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introduction

Thanks to G.Perelman's proof of W.Thurston's Geometrisation conjecture in [START_REF] Perelman | The entropy formula for Ricci flow and its geometric applications[END_REF][START_REF] Perelman | Ricci flow with surgery on the three manifolds[END_REF][START_REF] Perelman | Finite extinction time for the solution to Ricci flow on certain threemanifolds[END_REF], the topological structure of compact 3-manifolds is now well understood. However, it is known from the early work [START_REF] Whitehead | A certain open manifold whose group is unity[END_REF] of J.H.C Whitehead that the topological structure of non-compact 3-manifolds is much more complicated. For example, there exists a contractible open 3manifold, called Whitehead manifold, which is not homeomorphic to R 3 . An interesting question in differential geometry is whether the Whitehead manifold admits a complete metric with positive scalar curvature.

The study of manifolds of positive scalar curvature has a long history. Among many results, we mention the topological classification of compact manifolds of positive scalar curvature and the Positive Mass Theorem. There are two methods which have achieved many breakthroughs: minimal hypersurfaces and K-theory.

The K-theory method is pioneered by A.Lichnerowicz and is systemically developed by M.Gromov and H.Lawson in [START_REF] Gromov | The positive scalar curvature and the Dirac operator on the complete Riemannian manifolds[END_REF], based on the Atiyah-Singer Index theorem in [START_REF] Atiyah | The index of elliptic operators on compact manifolds[END_REF]. Furthermore, combined with some results about the Novikov conjecture, S.Chang, S.Weinberger and G.L.Yu [START_REF] Chang | Taming 3-manifolds using scalar curvature[END_REF] investigated the topological structure of open 3-manifolds with uniformly positive scalar curvatures and finitely generated fundamental groups. Precisely, they proved that any contractible 3-manifold whose scalar curvature is bounded away from zero is R 3 , which implies that the Whitehead manifold does not admit a metric with uniformly positive scalar curvature.

The origin of the minimal hypersurfaces method is the article of R.Schoen and S.T.Yau [START_REF] Schoen | Complete three-dimensional manifold with positive Ricci curvature and scalar curvature[END_REF]. For open 3-manifolds, there are many applications, such as Positive Mass Theorem [START_REF] Schoen | On the proof of the positive mass conjecture in general relativity[END_REF][START_REF] Schoen | Proof of the positive mass theorem[END_REF] and 3-dimensional Milnor Conjecture [START_REF] Liu | 3-Manifolds with nonnegative Ricci curvature[END_REF]. In [START_REF] Gromov | The positive scalar curvature and the Dirac operator on the complete Riemannian manifolds[END_REF], Gromov and Lawson applied this method to open 3-manifolds.

In this paper, we extend Gromov-Lawson's Theorem [START_REF] Gromov | The positive scalar curvature and the Dirac operator on the complete Riemannian manifolds[END_REF] to open 3-manifolds whose scalar curvature has a decay at infinity: Theorem 1.1. Assume that (M 3 , g) is a contractible complete 3-manifold. Let 0 ∈ M and r(x) be the distance function from x to 0. If there exists a number α ∈ [0, 2) such that

lim inf r(x)→∞ r α (x)Scal(x) > 0, then M 3 is diffeomorphic to R 3 .
Our main tool comes from the solution to the Plateau Problem. Let us give a brief review of the existence of the solution to the Plateau problem and their regularity. In the case of R 3 , the existence is due to Douglas [START_REF] Douglas | Solution of the problem of Plateau[END_REF] and Radó [START_REF] Rado | On Plateau's problem[END_REF] : For any smooth curve γ in R 3 , there exists a surface with minimal area, spanning γ, which is parametrized by a disc D 2 . Furthermore, Osserman [START_REF] Osserman | A proof of the regularity everywhere of the classical solution to Plateau's problem[END_REF] and Gulliver [START_REF] Gulliver | Regularity of minimizing surfaces of prescribed mean curvature[END_REF] proved that this solution has no interior branch point. In 1948, Morrey [START_REF] Morrey | The problem of Plateau in a Riemannian manifold[END_REF][START_REF] Morrey | Multiple Integrals in the Calculus of Variations[END_REF] devised a new method to solve the Plateau problem for a map from a disc to a "homogeneously regular" Riemannian manifold. In addition, Osserman and Gulliver's arguments show that Morrey's solution also has no interior branch point.

To sum up, for any null-homotopic smooth curve γ in a complete Riemannian manifold (M 3 , g), there exists a continuous map f : D 2 → M such that f induces a homomorphism between ∂D and γ and the interior of f is a minimal immersion.

Let us explain the scheme of Gromov-Lawson's proof in [START_REF] Gromov | The positive scalar curvature and the Dirac operator on the complete Riemannian manifolds[END_REF]. From J.Stalling's results in [START_REF] Stallings | Group theory and Three dimensional manifolds[END_REF], it is sufficient to prove that M is simply-connected at infinity. We argue by contradiction and suppose that M is not simply-connected at infinity. Namely, there exists a compact set K in M , satisfying that for any geodesic ball B R (0) containing K, there is a smooth closed curve γ in M \ B R (0), which is not null-homotopic in M \ K. Choosing R large enough and considering the solution S to the Plateau problem for γ, S can not be contained in a"small" neighborhood of some circle(s), which contradicts to a result of Rosenberg in [START_REF] Rosenberg | Constant mean curvature surface in Homogenously regular 3-manifold[END_REF]. Before stating Rosenberg's result, we firstly define the notion of stable H-surface. Definition 1.2. Let (M, g) be a 3-dimensional Riemannian manifold and Σ a surface immersed in (M, g). Σ is said to be a H-surface if the mean curvature of Σ is constant and equals to H, where H ∈ R. Furthermore, we consider the operator L of Σ defined as

L = ∆ Σ + |A| 2 + Ric M (n)
where |A| 2 is the square length of the second fundamental form of Σ in M , n is a unit normal vector field along Σ. We say that Σ is a stable H-surface if -Σ uL(u) ≥ 0 for any smooth function u with compact support over Σ.

In [START_REF] Rosenberg | Constant mean curvature surface in Homogenously regular 3-manifold[END_REF], applying the stable condition, Rosenberg obtained the following:

Theorem 1.3. [START_REF] Rosenberg | Constant mean curvature surface in Homogenously regular 3-manifold[END_REF] Let (N, g) be a complete Riemannian 3-manifold satisfying 3H 2 + S(x) ≥ c, for any x ∈ N, where S(x) is the scalar curvature, H ∈ R and c > 0. Suppose that Σ is a stable H-surface immersed in N . Then one has for any x ∈ Σ

d Σ (x, ∂Σ) ≤ 2π/(3c) 1/2 ,
where d Σ is the intrinsic distance in Σ.

Remark 1.4. From the proof of Theorem 1.3 in [START_REF] Rosenberg | Constant mean curvature surface in Homogenously regular 3-manifold[END_REF], we do not need the condition that the scalar curvature S(x) is uniformly bounded.

When trying to generalize Gromov-Lawson's arguments to contractible 3-manifolds whose scalar curvature decay at infinity, one encounters an obstacle-the lack of uniform lower-bound of the scalar curvature on the surface S spanning the curve γ. However, this can be overcome by choosing a new curve σ near the boundary of B R/2 (0), which is homotopic to γ in M \K. More precisely, using the regularity property of S, after a small deformation, the intersection of S and the boundary of B R/2 (0) is some circle(s). Therefore, the intersection can be chosen as a curve σ, which satisfies the required property. This leads to Theorem 1.1, by applying Gromov-Lawson's argument [START_REF] Gromov | The positive scalar curvature and the Dirac operator on the complete Riemannian manifolds[END_REF] to this curve σ.

The proof of theorem 1.1

Before the proof of Theorem 1.1, we introduce an important notion and recall a classical result about open 3-manifolds. Definition 2.1. A topological space X is said to be simply-connected at infinity, if for any compact set C, there exists a compact set V containing C, such that the induced map i * :

π 1 (X \ V ) → π 1 (X \ C) is trivial, where i : X \ V → X \ C is an inclusion map.
It is well-known from [START_REF] Whitehead | A certain open manifold whose group is unity[END_REF] that the Whitehead manifold is not simplyconnected at infinity. In fact, there is a unique non-compact 3-manifold which is both simply-connected at infinity and contractible.

Theorem 2.2. [Stallings] [17]

Let X be a contractible 3-manifold, then X is homeomorphic to R 3 if and only if X is simply-connected at infinity.

Here is the idea of proof of Theorem 1.1. In the following, we assume that (M, g) is a contractible 3-manifold as in Theorem 1.1. According to Theorem 2.2, it is sufficient to show that M is simply-connected at infinity.

From the assumption about the scalar curvature in Theorem 1.1, there are two positive constants C and R 0 , such that for r(x) ≥ R 0 , one has,

Scal(x) ≥ C r(x) α .
Compared with the argument of Gromov-Lawson in [START_REF] Gromov | The positive scalar curvature and the Dirac operator on the complete Riemannian manifolds[END_REF], our main difficulty is the lack of the uniform lower-bound of the scalar curvature. However, using Theorem 1.3, we obtain the following:

Proposition 2.3. If R > 2 max R 0 , ( 4 1+α/2 π (3C) 1/2 ) 2 2-α , then the induced map π 1 (M \ B 4R (0)) → π 1 (M \ B R (0)) is trivial.
Then, due to Proposition 2.3, M is simply-connected at infinity, which implies that M is homeomorphic to R 3 . It implies Theorem 1.1.

We now prove Proposition 2.3. Let us consider a smooth closed curve γ in M \ B 4R (0). Because γ may be far away from the compact set B R (0), there does not exist a "good" estimate of the lower-bound of the scalar curvature along γ. In order to overcome it, we establish the following lemma: Lemma 2.4. For any smooth circle γ in M \ B 4R (0), exactly one of the following holds:

• γ is contractible in M \ B R (0),
• for any > 0 and any R < Q < 4R, there exists a curve σ in

B Q+ (0) \ B Q (0), which is not contractible in M \ B R (0).
Proof. Let f : D 2 (1) → M be the solution to the Plateau problem for γ, where D 2 (1) is the unit disc. Then f | ∂D 2 (1) is a homeomorphism between ∂D 2 (1) and γ. Furthermore, the interior of f is an immersion. Suppose that

γ is non-contractible in M \ B R (0). Therefore, f (D 2 (1)) ∩ ∂B Q (0) is nonempty. Furthermore, f -1 ( f (D 2 (1)) ∩ B Q (0)) belongs to the interior of D 2 (1)
. Then, after a small variation of f in the interior of D 2 (1), there exists a map f : D 2 (1) → M , such that

• the interior of f is still an immersion,

• f | ∂D 2 (1) is a homoemorphic map from ∂D 2 (1) to γ, • f intersects transversally with ∂B Q (0). Therefore, the pre-image of f (D 2 (1)) ∩ ∂B Q (0) is a 1-dimensional compact submanifold in D 2 (1). That is to say: f -1 (f (D 2 (1)) ∩ ∂B Q (0)) is a disjoint union of some circle(s) in D 2 (1).
Let f -1 (B Q (0)) be the disjoint union of {γ i } i∈I , where each γ i is diffeomorphic to a circle in D 2 (1) and I is a finite set. Let D i be the unique disc bounded by γ i in D 2 (1). Let us consider the set {D i } i∈I and define the partially ordered relationship on it, induced by inclusion. For any maximal element D j in ({D i } i∈I , ⊂), γ j = ∂D j is defined as an outmost circle.

Let {γ j } j∈I 0 be outermost circles in {γ i } i∈I , where I 0 ⊂ I. For each outmost circle γ j , we assume that σ j is the boundary of a tubular neighborhood

of γ i in D 2 (1) \ ∪ i∈I D i , contained in f -1 (B Q+ (0) \ B Q (0)
) and Dj is the unique disc bounded by σ j in D 2 (1).

Claim: some element in {f (σ j )} j∈I 0 is not contractible in M \ B R (0). We argue it by contradiction. Suppose that each f (σ j ) is contractible in M \ B R (0). In other words, for each j ∈ I 0 there exists a continuous map

g j : D 2 (1) → M , such that (1) g j (D 2 (1)) ∩ B R (0) = ∅; (2) g j | ∂D 2 (1) is a homomorphism from ∂D 2 (1) to f (σ j ).
After changing the coordinate over D 2 (1), we may suppose that for each j ∈ I 0 , Dj is a disc with center at x j and radius r j . We will construct a new map g :

D 2 (1) → M , such that (1) g| ∂D 2 (1) is a homeomorphic map from ∂D 2 (1) to γ; g(D 2 (1)) ∩ B R (0) = ∅. It implies that γ is contractible in M \ B R (0), which contradicts our assumption that γ is not contractible in M \ B R (0).
Let us describe the construction of g as follows:

g(x) = f (x), x ∈ D 2 (1) \ ∪ j∈I 0 Dj g j ( x-x j r j ), x ∈ Dj . (2.1)
g is a required map described as above. We finish the proof of the claim. We may suppose that f (σ j 0 ) is non-contractible in M \ B R (0) and choose σ = f (σ j 0 ). It is the required candidate in the assertion. This completes the proof. Remark 2.5. In the proof of Lemma 2.4, f is only required to be an immersion. Because we just need the property that after perturbing f , we obtain a new immersion f satisfying that f intersects transversally with the surface Σ. Therefore, the pre-image of f is a submanifold. Hence, there are many other choices for f . We now give the proof of Proposition 2.3.

Proof of Proposition 2.3. We prove it by contradiction. First, we assume that for some R > 2 max{R 0 , (

4 1+α/2 π (3C) 1/2 ) 2 2-α }, there is a curve γ ⊂ M \ B 4R (0) such that γ is nontrivial in π 1 (M \ B R (0)).
We take Q = 2R and = 1 and apply Lemma 2.4 to γ. There is a non

-contractible curve σ ⊂ B 2R+1 (0) \ B 2R (0) in M \ B R (0). Let f : D 2 (1) → M be the solution to the Plateau problem for the circle σ in M. Then f (D 2 (1)) ∩ ∂B R (0) is non-emtpy, since σ is non-contractible in M \ B R (0). Let us consider the set Σ := f (D 2 (1)) ∩ (B 3R (0) \ B R (0))
. By the assumption of the scalar curvature, i.e. lim inf

r(x)→∞ r α (x)Scal(x) > 0, one has, Scal(x) ≥ C (4R) α , over Σ.
By Theorem 1.3 and Remark 1.4, we deduce that Σ is contained in the (4R) α/2 π (3C) 1/2 -neighborhood of ∂Σ. However, ∂Σ = σ (∂B R (0) ∩ Σ) is contained in a union of M \ B 2R (0) and the closure of B R (0). The above fact gives

R ≤ 2 (4R) α/2 π (3C) 1/2 That is to say, R ≤ 2 4 α/2 π (3C) 1/2 2 2-α < 2( 4 1+α/2 π (3C) 1/2 ) 2 2-α . This contradicts the choice of R.
As a corollary, we have the following Corollary 2.6. The Whitehead manifold does not admit a complete metric with lim inf r(x)→∞ r α (x)Scal(x) > 0, where r is a distance function from a given point and α ∈ [0, 2).

Application

In this section, we use Theorem 1.1 to prove that any complete open 3-manifold M such that (1) π 1 (M ) = {0} and π 2 (M ) = Z; (2) its scalar curvature decays slowly at infinity, is homeomorphic to R×S 2 . Let us review the sphere theorem and some classical applications of the sphere theorem. Theorem 3.1 (Sphere Theorem [START_REF] Papakyriakopoulos | On Dehn's lemma and asphericity of knots[END_REF][START_REF] Batude | Singularitè générique des applications différentiables de la 2-sphère dans une 3-variété différentiable[END_REF]). Any orientable 3-manifold M with non-trivial π 2 (M ) has an embedded sphere.

The non-trivial embedded sphere plays a crucial role in the prime decomposition of 3-manifolds. In a simply-connected 3-manifold, the non-trivial embedded sphere always separates the 3-manifold into two connected components. Lemma 3.2. Let M 3 be a simply-connected open manifold and S ⊂ M a non-trivial sphere, then M \ S is a disjoint union of two non relatively compact components.

Proof. First, we claim that S is a separating sphere in M . If M \ S is connected, then there exists a circle α ⊂ M , such that α intersects S transversally at one point. Hence, the intersection number (S, α) is 1 or -1. However, the intersection number between S and α is zero, since α is contractible in M and the intersection number is a homotopic invariant. It leads to a contradiction. Therefore, S separates M into two components.

Second, we will show that each component of M \ S is non relatively compact. If one component, denoted by M , is relatively compact, we use the Van Kampen Theorem and π 1 (M ) = {1} to obtain that M is also simply connected. We define a 3-manifold M by gluing a 3-ball along the boundary sphere ∂M . Hence, by the Van Kampen theorem, the compact 3-manifold M is also simply connected. By the Poincaré conjecture [START_REF] Perelman | The entropy formula for Ricci flow and its geometric applications[END_REF][START_REF] Perelman | Ricci flow with surgery on the three manifolds[END_REF][START_REF] Perelman | Finite extinction time for the solution to Ricci flow on certain threemanifolds[END_REF], M is a 3-sphere. Therefore, M is homeomorphic to a 3-ball, which contradicts our assumption that S is non-trivial in π 2 (M ).

The second homotopy group is an important homotopic invariant for the classification of CW complexes. We will use the following lemma frequently.

Lemma 3.3. An open 3-manifold M with π 1 (M ) = π 2 (M ) = 0 is con- tractible.
Proof. Because M is an open manifold, the 0-dimensional cohomology group of M with compact support, denoted by H 0 c (M, Z), is trivial. The Poincaré duality gives

H 0 c (M, Z) ∼ = H 3 (M, Z) = {0}. Since π 1 (M ) = π 2 (M ) = {0}
, we use the Hurewicz Theorem to see that π 3 (M ) ∼ = H 3 (M ) = {0}. Then, using the Hurewicz Theorem inductively, we have that π n (M ) ∼ = H n (M ) = 0, for any n ≥ 3. By Whitehead Theorem, M is contractible.

We now consider a simply-connected open 3-manifold M with nontrivial second homotopy group. From Theorem 3.1 and Lemma 3.2, there exists a non-trivial sphere S seperating M into two non relatively compact parts: M 1 and M 2 . We define M 0 i as a union of B 3 and M i along S, where B 3 is a 3-ball. Then M can be viewed as the connected sum of M 0 0 and M 0 1 . The pair (M, Mi ) is a CW pair, where Mi is the closure of M i in M , for i ∈ I, where I = (Z/2Z, +). For each CW pair (M, Mi ), one has a continuous map f i : M → M/ Mi . Because ∂M i is a sphere S, M/ Mi is homeomorphic to M 0 i+1 , for i ∈ I = (Z/2Z, +). Therefore, f i can be viewed as a continuous map from M to M 0 i+1 . Furthermore, the induced map (f i ) * : π 2 (M ) → π 2 (M 0 i+1 ) verifies the following: Proposition 3.4. For each i ∈ I, the induced map

(f i ) * : π 2 (M ) → π 2 (M 0 i+1
) is a surjective map with nontrivial kernel. Proof. In the above statement, S is a non-trivial sphere in M . M 0 i+1 is obtained by gluing a 3-ball B 3 along S to M i+1 , i.e. M 0 i+1 = M i+1 S B 3 , for i ∈ I.

The image of S is bounded by a 3-ball, which implies that [f i (S)] is trivial in π 2 (M 0 i+1 ). Therefore, the kernel of (f i ) * is non-trivial. For each i ∈ I, any continuous map g : S 2 → M 0 i+1 is homotopic to another continuous map g :

S 2 → M i+1 in M 0 i+1 = M i+1 S B 3 . Let i : M i+1 → M be the inclusion map, i • g is a map from S 2 to M and (f i ) * ([g ]) = [g] in π 2 (M 0 i+1
). Therefore, (f i ) * is surjective. In the following, we will use the sphere theorem to analyze the topological structure of a simply-connected open 3-manifold M with π 2 (M ) = Z. Together with the surgery as described above, we prove : Theorem 3.5. Assume that (M 3 , g) is a simply-connected open 3-manifold with π 2 (M ) = Z. Let 0 ∈ M be a point and r(x) a distance function from x to 0. If there exists a real number α ∈ [0, 2), such that,

lim inf r(x)→∞ r α (x)Scal(x) > 0, then M 3 is diffeomorphic to R × S 2 .
Proof. By the Sphere theorem , there exists a non-trivial embedded sphere S cutting M into two non relatively compact components M 0 and M 1 . M can be viewed as the connected sum of two simply-connected 3-manifolds M 0 0 and M 0 1 , where M 0 0 = M 0 S B 3 and M 0 1 = M 1 S B 3 . Furthermore, we will construct a metric over M 0 i satisfying the curvature condition as assumed in Theorem 1.1.

First, let N r (S) be the tubular neighborhood of S in M i , with radius r. For any constant > 0, there exists a smooth function φ(x) supported in N 2 (S), such that, φ(x) = 1 on N (S). Meanwhile, we may find a smooth function τ (x) on M 0 i , satisfying the following: (1) τ (x) has support in the compact set M 0 i \ (M i \ N 4 (S)), (2) τ (x) = 1 on M 0 i \ (M i \ N 2 (S)) Second, choose any smooth metric g over M 0 i \ (M i \ N 4 (S)). Define a new metric g i over M 0 i :

g i =    g, M i \ N 4 (S); g , M 0 i \ M i ; (1 -φ)g + τ g
otherwise.

(

where g is a metric in the assumption of Theorem 3.5.

If [S] is a generator of π 2 (M ), from the proof of Proposition 3.4, [S] is contained in the kernel of the induced map (f i ) * . Then π 2 (M 0 i ) = {0} for each i ∈ I. Thanks to Lemma 3.3, M 0 i is contractible. Therefore, (M 0 i , g i ) satisfies the curvature condition as assumed in Theorem 3.5. Due to Theorem 1.1, each M 0 i is homeomorphic to R 3 . M is the connected sum of two R 3 s. Hence, M is diffeomorphic to S 2 × R.

If [S] is not a generator, by Proposition 3.4, then the induced map maps from π 2 (M ) onto π 2 (M 0 i ) with non-trivial kernel, which indicates that π 2 (M 0 i ) is finite. In this case, there is a unique topological structure of M 0 i as follows. By Proposition 3.6 (in the following), each M 0 i is homeomorphic to R 3 which implies that M is homeomorphic to S 2 × R. Proposition 3.6. Let (M 3 , g) be a simply-connected open 3-manifold satisfying that π 2 (M ) is a finite group. For 0 ∈ M , assume that r is the distance function from 0. If there exists a number α ∈ [0, 2), such that, lim inf r(x)→∞ r α (x)Scal(x) > 0, then M 3 is homeomorphic to R 3 .

Proof. Suppose that M is not homeomorphic to R 3 . In addition, we observe that π 2 (M ) is non-trivial. (Otherwise, by Lemma 3.3, M is contractible.
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Combined with Theorem 1.1, M is R 3 , which contradicts our above assumption. )

By the sphere theorem, there exists a non-trivial embedded sphere S cutting M into two non relatively compact components. Two simply-connected non-compact manifolds M 0 0 and M 0 1 are obtained by the process described in the proof of Theorem 3.5. Therefore, M 0 0 and M 0 1 satisfy the following:

Without loss of generality, we may assume that π 2 (M 0 0 ) is nontrivial. Set M 1 = M 0 0 . M 1 0 and M 1 1 can be constructed as the above process in the proof of Theorem 3.5. We may suppose that one of π 2 (M 1 i ) is non-trivial. (Otherwise, a similar argument for π 2 (M 0 i ) as above will work.) Then we can repeat this process, until the second homotopy groups of two new manifolds are both trivial.

After repeating the above process several times, three families of manifolds M k , M k 0 and M k 1 are constructed as in the above process. These manifolds satisfy the following:

)|, this process will stop after finite steps. There exists an integer k 0 such that π 2 (M k 0 ) is nontrivial and π 2 (M k 0 i ) is trivial for each i. From Lemma 3.3, this implies that M k 0 i is contractible. Due to Theorem 1.1, M k 0 i is homeomorphic to R 3 . However, M k 0 is the connected sum of M k 0 0 and M k 0 1 . Hence, M k 0 is S 2 × R, which contradicts the fact that π 2 (M k 0 ) is finite.