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EIGENVALUE AND GAP ESTIMATES OF ISOMETRIC

IMMERSIONS FOR THE DIRICHLET-TO-NEUMANN

OPERATOR ACTING ON p-FORMS

DEBORAH MICHEL

Abstract. In this paper, we study the first eigenvalue of the Dirichlet-to-

Neumann operator acting on differential forms of a Riemanian manifold with

boundary isometrically immersed in some Euclidean space. We give a lower
bound of the integral energy of p-forms in terms of its first eigenvalue associ-

ated with (p − 1)-forms.We also find a lower bound for the gap between two

consecutive first eigenvalues in terms of the curvature of the boundary.

Estimations de valeurs propres et du gap de l’opérateur de
Dirichlet-à-Neumann agissant sur les p-formes pour les immersions

isométriques

Résumé. Dans cet article, nous étudions la première valeur propre de l’opérateur
de Dirichlet-à-Neumann agissant sur les formes différentielles d’une variété rie-

mannienne à bord plongée isométriquement dans un espace euclidien. Nous ob-
tenons une borne inférieure de l’énergie des p-formes en termes de sa première

valeur propre associée aux (p − 1)-formes. Nous trouvons aussi une borne

inférieure pour l’écart entre deux premières valeurs propres consécutives par
rapport à la courbure de la frontière.

1. Introduction

Let (M, g) be an (n + 1)-dimensional compact oriented Riemmanian manifold
with smooth boundary ∂M isometrically immersed in some Euclidean space Rd.
In [?], P. Guerini and A. Savo studied the first eigenvalue of the Hodge Laplacian
acting on p-differential forms of a manifold with boundary, as well as the gap for
consecutive values of the degree p. For all p = 0, . . . , n+ 1, the Laplacian ∆p (often
denoted ∆ when no confusion is possible) is defined on the space of p-forms of M ,
Λp(M), by:

∆pω := (dδ + δd)ω, ∀ω ∈ Λp(M),

where d is the exterior derivative and δ the co-differential. They considered the
absolute boundary condition problem:{

∆ω = µω

J∗iν̃ω = J∗iν̃dω = 0,

where J : ∂M ↪→M is the natural inclusion and ν̃ is the inward unit normal vector
field at each point of ∂M . Among other things, they obtained (see [?]) a general
lower bound for the integral energy of a co-closed p-form on M and a lower bound
for the gap µ′′1,p − µ′1,p in terms of the curvature term Wp of Bochner formula and
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the shape operator of the immersion Tp (see section 2). Here, µ′′1,p (resp. µ′1,p) is
the first positive eigenvalue of the absolute problem restricted to co-closed (resp.
closed) p-forms. In this paper, we apply the method developped in [?] to the
Dirichlet-to-Neumann operator defined by Raulot and Savo in [?].

2. Definitions and Basic facts

First, let us recall some facts about the Dirichlet-to-Neumann operator.
Originally, the Dirichlet-to-Neumann operator T , also called Steklov operator, acts
on smooth functions on ∂M . It is defined for all f ∈ C∞(∂M) by :

Tf := −∂f̂
∂ν̃

where f̂ is the harmonic extension of f on M . Steklov operator has been widely
studied, initially because of its applications. In fact, if we consider a steady state
distribution of temperature in a body for given temperature values on the body
surface, then the resulting heat flux is a Steklov operator. It is also used to solve
inverse boundary problems such as electrical impedance tomography problems. Es-
pecially, its first eigenvalues have already been estimated, for example in [?] and
[?].

We extend this operator on functions to an operator T [p] acting on the bundle
of p-forms, Λp(∂M) for 0 ≤ p ≤ n. The following definition is the one developped
in [?].

For ω a p-form on ∂M , there exits a unique p-form (see [?]) ω̂ on M such that:{
∆ω̂ = 0 on M,

J∗ω̂ = ω, iν̃ ω̂ = 0.
(1)

If we let :

T [p]ω = −iν̃dω̂, (2)

then T [p] : Λp(∂M)→ Λp(∂M) defines a pseudo-differential linear operator which
is elliptic, self-adjoint and positive. It possesses a discrete spectrum denoted by:

0 ≤ ν1,p(M) ≤ ν2,p(M) ≤ . . .↗∞.

Moreover, one has the variational characterization for the eigenvalues :

ν1,p(M) = inf

{∫
M
‖dω‖2 + ‖δω‖2∫
∂M
‖ω‖2

| ω ∈ Λp(M), iν̃ω = 0 on ∂M

}
. (3)

We note that ν1,p could be zero and its multiplicity is given by the p-th Betti
number (see [?]). In particular, one has ν1,0 = 0, with multiplicity one and as-
sociated eigenfunction given by the constants. Thus, the Dirichlet-to-Neumann
is closely related to the shape of the boudary and encodes some of its curvature
properties.

The main result in this paper is Theorem 4 which extends previously mentioned
estimates to arbitrary compact manifolds with boundary immersed in Rn, provided
that a suitable curvature condition holds. Namely, let M be a (n+ 1) dimensional
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compact oriented Riemanian manifold with smooth boundary ∂M , and fix x ∈ ∂M
and p = 0, . . . , n. We denote :

σp(x) := sum of the p smallest principal curvatures of ∂M,

σp := inf
x∈∂M

σp(x).

Then, one has :

ν1,p(M) ≥ ν1,p−1(M) +
σp
p
,

provided thatWp ≥ Tp, whereWp is the curvature term in the Bochner-Weitzenbock
formula (see Proposition 1) and Tp is a symmetric endomorphism acting on p-forms
and defined in (6) below.

This estimate depends itself on the estimate of Theorem 3, which is of its own
independent interest and extends to the Dirichlet-to-Neumann case a corresponding
result obtained for the Hodge Laplacian in [?].

3. Gap of isometric immersions

From now on, we consider an isometric immersion of the Riemannian manifold
Mn+1 into some Euclidean space Rd, d ≥ n+ 1.

If ν is a vector normal to M , we introduce the shape operator Sν characterized
by:

〈Sν(X), Y 〉 = 〈L(X,Y ), ν〉 , (4)

for all X,Y ∈ TM , where L is the second fundamental form of the immersion.
Then we can extend Sν to a selfadjoint endomorphism of Λp(M), denoted by Spν

and given by:

Spν (ω) (X1, . . . , Xp) =

p∑
i=1

ω (X1, . . . , Sν(Xi), . . . , Xp) (5)

If (ν1, . . . , νm) is an orthonormal basis of the normal bundle of M at any fixed
point (i.e. m = d− n− 1), then

Tp =

m∑
α=1

(
Spνα
)2

(6)

defines a selfadjoint nonnegative endomorphism of Λp(M) which does not depend
on the orthonormal basis chosen. In particular, for all ω ∈ Λp(M):

〈Tp(ω), ω〉 =

m∑
α=1

‖Spνα(ω)‖2. (7)

Last but not least are the very usefull Bochner-Weitzenbock and Reilly formulas,
which can be found in [?] and [?] respectively.

Proposition 1. If ω is a p-form, then:

〈∆ω, ω〉 = ‖∇ω‖2 +
1

2
∆‖ω‖2 + 〈Wpω, ω〉 .

Here, Wp is a symmetric endomorphism acting on Λp(M), called the Bochner
curvature term. For p = 1, one has W1 = Ric, the Ricci tensor ; hence W1 is
non-negative provided that M has non-negative Ricci curvature. Moreover, from
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the work of Gallot and Mayer (in [?]), we know that if γ is a lower bound of the
eigenvalues of the Riemann curvature operator, then:

Wp ≥ p(n+ 1− p)γ. (8)

We deduce from this that, if the curvature operator of M is non-negative, then also
Wp ≥ 0 for all degrees p.

Proposition 2. Let ω be a p-form on M , then:∫
M

‖dω‖2 + ‖δω‖2 =

∫
M

‖∇ω‖2 + 〈Wpω, ω〉+ 2

∫
∂M

〈
iν̃ω, δ

∂M (J∗ω)
〉

+

∫
∂M

B(ω, ω),

where :

B(ω, ω) = 〈Sp(J∗ω), (J∗ω)〉+ nH‖iν̃ω‖2 −
〈
Sp−1(iν̃ω), iν̃ω

〉
,

δ∂M is the co-derivative on ∂M and ∇ the Levi-Civita connection on M and that
S denotes the shape operator of the immersion of ∂M in M .

On the immersed manifold M , we focus on the family of all vector fields which
are the orthogonal projection of unit parallel vector fields on the ambient Euclidean
space Rd. This family is naturally parametrized by the sphere Sd−1. Its typical
elements will be denoted by V̄ .

At any point of M , we can split :

V̄ = V + V ⊥, (9)

where V ∈ TM is the orthogonal projection of V̄ onto TM and V ⊥ ∈ TM⊥. Hence,
any V̄ ∈ Sd−1 gives rise to a vector field V on M .

Remark 1. As in [?], it can be easily proved that if ω, φ ∈ Λp(M), then at any
point of M , we have: ∫

Sd−1

〈iV ω, iV φ〉 dV̄ = cdp 〈ω, φ〉 . (10)

Here, cd = |Sd−1|
d .

In order to prove our main result, we wish to integrate some inequalities with
respect to V̄ and the canonical measure of Sd−1 which will be denoted by dV̄ . To
this scope, we complete lemma 4.8 in [?].

Lemma 1. Let ω ∈ Λp(M), p = 1, . . . , n+ 1. At any point of M :∫
Sd−1

‖iV ω‖2dV̄ = cdp‖ω‖2,∫
Sd−1

‖diV ω‖2dV̄ = cd
{
‖∇ω‖2 + 〈Tp(ω), ω〉+ (p− 1)‖dω‖2

}
,∫

Sd−1

‖δiV ω‖2dV̄ = cd(p− 1)‖δω‖2.

Proof. (1) The first and the last equations can be found in [?]. They are proved
using remark 1 and the Cartan formula :

LV ω = diV ω + iV dω. (11)
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(2) Now, remarking that for any vector field V , which is the gradient of a
smooth function, one has δiV = −iV δ. Indeed, the projected fields V are
gradients of restrictions to M of suitable distance functions to hyperplanes
in Rn+1. Thus,

δiV = −iV δ. (12)

Using remark 1, we obtain:∫
Sd−1

‖δiV ω‖2dV̄ =

∫
Sd−1

‖iV δω‖2dV̄

= cd (p− 1)‖δω‖2.

�

Remark 2. We have:

∇eij V = ∇eij

(
d∑
k=1

〈
V̄ , ek

〉
ek

)

=

n∑
k=1

(
ej
〈
V̄ , ek

〉)
ek +

n∑
k=1

〈
V̄ , ek

〉
∇eij ek.

Let ∇̃ be the Levi-Civita connection on Rd. By its compatibility with the metric and
the fact that V̄ is parallel, we get:

∇eij V =

(
n∑
k=1

〈
V̄ , ∇̃ejek

〉
ek

)
.

Moreover, if we choose (e1, . . . , en) to be geodesic at x ∈M ,

∇̃eiej = ∇eiej + (∇eiej)
⊥

= (∇eiej)
⊥
.

Thus, 〈
V̄ , ∇̃ejek

〉
=

〈
V̄ ,
(
∇̃ejek

)⊥〉
=

〈
V ⊥,

(
∇̃ejek

)⊥〉
=
〈
V ⊥,

(
∇̃ejek

)〉
= 〈SV ⊥ej , ek〉

Eventually, we obtain:

∇eij V = SV ⊥ej .

Lemma 2. Let ω ∈ Λp(M) such that iν̃ω = 0 on ∂M , with ν̃ the unit inner vector
field normal to the boundary. Then, for all V̄ ∈ Sd−1:

ν1,p−1(M)

∫
∂M

‖iV ω‖2 ≤
∫
M

‖diV ω‖2 + ‖δiV ω‖2. (13)

Proof. If p ≥ 1 and ω is tangential, then iν̃iV ω = −iV iν̃ω = 0. So, iV ω is a tangen-
tial (p − 1)-form. Hence, for all V̄ ∈ Sd−1, iV ω is a relevant choice as a test form
for ν1,p−1(M). We apply the min-max principle and get (13). �

Integrating these inequality on Sd−1 and using lemma 1, we obtain the following
theorem :
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Theorem 3. Let Mn+1 → Rd an isometric immersion, with M a Riemanian
compact and oriented manifold with smooth boundary ∂M . Let also ω be a p-form
on M , p = 1, . . . , n+ 1, satisfying iν̃ω = 0 on ∂M . Then:∫

M

{
‖∇ω‖2 + 〈Tpω, ω〉+ (p− 1)

(
‖dω‖2 + ‖δω‖2

)}
≥ p ν1,p−1(M)

∫
∂M

‖ω‖2.

The inequality is sharp for any harmonic extension on Bn+1 of an eigenform asso-
ciated with ν1,p(B

n+1) for n+3
2 ≤ p ≤ n.

Proof. Integrating (13) on Sd−1 gives:∫
Sd−1

ν1,p−1(M)

∫
∂M

‖iV ω‖2dV̄ ≤
∫
Sd−1

∫
M

‖diV ω‖2 + ‖δiV ω‖2dV̄ .

Then, using lemma 1 as well as Fubini’s theorem, we get theorem 3.
Concerning the sharpness, let ω ∈ Λp(Sn) an eigenform of unit L2 norm associ-

ated with ν1,p ad ω̂ its harmonic extension on the ball. Applying theorem 3 to ω̂,
one gets:∫

Bn+1

{
‖∇ω̂‖2 + 〈Tpω̂, ω̂〉+ (p− 1)

(
‖dω̂‖2 + ‖δω̂‖2

)}
≥ p ν1,p−1(M)

∫
Sn
‖ω̂‖2.

(14)
Clearly, we have :

•
∫
Bn+1 ‖dω̂‖2 + ‖δω̂‖2 = ν1,p by the variational characterization;

• 〈Tpω̂, ω̂〉 = 0 since Bn+1 is open in Rn+1;
•
∫
Sn
‖ω̂‖2 =

∫
Sn
‖ω‖2 = 1.

Now, by Reilly formula in Proposition 2 applied to ω̂, and the fact that in the given
range ν1,p(B

n+1) = p+ 1.∫
Bn+1

‖∇ω̂‖2 = (p+ 1)−
∫
Sn
〈Spω, ω〉 ,

because ω̂ is tangential and Wp = 0. Since Sn is totally umbilical with constant
mean curvature equals to 1, we obtain:

Spω = pω.

Finally:
∫
Bn+1 ‖∇ω̂‖2 = 1. Next, by the results in [?]:

ν1,p(B
n+1) =

{
n+3
n+1p if 1 ≤ p ≤ n+1

2

p+ 1 if n+1
2 ≤ p ≤ n.

Calulating both sides of (14) in function of p, we see that the equality is attained
for n+3

2 ≤ p ≤ n. �

Theorem 4. Let Mn+1 → Rd an isometric immersion with M having p-convex
boundary. We also suppose that Wp − Tp ≥ 0 at all points of M . For all p = 1, . . . , n,
one has:

ν1,p(M) ≥ ν1,p−1(M) +
σp
p
. (15)

Equality is achieved when M is the unit Euclidean ball of Rn+1 and n+3
2 ≤ p ≤ n.
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Proof. Let ω an eigenform associated with ν1,p(M) (which we suppose has unit L2

norm on ∂M by normalization) and let ω̂ its harmonic extension. Then,

ν1,p(M) = ν1,p(M)

∫
∂M

‖ω‖2

= ν1,p(M)

∫
∂M

‖ω̂‖2

=

∫
M

‖dω̂‖2 + ‖δω̂‖2.

Applying theorem 3 to ω̂ leads to:

p ν1,p−1(M)

∫
∂M

‖ω̂‖2 ≤
∫
M

{
‖∇ω̂‖2 + 〈Tpω̂, ω̂〉+ (p− 1)

(
‖dω̂‖2 + ‖δω̂‖2

)}
=

∫
M

{
‖∇ω̂‖2 + 〈Tpω̂, ω̂〉

}
+ (p− 1)ν1,p(M);

which reads as

pν1,p−1(M)− (p− 1)ν1,p(M) ≤
∫
M

{
‖∇ω̂‖2 + 〈Tpω̂, ω̂〉

}
.

But, by Reilly formula in proposition 2 and since ω̂ is tangential, we have∫
M

‖∇ω̂‖2 =

∫
M

{
‖dω̂‖2 + ‖δω̂‖2

}
−
∫
M

〈Wpω̂, ω̂〉 −
∫
∂M

〈Spω, ω〉

= ν1,p −
∫
M

〈Wpω̂, ω̂〉 −
∫
∂M

〈Spω, ω〉 ,

hence :

ν1,p−1(M) ≤ ν1,p(M) +

∫
M

1

p
〈(Tp −Wp)ω̂, ω̂〉 −

1

p

∫
∂M

〈Spω, ω〉 .

Now, by hypothesis, ∂M is p-convex, so that σp ≥ 0 and since we assumed
Wp − Tp ≥ 0, we get:

ν1,p(M) ≥ ν1,p−1(M) +
σp
p
.

Concerning the equality case, let M = Bn+1 the unit ball and its boundary Sn.
As Bn+1 is flat and open in Rn+1, Wp = 0 and Tp = 0, so that Wp − Tp = 0 is
satisfied. Moreover, the ball is convex, so it is p convex for all p ≥ 1. Now, for all
p, we have σp = p and

• If 1 ≤ p ≤ n+1
2 :{

ν1,p(B
n+1) = n+3

n+1p

ν1,p−1(Bn+1) +
σp
p = n+3

n+1 (p− 1) + 1.

• If n+1
2 ≤ p ≤ n :

– if n−1
2 ≤ p− 1 ≤ n+1

2 ,{
ν1,p(B

n+1) = p+ 1

ν1,p−1(Bn+1) +
σp
p = n+3

n+1 (p− 1) + 1;
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– if n+1
2 ≤ p− 1 ≤ n− 1,{

ν1,p(B
n+1) = p+ 1

ν1,p−1(Bn+1) +
σp
p = p+ 1.

And we see as anounced that the equality is obtained for n+3
2 ≤ p ≤ n. �

We apply theorem 4 to Euclidean domains, as done in [?] (see Theorem 4).

Corollary 5. (1) Assume that the Euclidean domain M is p-convex for some
p = 1, . . . , n− 1. Then:

ν1,p−1(M) ≤ ν1,p−1(M) ≤ . . . ≤ ν1,n(M). (16)

(2) If M is indeed convex, then the sequence {ν1,p(M)} is non-decreasing with
respect to the degree p :

ν1,0(M) ≤ ν1,1(M) ≤ . . . ≤ ν1,n(M). (17)

(3) If M is strictly p-convex, so that σp > 0, then ν1,q(M) < ν1,q+1(M) for all
q ≥ p. Thus, these inequalities in (1) and (2) are strict when starting from
ν1,p(M) and ν1,1(M) respectively.

Proof. Since M is an Euclidean domain of Rn+2 (so that Tp = Wp = 0), we get by
theorem 4 :

ν1,p ≥ ν1,p−1. (18)

As a p-convex domain is q-convex for all q ∈ [p, n], (1) follows. Then (2) and (3)
are consequences of (1). �

Corollary 6. Let M be a p-convex spherical domain, isometrically immersed in
Rn+2. Then, for all p ≤ n+1

2 , we obtain an estimation of the p-gap :

ν1,p − ν1,p−1 ≥ 0. (19)

Proof. We have Tp = p2 · Id and Wp = p(n+ 1− p) · Id so that :

Wp − Tp ≥ 0⇐⇒ p ≤ n+ 1

2
.

So, the hypothesis of theorem 4 are satisfied for all p ≤ n+1
2 . Moreover, in this case,

we have for all p, σp ≥ 0. Applying theorem 4, the claim follows. �

Remark 3. Note that M = Sn+1
+ , the upper hemisphere, is a particular case of

corollary 6 for p ≤ n+1
2 . Indeed, its boundary is the equator so that σp = 0. Thus,

for all p ≤ n+1
2 , we get an estimation of the p-gap of the hemisphere:

ν1,p
(
Sn+1
+

)
− ν1,p−1

(
Sn+1
+

)
≥ 0. (20)
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