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SIMPLY-CONNECTED OPEN 3-MANIFOLDS WITH SLOW

DECAY OF POSITIVE SCALAR CURVATURE

JIAN WANG

Abstract. The goal of this paper is to investigate the topological struc-
ture of open simply-connected 3-manifolds whose scalar curvature has a
slow decay at infinity. In particular, we show that the Whitehead man-
ifold does not admit a complete metric, whose scalar curvature decays
slowly, and in fact that any contractible complete 3-manifolds with such
a metric is diffeomorphic to R3. Furthermore, using this result, we prove
that any open simply-connected 3-manifold M with π2(M) = Z and a
complete metric as above, is diffeomorphic to S2 × R.

1. introduction

Thanks to G.Perelman’s proof of W.Thurston’s Geometrisation conjec-
ture in [12, 13, 14], the topological structure of compact 3-manifolds is
now well understood. However, it is known from the early work [21] of
J.H.C Whitehead that the topological structure of non-compact 3-manifolds
is much more complicated. For example, there exists a contractible open 3-
manifold, called Whitehead manifold, which is not homeomorphic to R3.
An interesting question in differential geometry is whether the Whitehead
manifold admits a complete metric with positive scalar curvature.

The study of manifolds of positive scalar curvature has a long history.
Among many results, we mention the topological classification of compact
manifolds of positive scalar curvature and the Positive Mass Theorem. There
are two methods which have achieved many breakthroughs: minimal hyper-
surfaces and K-theory.

The K-theory method is pioneered by A.Lichnerowicz and is systemically
developed by M.Gromov and H.Lawson in [6], based on the Atiyah-Singer
Index theorem in [1]. Furthermore, combined with some results about the
Novikov conjecture, S.Chang, S.Weinberger and G.L.Yu [3] investigated the
topological structure of open 3-manifolds with uniformly positive scalar cur-
vatures and finitely generated fundamental groups. Precisely, they proved
that any contractible 3-manifold whose scalar curvature is bounded away
from zero is R3, which implies that the Whitehead manifold does not admit
a metric with uniformly positive scalar curvature.

The origin of the minimal hypersurfaces method is the article of R.Schoen
and S.T.Yau [18]. For open 3-manifolds, there are many applications, such
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as Positive Mass Theorem[19, 20] and 3-dimensional Milnor Conjecture[7].
In [6], Gromov and Lawson applied this method to open 3-manifolds.

In this paper, we extend Gromov-Lawson’s Theorem[6] to open 3-manifolds
whose scalar curvature has a decay at infinity:

Theorem 1.1. Assume that (M3, g) is a contractible complete 3-manifold.
Let 0 ∈ M and r(x) be the distance function from x to 0. If there exists a
number α ∈ [0, 2) such that

lim inf
r(x)→∞

rα(x)Scal(x) > 0,

then M3 is diffeomorphic to R3.

Our main tool comes from the solution to the Plateau Problem. Let us
give a brief review of the existence of the solution to the Plateau problem
and their regularity. In the case of R3, the existence is due to Douglas [4] and
Radó [15] : For any smooth curve γ in R3, there exists a surface with min-
imal area, spanning γ, which is parametrized by a disc D2. Furthermore,
Osserman [10] and Gulliver [5] proved that this solution has no interior
branch point. In 1948, Morrey [8, 9] devised a new method to solve the
Plateau problem for a map from a disc to a “homogeneously regular” Rie-
mannian manifold. In addition, Osserman and Gulliver’s arguments show
that Morrey’s solution also has no interior branch point.

To sum up, for any null-homotopic smooth curve γ in a complete Rie-
mannian manifold (M3, g), there exists a continuous map f : D2 →M such
that f induces a homomorphism between ∂D and γ and the interior of f is
a minimal immersion.

Let us explain the scheme of Gromov-Lawson’s proof in [6]. From J.Stalling’s
results in [17], it is sufficient to prove that M is simply-connected at infinity.
We argue by contradiction and suppose that M is not simply-connected at
infinity. Namely, there exists a compact set K in M , satisfying that for
any geodesic ball BR(0) containing K, there is a smooth closed curve γ in
M \BR(0), which is not null-homotopic in M \K. Choosing R large enough
and considering the solution S to the Plateau problem for γ, S can not be
contained in a“small” neighborhood of some circle(s), which contradicts to
a result of Rosenberg in [16]. Before stating Rosenberg’s result, we firstly
define the notion of stable H-surface.

Definition 1.2. Let (M, g) be a 3-dimensional Riemannian manifold and
Σ a surface immersed in (M, g). Σ is said to be a H-surface if the mean
curvature of Σ is constant and equals to H, where H ∈ R. Furthermore, we
consider the operator L of Σ defined as

L = ∆Σ + |A|2 +RicM (n)

where |A|2 is the square length of the second fundamental form of Σ in M ,
n is a unit normal vector field along Σ. We say that Σ is a stable H-surface
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if

−
∫

Σ
uL(u) ≥ 0

for any smooth function u with compact support over Σ.

In [16], applying the stable condition, Rosenberg obtained the following:

Theorem 1.3. [16] Let (N, g) be a complete Riemannian 3-manifold satis-
fying

3H2 + S(x) ≥ c, for any x ∈ N,
where S(x) is the scalar curvature, H ∈ R and c > 0. Suppose that Σ is a
stable H-surface immersed in N . Then one has for any x ∈ Σ

dΣ(x, ∂Σ) ≤ 2π/(3c)1/2,

where dΣ is the intrinsic distance in Σ.

Remark 1.4. From the proof of Theorem 1.3 in [16], we do not need the
condition that the scalar curvature S(x) is uniformly bounded.

When trying to generalize Gromov-Lawson’s arguments to contractible
3-manifolds whose scalar curvature decay at infinity, one encounters an
obstacle–the lack of uniform lower-bound of the scalar curvature on the
surface S spanning the curve γ. However, this can be overcome by choosing
a new curve σ near the boundary of BR/2(0), which is homotopic to γ in
M\K. More precisely, using the regularity property of S, after a small defor-
mation, the intersection of S and the boundary of BR/2(0) is some circle(s).
Therefore, the intersection can be chosen as a curve σ, which satisfies the re-
quired property. This leads to Theorem 1.1, by applying Gromov-Lawson’s
argument[6] to this curve σ.

2. The proof of theorem 1.1

Before the proof of Theorem 1.1, we introduce an important notion and
recall a classical result about open 3-manifolds.

Definition 2.1. A topological space X is said to be simply-connected at
infinity, if for any compact set C, there exists a compact set V containing
C, such that the induced map i∗ : π1(X \ V )→ π1(X \ C) is trivial, where
i : X \ V → X \ C is an inclusion map.

It is well-known from [21] that the Whitehead manifold is not simply-
connected at infinity. In fact, there is a unique non-compact 3-manifold
which is both simply-connected at infinity and contractible.

Theorem 2.2. [Stallings] [17] Let X be a contractible 3-manifold, then X
is homeomorphic to R3 if and only if X is simply-connected at infinity.

Here is the idea of proof of Theorem 1.1. In the following, we assume
that (M, g) is a contractible 3-manifold as in Theorem 1.1. According to
Theorem 2.2, it is sufficient to show that M is simply-connected at infinity.
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From the assumption about the scalar curvature in Theorem 1.1, there are
two positive constants C and R0, such that for r(x) ≥ R0, one has,

Scal(x) ≥ C

r(x)α
.

Compared with the argument of Gromov-Lawson in [6], our main difficulty
is the lack of the uniform lower-bound of the scalar curvature. However,
using Theorem 1.3, we obtain the following:

Proposition 2.3. If R > 2 max
{
R0, (

41+α/2π
(3C)1/2

)
2

2−α
}

, then the induced map

π1(M \B4R(0))→ π1(M \BR(0)) is trivial.

Then, due to Proposition 2.3, M is simply-connected at infinity, which
implies that M is homeomorphic to R3. It implies Theorem 1.1.

We now prove Proposition 2.3. Let us consider a smooth closed curve γ in
M \B4R(0). Because γ may be far away from the compact set BR(0), there
does not exist a “good” estimate of the lower-bound of the scalar curvature
along γ. In order to overcome it, we establish the following lemma:

Lemma 2.4. For any smooth circle γ in M \ B4R(0), exactly one of the
following holds:

• γ is contractible in M \BR(0),
• for any ε > 0 and any R < Q < 4R, there exists a curve σ̂ in
BQ+ε(0) \BQ(0), which is not contractible in M \BR(0).

Proof. Let f̂ : D2(1) → M be the solution to the Plateau problem for γ,

where D2(1) is the unit disc. Then f̂ |∂D2(1) is a homeomorphism between

∂D2(1) and γ. Furthermore, the interior of f̂ is an immersion.

Suppose that γ is non-contractible in M \ BR(0). Therefore, f̂(D2(1)) ∩
∂BQ(0) is nonempty. Furthermore, f̂−1(f̂(D2(1)) ∩ BQ(0)) belongs to the

interior of D2(1). Then, after a small variation of f̂ in the interior of D2(1),
there exists a map f : D2(1)→M , such that

• the interior of f is still an immersion,
• f |∂D2(1) is a homoemorphic map from ∂D2(1) to γ,
• f intersects transversally with ∂BQ(0).

Therefore, the pre-image of f(D2(1)) ∩ ∂BQ(0) is a 1-dimensional compact
submanifold in D2(1). That is to say: f−1(f(D2(1))∩ ∂BQ(0)) is a disjoint
union of some circle(s) in D2(1).

Let f−1(BQ(0)) be the disjoint union of {γi}i∈I , where each γi is diffeo-
morphic to a circle in D2(1) and I is a finite set. Let Di be the unique
disc bounded by γi in D2(1). Let us consider the set {Di}i∈I and define the
partially ordered relationship on it, induced by inclusion. For any maximal
element Dj in ({Di}i∈I ,⊂), γj = ∂Dj is defined as an outmost circle.

Let {γj}j∈I0 be outermost circles in {γi}i∈I , where I0 ⊂ I. For each out-
most circle γj , we assume that σj is the boundary of a tubular neighborhood
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of γi in D2(1) \ ∪i∈IDi, contained in f−1(BQ+ε(0) \ BQ(0)) and D̂j is the
unique disc bounded by σj in D2(1).

Claim: some element in {f(σj)}j∈I0 is not contractible in M \BR(0).
We argue it by contradiction. Suppose that each f(σj) is contractible in

M \ BR(0). In other words, for each j ∈ I0 there exists a continuous map
gj : D2(1) → M , such that (1) gj(D

2(1)) ∩ BR(0) = ∅; (2) gj |∂D2(1) is a

homomorphism from ∂D2(1) to f(σj).
After changing the coordinate over D2(1), we may suppose that for each

j ∈ I0, D̂j is a disc with center at xj and radius rj . We will construct a
new map g : D2(1) → M , such that (1) g|∂D2(1) is a homeomorphic map

from ∂D2(1) to γ; g(D2(1))∩BR(0) = ∅. It implies that γ is contractible in
M \ BR(0), which contradicts our assumption that γ is not contractible in
M \BR(0).

Let us describe the construction of g as follows:

g(x) =

{
f(x), x ∈ D2(1) \ ∪j∈I0D̂j

gj(
x−xj
rj

), x ∈ D̂j .
(2.1)

g is a required map described as above. We finish the proof of the claim.
We may suppose that f(σj0) is non-contractible in M \BR(0) and choose

σ̂ = f(σj0). It is the required candidate in the assertion. This completes
the proof. �

Remark 2.5. In the proof of Lemma 2.4, f̂ is only required to be an im-
mersion. Because we just need the property that after perturbing f̂ , we
obtain a new immersion f satisfying that f intersects transversally with the
surface Σ. Therefore, the pre-image of f is a submanifold. Hence, there are
many other choices for f̂ .

We now give the proof of Proposition 2.3.

Proof of Proposition 2.3. We prove it by contradiction. First, we assume

that for some R > 2 max{R0, (
41+α/2π
(3C)1/2

)
2

2−α }, there is a curve γ ⊂M \B4R(0)

such that γ is nontrivial in π1(M \BR(0)).
We take Q = 2R and ε = 1 and apply Lemma 2.4 to γ. There is a

non-contractible curve σ̂ ⊂ B2R+1(0) \B2R(0) in M \BR(0).
Let f : D2(1)→M be the solution to the Plateau problem for the circle

σ̂ in M. Then f(D2(1)) ∩ ∂BR(0) is non-emtpy, since σ̂ is non-contractible
in M \BR(0). Let us consider the set Σ := f(D2(1))∩ (B3R(0)\BR(0)). By
the assumption of the scalar curvature, i.e. lim inf

r(x)→∞
rα(x)Scal(x) > 0, one

has,

Scal(x) ≥ C

(4R)α
, over Σ.

By Theorem 1.3 and Remark 1.4, we deduce that
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Σ is contained in the
(4R)α/2π

(3C)1/2
-neighborhood of ∂Σ.

However, ∂Σ = σ̂q (∂BR(0)∩Σ) is contained in a union of M \B2R(0) and
the closure of BR(0). The above fact gives

R ≤ 2
(4R)α/2π

(3C)1/2

That is to say, R ≤ 2
(

4α/2π
(3C)1/2

) 2
2−α

< 2(41+α/2π
(3C)1/2

)
2

2−α . This contradicts the

choice of R. �

As a corollary, we have the following

Corollary 2.6. The Whitehead manifold does not admit a complete metric
with lim inf

r(x)→∞
rα(x)Scal(x) > 0, where r is a distance function from a given

point and α ∈ [0, 2).

3. Application

In this section, we use Theorem 1.1 to prove that any complete open
3-manifold M such that (1) π1(M) = {0} and π2(M) = Z; (2) its scalar
curvature decays slowly at infinity, is homeomorphic to R×S2. Let us review
the sphere theorem and some classical applications of the sphere theorem.

Theorem 3.1 (Sphere Theorem [11, 2]). Any orientable 3-manifold M with
non-trivial π2(M) has an embedded sphere.

The non-trivial embedded sphere plays a crucial role in the prime decom-
position of 3-manifolds. In a simply-connected 3-manifold, the non-trivial
embedded sphere always separates the 3-manifold into two connected com-
ponents.

Lemma 3.2. Let M3 be a simply-connected open manifold and S ⊂ M
a non-trivial sphere, then M \ S is a disjoint union of two non relatively
compact components.

Proof. First, we claim that S is a separating sphere in M . If M \ S is
connected, then there exists a circle α ⊂ M , such that α intersects S
transversally at one point. Hence, the intersection number (S, α) is 1 or
−1. However, the intersection number between S and α is zero, since α is
contractible in M and the intersection number is a homotopic invariant. It
leads to a contradiction. Therefore, S separates M into two components.

Second, we will show that each component of M \ S is non relatively
compact. If one component, denoted by M ′, is relatively compact, we use
the Van Kampen Theorem and π1(M) = {1} to obtain that M ′ is also simply
connected. We define a 3-manifold M ′′ by gluing a 3-ball along the boundary
sphere ∂M ′. Hence, by the Van Kampen theorem, the compact 3-manifold
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M ′′ is also simply connected. By the Poincaré conjecture [12, 13, 14], M ′′

is a 3-sphere. Therefore, M ′ is homeomorphic to a 3-ball, which contradicts
our assumption that S is non-trivial in π2(M). �

The second homotopy group is an important homotopic invariant for the
classification of CW complexes. We will use the following lemma frequently.

Lemma 3.3. An open 3-manifold M with π1(M) = π2(M) = 0 is con-
tractible.

Proof. Because M is an open manifold, the 0-dimensional cohomology group
of M with compact support, denoted by H0

c (M,Z), is trivial. The Poincaré
duality gives H0

c (M,Z) ∼= H3(M,Z) = {0}. Since π1(M) = π2(M) = {0},
we use the Hurewicz Theorem to see that π3(M) ∼= H3(M) = {0}. Then,
using the Hurewicz Theorem inductively, we have that πn(M) ∼= Hn(M) =
0, for any n ≥ 3. By Whitehead Theorem, M is contractible. �

We now consider a simply-connected open 3-manifold M with nontrivial
second homotopy group. From Theorem 3.1 and Lemma 3.2, there exists
a non-trivial sphere S seperating M into two non relatively compact parts:
M1 and M2. We define M0

i as a union of B3 and Mi along S, where B3 is
a 3-ball. Then M can be viewed as the connected sum of M0

0 and M0
1 .

The pair (M, M̄i) is a CW pair, where M̄i is the closure of Mi in M ,
for i ∈ I, where I = (Z/2Z,+). For each CW pair (M,M̄i), one has a
continuous map fi : M → M/M̄i. Because ∂Mi is a sphere S, M/M̄i

is homeomorphic to M0
i+1, for i ∈ I = (Z/2Z,+). Therefore, fi can be

viewed as a continuous map from M to M0
i+1. Furthermore, the induced

map (fi)∗ : π2(M)→ π2(M0
i+1) verifies the following:

Proposition 3.4. For each i ∈ I, the induced map (fi)∗ : π2(M) →
π2(M0

i+1) is a surjective map with nontrivial kernel.

Proof. In the above statement, S is a non-trivial sphere in M . M0
i+1 is

obtained by gluing a 3-ball B3 along S to Mi+1, i.e. M0
i+1 = Mi+1

⋃
S B

3,
for i ∈ I.

The image of S is bounded by a 3-ball, which implies that [fi(S)] is trivial
in π2(M0

i+1). Therefore, the kernel of (fi)∗ is non-trivial.

For each i ∈ I, any continuous map g : S2 →M0
i+1 is homotopic to another

continuous map g′ : S2 → Mi+1 in M0
i+1 = Mi+1

⋃
S B

3. Let i : Mi+1 → M

be the inclusion map, i ◦ g′ is a map from S2 to M and (fi)∗([g
′]) = [g] in

π2(M0
i+1). Therefore, (fi)∗ is surjective. �

In the following, we will use the sphere theorem to analyze the topolog-
ical structure of a simply-connected open 3-manifold M with π2(M) = Z.
Together with the surgery as described above, we prove :

Theorem 3.5. Assume that (M3, g) is a simply-connected open 3-manifold
with π2(M) = Z. Let 0 ∈M be a point and r(x) a distance function from x
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to 0. If there exists a real number α ∈ [0, 2), such that,

lim inf
r(x)→∞

rα(x)Scal(x) > 0,

then M3 is diffeomorphic to R× S2.

Proof. By the Sphere theorem , there exists a non-trivial embedded sphere
S cutting M into two non relatively compact components M0 and M1. M
can be viewed as the connected sum of two simply-connected 3-manifolds
M0

0 and M0
1 , where M0

0 = M0
⋃
S B

3 and M0
1 = M1

⋃
S B

3.
Furthermore, we will construct a metric over M0

i satisfying the curvature
condition as assumed in Theorem 1.1.

First, let Nr(S) be the tubular neighborhood of S in Mi, with radius r.
For any constant ε > 0, there exists a smooth function φ(x) supported in
N2ε(S), such that, φ(x) = 1 on Nε(S). Meanwhile, we may find a smooth
function τ(x) on M0

i , satisfying the following:

(1) τ(x) has support in the compact set M0
i \ (Mi \N4ε(S)),

(2) τ(x) = 1 on M0
i \ (Mi \N2ε(S))

Second, choose any smooth metric g′ over M0
i \ (Mi \N4ε(S)). Define a

new metric gi over M0
i :

gi =

 g, Mi \N4ε(S);
g′, M0

i \Mi;
(1− φ)g + τg′ otherwise.

(3.1)

where g is a metric in the assumption of Theorem 3.5.
If [S] is a generator of π2(M), from the proof of Proposition 3.4, [S] is

contained in the kernel of the induced map (fi)∗. Then π2(M0
i ) = {0}

for each i ∈ I. Thanks to Lemma 3.3, M0
i is contractible. Therefore,

(M0
i , gi) satisfies the curvature condition as assumed in Theorem 3.5. Due

to Theorem 1.1, each M0
i is homeomorphic to R3. M is the connected sum

of two R3s. Hence, M is diffeomorphic to S2 × R.
If [S] is not a generator, by Proposition 3.4, then the induced map

maps from π2(M) onto π2(M0
i ) with non-trivial kernel, which indicates that

π2(M0
i ) is finite. In this case, there is a unique topological structure of M0

i

as follows. By Proposition 3.6 (in the following), each M0
i is homeomorphic

to R3 which implies that M is homeomorphic to S2 × R. �

Proposition 3.6. Let (M3, g) be a simply-connected open 3-manifold satis-
fying that π2(M) is a finite group. For 0 ∈M , assume that r is the distance
function from 0. If there exists a number α ∈ [0, 2), such that,

lim inf
r(x)→∞

rα(x)Scal(x) > 0,

then M3 is homeomorphic to R3.

Proof. Suppose that M is not homeomorphic to R3. In addition, we observe
that π2(M) is non-trivial. (Otherwise, by Lemma 3.3, M is contractible.
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Combined with Theorem 1.1, M is R3, which contradicts our above as-
sumption. )

By the sphere theorem, there exists a non-trivial embedded sphere S cut-
ting M into two non relatively compact components. Two simply-connected
non-compact manifolds M0

0 and M0
1 are obtained by the process described

in the proof of Theorem 3.5. Therefore, M0
0 and M0

1 satisfy the following:

• M is the connected sum of M0
0 and M0

1

• |π2(M0
i )| < |π2(M)|, since the map π2(M) → π2(M0

i ) is surjective
with non-trivial kernel (Proposition 3.4).

We observe that one of {π2(M0
i )}i∈I is nontrivial. (Otherwise, from

Lemma 3.3, M0
i is contractible. From Theorem 1.1, M0

i is R3, which implies
that M is S2 × R. This contradicts the assumption that π2(M) is finite. )

Without loss of generality, we may assume that π2(M0
0 ) is nontrivial. Set

M1 = M0
0 . M1

0 and M1
1 can be constructed as the above process in the

proof of Theorem 3.5. We may suppose that one of π2(M1
i ) is non-trivial.

(Otherwise, a similar argument for π2(M0
i ) as above will work.) Then we can

repeat this process, until the second homotopy groups of two new manifolds
are both trivial.

After repeating the above process several times, three families of manifolds
Mk, M

k
0 and Mk

1 are constructed as in the above process. These manifolds
satisfy the following:

• Mk is the connected sum of Mk
0 and Mk

1 ,
• |π2(Mk)| < |π2(Mk−1)| .

Because π2(M) is finite and |π2(Mk)| < |π2(Mk−1)|, this process will stop
after finite steps. There exists an integer k0 such that π2(Mk0) is nontrivial

and π2(Mk0
i ) is trivial for each i. From Lemma 3.3, this implies that Mk0

i is

contractible. Due to Theorem 1.1, Mk0
i is homeomorphic to R3. However,

Mk0 is the connected sum of Mk0
0 and Mk0

1 . Hence, Mk0 is S2 × R, which
contradicts the fact that π2(Mk0) is finite.

�
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Université Grenoble Alpes, Institut Fourier, 100 rue des maths, 38610
Gières, France

E-mail address: jian.wang1@univ-grenoble-alpes.fr




