
HAL Id: hal-03485908
https://hal.science/hal-03485908

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Analysis of crack parameters under mixed mode loading
by modified exponential matrix method

J.M. Nianga, F. Mejni, T. Kanit, A. Imad, J. Li

To cite this version:
J.M. Nianga, F. Mejni, T. Kanit, A. Imad, J. Li. Analysis of crack parameters under mixed mode
loading by modified exponential matrix method. Theoretical and Applied Fracture Mechanics, 2019,
102, pp.30 - 45. �10.1016/j.tafmec.2019.04.007�. �hal-03485908�

https://hal.science/hal-03485908
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


1 

Analysis of Crack Parameters under Mixed Mode Loading by Modified Exponential 

Matrix Method 

 
J. M. Nianga 1, F. Mejni 1, T. Kanit 2, 4, A. Imad 2 and J. Li 3 

 

1. Hautes Etudes d’Ingénieur, Lille, France 

2. Unité de mécanique de Lille, EA7512, Université de Lille, Villeneuve-d’Asq, France 

3. Laboratoire des Sciences des Procédés et des Matériaux, UPR3407,Villetaneuse, France 

4. Corresponding author: tkanit@univ-lille.fr 

 

Abstract 

 

This paper deals with a new analytical method, the exponential matrix method EMM, for 

calculating the T-stress and the stress intensity factors SIFs under mixed mode loading. The 

linear, elastic, two-dimensional and stationary equations of the crack problem are transformed 

into a Hamiltonian system. This is solved by the proposed method involving eigensolutions 

which satisfy the adjoint symplectic orthogonality by means of performing an angular stress 

variation with respect to the radial stress. A good description of the expected solution of the 

studied problem is then obtained as a linear combination of these eigensolutions. To illustrate 

the validity of the present method, some numerical examples are used and the results obtained 

are compared with those of literature.  
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1. Introduction 

 

In fracture mechanics, the description of the stress field at the vicinity of the crack tip is 

generally described by the stress intensity factors SIFs and possibly for brittle materials, by a 

non-singular stress acting parallel to the crack face, the so-called T-stress Larsson and 

Carlsson (1973); Rice (1974). One of the interests in the calculation of the T-stress is the 

evaluation of its effect on the stability of the crack path direction, as examined by Cotterell 

(1966); Melin (2002); Fett and Munz (2003).  

In some cases, the description may involve high-order terms of Williams’ asymptotic 

expansion Williams (1960). This allows taking the superposition of the main failure modes 

into account, in particular the modes I and II. On the other hand, the combination of the T-

stress and SIFs provides a better understanding of the behavior of materials at the crack tip 

Gupta et al. (2015). A little less than twenty years ago, Dyskin (1997) established the 

influence of the higher-order terms of Williams’ asymptotic expansion on the size effect, for 

quasi-brittle materials. 

In the following, the studied material is assumed to be subjected to mixed mode III +  

conditions. These express a superimposition of the transverse tensile loading mode I  and the 

in-plane shear loading mode II , characterized by the SIFs IK  and IIK  respectively. The 

mixed mode fracture is the mode that characterizes most practical fracture problems. Indeed, 

most structures are not uniquely subjected to a single loading mode. They are most often 

subjected to a combination of at least two of the three main modes I , II  and III  due to a 

particular orientation of crack surfaces, multiaxial loads or mixed mode loads, respectively. 

Numerous studies have been devoted to mixed mode loading analysis. The significant 
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influence of the T-stress on brittle fracture in linear elasticity, under mixed mode conditions, 

was studied by Smith et al. (2001) and Karihaloo (1999). 

Recent studies contribute comprehensively to a better understanding of mixed mode fracture 

Demir et al. (2017); Pirmohammad and Hojjati Mengharpey (2018). Initial investigations on 

this subject date back almost fifty years Erdogan and Sih (1963). Holston (1976) presented a 

special finite element for plane analysis of elastic structures with cracks through the thickness, 

to include the in-plane shearing IIK mode of deformation, obtaining results applicable to 

IK and III KK +  modes of deformation. Several years later, Ramaswamy et al. (1993) used a 

modified flexural specimen and an optical shearing interferometry to analyze mixed mode 

crack tip deformations. They obtained the measurement of some crack tip parameters such as 

stress-intensity factors, on the basis of Williams’ mixed mode asymptotic expansion. 

Interested in quasi-static crack under mixed mode loading conditions, Chalivendra (2009) 

studied an inhomogeneous orthotropic medium, using an asymptotic analysis coupled with the 

Westergaard stress function. Stepanova and Yakovleva (2016) used the perturbation method 

to obtain asymptotic solutions to nonlinear eigenvalue problems, when studying stress-strain 

fields in the vicinity of a crack tip under mixed mode loading. Machida et al. (1995) 

performed, under the same fracture mode, a comparison between the stress intensity factors 

obtained by the speckle photography and those obtained by J-integral formulation. Using the 

elastic-viscoplastic constitutive model, Liang et al. (2014) established a mechanical model of 

the dynamic propagation interface crack for the compression-shear mixed mode.   

Specifically regarding methods for calculating the coefficients of asymptotic fields in the 

vicinity of the crack tip, several analytical and numerical studies have been carried out in 

recent decades. Most of them are based on the finite element method FEM. Sinclair et al. 

(1984) then developed path independent integrals to calculate stress intensity factors.  

Some other authors Kfouri (1986); Toshio and Parks (1992); Ayatollahi et al. (1998); Chen et 

al. (2001) worked on computing the elastic T-stress. Using a hybrid crack element, Karihaloo 

and Xiao (2001) proposed, by means of the p-adaptivity property, an accurate determination 

of the coefficients of an elastic crack tip asymptotic field, under mixed mode loading. Several 

other approaches have been introduced for calculating Williams’ asymptotic expansion 

coefficients. These respectively include: (a) the fractal finite element method FFEM Su and 

Feng (2005); Su and Fok (2007), (b) the over-deterministic method which is based on both 

FEM and the least squares technique Ayatollahi and Nejati (2011a, 2011b), (c) the symplectic 

expansion method used to calculate the stress intensity factors for both an edge interface crack 

and an interface V-notch in a biomaterial plate under bending Zhou et al. (2013). Later, Wang 

(2017) implemented the symplectic duality system to evaluate the stress intensity factor for 

interface V-shaped notches in a bi-material Kirchhoff plate bending. More recently, Yao et al. 

(2018) performed a coupling between the asymptotic expansion technique and the finite 

element method to evaluate V-notches stress intensity factors. 

 

2. Problem Formulation 

 

Let us consider in a polar coordinate system ),( θr , a semi-infinite mixed mode crack in an 

elastic and isotropic material with crack, characterized by Young's modulus E  and Poisson's 

ratioν . The system origin O  is located at the crack tip. Using the following variables change: 
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It then comes out, when neglecting volume forces and assuming the dynamic effects’ absence: 

 

Equilibrium Equations 
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Stress-Displacement Relationships 
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rrσ , θσ r , θθσ  are the stress field components, ru
 
and θu

 
respectively represent the radial and 

angular displacements fields. Hellinger-Reissner’s variational principle can then be written as: 
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3. Mathematical Investigations 

 

Depending on whether the variation in Equation 3 is considered with respect to either rrS  

or θθS , the following two sub-problems then result:  

 

3.1. θθS  Sub-Problem 

 

Equation 12  leads to: 

rrr uESS ξθθν ∂+=                                                                                                                 (4) 

Combining Equations 3 and 4, it comes out: 
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ru , θu , θrS  and θθS
 
being considered as independent variables, the problem to be solved can 

be written as follows: 

Find the unknown vector 

{ }TT pqpqv ~,~)~,~(~ =                                                                                                                     (6) 
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such that )~,~(~~
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•
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3.2. rrS  Sub-Problem 

 

Equation 22  provides: 

)( θθθθ ν uuESS rrr ∂++=
                                                                                                     

 (7) 

Combining Equations 3 and 7, Hellinger-Reissner’s variational problem involves: 
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As the variables ru , θu , rrS
 
and θrS

 
are independent, the corresponding sub-problem can be 

formulated as follows: 

Find the unknown vector  

{ }TTT pqpqv ,),( =                                                                                                                     (9) 

such that ),(),( pqHvpqv =
•
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Moreover, the following free traction conditions are applied to the two previous cases: 

0~~ ==
−== πθπθ pp  or 0==

−== πθπθ pp
                                                                              

 (10) 

 

4. Solution Determination  

 

Let us seek the solution as follows: 

( )( , ) ( )Exp=ν θ ψ θ µξξ  or ( )( , ) ( )Exp=% %ν ξ θ ψ θ µξ                                                        (11)                                                                   

The radial and angular problems mentioned above are then reduced to obtaining 

eigeinsystems respectively: 

{ }, ( ) { }( ), ( ), ( ), ( )= θ θµ θ θ θ θ θψ T T

r rr
u S Sru , { }, ( ) { }( ), ( ), ( ), ( )= θ θ θθµ θ θ θ θ θψ T T

r
u S Sru .  

 

4. 1. Solution of the Radial Coordinate Problem 
 

From Equations 9 and 111 , it appears suitable to write: 
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( ) ( )=ψ θ ψ θµH                                                                                                                     (12)                                                                                                                        

The problem to be solved consists in finding the eigeinsystems{ }( ),ψ θµ
 

related to the 

Hamiltonian operator matrix H. In this case, µ being an eigenvalue, the same is true for−µ.   

On the other hand, the two eigenvectors i ( )ψ θ and j( )ψ θ respectively associated with 

eigenvalues iµ
 
and jµ

 
verify the following adjoint symplectic orthogonality: 
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 2I the second order unit matrix and . 〉〈  the inner product operator. The 

following theorem then provides the problem solution: 

 

Asymptotic Expansion Theorem 

 

The matrix H is assumed to admit 2n non-zero eigenvalues that can be ordered as follows: 

( ) : ,α iµ ( ) 0<iRe µ    or  ( () 0 ) 0= ∩ <i iRe Imµ µ  

1, 2( ) : (i , ...n)β == −-i iµ µ  

Especially in group ( ),α  the eigenvalues are classified according to increasing absolute values. 

More generally, the 2n corresponding eigenvectors constitute a vector basis for the solution 

space. Any solution can then be expressed as a linear combination of such vectors, as follows: 
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In literature, the solution to the problem to be solved is generally obtained on the basis of the 

radial coordinate, making it tedious to calculate the eigenvectors. However, by expressing the 

solution on the basis of the angular coordinate and then introducing the exponential matrix 

method EMM as proposed in this paper, the eigeinsystems can be systematically obtained 

with extreme ease. 

 

4.2. Solution of the Radial Coordinates Problem and Exponential Matrix Method 

Background 

  

The introduced method requires for the solution ( , )%ν ξ θ to Problem 6 to be sought in the 

form
211 , with:  
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Equation 15 then becomes: 

( ) 11 12

21 22

( )(2 )

( ) { ( ), ( )} ( )


  =  
 

= = −

= %

% %% %

µ π

ψ π π π ψ πT T T

M M
H

M M

q p M

M exp
 (16) 



6 

 

where 
ij

Μ (i, j = 1, 2) is a 2X2 matrix. Now, taking the boundary conditions 10 into account, 

Equation 16 involves: 

( )= − =%
21 0θ πΜ q  (17) 

In this Equation, the symbol 0  represents the 2D-zero vector. However, obtaining the initial 

vector ( )−%ψ π  requires the following condition to be satisfied. 

( )21
det 0=Μ  (18) 

The interest of this Equation is to admit the µ values as solutions. Thereafter, the expected 

corresponding eigensolutions ( )% θψ can be directly obtained from Equation 15. 

 

4.3. Eigenvalues and Eigenfunctions by means of Exponential Matrix Method 

 

The method outlined above then allows getting:  
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Thereafter, solving Equation 18 provides
2

1−=µ as the value related to the singular solution. 

Particularly under mode I loading, this value corresponds to the eigenvector 1 ( )ψ θl  defined as 

follows: 
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where G is the shear modulus. Referring to the asymptotic expansion 14, there is clear 

evidence that the multiplier coefficient related to this eigenvector corresponds to the stress 

intensity factor
IK , with: 
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On the other hand, the eigenvalue 1−=µ  corresponding to the T-stress T, is associated to the 

eigenvector 2 ( )ψ θl  defined as follows: 
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Therefore, the multiplier coefficient related to this eigenvector is equal to half of T-stress, so 

that it can be obtained: 
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In the same way, taking the mode II loading into account, it is then obtained for
2

1−=µ , a 

corresponding eigenvector )(1 θψ ll  defined as: 
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In this case, the multiplier coefficient related to this eigenvector corresponds to the stress 

intensity factor IIK  defined as follows: 
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5. Numerical Examples 

 

To demonstrate the efficiency and accuracy of the proposed method, the finite element 

method, performed in Abaqus2016 Software, is used to determine IK , the T-stress and IIK , for 

four mixed mode example problems, under plane stress condition. The values of the Poisson’s 

ration and the Young’s modulus are 25.0=ν  and GPaE 210= , respectively.  

Five rings around the crack tip are then considered at the following selected locations: 
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1
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3

2
, see Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Detail of the crack tip centered rings 
 

A radial mesh is carried out on the domain defined by each ring, with N = 181 nodes for a 

discretization step of two degrees. In order to compare the results obtained by this method 

with those of literature, several other analyses are performed by increasing the discretization 

step. Thus, it is obtained for steps of 4, 10, 20 and 40 degrees, a number N of nodes equal to 

91, 37, 19 and 10, respectively. After each FE analysis, the rings nodal displacements ru and 
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θu  the corresponding nodal stresses rrσ and θσ r are extracted from the software and used as 

computer program input data. The trapezoidal integral method TIM implemented in this 

program, then calculates IK , the T-stress and IIK . 

 

5.1. Example 1. Angled Single Edge Cracked under Uniaxial Tension (ASECT) 

 

The geometrical parameters of the finite plate with an ASECT Figure 2a 

are 6=a m , 10= =w h m , °= 30β ; with the tensile stress MPa1=σ . 

a.  b.  

c.  d.  

Figure 2. Geometries studied and typical meshes used in the present investigation, a. 

ASECT, b. ASECS, c. ADECT, d. ACCT 
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The stress and displacement components calculated by FEM along the five rings are presented 

in Figures 3a-d. 

 
(a)    (b) 

 
 (c)      (d) 

Figure 3. Stress and displacement components along the rings selected around the crack tip 

for ASECT specimen, a. rrσ , b. θσ r , c. ru , d. θu  

 

Figures 4a-c show the angular distribution of the functions ),( θξf , ),( θξg  and ),( θξh  

which result from the stress and displacement components, see Equations 21, 23 and 25 

respectively. 
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(a)      (b) 

 
        (c) 

Figure 4. Angular distribution of a. ),( θξf , b. ),( θξg  and c. ),( θξh  for ASECT specimen 

 

Using TIM, the numerical integration of these functions provides IK , the T-stress and IIK . To 

test the accuracy of the proposed method, the values 2/1048.11 MPamK I = , MPaT 5962.0=  

and 2/19981.2 MPamK II =  predicted by Abaqus are used as reference solutions. Figures 5a-c 

represent for increasing values of the number N of nodes, the relative respective errors 

between the computed values of IK , the T-stress and IIK on the one hand, and the solutions 

predicted by Abaqus on the other. 
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(a)      (b) 

 
          (c) 

Figure 5. Percent relative error in a. IK , b. T-stress and c. IIK   

 

As shown by these Figures, IK , the T-stress and IIK  steadily converge with a simultaneous 

increase in the values of N , when N  is larger than about 80. The observed relative 

differences then tend to be acceptable and stable for the five rings. The results computed by 

the present method with 91=N  and N =181 are listed in Table 1, in comparison to literature 

results.  

 
 

 

Number of Nodes 

 
 

 

 

Present study 1/12 

1/6 

1/3 

1/2 

2/3 

1/12 

1/6 

1/3 

1/2 

2/3 

91 

91 

91 

91 

91 

181 

181 

181 

181 

181 

2.5458 

2.5453 

2.5450 

2.5448 

2.5447 

2.5450 

2.5448 

2.5446 

2.5445 

2.5444 

0.5864 

0.5888 

0.5904 

0.5911 

0.5915 

0.5938 

0.5941 

0.5943 

0.5944 

0.5944 

0.6925 

0.6920 

0.6916 

0.6915 

0.6914 

0.6908 

0.6908 

0.6907 

0.6907 

0.6907 

Abaqus Solution 2.5447 0.5962 0.6905 
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Ayatollahi and Nejati (2011a, 2011b) FEOD 

Xiao et al. (2004) HCE 

Xiao et al. (2004) BCM 

2.5451 

2.5318 

2.5411 

0.5976 

0.5852 

0.5940 

0.6910 

0.6868 

0.6896 

 

Table 1. IK , T-stress and IIK  for ASECT specimen compared with published 

results 1=
w

h
, 6.0=

w

a
 and °= 30β  

  

For the five considered rings, the values of IK , the T-stress and IIK  computed by the present 

method are in very good agreement with those respectively provided by Abaqus software, 

FEOD method Ayatollahi and Nejati (2011a, 2011b), and HCE and BC methods Xiao et al. 

(2004), respectively.  

  

5.2. Example 2. Angled single edge cracked plate under end shearing ASECS 

 

The geometrical parameters of the finite plate with an ASECS Figure 2b are the same as in 

Example 1 (ASECT specimen), with the shear stress MPa1=τ . The stress and displacement 

components along the five rings are presented in Figures 6a-d. 

 
(a)      (b) 

          
 (c)      (d) 
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Figure 6. Stress and displacement components along the rings selected around the crack tip 

for ASECS specimen a. rrσ , b. θσ r , c. ru , d. θu  

 
(a)      (b) 

 
        (c) 

Figure 7. Angular distribution of a. ),( θξf , b. ),( θξg  and c. ),( θξh  for ASECS specimen 

 

The angular distribution of the functions ),( θξf , ),( θξg  and ),( θξh  are presented in Figures 

7a-c. The values 2/1485.20 MPamK I = , MPaT 7802.5=  and 2/18188.9 MPamK II =  predicted 

by Abaqus are used as reference solutions. As in Example 1 (ASECT specimen), the 

differences observed with respect to IK , the T-stress and IIK tend to become acceptable and 

stable for values of N larger than 80, as shown in Figures 8a-c. 
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(a)      (b) 

 
       (c) 

Figure 8. Percent relative error in a. IK , b. T-stress and c. IIK    

 

The results computed by the present method with 91=N  and 181 nodes are compared to the 

literature results in Table 2. 
 

 

Number of Nodes 

 
 

 

 

Present study 1/12 

1/6 

1/3 

1/2 

2/3 

1/12 

1/6 

1/3 

1/2 

2/3 

91 

91 

91 

91 

91 

181 

181 

181 

181 

181 

4.7404 

4.7334 

4.7290 

4.7272 

4.7262 

4.7290 

4.7255 

4.7236 

4.7229 

4.7225 

5.7592 

5.7635 

5.7668 

5.7685 

5.7695 

5.7730 

5.7737 

5.7745 

5.7752 

5.7758 

2.2579 

2.2590 

2.2601 

2.2609 

2.2614 

2.2613 

2.2611 

2.2612 

2.2614 

2.2617 

Abaqus Solution 

Xiao et al. (2004) HCE 

Xiao et al. (2004) BCM 

4.7183 

4.6883 

4.1970 

5.7802 

5.7376 

5.1776 

2.2615 

2.2400 

2.0184 
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Table 2. IK , T-stress and IIK for ASECS specimen compared with published 

results 1=
w

h
, 6.0=

w

a
 and °= 30β  

  

Table 2 shows that the values of IK , the T-stress and IIK computed by the present method for 

the five considered rings are in very good agreement with those predicted by Abaqus, and 

those calculated by means of HCE method Xiao et al. (2004). The accuracy obtained is better 

than that of BC method Xiao et al. (2004). 

 

5.3. Example 3. Angled double edge cracked plate under uniaxial tension ADECT 

 

The geometrical parameters of the finite plate with an ADECT Figure 2c 

are 2=a m , 5=w m , 10=h m , °= 30β ; with the tensile stress MPa1=σ . Due to the 

symmetry in geometry and loading conditions, only one half of the ADECT i.e. the left part in 

Figure 2c is considered. Figures 9a-d show the stress and displacement components along the 

five rings, while Figures 10a-c present the angular distribution of the functions ),( θξf , 

),( θξg  and ),( θξh . 

 
(a)      (b) 

 
(c)      (d) 
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Figure 9. Stress and displacement components along the rings selected around the crack tip 

for ADECT specimen a. rrσ , b. θσ r , c. ru , d. θu  

 
(a)      (b) 

 
       (c) 

Figure 10. Angular distribution of a. ),( θξf , b. ),( θξg  and c. ),( θξh  for ADECT 

specimen 

 

The following values predicted by Abaqus are used as reference solutions: 
2/13078.2 MPamK I = , MPaT 1097.0−=  and 2/17686.0 MPamK II = .  

As in Examples 1 and 2, Figures 11a-c show that the differences observed with respect to IK , 

the T-stress and IIK tend to become acceptable and stable for values of N larger than 80. 
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(a)      (b) 

 
        (c) 

Figure 11. Percent relative error in a. IK , b. T-stress and c. IIK  

 

For the five considered rings, Table 3 shows that the values of IK , the T-stress and IIK  

computed by the present method; with 91 and 181 nodes, are in very good agreement with 

those predicted by Abaqus. The accuracy obtained is better than those calculated, using FEOD 

and BC methods Ayatollahi and Nejati (2011a, 2011b). 

 
 

 

Number of Nodes 

 
 

 

 

Present study 1/12 

1/6 

1/3 

1/2 

2/3 

1/12 

1/6 

1/3 

1/2 

2/3 

91 

91 

91 

91 

91 

181 

181 

181 

181 

181 

0.9206 

0.9205 

0.9205 

0.9205 

0.9205 

0.9208 

0.9206 

0.9206 

0.9206 

0.9206 

-0.1131 

-0.1122 

-0.1115 

-0.1112 

-0.1111 

-0.1106 

-0.1103 

-0.1102 

-0.1102 

-0.1102 

0.3069 

0.3068 

0.3067 

0.3067 

0.3066 

0.3067 

0.3067 

0.3066 

0.3066 

0.3066 

Abaqus Solution 

Ayatollahi and Nejati (2011a, 2011b) FEOD 

0.9207 

0.9995 

-0.1097 

-0.112 

0.3066 

0.3309 
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Ayatollahi and Nejati (2011a, 2011b) BCM 1.0018 -0.100 0.3332 

Table 3. IK , T-stress and IIK  for ADECT specimen compared with published 

results 2=
w

h
, 4.0=

w

a
 and °= 30β  

 

5.4. Example 4. Angled Center Cracked Plate under Uniaxial Tension ACCT 

 

The geometrical parameters of the finite plate with an ACCT Figure 2d 

are 3=a m , 5=w m , 10=h m , °= 45β ; with the tensile stress MPa1=σ . The stress and 

displacement components along the five rings are presented in Figures 12a-d, while the 

angular distribution of the functions ),( θξf , ),( θξg  and ),( θξh  are shown in Figures 13a-c. 

 
(a)      (b) 

 
(c)      (d) 

Figure 12. Stress and displacement components along the rings selected around the crack 

tip for ACCT specimen, a. rrσ , b. θσ r , c. ru , d. θu  
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(a)      (b) 

        
 (c) 

Figure 13. Angular distribution of a. ),( θξf , b. ),( θξg  and c. ),( θξh  for ACCT specimen 

 

The following values predicted by Abaqus were used as reference solutions: 
2/10298.2 MPamK I = , MPaT 1561.0−=  and 2/17418.1 MPamK II = . As in the three previous 

examples, Figures 14a-c show that the differences observed with respect to IK , the T-stress 

and IIK tend to become acceptable and stable for values of N larger than 80. 
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(a)      (b) 

 
Figure 14. Percent relative error in a. IK , b. T-stress and c. IIK   

 

For the five considered rings, Table 4 shows that the values of IK , the T-stress and 

IIK computed by the present method, with 91 and 181 nodes, are in very good agreement with 

those predicted by Abaqus, Kim and Cho (2009) from the RWCI method, and Yang and Ravi 

Chandar (1999), respectively. 

 
 

  

Number of Nodes 

 
 

 

 

Present study 1/12 

1/6 

1/3 

1/2 

2/3 

1/12 

1/6 

1/3 

1/2 

2/3 

91 

91 

91 

91 

91 

181 

181 

181 

181 

181 

0.6606 

0.6607 

0.6609 

0.6609 

0.6610 

0.6610 

0.6611 

0.6610 

0.6610 

0.6611 

-0.1585 

-0.1579 

-0.1574 

-0.1572 

-0.1571 

-0.1567 

-0.1565 

-0.1565 

-0.1565 

-0.1565 

0.5668 

0.5670 

0.5670 

0.5671 

0.5671 

0.5672 

0.5672 

0.5672 

0.5672 

0.5672 

Abaqus Solution 

Kim and Cho (2009) RWCIM 

Yang and Ravi Chandar (1999) 

0.6612 

0.6609 

0.654 

-0.1561 

-0.1606 

-0.1514 

0.5674 

0.5674 

0.567 
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Table 4. IK , T-stress and IIK  for ACCT specimen compared with published 

results 2=
w

h
, 6.0=

w

a
 and °= 45β   

 

6. Conclusions 

 

This paper presents the implementation of a new analytical method called exponential matrix 

method EMM to determine eigensolutions, then to analyze more efficiently, the plane fracture 

problems of elastic materials in mixed mode I / II Loading. Using this method, the 

eigenvalues and associated eigenfunctions are obtained more systematically and directly. 

These satisfy the symplectic orthogonality by formulating the angular stresses from radial 

ones.  The solution to the problem is ultimately in the form of an asymptotic expansion, as in 

traditional methods. Nevertheless, by means of the present method, the corresponding 

multiplier coefficients are obtained in a specific and particularly simple process, based on the 

trapezoidal integration method. The SIFs and T-stress under mixed mode are then calculated. 

The relevance of the approach implemented in this paper is highlighted by the adequacy of the 

obtained results with those of literature. 
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