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Introduction

Let (M, g) be an (n + 1)-dimensional compact oriented Riemmanian manifold with smooth boundary ∂M isometrically immersed in some Euclidean space R d . In [?], P. Guerini and A. Savo studied the first eigenvalue of the Hodge Laplacian acting on p-differential forms of a manifold with boundary, as well as the gap for consecutive values of the degree p. For all p = 0, . . . , n + 1, the Laplacian ∆ p (often denoted ∆ when no confusion is possible) is defined on the space of p-forms of M , Λ p (M ), by: ∆ p ω := (dδ + δd)ω, ∀ω ∈ Λ p (M ), where d is the exterior derivative and δ the co-differential. They considered the absolute boundary condition problem: ∆ω = µω J * i ν ω = J * i ν dω = 0, where J : ∂M → M is the natural inclusion and ν is the inward unit normal vector field at each point of ∂M . Among other things, they obtained (see [?]) a general lower bound for the integral energy of a co-closed p-form on M and a lower bound for the gap µ 1,p -µ 1,p in terms of the curvature term W p of Bochner formula and the shape operator of the immersion T p (see section 2). Here, µ 1,p (resp. µ 1,p ) is the first positive eigenvalue of the absolute problem restricted to co-closed (resp. closed) p-forms. In this paper, we apply the method developped in [?] to the Dirichlet-to-Neumann operator defined by Raulot and Savo in [?].

Definitions and Basic facts

First, let us recall some facts about the Dirichlet-to-Neumann operator. Originally, the Dirichlet-to-Neumann operator T , also called Steklov operator, acts on smooth functions on ∂M . It is defined for all f ∈ C ∞ (∂M ) by :

T f := - ∂ f ∂ ν
where f is the harmonic extension of f on M . Steklov operator has been widely studied, initially because of its applications. In fact, if we consider a steady state distribution of temperature in a body for given temperature values on the body surface, then the resulting heat flux is a Steklov operator. It is also used to solve inverse boundary problems such as electrical impedance tomography problems. Especially, its first eigenvalues have already been estimated, for example in [?] and [?].

We extend this operator on functions to an operator T [p] acting on the bundle of p-forms, Λ p (∂M ) for 0 ≤ p ≤ n. The following definition is the one developped in [?].

For ω a p-form on ∂M , there exits a unique p-form (see [?]) ω on M such that: ∆ω = 0 on M, J * ω = ω, i ν ω = 0.

(1)

If we let :

T [p] ω = -i ν dω, (2) 
then T [p] : Λ p (∂M ) → Λ p (∂M ) defines a pseudo-differential linear operator which is elliptic, self-adjoint and positive. It possesses a discrete spectrum denoted by:

0 ≤ ν 1,p (M ) ≤ ν 2,p (M ) ≤ . . . ∞.
Moreover, one has the variational characterization for the eigenvalues :

ν 1,p (M ) = inf M dω 2 + δω 2 ∂M ω 2 | ω ∈ Λ p (M ), i ν ω = 0 on ∂M . (3) 
We note that ν 1,p could be zero and its multiplicity is given by the p-th Betti number (see [?]). In particular, one has ν 1,0 = 0, with multiplicity one and associated eigenfunction given by the constants. Thus, the Dirichlet-to-Neumann is closely related to the shape of the boudary and encodes some of its curvature properties.

The main result in this paper is Theorem 4 which extends previously mentioned estimates to arbitrary compact manifolds with boundary immersed in R n , provided that a suitable curvature condition holds. Namely, let M be a (n + 1) dimensional compact oriented Riemanian manifold with smooth boundary ∂M , and fix x ∈ ∂M and p = 0, . . . , n. We denote : σ p (x) := sum of the p smallest principal curvatures of ∂M,

σ p := inf x∈∂M σ p (x).
Then, one has :

ν 1,p (M ) ≥ ν 1,p-1 (M ) + σ p p ,
provided that W p ≥ T p , where W p is the curvature term in the Bochner-Weitzenbock formula (see Proposition 1) and T p is a symmetric endomorphism acting on p-forms and defined in ( 6) below. This estimate depends itself on the estimate of Theorem 3, which is of its own independent interest and extends to the Dirichlet-to-Neumann case a corresponding result obtained for the Hodge Laplacian in [?].

Gap of isometric immersions

From now on, we consider an isometric immersion of the Riemannian manifold

M n+1 into some Euclidean space R d , d ≥ n + 1.
If ν is a vector normal to M , we introduce the shape operator S ν characterized by:

S ν (X), Y = L(X, Y ), ν , (4) 
for all X, Y ∈ T M , where L is the second fundamental form of the immersion.

Then we can extend S ν to a selfadjoint endomorphism of Λ p (M ), denoted by S p ν and given by:

S p ν (ω) (X 1 , . . . , X p ) = p i=1 ω (X 1 , . . . , S ν (X i ), . . . , X p ) (5) 
If (ν 1 , . . . , ν m ) is an orthonormal basis of the normal bundle of M at any fixed point (i.e. m = d -n -1), then

T p = m α=1 S p να 2 (6)
defines a selfadjoint nonnegative endomorphism of Λ p (M ) which does not depend on the orthonormal basis chosen. In particular, for all ω ∈ Λ p (M ):

T p (ω), ω = m α=1 S p να (ω) 2 . ( 7 
)
Last but not least are the very usefull Bochner-Weitzenbock and Reilly formulas, which can be found in [?] and [?] respectively. Proposition 1. If ω is a p-form, then:

∆ω, ω = ∇ω 2 + 1 2 ∆ ω 2 + W p ω, ω .
Here, W p is a symmetric endomorphism acting on Λ p (M ), called the Bochner curvature term. For p = 1, one has W 1 = Ric, the Ricci tensor ; hence W 1 is non-negative provided that M has non-negative Ricci curvature. Moreover, from the work of Gallot and Mayer (in [?]), we know that if γ is a lower bound of the eigenvalues of the Riemann curvature operator, then:

W p ≥ p(n + 1 -p)γ. ( 8 
)
We deduce from this that, if the curvature operator of M is non-negative, then also W p ≥ 0 for all degrees p.

Proposition 2. Let ω be a p-form on M , then:

M dω 2 + δω 2 = M ∇ω 2 + W p ω, ω + 2 ∂M i ν ω, δ ∂M (J * ω) + ∂M B(ω, ω),
where :

B(ω, ω) = S p (J * ω), (J * ω) + nH i ν ω 2 -S p-1 (i ν ω), i ν ω ,
δ ∂M is the co-derivative on ∂M and ∇ the Levi-Civita connection on M and that S denotes the shape operator of the immersion of ∂M in M .

On the immersed manifold M , we focus on the family of all vector fields which are the orthogonal projection of unit parallel vector fields on the ambient Euclidean space R d . This family is naturally parametrized by the sphere S d-1 . Its typical elements will be denoted by V .

At any point of M , we can split :

V = V + V ⊥ , (9) 
where V ∈ T M is the orthogonal projection of V onto T M and V ⊥ ∈ T M ⊥ . Hence, any V ∈ S d-1 gives rise to a vector field V on M .

Remark 1. As in [?], it can be easily proved that if ω, φ ∈ Λ p (M ), then at any point of M , we have:

S d-1 i V ω, i V φ d V = c d p ω, φ . (10) 
Here,

c d = |S d-1 | d .
In order to prove our main result, we wish to integrate some inequalities with respect to V and the canonical measure of S d-1 which will be denoted by d V . To this scope, we complete lemma 4. 8 in [?].

Lemma 1. Let ω ∈ Λ p (M ), p = 1, . . . , n + 1. At any point of M : S d-1 i V ω 2 d V = c d p ω 2 , S d-1 di V ω 2 d V = c d ∇ω 2 + T p (ω), ω + (p -1) dω 2 , S d-1 δi V ω 2 d V = c d (p -1) δω 2 .
Proof.

(1) The first and the last equations can be found in [?]. They are proved using remark 1 and the Cartan formula :

L V ω = di V ω + i V dω. (11) 
(2) Now, remarking that for any vector field V , which is the gradient of a smooth function, one has δi V = -i V δ. Indeed, the projected fields V are gradients of restrictions to M of suitable distance functions to hyperplanes in R n+1 . Thus,

δi V = -i V δ. (12) 
Using remark 1, we obtain:

S d-1 δi V ω 2 d V = S d-1 i V δω 2 d V = c d (p -1) δω 2 .
Remark 2. We have:

∇ ei j V = ∇ ei j d k=1 V , e k e k = n k=1 e j V , e k e k + n k=1
V , e k ∇ ei j e k .

Let ∇ be the Levi-Civita connection on R d . By its compatibility with the metric and the fact that V is parallel, we get:

∇ ei j V = n k=1 V , ∇ej e k e k .
Moreover, if we choose (e 1 , . . . , e n ) to be geodesic at x ∈ M , ∇ei e j = ∇ ei e j + (∇ ei e j ) ⊥ = (∇ ei e j ) ⊥ .

Thus,

V , ∇ej e k = V , ∇ej e k ⊥ = V ⊥ , ∇ej e k ⊥ = V ⊥ , ∇ej e k = S V ⊥ e j , e k
Eventually, we obtain:

∇ ei j V = S V ⊥ e j .
Lemma 2. Let ω ∈ Λ p (M ) such that i ν ω = 0 on ∂M , with ν the unit inner vector field normal to the boundary. Then, for all V ∈ S d-1 :

ν 1,p-1 (M ) ∂M i V ω 2 ≤ M di V ω 2 + δi V ω 2 . ( 13 
) Proof. If p ≥ 1 and ω is tangential, then i ν i V ω = -i V i ν ω = 0. So, i V ω is a tangen- tial (p -1)-form.
Hence, for all V ∈ S d-1 , i V ω is a relevant choice as a test form for ν 1,p-1 (M ). We apply the min-max principle and get (13).

Integrating these inequality on S d-1 and using lemma 1, we obtain the following theorem :

Theorem 3. Let M n+1 → R d an isometric immersion, with M a Riemanian compact and oriented manifold with smooth boundary ∂M . Let also ω be a p-form on M , p = 1, . . . , n + 1, satisfying i ν ω = 0 on ∂M . Then:

M ∇ω 2 + T p ω, ω + (p -1) dω 2 + δω 2 ≥ p ν 1,p-1 (M ) ∂M ω 2 .
The inequality is sharp for any harmonic extension on B n+1 of an eigenform associated with ν 1,p (B n+1 ) for n+3 2 ≤ p ≤ n.

Proof. Integrating ( 13) on S d-1 gives:

S d-1 ν 1,p-1 (M ) ∂M i V ω 2 d V ≤ S d-1 M di V ω 2 + δi V ω 2 d V .
Then, using lemma 1 as well as Fubini's theorem, we get theorem 3. Concerning the sharpness, let ω ∈ Λ p (S n ) an eigenform of unit L 2 norm associated with ν 1,p ad ω its harmonic extension on the ball. Applying theorem 3 to ω, one gets:

B n+1 ∇ω 2 + T p ω, ω + (p -1) dω 2 + δ ω 2 ≥ p ν 1,p-1 (M ) S n ω 2 .
(14) Clearly, we have :

• B n+1 dω 2 + δ ω 2 = ν 1,p by the variational characterization; • T p ω, ω = 0 since B n+1 is open in R n+1 ; • S n ω 2 = S n ω 2 = 1.
Now, by Reilly formula in Proposition 2 applied to ω, and the fact that in the given range ν 1,p (B n+1 ) = p + 1.

B n+1 ∇ω 2 = (p + 1) - S n S p ω, ω ,
because ω is tangential and W p = 0. Since S n is totally umbilical with constant mean curvature equals to 1, we obtain:

S p ω = pω.
Finally: B n+1 ∇ω 2 = 1. Next, by the results in [?]:

ν 1,p (B n+1 ) = n+3 n+1 p if 1 ≤ p ≤ n+1 2 p + 1 if n+1 2 ≤ p ≤ n.
Calulating both sides of ( 14) in function of p, we see that the equality is attained for n+3 2 ≤ p ≤ n.

Theorem 4. Let M n+1 → R d an isometric immersion with M having p-convex boundary. We also suppose that W p -T p ≥ 0 at all points of M . For all p = 1, . . . , n, one has:

ν 1,p (M ) ≥ ν 1,p-1 (M ) + σ p p . ( 15 
)
Equality is achieved when M is the unit Euclidean ball of R n+1 and n+3 2 ≤ p ≤ n.

Proof. Let ω an eigenform associated with ν 1,p (M ) (which we suppose has unit L 2 norm on ∂M by normalization) and let ω its harmonic extension. Then,

ν 1,p (M ) = ν 1,p (M ) ∂M ω 2 = ν 1,p (M ) ∂M ω 2 = M dω 2 + δ ω 2 .
Applying theorem 3 to ω leads to:

p ν 1,p-1 (M ) ∂M ω 2 ≤ M ∇ω 2 + T p ω, ω + (p -1) dω 2 + δ ω 2 = M ∇ω 2 + T p ω, ω + (p -1)ν 1,p (M );
which reads as

pν 1,p-1 (M ) -(p -1)ν 1,p (M ) ≤ M ∇ω 2 + T p ω, ω .
But, by Reilly formula in proposition 2 and since ω is tangential, we have

M ∇ω 2 = M dω 2 + δ ω 2 - M W p ω, ω - ∂M S p ω, ω = ν 1,p - M W p ω, ω - ∂M S p ω, ω , hence : ν 1,p-1 (M ) ≤ ν 1,p (M ) + M 1 p (T p -W p )ω, ω - 1 p ∂M S p ω, ω .
Now, by hypothesis, ∂M is p-convex, so that σ p ≥ 0 and since we assumed W p -T p ≥ 0, we get:

ν 1,p (M ) ≥ ν 1,p-1 (M ) + σ p p .
Concerning the equality case, let M = B n+1 the unit ball and its boundary S n . As B n+1 is flat and open in R n+1 , W p = 0 and T p = 0, so that W p -T p = 0 is satisfied. Moreover, the ball is convex, so it is p convex for all p ≥ 1. Now, for all p, we have σ p = p and

• If 1 ≤ p ≤ n+1 2 : ν 1,p (B n+1 ) = n+3 n+1 p ν 1,p-1 (B n+1 ) + σp p = n+3 n+1 (p -1) + 1. • If n+1 2 ≤ p ≤ n : -if n-1 2 ≤ p -1 ≤ n+1 2 , ν 1,p (B n+1 ) = p + 1 ν 1,p-1 (B n+1 ) + σp p = n+3 n+1 (p -1) + 1; -if n+1 2 ≤ p -1 ≤ n -1, ν 1,p (B n+1 ) = p + 1 ν 1,p-1 (B n+1 ) + σp p = p + 1.
And we see as anounced that the equality is obtained for n+3 2 ≤ p ≤ n. We apply theorem 4 to Euclidean domains, as done in [?] (see Theorem 4).

Corollary 5.

(1) Assume that the Euclidean domain M is p-convex for some p = 1, . . . , n -1. Then:

ν 1,p-1 (M ) ≤ ν 1,p-1 (M ) ≤ . . . ≤ ν 1,n (M ). (16) 
(2) If M is indeed convex, then the sequence {ν 1,p (M )} is non-decreasing with respect to the degree p :

ν 1,0 (M ) ≤ ν 1,1 (M ) ≤ . . . ≤ ν 1,n (M ). (17) 
(3) If M is strictly p-convex, so that σ p > 0, then ν 1,q (M ) < ν 1,q+1 (M ) for all q ≥ p. Thus, these inequalities in (1) and ( 2) are strict when starting from ν 1,p (M ) and ν 1,1 (M ) respectively.

Proof. Since M is an Euclidean domain of R n+2 (so that T p = W p = 0), we get by theorem 4 : ν 1,p ≥ ν 1,p-1 .

(18) As a p-convex domain is q-convex for all q ∈ [p, n], (1) follows. Then (2) and ( 3) are consequences of (1). Corollary 6. Let M be a p-convex spherical domain, isometrically immersed in R n+2 . Then, for all p ≤ n+1 2 , we obtain an estimation of the p-gap : ν 1,p -ν 1,p-1 ≥ 0.

(19)

Proof. We have T p = p 2 • Id and W p = p(n + 1 -p) • Id so that :

W p -T p ≥ 0 ⇐⇒ p ≤ n + 1 2 .
So, the hypothesis of theorem 4 are satisfied for all p ≤ n+1 2 . Moreover, in this case, we have for all p, σ p ≥ 0. Applying theorem 4, the claim follows.

Remark 3. Note that M = S n+1 + , the upper hemisphere, is a particular case of corollary 6 for p ≤ n+1 2 . Indeed, its boundary is the equator so that σ p = 0. Thus, for all p ≤ n+1 2 , we get an estimation of the p-gap of the hemisphere:

ν 1,p S n+1 + -ν 1,p-1 S n+1 + ≥ 0. ( 20 
)
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