \leq p \leq n
\end{array}\right.
$$

Calulating both sides of (14) in function of p, we see that the equality is attained for $\frac{n+3}{2} \leq p \leq n$.

Theorem 4. Let $M^{n+1} \rightarrow \mathbb{R}^{d}$ an isometric immersion with M having p-convex boundary. We also suppose that $W_{p}-T_{p} \geq 0$ at all points of M. For all $p=1, \ldots, n$, one has:

$$
\begin{equation*}
\nu_{1, p}(M) \geq \nu_{1, p-1}(M)+\frac{\sigma_{p}}{p} . \tag{15}
\end{equation*}
$$

Equality is achieved when M is the unit Euclidean ball of \mathbb{R}^{n+1} and $\frac{n+3}{2} \leq p \leq n$.

Proof. Let ω an eigenform associated with $\nu_{1, p}(M)$ (which we suppose has unit L^{2} norm on ∂M by normalization) and let $\hat{\omega}$ its harmonic extension. Then,

$$
\begin{aligned}
\nu_{1, p}(M) & =\nu_{1, p}(M) \int_{\partial M}\|\omega\|^{2} \\
& =\nu_{1, p}(M) \int_{\partial M}\|\hat{\omega}\|^{2} \\
& =\int_{M}\|d \hat{\omega}\|^{2}+\|\delta \hat{\omega}\|^{2}
\end{aligned}
$$

Applying theorem 3 to $\hat{\omega}$ leads to:

$$
\begin{aligned}
p \nu_{1, p-1}(M) \int_{\partial M}\|\hat{\omega}\|^{2} & \leq \int_{M}\left\{\|\nabla \hat{\omega}\|^{2}+\left\langle T_{p} \hat{\omega}, \hat{\omega}\right\rangle+(p-1)\left(\|d \hat{\omega}\|^{2}+\|\delta \hat{\omega}\|^{2}\right)\right\} \\
& =\int_{M}\left\{\|\nabla \hat{\omega}\|^{2}+\left\langle T_{p} \hat{\omega}, \hat{\omega}\right\rangle\right\}+(p-1) \nu_{1, p}(M)
\end{aligned}
$$

which reads as

$$
p \nu_{1, p-1}(M)-(p-1) \nu_{1, p}(M) \leq \int_{M}\left\{\|\nabla \hat{\omega}\|^{2}+\left\langle T_{p} \hat{\omega}, \hat{\omega}\right\rangle\right\} .
$$

But, by Reilly formula in proposition 2 and since $\hat{\omega}$ is tangential, we have

$$
\begin{aligned}
\int_{M}\|\nabla \hat{\omega}\|^{2} & =\int_{M}\left\{\|d \hat{\omega}\|^{2}+\|\delta \hat{\omega}\|^{2}\right\}-\int_{M}\left\langle W_{p} \hat{\omega}, \hat{\omega}\right\rangle-\int_{\partial M}\left\langle S_{p} \omega, \omega\right\rangle \\
& =\nu_{1, p}-\int_{M}\left\langle W_{p} \hat{\omega}, \hat{\omega}\right\rangle-\int_{\partial M}\left\langle S_{p} \omega, \omega\right\rangle
\end{aligned}
$$

hence :

$$
\nu_{1, p-1}(M) \leq \nu_{1, p}(M)+\int_{M} \frac{1}{p}\left\langle\left(T_{p}-W_{p}\right) \hat{\omega}, \hat{\omega}\right\rangle-\frac{1}{p} \int_{\partial M}\left\langle S_{p} \omega, \omega\right\rangle
$$

Now, by hypothesis, ∂M is p-convex, so that $\sigma_{p} \geq 0$ and since we assumed $W_{p}-T_{p} \geq 0$, we get:

$$
\nu_{1, p}(M) \geq \nu_{1, p-1}(M)+\frac{\sigma_{p}}{p} .
$$

Concerning the equality case, let $M=B^{n+1}$ the unit ball and its boundary S^{n}. As B^{n+1} is flat and open in $\mathbb{R}^{n+1}, W_{p}=0$ and $T_{p}=0$, so that $W_{p}-T_{p}=0$ is satisfied. Moreover, the ball is convex, so it is p convex for all $p \geq 1$. Now, for all p, we have $\sigma_{p}=p$ and

- If $1 \leq p \leq \frac{n+1}{2}$:

$$
\left\{\begin{array}{l}
\nu_{1, p}\left(B^{n+1}\right)=\frac{n+3}{n+1} p \\
\nu_{1, p-1}\left(B^{n+1}\right)+\frac{\sigma_{p}}{p}=\frac{n+3}{n+1}(p-1)+1
\end{array}\right.
$$

- If $\frac{n+1}{2} \leq p \leq n$:
- if $\frac{n-1}{2} \leq p-1 \leq \frac{n+1}{2}$,

$$
\left\{\begin{array}{l}
\nu_{1, p}\left(B^{n+1}\right)=p+1 \\
\nu_{1, p-1}\left(B^{n+1}\right)+\frac{\sigma_{p}}{p}=\frac{n+3}{n+1}(p-1)+1
\end{array}\right.
$$

$$
\begin{aligned}
& - \text { if } \frac{n+1}{2} \leq p-1 \leq n-1 \\
& \qquad\left\{\begin{array}{l}
\nu_{1, p}\left(B^{n+1}\right)=p+1 \\
\nu_{1, p-1}\left(B^{n+1}\right)+\frac{\sigma_{p}}{p}=p+1
\end{array}\right.
\end{aligned}
$$

And we see as anounced that the equality is obtained for $\frac{n+3}{2} \leq p \leq n$.
We apply theorem 4 to Euclidean domains, as done in [?] (see Theorem 4).
Corollary 5. (1) Assume that the Euclidean domain M is p-convex for some $p=1, \ldots, n-1$. Then:

$$
\begin{equation*}
\nu_{1, p-1}(M) \leq \nu_{1, p-1}(M) \leq \ldots \leq \nu_{1, n}(M) \tag{16}
\end{equation*}
$$

(2) If M is indeed convex, then the sequence $\left\{\nu_{1, p}(M)\right\}$ is non-decreasing with respect to the degree p :

$$
\begin{equation*}
\nu_{1,0}(M) \leq \nu_{1,1}(M) \leq \ldots \leq \nu_{1, n}(M) \tag{17}
\end{equation*}
$$

(3) If M is strictly p-convex, so that $\sigma_{p}>0$, then $\nu_{1, q}(M)<\nu_{1, q+1}(M)$ for all $q \geq p$. Thus, these inequalities in (1) and (2) are strict when starting from $\nu_{1, p}(M)$ and $\nu_{1,1}(M)$ respectively.
Proof. Since M is an Euclidean domain of \mathbb{R}^{n+2} (so that $T_{p}=W_{p}=0$), we get by theorem 4:

$$
\begin{equation*}
\nu_{1, p} \geq \nu_{1, p-1} \tag{18}
\end{equation*}
$$

As a p-convex domain is q-convex for all $q \in[p, n]$, (1) follows. Then (2) and (3) are consequences of (1).
Corollary 6. Let M be a p-convex spherical domain, isometrically immersed in \mathbb{R}^{n+2}. Then, for all $p \leq \frac{n+1}{2}$, we obtain an estimation of the p-gap :

$$
\begin{equation*}
\nu_{1, p}-\nu_{1, p-1} \geq 0 \tag{19}
\end{equation*}
$$

Proof. We have $T_{p}=p^{2} \cdot I d$ and $W_{p}=p(n+1-p) \cdot I d$ so that :

$$
W_{p}-T_{p} \geq 0 \Longleftrightarrow p \leq \frac{n+1}{2}
$$

So, the hypothesis of theorem 4 are satisfied for all $p \leq \frac{n+1}{2}$. Moreover, in this case, we have for all $p, \sigma_{p} \geq 0$. Applying theorem 4, the claim follows.
Remark 3. Note that $M=S_{+}^{n+1}$, the upper hemisphere, is a particular case of corollary 6 for $p \leq \frac{n+1}{2}$. Indeed, its boundary is the equator so that $\sigma_{p}=0$. Thus, for all $p \leq \frac{n+1}{2}$, we get an estimation of the p-gap of the hemisphere:

$$
\begin{equation*}
\nu_{1, p}\left(S_{+}^{n+1}\right)-\nu_{1, p-1}\left(S_{+}^{n+1}\right) \geq 0 \tag{20}
\end{equation*}
$$

[^0]
[^0]: (Deborah Michel) Laboratoire de Mathématiques R. Salem UMR 6085 CNRS-Université de Rouen Avenue de l'Université, BP. 12 Technopôle du Madrillet 76801 Saint-Étienne-du-Rouvray, France.

 E-mail address: deborah.michel@etu.univ-rouen.fr

