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Abstract

This paper deals with a new analytical method, the exponential matrix method EMM, for
calculating the T-stress and the stress intensity factors SIFs under mixed mode loading. The
linear, elastic, two-dimensional and stationary equations of the crack problem are transformed
into a Hamiltonian system. This is solved by the proposed method involving eigensolutions
which satisfy the adjoint symplectic orthogonality by means of performing an angular stress
variation with respect to the radial stress. A good description of the expected solution of the
studied problem is then obtained as a linear combination of these eigensolutions. To illustrate
the validity of the present method, some numerical examples are used and the results obtained
are compared with those of literature.
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1. Introduction

In fracture mechanics, the description of the stress field at the vicinity of the crack tip is
generally described by the stress intensity factors SIFs and possibly for brittle materials, by a
non-singular stress acting parallel to the crack face, the so-called T-stress Larsson and
Carlsson (1973); Rice (1974). One of the interests in the calculation of the T-stress is the
evaluation of its effect on the stability of the crack path direction, as examined by Cotterell
(1966); Melin (2002); Fett and Munz (2003).

In some cases, the description may involve high-order terms of Williams’ asymptotic
expansion Williams (1960). This allows taking the superposition of the main failure modes
into account, in particular the modes I and /1. On the other hand, the combination of the T-
stress and SIFs provides a better understanding of the behavior of materials at the crack tip
Gupta et al. (2015). A little less than twenty years ago, Dyskin (1997) established the
influence of the higher-order terms of Williams’ asymptotic expansion on the size effect, for
quasi-brittle materials.

In the following, the studied material is assumed to be subjected to mixed mode 1+ I/
conditions. These express a superimposition of the transverse tensile loading mode / and the
in-plane shear loading mode /I, characterized by the SIFs K, and K, respectively. The

mixed mode fracture is the mode that characterizes most practical fracture problems. Indeed,
most structures are not uniquely subjected to a single loading mode. They are most often
subjected to a combination of at least two of the three main modes/, II andIIl due to a
particular orientation of crack surfaces, multiaxial loads or mixed mode loads, respectively.
Numerous studies have been devoted to mixed mode loading analysis. The significant
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influence of the T-stress on brittle fracture in linear elasticity, under mixed mode conditions,
was studied by Smith e al. (2001) and Karihaloo (1999).

Recent studies contribute comprehensively to a better understanding of mixed mode fracture
Demir et al. (2017); Pirmohammad and Hojjati Mengharpey (2018). Initial investigations on
this subject date back almost fifty years Erdogan and Sih (1963). Holston (1976) presented a
special finite element for plane analysis of elastic structures with cracks through the thickness,
to include the in-plane shearing K, mode of deformation, obtaining results applicable to

K,and K, + K, modes of deformation. Several years later, Ramaswamy et al. (1993) used a

modified flexural specimen and an optical shearing interferometry to analyze mixed mode
crack tip deformations. They obtained the measurement of some crack tip parameters such as
stress-intensity factors, on the basis of Williams® mixed mode asymptotic expansion.
Interested in quasi-static crack under mixed mode loading conditions, Chalivendra (2009)
studied an inhomogeneous orthotropic medium, using an asymptotic analysis coupled with the
Westergaard stress function. Stepanova and Yakovleva (2016) used the perturbation method
to obtain asymptotic solutions to nonlinear eigenvalue problems, when studying stress-strain
fields in the vicinity of a crack tip under mixed mode loading. Machida et al. (1995)
performed, under the same fracture mode, a comparison between the stress intensity factors
obtained by the speckle photography and those obtained by J-integral formulation. Using the
elastic-viscoplastic constitutive model, Liang ef al. (2014) established a mechanical model of
the dynamic propagation interface crack for the compression-shear mixed mode.

Specifically regarding methods for calculating the coefficients of asymptotic fields in the
vicinity of the crack tip, several analytical and numerical studies have been carried out in
recent decades. Most of them are based on the finite element method FEM. Sinclair er al.
(1984) then developed path independent integrals to calculate stress intensity factors.

Some other authors Kfouri (1986); Toshio and Parks (1992); Ayatollahi et al. (1998); Chen et
al. (2001) worked on computing the elastic T-stress. Using a hybrid crack element, Karihaloo
and Xiao (2001) proposed, by means of the p-adaptivity property, an accurate determination
of the coefficients of an elastic crack tip asymptotic field, under mixed mode loading. Several
other approaches have been introduced for calculating Williams’ asymptotic expansion
coefficients. These respectively include: (a) the fractal finite element method FFEM Su and
Feng (2005); Su and Fok (2007), (b) the over-deterministic method which is based on both
FEM and the least squares technique Ayatollahi and Nejati (2011a, 2011b), (c) the symplectic
expansion method used to calculate the stress intensity factors for both an edge interface crack
and an interface V-notch in a biomaterial plate under bending Zhou et al. (2013). Later, Wang
(2017) implemented the symplectic duality system to evaluate the stress intensity factor for
interface V-shaped notches in a bi-material Kirchhoff plate bending. More recently, Yao ef al.
(2018) performed a coupling between the asymptotic expansion technique and the finite
element method to evaluate V-notches stress intensity factors.

2. Problem Formulation

Let us consider in a polar coordinate system (r,fd), a semi-infinite mixed mode crack in an

elastic and isotropic material with crack, characterized by Young's modulus E and Poisson's
ratioV . The system origin O is located at the crack tip. Using the following variables change:

¢ =In(r)

Srr = ra-rr
SVH = rJrH
Sgo =104



It then comes out, when neglecting volume forces and assuming the dynamic effects’ absence:

Equilibrium Equations

{afsrr +0,S,9~Sg =0 1)

08,97 05S55+ 5,6 =0
Stress-Displacement Relationships

S, —VSu
' E
ur +691/l9 - SHH _VSrr

(2)
afue—u5+aeur :%

g, ,0,,, Oy are the stress field components, u, and u, respectively represent the radial and

rr?

angular displacements fields. Hellinger-Reissner’s variational principle can then be written as:
Q=0
S2 +85—2US S, +2(1+1V)S

"0)d&d 6
E )dé

Q= [ [ (8,00, + Sgpu, +0t5) +S,0(d gty =y +dyu,) =

—7T—%
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3. Mathematical Investigations

Depending on whether the variation in Equation 3 is considered with respect to either S,
or S, , the following two sub-problems then result:

3.1. S, Sub-Problem

Equation 2, leads to:

S, = VS +Edu, )
Combining Equations 3 and 4, it comes out:
XQ=0, Q=
) 0 2E 2 _ 12 @2
jj(SreaHur +55569u9 +S%(ur +vagur)+S,6(6{u9 _”e)"'( Euzg) _ (2(1+V)Sr92;(1 Vv )S'ge)dfdg
5

u, ,u,, S, and S, being considered as independent variables, the problem to be solved can

be written as follows:
Find the unknown vector

5.5 =17".5"} ©6)



such that ¥(7,p) = Hv(§,p) where § = (u,,u,)” and p=(S,,,S,)" with ( )=d,( ) and
2(1+v)

H= A B il O 1-0, B E 0 = -E0; 0
¢ D) -w,-1 0 ) o 1=vT 0o o0

E
b= 0 1-vo,
l-1-a. 0

3.2. S, Sub-Problem

Equation 2, provides:

Sgo =VS, +E(u, +0,u,) (7)
Combining Equations 3 and 7, Hellinger-Reissner’s variational problem involves:
XQ=0,Q=

(u, +0u,)’E _ 2(1+1)S2 +(1-v*)S} \dEdO
2 2E

j j (Srra{ur + Srea{ue + Srr(ur + aﬁuﬁ)v + Srﬁ(aeur _ue) +

®)

As the variablesu, ,u,, S, and S, , are independent, the corresponding sub-problem can be

formulated as follows:
Find the unknown vector

vg.p) ={a".p"} ©)

such that v(q, p) = Hv(¢q,p) where g =(u,,uy)" and p=(S,.S,)" with ()=0,() and

rr?

2

v
A B -v -9, £ 0 E Ed,
H = , A= , B= , C= ,
C D -9, 1 g 20+V) -Ed, -0,(Ed,)
E
D= v -0,
-, -1)
Moreover, the following free traction conditions are applied to the two previous cases:
ﬁ|6:ﬂ - ﬁ|5:—ﬂ =0 or p|6:ﬂ - p|5:—ﬂ =0 (10)

4. Solution Determination

Let us seek the solution as follows:

V(&.6) =w(@Exp(ué) or V(&,0) =@(O)Exp(Lé) (11)
The radial and angular problems mentioned above are then reduced to obtaining
eigeinsystems respectively:

{1 0 =14,6).056).5,,0).5,,OV}, { 14 ©) = 14,(0),Us(6),5,5(6), 505(O))'} .

4. 1. Solution of the Radial Coordinate Problem
From Equations 9 and11,, it appears suitable to write:
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Hy () = 1y (6) (12)
The problem to be solved consists in finding the eigeinsystems{ ,u,y/(ﬁ)} related to the
Hamiltonian operator matrix H.In this case, ¢/ being an eigenvalue, the same is true for -

On the other hand, the two eigenvectorsy,(6) and(//j(ﬁ) respectively associated with

eigenvalues £ and 4 verify the following adjoint symplectic orthogonality:

T o _Oif,ui+,uj¢0
(@ O).0y,0))=|_w! Iy 6x8 —{1 i s =0 (13)

o /

with J = ( y 5} , /,the second order unit matrix and ( . ) the inner product operator. The
2

following theorem then provides the problem solution:

Asymptotic Expansion Theorem

The matrix H is assumed to admit 2n non-zero eigenvalues that can be ordered as follows:
(a): 4, Re(i) <0 or Re(y)=0n Im(u,)<0

B :p; =—p (=12,.n)
Especially in group (a), the eigenvalues are classified according to increasing absolute values.

More generally, the 2n corresponding eigenvectors constitute a vector basis for the solution
space. Any solution can then be expressed as a linear combination of such vectors, as follows:

VEO)=Y (0. w @+ ™y, (6)

[Ceryluvicode  [" eyl @ vE a0 (19
—_ ¢ Tl . b — ¢TI

a = m > YT m
WG ACEE, [Lwl©@Tp.©)ds

In literature, the solution to the problem to be solved is generally obtained on the basis of the
radial coordinate, making it tedious to calculate the eigenvectors. However, by expressing the
solution on the basis of the angular coordinate and then introducing the exponential matrix
method EMM as proposed in this paper, the eigeinsystems can be systematically obtained
with extreme ease.

4.2. Solution of the Radial Coordinates Problem and Exponential Matrix Method
Background

The introduced method requires for the solution V(&,8)to Problem 6 to be sought in the
form11, , with:

@(9) = exp (A ((@+m))(-) (15)
Consequently, to determine the parameter £/ and the initial vector{J/(—x), we first consider 8 = 7T.
Equation 15 then becomes:

P(m={g" (m),p" (MY =M @(-n)

M :exp([:](lu)(zﬂ)):(j“jll 512}

(16)



where M. (i, j =1, 2) is a 2X2 matrix. Now, taking the boundary conditions 10 into account,
Equation 16 involves:

M,qg@=-m=0 (17)
In this Equation, the symbol 0 represents the 2D-zero vector. However, obtaining the initial
vector J(—1) requires the following condition to be satisfied.

det(M, ) =0 (18)
The interest of this Equation is to admit the [/ values as solutions. Thereafter, the expected
corresponding eigensolutions {J(6) can be directly obtained from Equation 15.

4.3. Eigenvalues and Eigenfunctions by means of Exponential Matrix Method

The method outlined above then allows getting:
_(-uESInQ2mp)/2 0
M 21 (

19
0 -uESin(2mu)/2 (19)

Thereafter, solving Equation 18 provides i/ = —% as the value related to the singular solution.

Particularly under mode 7 loading, this value corresponds to the eigenvector t/ll/(ﬁ) defined as

follows:
é[cosg —%cos%]
1
wﬁ,l(g) 1[ Sin9+2)(—1s.n39
9 — = - — —
== 30 e T2l 3 ol 237 20)
0| W2m(x+1) ~cos+cos > +v
!
sSin— +sin—
2 2

where G is the shear modulus. Referring to the asymptotic expansion 14, there is clear
evidence that the multiplier coefficient related to this eigenvector corresponds to the stress
intensity factor K, , with:

T ¢
K, = [f(£.0)d0=e* [, (0)a, +ri ()0, ~ (O, ~ ] (O)u,)dO 21)

On the other hand, the eigenvalue 4 =-1 corresponding to the T-stress T, is associated to the
eigenvector (/,(6) defined as follows:

/ _
l//z,l(Z) ?G (x +1)cos26
W, ,(6) 2G ,
(@)= 22 =S (Y~ D)sin26
o YO (x+nm 4N Thsim (22)
[/,1 ) 2co0s26
2,4 sin 28

Therefore, the multiplier coefficient related to this eigenvector is equal to half of T-stress, so
that it can be obtained:

T=2[g(&0)d0=2e [y, (0)T,, +rif; ()0, ~ Y, (O, ~, (O)ug)dO (23)
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In the same way, taking the mode I/ loading into account, it is then obtained for /=-—, a
corresponding eigenvector ¢/ (6) defined as:
l[—sing +2x+ 1)sin3—9]
g G 2 2
4,0
I 1[ cos0+(2)( l)sin36
,,(0) G G- B B
W= 1 g 0 )
50| Wem(x+1 —sin5+7sin7
1
[//1,4(9) 6 30
cos— +3cos—
2 2

In this case, the multiplier coefficient related to this eigenvector corresponds to the stress
intensity factor K,, defined as follows:

m ¢
K, = [h(&.0)d0=e > [(r¢)\(0)a, + ()0, ~ (O, =, (O)uy)dO (25)

5. Numerical Examples

To demonstrate the efficiency and accuracy of the proposed method, the finite element
method, performed in Abaqus2016 Software, is used to determine K, , the T-stress and K, , for
four mixed mode example problems, under plane stress condition. The values of the Poisson’s
ration and the Young’s modulus are v =0.25 and E = 210GPa , respectively.
Five rings around the crack tip are then considered at the following selected locations:
r_1 111 2 .
—=—,—,—, — and—, see Figure 1.
a 12 6 3 2 3

Rings

LI ROl ol = D= D] =

Crack

Figure 1. Detail of the crack tip centered rings

A radial mesh is carried out on the domain defined by each ring, with N = 181 nodes for a
discretization step of two degrees. In order to compare the results obtained by this method
with those of literature, several other analyses are performed by increasing the discretization
step. Thus, it is obtained for steps of 4, 10, 20 and 40 degrees, a number N of nodes equal to
91, 37, 19 and 10, respectively. After each FE analysis, the rings nodal displacements u, and



u, the corresponding nodal stressesg, and O, ,are extracted from the software and used as
computer program input data. The trapezoidal integral method TIM implemented in this
program, then calculates K, , the T-stress and K, .

5.1. Example 1. Angled Single Edge Cracked under Uniaxial Tension (ASECT)

The geometrical parameters of the finite plate with an ASECT Figure 2a
area=6m,w=h=10m, f=30°; with the tensile stress g =1MPa .
a
t bt L Y-
20 20 —
E E
= =

10 10 _
g E
) =
0 L b AN X 0 AN bt AN ALY
I | | |
a. 0 w(m) 10 b. 0 w(m) 10
les A o i
20 _I‘_T_]T ‘ 20 ? T f
g
g w z
= =
< .
1 ] 3 =307 101
«
g ! g
) =
:Z:J
0+ - - 0
Fodot | Vot
| | | \ | |
c. 0 wm 5§ wm) 15 d o wm 5 wm 1

Figure 2. Geometries studied and typical meshes used in the present investigation, a.

ASECT, b. ASECS, c. ADECT, d. ACCT



The stress and displacement components calculated by FEM along the five rings are presented

in Figures 3a-d.
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Figure 3. Stress and displacement components along the rings selected around the crack tip
Jor ASECT specimen, a.

o,,b.o,ec u,d u,

r

Figures 4a-c show the angular distribution of the functions f(¢&,6), g(£,6) and h(&,0)
which result from the stress and displacement components, see Equations 21, 23 and 25

respectively.
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————e t/a=1/3
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0° e°
(@ (b

h(€,0) [MPa m”]

(c)
Figure 4. Angular distribution of a.  (¢,60), b. g(¢,60) and c. h(&,0) for ASECT specimen

Using TIM, the numerical integration of these functions provides K, the T-stress and K, . To
test the accuracy of the proposed method, the values K, =11.048MPam'?, T =0.5962MPa

and K, =2.9981MPam""” predicted by Abaqus are used as reference solutions. Figures 5a-c

represent for increasing values of the number N of nodes, the relative respective errors
between the computed values of K, the T-stress and K, on the one hand, and the solutions
predicted by Abaqus on the other.
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% Relative error of K,

As shown by these Figures, K,, the T-stress and K, steadily converge with a simultaneous
increase in the values of N, when N is larger than about 80. The observed relative
differences then tend to be acceptable and stable for the five rings. The results computed by
the present method with N =91 and N =181 are listed in Table 1, in comparison to literature
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Figure 5. Percent relative error in a. K,, b. T-stress and c. K,

E Number of Nodes i i Ry
a N avma g avma
Present study  1/12 91 2.5458 0.5864  0.6925
1/6 91 2.5453 0.5888  0.6920
1/3 91 2.5450 0.5904 0.6916
172 91 2.5448 0.5911  0.6915
2/3 91 2.5447 0.5915 0.6914
1/12 181 2.5450 0.5938  0.6908
1/6 181 2.5448 0.5941  0.6908
1/3 181 2.5446 0.5943  0.6907
172 181 2.5445 0.5944  0.6907
2/3 181 2.5444 0.5944  0.6907
Abaqus Solution 2.5447 0.5962  0.6905
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Ayatollahi and Nejati (2011a, 2011b) FEOD 2.5451 0.5976  0.6910
Xiao et al. (2004) HCE 2.5318 0.5852  0.6868
Xiao et al. (2004) BCM 2.5411 0.5940  0.6896

Table 1. K,, T-stress and K, for ASECT specimen compared with published

resultsﬁ =1, £ =06 and L =30°
w w

For the five considered rings, the values of K, the T-stress and K, computed by the present

method are in very good agreement with those respectively provided by Abaqus software,
FEOD method Ayatollahi and Nejati (2011a, 2011b), and HCE and BC methods Xiao er al.
(2004), respectively.

5.2. Example 2. Angled single edge cracked plate under end shearing ASECS

The geometrical parameters of the finite plate with an ASECS Figure 2b are the same as in
Example 1 (ASECT specimen), with the shear stress 7 =1MPa . The stress and displacement

components along the five rings are presented in Figures 6a-d.
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Figure 6. Stress and displacement components along the rings selected around the crack tip
Jor ASECS specimena.o. ,b.0., c.u,,d. u,
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Figure 7. Angular distribution of a.  (£,0), b. g(£,0) and c. h(¢,0) for ASECS specimen

The angular distribution of the functions f(,0), g(&,6) and h(&,6) are presented in Figures

7a-c. The values K, =20.485MPam'?, T =5.7802MPa and K, =9.8188MPam'’? predicted
by Abaqus are used as reference solutions. As in Example 1 (ASECT specimen), the
differences observed with respect to K, the T-stress and K, tend to become acceptable and
stable for values of N larger than 80, as shown in Figures 8a-c.
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Figure 8. Percent relative errorin a. K ,, b. T-stress and c. K,

The results computed by the present method with N =91 and 181 nodes are compared to the
literature results in Table 2.

r Number of Nodes #; I Ky
a N ™ra T wma
Present study  1/12 91 47404  5.77592  2.2579
1/6 91 47334 5.7635  2.2590
1/3 91 47290 5.7668  2.2601
1/2 91 47272  5.7685  2.2609
2/3 91 47262 5.7695  2.2614
/12 181 47290  5.7730  2.2613
1/6 181 47255 5.7737  2.2611
1/3 181 47236  5.7745  2.2612
172 181 47229 5.7752  2.2614
2/3 181 47225 5.7758  2.2617
Abaqus Solution 47183 5.7802  2.2615
Xiao et al. (2004) HCE 4.6883 5.7376  2.2400
Xiao et al. (2004) BCM 4.1970 5.1776  2.0184
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Table 2. K,, T-stress and K, for ASECS specimen compared with published

results - =1,% = 0.6 and [ =30°
w w

Table 2 shows that the values of K, the T-stress and K, computed by the present method for
the five considered rings are in very good agreement with those predicted by Abaqus, and
those calculated by means of HCE method Xiao er al. (2004). The accuracy obtained is better
than that of BC method Xiao ef al. (2004).

5.3. Example 3. Angled double edge cracked plate under uniaxial tension ADECT

The geometrical parameters of the finite plate with an ADECT Figure 2c
area=2m,w=5m,h=10m,=30°; with the tensile stress 0 =1IMPa. Due to the
symmetry in geometry and loading conditions, only one half of the ADECT i.e. the left part in
Figure 2c is considered. Figures 9a-d show the stress and displacement components along the
five rings, while Figures 10a-c present the angular distribution of the functions f(¢,6),

g(&,0) andh(&,0).
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Figure 9. Stress and displacement components along the rings selected around the crack tip
Jor ADECT specimen a.0, ,b.0,,, c.u,,d. u,
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Figure 10. Angular distribution of a. f (¢,6), b. g(¢,60) and c. h(&,0) for ADECT
specimen

The following values predicted by Abaqus are used as reference solutions:
K, =2.3078MPam"*, T =-0.1097MPa and K, =0.7686 MPam''"*.

As in Examples 1 and 2, Figures 11a-c show that the differences observed with respect to K,
the T-stress and K, tend to become acceptable and stable for values of N larger than 80.
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Figure 11. Percent relative error in a. K,, b. T-stress and c. K,

For the five considered rings, Table 3 shows that the values of K,, the T-stress and K,
computed by the present method; with 91 and 181 nodes, are in very good agreement with
those predicted by Abaqus. The accuracy obtained is better than those calculated, using FEOD
and BC methods Ayatollahi and Nejati (2011a, 2011b).

v Number of Nodes i i Hyy
a N ovra a ovra
Present study  1/12 91 0.9206 -0.1131 0.3069
1/6 91 0.9205 -0.1122  0.3068
1/3 91 0.9205 -0.1115 0.3067
12 91 0.9205 -0.1112  0.3067
2/3 91 0.9205 -0.1111 0.3066
1/12 181 0.9208 -0.1106  0.3067
1/6 181 0.9206 -0.1103 0.3067
1/3 181 0.9206 -0.1102  0.3066
12 181 0.9206 -0.1102  0.3066
2/3 181 0.9206 -0.1102  0.3066
Abaqus Solution 0.9207  -0.1097  0.3066

Ayatollahi and Nejati (2011a, 2011b) FEOD 0.9995 -0.112 0.3309
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Ayatollahi and Nejati (2011a, 2011b) BCM 1.0018 -0.100 0.3332
Table 3. K,, T-stress and K, for ADECT specimen compared with published

results - =2, % =04 and f=30°
w w

5.4. Example 4. Angled Center Cracked Plate under Uniaxial Tension ACCT

The geometrical parameters of the finite plate with an ACCT Figure 2d
area=3m,w=5m,h=10m, [ =45°; with the tensile stress 0 =1MPa. The stress and

displacement components along the five rings are presented in Figures 12a-d, while the
angular distribution of the functions f(&,60), g(&,0) and h(¢&,6) are shown in Figures 13a-c.
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Figure 12. Stress and displacement components along the rings selected around the crack
tip for ACCT specimen, a.0, ,b.0,.,, c.u,,d. u,
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The following values predicted by Abaqus were used as reference solutions:
K, =2.0298MPam"*, T =-0.1561MPa and K, =1.7418MPam'’*. As in the three previous
examples, Figures 14a-c show that the differences observed with respect to K, the T-stress
and K, tend to become acceptable and stable for values of N larger than 80.
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Figure 14. Percent relative error in a. K,, b. T-stress and c. K,

For the five considered rings, Table 4 shows that the values of K,, the T-stress and
K, computed by the present method, with 91 and 181 nodes, are in very good agreement with

those predicted by Abaqus, Kim and Cho (2009) from the RWCI method, and Yang and Ravi
Chandar (1999), respectively.

E Number of Nodes i i Ky
a N aVra g aVra
Present study  1/12 91 0.6606 -0.1585 0.5668
1/6 91 0.6607 -0.1579 0.5670
1/3 91 0.6609 -0.1574 0.5670
12 91 0.6609 -0.1572 0.5671
2/3 91 0.6610 -0.1571 0.5671
1/12 181 0.6610 -0.1567 0.5672
1/6 181 0.6611 -0.1565 0.5672
1/3 181 0.6610 -0.1565 0.5672
1/2 181 0.6610 -0.1565 0.5672
2/3 181 0.6611 -0.1565 0.5672
Abaqus Solution 0.6612 -0.1561 0.5674
Kim and Cho (2009) RWCIM 0.6609 -0.1606 0.5674
Yang and Ravi Chandar (1999) 0.654 -0.1514 0.567
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Table 4. K,, T-stress and K, for ACCT specimen compared with published
results - =2, % = 0.6 and [ =45°
w w

6. Conclusions

This paper presents the implementation of a new analytical method called exponential matrix
method EMM to determine eigensolutions, then to analyze more efficiently, the plane fracture
problems of elastic materials in mixed mode I / II Loading. Using this method, the
eigenvalues and associated eigenfunctions are obtained more systematically and directly.
These satisfy the symplectic orthogonality by formulating the angular stresses from radial
ones. The solution to the problem is ultimately in the form of an asymptotic expansion, as in
traditional methods. Nevertheless, by means of the present method, the corresponding
multiplier coefficients are obtained in a specific and particularly simple process, based on the
trapezoidal integration method. The SIFs and T-stress under mixed mode are then calculated.
The relevance of the approach implemented in this paper is highlighted by the adequacy of the
obtained results with those of literature.
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