
HAL Id: hal-03485918
https://hal.archives-ouvertes.fr/hal-03485918

Submitted on 17 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous algorithm of an endogenous peer-to-peer
electricity market

Alyssia Dong, Thomas Baroche, Roman Le Goff Latimier, Hamid Ben Ahmed

To cite this version:
Alyssia Dong, Thomas Baroche, Roman Le Goff Latimier, Hamid Ben Ahmed. Asynchronous algo-
rithm of an endogenous peer-to-peer electricity market. 2021 IEEE Madrid PowerTech, Jun 2021,
Madrid, France. pp.1-6, �10.1109/PowerTech46648.2021.9495009�. �hal-03485918�

https://hal.archives-ouvertes.fr/hal-03485918
https://hal.archives-ouvertes.fr

Asynchronous algorithm of an endogenous
peer-to-peer electricity market

Dong Alyssia, Baroche Thomas, Le Goff Latimier Roman, Ben Ahmed Hamid
SATIE Laboratory

Ecole Normale Superieure of Rennes
Rennes, France

{alyssia.dong, tbaroche, roman.legoff-latimier, benahmed}@ens-rennes.fr

chronous versions of an optimal power flow (OPF) were
studied. In [5], the asynchronous, ADMM based, distributed
OPF reduced significantly the convergence time while also
increasing the gap of the objective function. In [6], an ADMM
based distributed OPF was also studied, but this time on a lat-
eral branching network. Different strategies were investigated
to replace the loss of information due to the asynchrony, which
lead to fluctuations in the solutions. A Lagrangian relaxation
based decentralized OPF was studied in [7], in which indi-
vidual markets communicate with each other asynchronously.
The asynchronous updates lead to the optimal solution with up
to 50% time reduction. The convergence of the asynchronous
resolution of a multi-time step energy optimization problem
in a microgrid, using ADMM is discussed in [8]. The results
may deviate from the optimal solution if the communication
delays are too high. In all of these decentralized schemes, there
is a communication link between agents that are physically
connected by a power line, as opposed to our algorithm in
which the communication links are independent of the power
network topology.

After formulating the endogenous peer-to-peer market in
II, we propose in III an asynchronous algorithm to avoid
communication or computation latencies. The simulation plat-
form presented in IV is based on a 31 agents testcase. The
simulation results discussed in V confirm that the asyn-
chronous algorithm converges towards the same solution as
the synchronous one regarding the power dispatch. The impact
of various delays and asynchronism parameters are further
investigated.

II. ENDOGENOUS PEER-TO-PEER MARKET

A. AC regularized peer-to-peer electricity market

The problem addressed in this paper is an optimal power
flow based on a peer-to-peer market clearing algorithm de-
scribed in [1], consisting of N agents part of a community Ω,
performing multi-bilateral trades with each other. A system
operator (SO) is added here to verify that the AC networks
constraints are respected and to induce the market peers to
change the solution otherwise. In order to account for the
network losses, a new agent is added to the peer-to-peer
market, called the loss provider. This agent is buying the
losses to the producers of the market. We note the extended
set of peer-to-peer market agents Ω∗ = Ω ∪ {Loss} with

Abstract—As the number of actors in the electricity market
increases, peer to peer decentralized markets gain interest despite
facing two challenges. First, the amount of exchanged messages
increase significantly, w hich m akes t he r esolution d ependent on
communication delays, as well as computation delays. Second, the
physical limitations of the power network are not taken into ac-
count. An asynchronous implementation of an endogenous peer-
to-peer market is here introduced to address these difficulties.
The proposed algorithm is tested on a 31 agents testcase and a
study of the influence o f t he v arious a lgorithm p arameters on
the convergence time is performed.

Index Terms—peer-to-peer, market, endogenous, optimal
power flow, a synchronous, delays

I. INTRODUCTION

The economic dispatch problem allows the producers and
consumers of an electrical network to schedule in advance
the production and consumption plan. As the number of
distributed energy resources (DERs) grow, it can be argued
that a decentralized clearing mechanism is more suited to the
problem than a centralized one. Indeed, decentralization allows
scalability and data privacy, in exchange of communication be-
tween agents. The ADMM based peer-to-peer market clearing
algorithm proposed in [1], from which we base our study, also
enables agents to express heterogeneous preferences.

Yet, the market clearing alone is not sufficient as it does not
take into account the physical limitations of the network. A
system operator (SO) needs to verify the physical feasibility
of the solution in terms of line congestions and voltage limita-
tions. Involving the SO into the resolution to ensure feasibility
is thus mandatory. However, the resolution of the problem still
needs to be decentralized. This induces a significant increase
of exchanged messages both between peers and with the SO.
Therefore, the convergence rate of the peer-to-peer algorithm
heavily depends on the state of the communication network
and the computation time of the various agents.

The convergence of asynchronous ADMM based consen-
sus algorithms have been studied in [2]–[4], whether it be
distributed or fully decentralized. In both cases, convergence
of the algorithm was proven under the assumption of either
bounded delays, or that the probability of each message to
arrive was non null. Moreover, in several papers the asyn-

Loss representing the loss provider agent. The AC regularized
peer-to-peer electricity market problem is written in (1). The
variables pn (resp. qn) represents the active (resp. reactive)
power injected or consumed by agent n ∈ Ω∗ in the network.
It is positive if the power is actually produced, negative
if consumed. The variable pnm represents the active power
traded from agent n to agent m. We note ωn the set of all
market partners of agent n.

min
(pn)n∈Ω∗ ,(qn)n∈Ω∗ ,P

∑
n∈Ω∗

cn(pn, qn) + ζ̃AC(P,Q) (1a)

s.t. P = PT (1b)

pn =
∑

m∈ωn

pnm n ∈ Ω∗ (1c)

pminn ≤ pn ≤ pmaxn n ∈ Ω∗ (1d)
qminn ≤ qn ≤ qmaxn n ∈ Ω∗ (1e)

pLoss = −
∑

n∈Ω
pn (1f)

Equation (1a) consists of minimizing the cost function of
all the agents in the community, while remaining within the
physical constraints. The regularization function ζ̃AC is equal
to zero if the AC network constraints are respected, and +∞
if they are violated. The bilateral trades constraint (1b) ensures
that the trades are symmetrical: pnm = −pmn. The total power
produced or consumed by agent n is equal to the sum of all its
trades, as stated in (1c). Equations (1d)-(1e) account for the
physical limitations of the producers and consumers, whilst
the network losses are estimated in (1f).

B. ADMM problem resolution
The problem described in (1) is decomposed into smaller

problems using the ADMM method, which leads to (2). The
mathematical steps leading to these equations are detailed
in [1]. Each smaller problem is local to an agent n ∈ Ω∗.
Iteratively, each agent n ∈ Ω∗ solves its own problem,
described in (2a)-(2d), and communicates the latest results
with its trading partners m ∈ ωn and the SO. At the same
time, the SO performs its own computations described in (2e)-
(2g), and in turn communicates the latest results with the
market peers in Ω∗. Equations (2h)-(2j) refer to the ADMM
dual variables updates performed by market peers and the SO.
The superscript k represents the global iteration counter. For
readability reasons, the function σρ is introduced in (3). It
represents the augmented lagrangian part of the new objective
functions, with ρ being the ADMM penalty factor.

(pn, qn, Pn)k+1 = argmin
pn,qn,Pn=(pnm)m∈ωn

cn(pn, qn) (2a)

+
∑

m∈ωn

σρ
(
pnm,

pknm−pkmn
2 ,λk

nm

)
+σρ

(
pn,

p
SO,k
n +pkn

2 ,ηp,kn

)
+σρ

(
qn,

q
SO,k
n +qkn

2 ,ηq,kn

)
s.t. pn =

∑
m∈ωn

pnm (2b)

pminn ≤ pn ≤ pmaxn (2c)
qminn ≤ qn ≤ qmaxn (2d)

(PSO, QSO)k+1 = argmin
PSO=(pSO

n)n∈Ω,

QSO=(qSO
n)n∈Ω

ζ̃AC(PSO, QSO) (2e)

+
∑

n∈Ω

[
σρ
(

p
SO,k
n +pkn

2 ,pSO
n ,ηp,kn

)
+σρ

(
q
SO,k
n +qkn

2 ,qSO
n ,ηq,kn

)
+σρ

(
pSO,k
n − 1

|Ω|
p
SO,k
Loss

+pkLoss
2 ,pSO

n − 1
|Ω|p

SO,k
Loss ,

1
|Ω|η

p,k
Loss

)]
pSO,k+1
Loss =−

∑
n∈Ω

pSO,k+1
n (2f)

qSO,k+1
Loss = qkLoss (2g)
λk+1
nm = λknm − ρ

(
pk+1
nm + pk+1

mn

)
/2 (2h)

ηp,k+1
n = ηp,kn + ρ

(
pSO,k+1
n − pk+1

n

)
/2 (2i)

ηq,k+1
n = ηq,kn + ρ

(
qSO,k+1
n − qk+1

n

)
/2 (2j)

σρ(x, y, z) = z(y − x) + ρ/2 (y − x)2 (3)

It should be noted that (2e) is equivalent to performing
a classical optimal power flow computation in which the
objective function of each agent n ∈ Ω is as follows in (4):

pSOn , qSOn 7→σρ
(

p
SO,k
n +pkn

2 ,pSO
n ,ηp,kn

)
+ σρ

(
q
SO,k
n +qkn

2 ,qSO
n ,ηq,kn

)
+σρ

(
pSO,k
n − 1

|Ω|
p
SO,k
Loss

+pkLoss
2 ,pSO

n − 1
|Ω|p

SO,k
Loss ,

1
|Ω|η

p,k
Loss

)
(4)

The SO performs the OPF near the latest solution of the trading
peers

(
(pkn)n∈Ω, (q

k
n)n∈Ω

)
which allows each agent n ∈ Ω to

keep their cost function private. The losses are then estimated
by the SO using (2f).

The algorithm stops once the global primal and dual resid-
uals reach a given value, as stated in (5).∑

n∈Ω∗
εp,k+1
n ≤ εp,tol2 and

∑
n∈Ω∗

εd,k+1
n ≤ εd,tol2 (5)

The global residual is made up of the sum of the local
residuals, which are described in (6) and (7) for the primal
and dual local residuals respectively.

εp,k+1
n =

1

4

∑
m∈ωn

(
pk+1
nm + pk+1

mn

)2
(6)

+
1

4

(
pSO,k+1
n − pk+1

n

)2
+

1

4

(
qSO,k+1
n − qk+1

n

)2
εd,k+1
n =

∑
m∈ωn

(
pk+1
nm − pknm

)2
(7)

+
(
pSO,k+1
n − pSO,kn

)2
+
(
qSO,k+1
n − qSO,kn

)2
C. Communication considerations

The variables pn, qn, (pnm)m∈ωn
, (λnm)m∈ωn

, ηpn and ηqn
are local to the peer agent n ∈ Ω∗. In order to perform its cal-
culations in (2a)-(2d) and (2h)-(2j), agent n also needs to know
the latest values of the variables (pmn)m∈ωn , (qmn)m∈ωn

which are communicated by all its trading partners m ∈ ωn
and also pSOn , qSOn which are communicated by the SO.
Moreover, the variables (pSOn)n∈Ω∗ , (q

SO
n)n∈Ω∗ , (η

p
n)n∈Ω∗ and

(ηqn)n∈Ω∗ are local to the SO. In order to perform its calcula-
tions described in (2e)-(2g) and (2i)-(2j), the SO also needs to
receive messages from the market peers that contain the latest

Fig. 1. Diagram of the various data exchanges between peers and between
the SO and the peers during the k-th iteration. In this example, agents n and
m are the only two market peers, and the SO represents the system operator.

values of the variables (pn)n∈Ω∗ , (qn)n∈Ω∗ . The various data
exchanges are represented in Fig.1 using an example market
constituted of two peer agents and the SO.

At the beginning of every iteration, each agent has to wait
for the arrival of l+ 1 messages: l = |ωn| messages from the
other peers and one from the SO. The waiting period depends
solely on the last message to arrive, which can be troublesome
if one of the agents takes longer to perform its computation
or if part of the communication network is experiencing a
slowdown due to congestion. As the market size increases, so
does |ωn|, thus these issues might considerably slow down the
global convergence time of the algorithm.

III. ASYNCHRONOUS IMPLEMENTATION

As discussed in II-C, the synchronous version of the endoge-
nous peer-to-peer algorithm presented in the previous section
is very sensitive to communication and computation delays.
To overcome this issue and make the algorithm more resilient
to delay variations, an asynchronous implementation of the
algorithm is introduced in this section. The asynchronous
version is based on waiting for only part of the messages to
arrive before continuing to perform the calculations described
in (2). Not waiting for the last messages to arrive is going to
significatively reduce the waiting period at every iteration. In
addition, the asynchronous version allows the SO to perform
fewer costly calculations.

In order for the asynchronous implementation to success-
fully converge, a few modifications need to be done in
comparison to the synchronous version.

Firstly, the fact that not all messages are taken into account
within the same iteration makes the superscript k, which
was the global iteration counter, obsolete. To replace it, we
introduce the local iteration counters (kn)n∈Ω∗ for each of
the market peers and kSO for the SO. This counter represents
the number of computations performed so far respectively by
each agent n or by the SO.

Secondly, as discussed in section II-C, the values
pSOn , qSOn , (pmn)m∈ωn

received by a peer agent n ∈ Ω∗ are
stored in local copies. These local copies are obviously only
updated if a message from either the SO or agent m ∈ ωn
arrives to agent n. The same goes for the SO local copies of
(pn, qn)n∈Ω∗ .

Algorithm 1 Market peer n ∈ Ω∗ asynchronous process
Require: ρ, σρ, ωn, cn, pminn , pmaxn , qminn , qmaxn

1: procedure MARKETPEERPROCESS
2: initialize pn, qn, (pnm)m∈ωn . local variables
3: initialize (pmn)m∈ωn , p

SO
n , qSOn . local copies

4: initialize (λnm)m∈ωn
, ηpn, η

q
n . dual variables

5: initialize kn, (knm)m∈ωn
, knSO . local counters

6: send pnm to m ∈ ωn
7: send pn, qn to the SO
8: repeat
9: wait for messages from Φknn following (8)

10: if SO ∈ Φknn then
11: update pSOn , qSOn from message
12: ηpn ← (2i), ηqn ← (2j)
13: for m ∈ Φknn do
14: update pmn from message
15: λnm ← (2h)
16: (ptempn , qtempn , P tempn)← (2a)
17: if SO ∈ Φknn then
18: pn ← ptempn , qn ← qtempn

19: knSO ← knSO + 1
20: send pn, qn to SO
21: for m ∈ Φknn do
22: pnm ← ptempnm

23: knm ← knm + 1
24: send pnm to m
25: kn ← kn + 1
26: until global convergence

Algorithm 2 System operator asynchronous process

Require: ρ, σρ, Ω∗ = Ω ∪ {lossProvider}, ζ̃AC
1: procedure SYSTEMOPERATORPROCESS
2: initialize (pSOn)n∈Ω∗ , (q

SO
n)n∈Ω∗ . local variables

3: initialize (pn)n∈Ω∗ , (qn)n∈Ω∗ . local copies
4: initialize (ηpn)n∈Ω∗ , (η

q
n)n∈Ω∗ . dual variables

5: initialize kSO, (kSOn)n∈Ω∗ . local counters
6: send pSOn , qSOn to n ∈ Ω∗

7: repeat
8: wait for messages from ΦkSO

SO following (8)
9: for n ∈ ΦkSO

SO do
10: update pn, qn from message
11: ηpn ← (2i), ηqn ← (2j)
12: (PSO,temp, QSO,temp)← (2e)
13: for n ∈ ΦkSO

SO \ {lossProvider} do
14: pSOn ← pSO,tempn , qSOn ← qSO,tempn

15: kSOn ← kSOn + 1
16: send pSOn , qSOn to n
17: if lossProvider ∈ ΦkSO

SO then
18: pSOLoss ← (2f), qSOLoss ← (2g)
19: kSOLoss = kSOLoss + 1
20: send pLoss, qLoss to lossProvider
21: kSO ← kSO + 1
22: until global convergence

Thirdly, the local variables don’t need to be updated at every
local iteration. Let n ∈ Ω∗ be a market peer. Its local variables
pnm and λnm are updated only if a message from agent m
has been received since the last local iteration. In the same
way, its local variables pn, qn, ηpn and ηqn are updated only if
a message from the SO has been received since the last local
iteration. The same update condition is applied for the SO to
the variables pSOn , qSOn , ηpn and ηqn for any n ∈ Ω∗.

Lastly, let us define a linkwise iteration counter knm which
represents the number of updates of the variable pnm if m ∈
Ω∗, and of the variable pn if m = SO. When agent n receives
a message from agent m ∈ ωn, the local copy pmn only gets
updated if knm = kmn. The same applies to the local copies
pSOn and qSOn . We define Φknn as followed in (8):

Φknn =

 message received from m

m ∈ ωn ∪ {SO} during iteration kn

and knm= kmn

 (8)

The local computation of agent n is triggered as soon as
enough messages have been received in compliance with
the knm = kmn constraint. The local iteration kn can be
incremented once |Φknn | hits a threshold whose influence will
be discussed in V.

The asynchronous version of the decentralized endogenous
negotiation mechanism are summarized in Algorithm 1 and
Algorithm 2 for the market peer process and the system
operator process respectively. We can use the equations as
written in (2) so long as any variable with the superscript k
is replaced by the latest updated version of the variable.

IV. SIMULATION PLATFORM

The asynchronous implementation of the endogenous peer-
to-peer market algorithm has been written in Julia. The open-
source code can be found on Gitlab1. The various message
exchanges have been simulated using a discrete event sim-
ulator: SimJulia. This simulation framework allows to add
communication and computation delays between each iteration
of every agent. The local peer problem written in (2a) being a
convex quadratic problem, it is solved using OSQP [9]. As for
the SO problem in (2e), it is solved using the PowerModels
[10] package in Julia as an AC optimal power flow model
with polar bus voltage variables. All simulations were run on
a Ryzen 9 3950X 16 core 3.5GHz/4.7GHz processor.

The algorithm is applied on a testcase inspired by the IEEE
39-bus test system, which was adapted in order to make the
consumers flexible, as in [1], [11]. This testcase is composed of
21 consumers and 10 producers, which each have a quadratic
cost function written as follows:

cn(pn) =
1

2
anp

2
n + bnpn (9)

Every consumer is a trading partner to every producer, and vice
versa. This hypothesis allows the final results to be equivalent
to that of a traditional optimal power flow.

1https://gitlab.com/satie.sete/endogenousp2p

TABLE I
AVERAGE AND STANDARD DEVIATION OF COMPUTATION DELAYS IN JULIA

PowerModels OSQP peer
AC-OPF producer consumer

E[computation delay] 75 ms 77µs 58µs
σ(computation delay) 15 ms 22µs 18µs

To model the communication delays between two agents,
every agent gets randomly assigned a 2-dimensional coordi-
nate. The farther two agents are from each other, the slower the
communication delay. The distance between any two agents is
defined as the euclidean distance of their coordinates. Within
this illustrative testcase, the distance dnm should not only
be seen as a representation of the geographical distance. It
can also be interpreted as proportional to the number of
communication nodes that add latency – e.g. routers.

The communication delay model is posed as a simple
deterministic parametric model such that:

∆Tnm = αdnm + β (10)

where ∆Tnm represents the communication delay of a mes-
sage sent by agent n to agent m. The parameters (α, β) repre-
sent the state of the communication network. The communica-
tion parameter β is the minimal delay of all communications,
whereas α accounts for the variations of delays between every
communication link. These parameters are set to have delays
ranging from 10 ms to 100 ms, which is roughly the delays
experienced for an internet connection.

As for the computation delays, the market peer local prob-
lem resolution is 1000 times faster than the AC OPF performed
by the SO, according to Table I. Only the SO computation
delays will therefore be taken into account thereafter. The
following results hold as long as the computation delays of
every market peer is negligible compared to that of the SO.
This hypothesis should be readily validated even if peers have
modest computing capabilities, considering the difference in
complexity between the two problems.

V. SIMULATION RESULTS

A. Results with communication delays

First of all, let us compare the solutions of the endogenous
problem with the reference solution given by Matpower AC
OPF in Fig.2. We can observe that the endogenous solutions,
whether synchronous or asynchronous, are similar with respect
to the active power injections. The same remark can be made
for the reactive power injections and for any value of δpeers
and δSO. The substantially small, but observable difference
between solutions are due to the various precision errors that
are carried over the few hundreds iterations for each local
agents.

The main focus of our study is the variations of the conver-
gence time of the algorithm and the number of computations
regarding to the asynchronous implementation. A single value
εp,tol

2
= 10−3 is thus chosen for the stopping criterion on the

10 20 30

−400

−200

0

200

400
Matpower AC

Synchronous endogenous

Asynchronous endogenous

Agent

A
ct

iv
e

po
w

er
 (M

W
)

Fig. 2. Power injection comparison between Matpower and endogenous
negotiation mechanisms. Asynchronous case with δpeers = δSO = 0.2.

primal residual. Similar results can be performed with different
values or a dual residual criterion.

The peer asynchronous parameter δpeer is defined as the
minimum proportion of messages that any peer must receive
before beginning the local iteration calculations:

δpeer =
|Φknn |
|ωn|+ 1

n ∈ Ω∗ (11)

with | · | being the number of elements in the set. If a peer
receives as many or more messages as dδpeer · (|ωn| + 1)e,
with d·e being the ceiling function, it triggers his local update.
For the sake of interpretability of the results, all peers are set
to the same δpeer value although they might differ in a real
implementation. Likewise, the SO asynchronous parameter
δSO is defined as the minimum proportion of messages that
the SO must receive before performing the local iteration
calculations: δSO = |ΦkSO

SO |/|Ω∗|. The case δpeer = δSO = 1
corresponds to the synchronous case because every agent
and the SO must wait for the maximum possible number of
messages.

Fig. 3 shows the normalized convergence time of the
asynchronous algorithm for various values of δpeer and δSO.
Here, we only take into account the communication delays,
which means that all computation delays are set to zero. The
convergence time has been normalized by the average commu-
nication delay, which is equal to 60 ms for this case study. We
can observe that the convergence time increases with the peer
asynchronism parameter δpeer, except when δpeer = 1. The
convergence time also increases with the SO asynchronism
parameter δSO as long as δpeer is not close to 1. However,
δSO has a smaller impact on convergence time than δpeer. The
configuration that seems to minimize the convergence time is
the one that has the smallest values of δpeer and δSO. This
configuration make the agents perform a computation every
time a message is received, which significantly increases the
number of local peer computations, and of SO computations,
which we will define as k∗SO.

As we can observe in Table II, the average number of
computations k∗SO increases as the SO asynchronous param-
eter δSO decreases. There is a five times increase in the

Fig. 3. Convergence time normalized by the average communication delay
versus the peer asynchronism parameter δpeer and the SO asynchronism δSO .

TABLE II
AVERAGE AND STANDARD DEVIATION OF THE SO’S NUMBER OF

COMPUTATIONS k∗SO W.R.T THE SO ASYNCHRONOUS PARAMETER δSO

δSO 1.0 0.6 0.2
E[k∗SO] 325 544 1603
σ[k∗SO] 1.6 14.6 82.9

number of SO computations k∗SO for δSO = 0.2 compared
to the synchronous case. This significant increase leads to a
large computational workload for SO, which means that its
processing time needs to be taken into account throughout the
subsequent study.

B. Results with communication and computation delays

In this section, we add various values of computation time
for the system operator. On the basis of Table I and II, the
SO will not have enough time to compute a full OPF between
each received message if his computation time has the same
order of magnitude than communication delays. Thus, the
real number of SO’s computation will probably be smaller
the one in Table II. Let us note cSO the computation to
communication ratio, which is equal to the SO computation
time normalized by the average communication delay. Figure 4
shows heatmaps of normalized convergence time with respect
to both asynchronous parameters δpeer and δSO, and for three
values of the cSO ratio. The first heatmap, with cSO = 0,
represents the same case study as the previous section where
there were no computation time, for comparison. The second
and third heatmaps show cSO = 1 and cSO = 3 respectively.
We can observe that the convergence time is still the lowest for
low values of δpeer and δSO. The peer asynchronism parameter
δpeer has a bigger impact on convergence time than the SO
asynchronism parameter δSO, whatever the value of cSO.

Understandably, as the SO computation time increases, so
does the convergence time. However, when the computation
time is bigger than the average communication delay (e.g.
cSO = 3), both asynchronous parameters do not have much
of an impact on the convergence time. This is due to the
fact that almost all messages are arriving at the SO during its

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

400

600

800

1000

Peer asynchronism parameter δ peer Peer asynchronism parameter δ peer Peer asynchronism parameter δ peer

SO
 a

sy
nc

hr
on

is
m

 p
ar

am
et

er
 δ

 SO

c SO = 0 c SO = 1 c SO = 3

Fig. 4. Heatmaps of normalized convergence time with respect to asynchronous parameters δpeer and δSO for three values of the SO computation time cSO .

conv. time k

Fig. 5. Convergence time normalized by the average communication delay
(markers) and total number of SO iterations k∗SO (lines) w.r.t. the computation
to communication ratio cSO , depending on the SO asynchronism parameter
δSO , with δpeer = 0.2.

computation, so the next iteration is equivalent to an almost
synchronous update, whatever the value of δSO.

This phenomenon is also visible in Figure 5, which shows
the influence of the computation to communication ratio cSO
on the convergence time and the total number of SO iterations
k∗SO. We can see that when cSO < 1, the SO asynchronism
parameter δSO does have an effect on the convergence time of
the algorithm, as a counterpart of a significant increase in the
number of SO calculations k∗SO. However, as cSO increases,
the SO computation time becomes larger and larger, thus
limiting the amount of performed computations and the time
reduction between δSO = 0.2 and δSO = 1.0. The number of
SO iteration decreases towards the value at δSO = 1.0 as the
computation time increases.

VI. CONCLUSION

The asynchronous implementation of an endogenous peer-
to-peer market has been studied on a 31 agents testcase. We
verified that the solution of the asynchronous problem was the
same as performing an OPF. We showed that the peer asyn-
chronous parameter δpeer had an impact on the convergence
time of the algorithm, whereas the SO asynchronous parameter

δSO had an impact on the number of calculations performed
by the SO to reach convergence. However, as the computation
time of the SO increases, the number of computations that it
can perform decreases and all values of δSO lead to the same
performance. The proposed algorithm still calls for further
validation, in particular an implementation on an experimental
power system. In addition, with the increase of the number
of participating agents, the SO computation time is bound to
increase too. This makes mandatory to consider decentralizing
the SO. Further studies will be done on the asynchronous
implementation of this endogenous peer to peer market in the
case of a decentralized SO.

REFERENCES

[1] T. Baroche, “Peer-to-peer electricity markets in power systems,” Ph.D.
dissertation, École Normale Supérieure de Rennes, 2020.

[2] R. Zhang and J. Kwok, “Asynchronous distributed admm for consensus
optimization,” in International conference on machine learning. PMLR,
2014, pp. 1701–1709.

[3] T.-H. Chang, W.-C. Liao, M. Hong, and X. Wang, “Asynchronous dis-
tributed admm for large-scale optimization—part ii: Linear convergence
analysis and numerical performance,” IEEE Transactions on Signal
Processing, vol. 64, no. 12, pp. 3131–3144, 2016.

[4] N. Bastianello, R. Carli, L. Schenato, and M. Todescato, “Asynchronous
distributed optimization over lossy networks via relaxed admm: Stability
and linear convergence,” IEEE Transactions on Automatic Control, 2020.

[5] J. Guo, G. Hug, and O. Tonguz, “Impact of communication delay
on asynchronous distributed optimal power flow using admm,” in
2017 IEEE International Conference on Smart Grid Communications
(SmartGridComm). IEEE, 2017, pp. 177–182.

[6] J. Xu, H. Sun, and C. J. Dent, “Admm-based distributed opf problem
meets stochastic communication delay,” IEEE Transactions on Smart
Grid, vol. 10, no. 5, pp. 5046–5056, 2018.

[7] A. Huang, S.-K. Joo, K.-B. Song, J.-H. Kim, and K. Lee, “Asynchronous
decentralized method for interconnected electricity markets,” Interna-
tional Journal of Electrical Power & Energy Systems, vol. 30, no. 4, pp.
283–290, 2008.

[8] M. H. Ullah and J.-D. Park, “Distributed energy optimization in mas-
based microgrids using asynchronous admm,” in 2019 IEEE Power &
Energy Society Innovative Smart Grid Technologies Conference (ISGT).
IEEE, 2019, pp. 1–5.

[9] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “Osqp:
An operator splitting solver for quadratic programs,” Mathematical
Programming Computation, pp. 1–36, 2020.

[10] C. Coffrin, R. Bent, K. Sundar, Y. Ng, and M. Lubin, “Powermodels.
jl: An open-source framework for exploring power flow formulations,”
in 2018 Power Systems Computation Conference (PSCC). IEEE, 2018,
pp. 1–8.

[11] T. Baroche, P. Pinson, R. L. G. Latimier, and H. B. Ahmed, “Exogenous
cost allocation in peer-to-peer electricity markets,” IEEE Transactions
on Power Systems, vol. 34, no. 4, pp. 2553–2564, 2019.

