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ABSTRACT

This work is focused on the recycling of natural rubber industry waste by means of
thermo-mechanical devulcanization. With that aim, testse carried out iran industrial
twin-screw extruder, at different barrel temperaturesiging from 80 to 220 °C. The
extrusion was done with a screw profileecificallydesigned for the devulcanizatipnocess
The extent and quality of devulcanization were evaluated through the measurements of
crosslink density, soluble fraction and Mooney viscosity, and by using the Horikx diagram.
Results showed that a high degree of reclaiming (~90%) was obtained, independently of the
barrel temperature. The samples with the best devulcanization qualitggisamples with a
more selectivesulfur bond scission, were found to be those treated &wer input
temperature. This was explained by the effect of the rubber homogenous self-heating which
contributes to the local increase of the material temperature, during the devulcanization
process. Moreover, it was found that the properties of the devulcanized rubber/virgin rubber
blends were not significantly affected by the addition of the treated rubber. Results suggest
that the entire natural rubber industry waste could be recydledew competitive products,
with low energy consumptionThis would presen@a real contribution to the industrial

recycling and thus a noticeable improvement of the environment.
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1. Introduction

The industrial rubber scraps and the end-of-lifbber products have become a serious
environmental problem (Garcia et al., 20C&nuwila et al., 2018 Despite the efforts made
to recyclewaste rubber, an important fraction is still latid@i (Molino et al., 2018)which
represent a real environmental hazard (Burlakowd.eP017) In fact, the stacking of rubber
scraps promotes the growth of mosquitoes and redesmid also they can produce
spontaneous heatingsulting infire (Colom et al., 2016)Because of their three-dimensional
structure and their composition that includes ssmve&omponents, recycling rubbers
difficult and thus represents a current technolalgihallenge (Shi et al., 2014; Sienkiewicz et
al., 2017). Nowadayshe majority ofrubber wastess burnt or discarded;ausing diseases
and ecological contaminatidilsayev, 2013; Molino et al., 2018; Pehlken and IE1il2009).
However, during the last few decadseyeral processes have been developed to reuse the
waste rubber (Asaro et al., 2018). One solutioto isecycle the discarded rubbers as fuel in
the cement industries. Another solution is to grihid waste to convert it into powder or
granulates which are then used in bituminous meguZanetti et al., 2015;arina et al.,
2017, concrete (Si et al., 2018)y as reinforcing fillers in polymeréSripornsawat et al.,
2016; S. L. Zhang et al., 2009). Neverthelesspttjective is to devulcanize the waste rubber
in order to reuse it in new competitive product€@ et al., 2017), trying to reach the same
properties of the materials obtained from virgiblrars (Kim et al., 2015) his task consists
of breakingselectively the sulfur-sulfur (S—S) bonds or theboa-sulfur (C—S) bonds without
affecting the main chain of the polymer i.e. thebca-carbon (C—C) bond$his is a difficult
processas the energies needed to break the S-S and C—% {§@aa7 and 273 kJ/mol,
respectively) are not so different from the energguired to break the C-C bonds (348
kJ/mol) (Ramarad et al., 2015; Sabzekar et al.5R@or practical purposes, several authors
have proposed schemes to describe different deviabtgon mechanisms (Anu Mary et al.,
2016; Mangili et al., 2014; Zhang et al., 2018).

Many types of devulcanization processes are predeint the literature: chemical (Anu
Mary et al., 2016), microwave (Aoudia et al., 20Eéghar et al., 2015), ultrasound (Mangili
et al., 2015; Mende et al., 2016), thermo-mechar{daysami et al., 2017), etc. However,
the most suitable technigie be industrially applieis the thermo-mechanical method. This
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Is because it is based on the use of an extrudiehwdicommon equipment in the rubber and
thermoplastic industry, and it can produce highrdegf devulcanization (Fukumori et al.,
2006; Tzoganakis and Zhang, 2004; Yazdani et @lL1P Also, this technique is adapted to
the mass production, is easy to implement, anché the advantage of being continuous,
allowing the treatment of large quantities ofibber waste. Thermo-mechanical
devulcanizatiorhas been widely analyzed in the literafiparticularly during the last decade.
Maridass and Gupta et al. (Maridass and Gupta, )208ve worked on waste ground rubber
devulcanization, in a twin screw extrudegvealing that the temperature and the screw
rotation speed were the most important paramekeaighout the proces¥hey concluded
that it was possible to replace about 65 wt% ofvingin natural rubber (NR) by the recycled
rubber, inseveral applications.Ground tire rubber (GTR) devulcanization a pan-mill
mechano-chemical reactaras dondoy Zhanget al. (X. Zhang et al., 2009 hey found that
the quality of the devulcanized material was goedrby the screw speed and temperature.
Moreover, they showed that the properties of NRéttanized GTR blends were higher than
those of the NR/non devulcanized GTR materials,civiwas associated to the improved
interfacial interaction between NR and the devuloesh GTR In 2013, Formeleet al.
(Formela et al., 2013)ave worked on rubber devulcanizatioran extrudeequipped with a
specific screw. They found that it was possiblaise a lower devulcanization temperature
with the addition of a plasticizing system thatmdes high shear strain in the rubber. It was
also highlighted that the devulcanization degreegases by increasing the screw spéée.
mechanical behavior of the final recycled materialas comparable to those based on
commercial recycled rubben the same year, Shi et al. (Shi et al., 20i8)e studied GTR
reclamation by several techniguesne wasdone in a twin screw extruder at different
temperatures. The authors concluded that high sioeees, high temperature and oxygen
have negative effects on the devulcanization, exaill these parameters promote the main-
chain breakage. In 2016, Ghorat al. (Ghorai et al.,, 2016aworked on the NR
devulcanization in an open roll mixing mill. Theyamly found that the rate ofuring
increaseand the optimum cure time decreases with devulaéiniz time. They also showed
that the elongation at break and the tensile stheofythe revulcanized rubber increases with
the devulcanization time. In 2017, Barb@gal. (Rafael Barbosa, Anderson Thadeu Nunesa,

2017) have analyzed the thermo-mechanical devaton of vulcanized NR with three
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different crosslink densities. It was shown tha¢ tmaterial with higher initial crosslink
density was the most devulcanized. This was ex@thby the fact that when the material has
more sulfur bonds, these are more susceptiblee brokerby a combination of shear stress
and temperaturé@therauthors alsatudiedthe continuous devulcanization of waste rubber in
supercritical CQ@ (Jeong et al., 2014; Jiang et al., 2013; Meysadral.e2017, 2014). Results
revealedthat CQ facilitates the permeation afevulcanization agents insidbe rubber
network, allowing obtaining high devulcanizationéés.

In this work, the recycling through devulcanizatioh post-production NR was studied.
The rubber devulcanization was performed in a lagpe twin-screw extruder, at different
barrel temperaturesanging from 80 to 220 °C. Effects of the input temperatand the
rubber self-heating on the devulcanization qualigre studied. The self-heating phenomenon
is induced by the friction between the polymer mawslecules during the mechanical
shearing of the material, and contributes in treallancrease of the material temperature. It
was concluded that the NR industry waste couldelbgaled and reused, without significantly
altering the properties of the final products. Tie extent of our knowledge, the effect of the
material self-heatingluring the rubber devulcanization, and the presentedtselsave never

been reported in the literature, at least, in éeeof NR thermo-mechanical devulcanization.
2. Experimental
2.1. Vulcanized material

The rubbemvasteused in this study comes from NR parts obtainedhfction molding.
The rubber composition was determinedtbgrmogravimetric analysi€T GA) according to
ASTM Standard D6370-99(2014). A sample of about i was heated from room
temperature to 550 °C, under nitrogen)(Btmosphere. Then, it was cooled down to 300 °C
The purge atmosphere was changed to air and the ruvideheated again to 800 °C. The
heating rates were 10 °C/min.

Before the devulcanization treatment, the NR was#s grinded to particles with a
reasonable economical size, i.e. 0.8 to 4 mm, wsikigife mill. It is worth noting that theost

of grinding rubber is approximately 120 €/tfor particles of 1-3 mm size, 130ton for
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particles of 0.8-2.5 mm size and 30@onfor particles with dimension under 0.8 mm (Phenix
Technologies, 28800 Sancheville, France).

2.2. Devulcanization process

Thermo-mechanical devulcanization of NR was coretligh a large scale twin screw
extruder Leistritz ZSE 27 MAXX 48D, schematicallyepented in Fig. 1a. The mentioned
machine is a semi-industrial extruder that is usetthe industry to devulcanize rubber with a
maximum flow rate of 30 kg/h. It is also used tdimize the devulcanization parameters and
then apply thento larger-scale extruderfhe extrusion was done with a screw profile of 28
mm diameter that waspecifically designed for rubber recycling. Fig. 1b illustratbe
geometry and configuration of the screw. It is ded in three zones as in the work presented
by Fukumori et al. (Fukumori et al., 2001). Thesfipart is composed by conveying and
kneading elements that prepare the material tcelaldanized Thesecond paris the central
devulcanization zone followed by a vacuum extracéod finally the discharge. Conveying
elements of different lengths and pitches were usedontrol the pressure during the
extrusion process. Kneading elements of differengths, offsets and pitch angles were used
to control the rubber shearing into the extruder.

The used barrel temperatures were 80, 100, 120,160 180, 200 and 220 °C. In each
test, the temperature was constant along the ldszainthe barrel (Fig. 1a). The devulcanized
samples were named as dNR-X, where X correspontetbarrel temperature. The extruder
screw speed was 240 rpm, the material feed ratebvkagh, and the die temperature was 80
°C. All the mentioned parameters remained constarnig the tests.

Considering that the applied shear induces an aseren the local temperature of the
rubber, the real temperature of the material isakarre between the average temperature
provided by the barrels and the one generatethdynaterials’ self-heatind.o qualitatively
take into account this phenomenon in the analysith® results, the temperature of each
sample was measured at the output of the extrudleravaser thermometer.
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Fig. 1. (a) Twin screw extruder and (b) screw configuratiged to perform thermo-

mechanical devulcanization
2.3. Revulcanization process

Eight materials were obtained after devulcanizafprocess. Three of those materials
devulcanized at low, middle, and high temperatures,dNR-100, dNR-160 and dNR-220,
were revulcanized according to a common industoiahulation given in Table 1 (Ghorai et
al., 2016a; Rooj et al., 2011). The selection oRdNO over dNR-80 as low devulcanization
temperature will be discussed later, in section [3a8ed on the results presented in Fig. 6.

The material presenting the best mechanical priggeftiNR100) was added to the virgin
rubber, in quantities of 5, 10 and 20 wt% (Table 2)

During processing, the exact amounts of compondiatisle 1 or Table 2) were mixed in a
roll mixing mill and therrevulcanized during 5 minutes, at 150 MPa and 18B0irf a 150 x
200 x 2 mm mold. In this revulcanization process, the samewarhof sulfur and accelerator
(CBS) was usedwhich gives rise to the formation of sulfur linkéth different lengths, i.e.

mono-, di- and poly-sulfur links. The mentioned nindations could be used in real

6



167

applications without any change. Thbtainedmaterials were named as dNRv-X, where X

168 corresponds to the devulcanization temperature. chematic representation of the
169 experimental procedure carried out in this workhewn in Fig. 2.
170 Tablel
171 Formulation for revulcanizing the devulcanized rebb
Devulcanized NR Components
Material (phr) (phr) i
dNR-100 dNR-160 dNR-220 StearicAcid ZnO CBS S
dNRv-100 100 0 0 2 4 15 15
dNRv-160 0 100 0 2 4 15 15
dNRv-220 0 0 100 2 4 15 15
172 "CBS: N-Cyclohexyl-2-benzothiazole sulfonamide
173 Table2
174  Formulation for revulcanizing théNR-100/virgin NR blends
Components 175
Material i o NR NR-100 StearicAcid ZnO CBS S
(Wt%)  (wt%) (phr)  (phr) (phr) (phr)
Virgin NR 100 0 2 4 15 15
dNR-100(5) 95 5 2 4 15 15
dNR-100(10) 90 10 2 4 15 15
dNR-100(20) 80 20 2 4 15 15
176 "CBS: N-Cyclohexyl-2-benzothiazole sulfonamide
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Fig. 2. Experimental procedure
2.4. Characterization of reclaimed rubber

2.4.1. Degree of devulcanization

The degree of devulcanization was evaluated bysthelling test, aftetthe extraction
process in a Soxhlet extractor. The extraction ease with acetone during 16 h, according to
the Standard ASTM D297-02. After drying, the sampkes weightedry) and swelled in
toluene, at ambient temperature, during 72 h, vafreshing solvent every 24 h, according to
ASTM D 6814-02. The swollen sample was weigh@] &nd then dried in an oven, at 70°C
overnight. Finally, the dry sample was weightew)( This procedure was done in triplicate
for each material.

The soluble fraction was given by equation (1):

%S = 0 % 100 (1)

(4

The density of the rubbep,§ was evaluated bghe hydrostatic weighing procedure. The
sample was weighed in aim{;) and weighed again while immersed in methan®lethano),

then the density was calculated using equation (2):

Pr = Pmethanol X —Talr (2)

Mair—Mmethanol
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wherepethanot 1S the methanol density at room temperature.

The crosslink density, was estimated using Flory-Rehner’'s model giveedpyation (3):

=[In(1-V;)+Vr+ x V%]
Vi (V2= /2)]

®3)

Ve =

whereV,, y andV; are, respectively, the rubber volume fractionha swollen sample, the
rubber-solvent interaction parametgr< 0.391 for NR-toluene) and the molar volume of
toluene (106.3 mL/mol).

The rubber volume fractiov, was calculated with equation (4):

mg/pg
=~ d/fd 4
T mg/pa + ms/ps ( )

wheremy andpq are, respectively, the mass and density of dudther, andns andps are the
mass of the toluene absorbed by the sample adéritsity at room temperature.

The degree of devulcanization of each sample wasllesed using the following equation:

%Devulc. = [1 — v—f] %X 100 (5)

Vi

where v; and v; are, respectively, the crosslink densities of thbber before and after

devulcanization, evaluated using equation (3).

2.4.2. Horikx diagram

The analysis of the decrease in crosslink densitlythe variation of the soluble fraction
was done by using the Horikx diagram (Horikx, 195B) this diagram the decrease in
crosslink density is related to the amount of sl@dlaction in the rubbeiin such a way that
both the degree and quality of devulcanizationthim sense of crosslink against main chain
scission, can be qualitatively deduced. The Hotheory, based on the work of Charlesby
(Charlesby, 1953), has been extensively describéleiliterature (Verbruggen et al., 1999)
and was recently checked experimentally by Verbeaget al. (Verbruggen et al., 2016).

2.4.3. Mooney viscosity
The viscosity of the devulcanized rubber was meabkwith a Mooney Viscometer
MV2000 from Alpha Technologies, according to the TAf D1646 Standard. The test

consistsof the slow and continuous rotation of a disk in atbd chamber filled with rubber,

9
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for a given time. The resistance to this rotatiotuiced by the rubber is measured, in arbitrary
torque units, as the Mooney viscosity of tiested materialln this study samples were

preheated during 1 minute, and the viscosity waasoed after 4 minutes of testing, at 100
°C. Theresults are presented as ML (1+4) 100 °C. At Iéasteasurements were carried out

for each material.

2.4.4. Hardness Shore A

The hardness was measured for the materials dNEBJI0EINR-100(10), dNR-100(20),
obtained by mixing the devulcanized NR with virgiR (Table 2). Tests were performed
with a digital durometer Sama Tools SA6610A, acocgdo the Standard 1ISO 7619-1:2010.

2.4.5. Mechanical properties

Tensile tests were achieved on the revulcanizebemst(Tables 1 and 2), according to the
ISO-37 Standard, using a Shimadzu AGS-X tractioohime equipped with a 5 kN load cell,
at ambient temperature. H2 dumbbell specimensrofri2thickness were used. The crosshead

speed was 500 mm/min and the strain was measuthdwiextensometer, during the test.

3. Results and discussions
3.1. Waste material characterization

The rubber composition was determined by TGA. NRsrlass and its derivative (DTG)
are reported, as a function of temperature, in Biggetween 200 and 300 °C, the first mass
reduction under B atmosphere (about 6 wi%)orresponds to the volatilizatioof
components of low boiling points and the processiiigy The next mass reduction, still under
N, atmosphere (about 70 wt%), corresponds to theoetes. The second part of the cycle,
carried out in air,does notaffect the final mass of the sample. Thus, the Bbtwt%
corresponds to the mineral fillers. Similar anak/zge reported in (de Sousa et al., 2017;
Ghorai et al., 2016b; Mangili et al., 2014).

10
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Fig. 3. NR mass loss and its derivative (DTG) as a funabibiemperature
3.2. Devulcanization analyzes

When a rubber is subjected to shear strains, ticgofi produced between its chains
dissipates a part of the total received energyhan form of heat, which results in a local
temperature increase known as self-heating. Tatgtiaély evaluate this phenomenon in the
devulcanization process, the temperature of thelldamized rubber was measured at the exit
of the extrusion die. The results are reported asction of the barrel temperature, in Fig. 4.
This figure shows that the devulcanizate tempeedinearly decreases from ~155 °C to ~113
°C when the barrel temperature increases from 8®°220 °C, with a slope break at the
barrel temperature of 140 °C. The slope of the edm®low this threshold point is ~3.5 times
greater than the slope displayed at barrel temypessuperior to 140 °C. This result suggests
that the self-heating phenomenbappensat all input temperatures and its effects quickly
increase as the barrel temperature decreaseg mngerom 80 °C — 140 °C. This growth is
less significant for higher input temperatures @0 1°C). The self-heating phenomenon
mainly results from friction between the rubber noacolecules. It could bexpectedthat
increasing input barrel temperature reduces ergamghts between macromolecules and

facilitate their mobility, andhereforedecreases the friction and the self-heating. Téwdt of

11
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this decrease is less significant beyond the inpaotperature threshold value of 140 °C.
Actually, the average temperature of the rubbeinduhe devulcanization treatment could be
considered as a balance between the barrel temmperatd the temperature induced by the

material self-heating.
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Fig. 4. Temperature of the material at the exit of theweder die as a function of the barrel

temperature (3 measurements were done in eachticondi

The rubber Mooney viscosity can be readily and kjuieneasured, and it is obviously
related to the network configuration of the maferfso, it is possible to evaluate the
processability of the rubber by Mooney viscosityasiwements. Indeed, a high viscosity
limits the rubber to be processed in a precise shagile a very low viscosity hinders
processing (Zhang et al., 2018).

Fig. 5 shows that the Mooney viscosity of the deanlzed NR decreases strongly as the
barrel temperaturencreasesup to 180 °C, and remains almost constant for drigh
temperatures. It should be noticed that the lowerNlooney viscosity values of the treated
rubber, the higher the number of broken bonds duhe devulcanization process, as reported
by Si et al. (Si et al., 2013) during the devuleation of ground tire rubber in a twin-screw
extruder. However, this parameter cannot give aa idbout the quality of the performed

devulcanization treatment, i.e. if was done by sliok scission or main chain scission. Thus,

12



282 additional characterizations are necessary to gleaphalyze the results with the Horikx
283 theory.

284 The values corresponding to the soluble fractis®i(Eq. 1) are also reported in Fig. 5. The
285 curve shows that the soluble part of the polymerdaseswhen increasing the barrel
286 temperature, confirming that the quantity of low lewnlar weight compounds becomes
287 higher as the input temperature growths, whicisgreement with the Mooney viscosity
288 results. The soluble fraction evolution reflects tthanges in the 3D-macromolecular network
289 of the treated rubber. The analysis of this aspdgthh the Horikx diagram is presented
290 hereatfter.
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292 Fig. 5. Mooney viscosity and soluble fraction of the deanized NR as a function of the

293 barrel temperature (3 samples were tested in eauditon)

294 Theoretical Horikx curves and the experimental fsoare presented in Fig. 6. The analysis

295 consists of considerinthat the experimental points positioned near theetocurve (solid

296 line) correspond t@ more selective sulfur scission, and those locatest the upper curve

297 (dash line) correspond to main chain scission asignper degradation. The points between

298 the two curves undergo reclaiming, a combinatiotbwben devulcanization (sulfur bond

299 scission) and degradation (main chain scissiomartbe seen that the experimental points are
13
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positioned between the two theoretical Horikx csrwehich means that the treated rubbers
underwent a reclaiming process. Moreover, it canobserved thata high degree of
reclaiming, near 90%, was obtained for all the dasjpwhile the soluble fraction increases
with increasing the barrel temperature. This mdhas a rise in the barrel temperature just
induces polymer degradation, without improving deanization quality. It was reported by
several authors (Jiang et al., 2013; Meysami eR8IL7; Rooj et al., 2011) that it is possible
to reach a very high devulcanization degree bycsalg the optimum devulcanization
conditions. In the case of thermomechanical devidedion some of the parameters that can
be modified are the screw profile, temperatureedpetc. The most devulcanized samples
were those treated at 80 °C and 100 °C, correspgndi the experimental points that are
closer to the lower theoretical curve of Horikx.€Tpoint representing dNR-100 is in the right
of the point representing dNR-80, which means ttreg first material hasa greater
devulcanization degree thamat ofthe second one. Even though the difference is skgit,
100 °C was selected as the lower devulcanizatiopégeature. It should be noticed that these
samples displayed the highest temperatures, ~1%5n8C-145 °C respectively (Fig. 4), at the
exit of the extrusion die, i.e. they underwent thest pronounced self-heating. It is worth
clarifying that the temperature induced by the erxdelf-heating is quite homogeneous in the
material, while the distribution of the barrel teengture depends on the thermal conductivity
of the treated rubber.

It is clear that the self-heating, which dependsbpbly on many factors (type of material,
guantity and kind of fillers, crosslink density,put temperature, shear rate), has a helpful
effect on the devulcanization qualifjhereforg it is necessary to include this phenomenon in
the analysis of the thermo-mechanical devulcaromatiThe high devulcanization level
reached in this study, ~90%, is an important figdias the proposed procedure could be
directly applied on an industrial scale to recygleater quantities of waste rubber. In
addition, the obtaining of such devulcanization réegat low input temperature (100 °C)
represents a significant energy saving. The conduenergy during the extrusion, at 100 °C,

wasapproximately0.35 kWh/kg.
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Fig. 6. Soluble fraction of devulcanized NR against relatilecrease in crosslink density
3.3. Revulcanized materials properties

3.3.1. Revulcanized materials based entirely ogaled rubbers

To better understand the changes in the rubbectstas of dNRv-100, dNRv-160 and
dNRv-220, induced by the devulcanization and reanilzation processes, the crosslink
densities and soluble fractions of these matemnedse evaluatedThe results with their
corresponding standard deviation are shown in Tabléhe higher crosslink density of the
dNRv-100 denotes the better ability of this matet@abe revulcanized, fact that could be
associated to a probable preservation of long petyohains during the devulcanization
treatmentAlso, the increase in the soluble fraction with higtlevulcanization temperatures
denotes the increase in the quantity of low mokcweight compounds, which suggestse
in rubber degradation when theput temperature grows. The modulus E at 100% of
deformation (M 100%), stress at break, and elongadit break of the dNRv-100, dNRv-160
and dNRv-220 are also presented in Table 3. Inrdaogce with the changes in the crosslink
density, the mechanical properties of these mdsedacrease as the barrel temperature
increases. These results are in agreement witle ttegrted by Shi et al. (Shi et al., 2013)
who mainly concluded that high temperature reclaonaieads to materials with low
mechanical properties. The highest mechanical ptiegsevere obtained for the revulcanizate
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348 produced with the rubber devulcanized at 100 °€,Ithwer barrel temperature, namely the
349 condition that favors the material self-heatingg(F). As indicated in Rooj et al. (Rooj et al.,
350 2011), only at an appropriate devulcanization lette structure of the rubber is destroyed
351 but still has a certain degree of deformability gsidsticity. Therefore,the revulcanized
352 materials mechanical properties suggest that dNRid.€he best devulcanized material to be
353  blend with virgin rubber.

354 Table3

355 Crosslink density, soluble fraction and mechanpraperties of the revulcanized materials

Material/ Soluple Cross!lnk M 100% Stress Elongation
Propert fraction density [MPa] at break at break
PELY %] [x 10"moalfcm? [MPa] [%]

dNRv-100 4.57 £0.31 2.325+0.026 1.25+0.0311.00+0.29 518+8
dNRv-160 5.73+£0.06 2.059+0.040 1.11+0.0110.20+0.49 48811
dNRv-220 7.55+0.58 1.812+0.029 1.06+0.048.87 +0.08 481 +13

356 3.3.2. Revulcanized blends with virgin rubber

357 The devulcanized rubber with high degree and beslity of devulcanization, dNR-100,
358 was blended with virgin NR, in different quantiti@&able 2). According to the Horikx theory,
359 the devulcanization qualitys improvedas the experimental points are near to the Horikx
360 curve that represents crosslink scission (Fig. 6).

361 Tensile test results of the blends are present&ichivle 4. It can be seen that the rigidity
362 modulus of the material decreases as the quartitlewulcanized rubber increases, which
363 means that the blends become more ductile witldéwellcanized rubber content. Moreover,
364 for 5 and 10 wt% of recycled rubber, the decreasthé stress at break of the blends is of
365 approximately6% and 3%, respectively. However, when this qiyammticreases to 20 wit%,
366 the reduction in the stress at break is more pmooed approximately14%. The decrease in
367 this property was attributed to th@&tial crosslinkingof the devulcanized NR, that induced a
368 poor compatibility between the virgin and devulezaai rubbers, and to the possible presence
369 of short polymer chains in the devulcanized NR tieatuces the stress transmission. The
370 elongation at break was not affected by the ina@fpen of devulcanized rubber in the virgin

371 NR, suggesting that the global stretching of theemia was not altered by the local changes
16



372 in the 3D-macromolecular network produced by thesence of the recycled NR. The surface
373 hardness of the blends has not changed appredahilye addition of recycled rubber in the
374 virgin NR. Similar results were reported by Roojét(Rooj et al., 2011) when they studied
375 the mechanical properties of blends based on dawizled NR with different proportions of
376 virgin rubber. Finally, it can be concluded fronethbove results that the rubber industry
377 wastes can be devulcanized and reintroduced ingo pioduction without considerably
378 affecting the quality of the final materials. Thigll allow manufacturers to eliminate a
379 considerablequantity of the waste rubber, at a relatively loast, which represents an

380 advance in the industrial recycling and thus acaatblemprovement of the environment.

381 Tabled

382 Mechanical properties of virgin rubber/recycledivabblends

Stress Elongation

Material/Property M 100%  at break at break 'gro(:giss
[MPa] [%]
Virgin NR 23+0.2 288+0.7 643 +8 60+ 1

dNR-100(5) 21+01 27.1+0.6 628 £ 15 60 + 2
dNR-100(10) 20+0.1 28.0+0.8 655+ 17 59+1
dNR-100(20) 1.8+0.2 253+05 648 + 9 571

383 4. Conclusion

384 Devulcanization of post-production NR was performi@da large scale twin-screw
385 extruder, at different temperatures, with a screwfile specifically designed for rubber
386 recovery. High degree of reclaiming (~90%) was mlgd. The Horikx diagram was used to
387 analyze the swelling test results and it was fotlmad the samples with more selective sulfur
388 bond scission were those treated at 80 and 1001i{S.was explained by the effect of the
389 rubber self-heating which have increased the teatper of these samples up to, respectively,
390 ~155 °C and ~145 °C, during the devulcanizatiorcess. It is therefore necessary to include
391 the material self-heating phenomenon in the amalysf the thermo-mechanical
392 devulcanization. It was also revealed that an emxein the input temperature does not

393 necessary promotes devulcanization. In this sthbher screw temperatures just induced
17
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polymer degradation, without any increase in theutbanization degree and without any
improvement in the revulcanized materials propsrtnalysis of the mechanical properties
of the dNR-100/virgin NR blends led to concludettiiae NR industry waste can be
devulcanized at low input temperature and reintcedu into the production without
significantly affecting the quality of the final guiucts. Results suggest that the NR industry
waste could belmostentirely recycled with low energy consuming, whrelpresents a real
contribution to the industrial recycling. As a peestive, it would be interesting to analyze the
effects of parameters such as the type of material, trentify and the kind of fillers, the

crosslink density, and the shear rate, on the nubdléheating during devulcanization.
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