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This paper deals with a new analytical method, the exponential matrix method EMM, for calculating the T-stress and the stress intensity factors SIFs under mixed mode loading. The linear, elastic, two-dimensional and stationary equations of the crack problem are transformed into a Hamiltonian system. This is solved by the proposed method involving eigensolutions which satisfy the adjoint symplectic orthogonality by means of performing an angular stress variation with respect to the radial stress. A good description of the expected solution of the studied problem is then obtained as a linear combination of these eigensolutions. To illustrate the validity of the present method, some numerical examples are used and the results obtained are compared with those of literature.

Introduction

In fracture mechanics, the description of the stress field at the vicinity of the crack tip is generally described by the stress intensity factors SIFs and possibly for brittle materials, by a non-singular stress acting parallel to the crack face, the so-called T-stress [START_REF] Larsson | Influence of non singular stress terms and specimen geometry on small scale yielding at crack tips in elastic plastic materials[END_REF]; [START_REF] Rice | Limitations to the small scale yielding approximation for crack tip plasticity[END_REF]. One of the interests in the calculation of the T-stress is the evaluation of its effect on the stability of the crack path direction, as examined by [START_REF] Cotterell | Notes on the paths and stability of cracks[END_REF]; [START_REF] Melin | The influence of the T stress on the directional stability of cracks[END_REF]; [START_REF] Fett | T stress and crack path stability of DCDC specimens[END_REF]. In some cases, the description may involve high-order terms of Williams' asymptotic expansion [START_REF] Williams | On the stress distribution at the base of a stationary crack[END_REF]. This allows taking the superposition of the main failure modes into account, in particular the modes I and II. On the other hand, the combination of the Tstress and SIFs provides a better understanding of the behavior of materials at the crack tip [START_REF] Gupta | A review of T stress and its effects in fracture mechanics[END_REF]. A little less than twenty years ago, [START_REF] Dyskin | Crack growth criteria incorporating non singular stresses: size effect in apparent fracture toughness[END_REF] established the influence of the higher-order terms of Williams' asymptotic expansion on the size effect, for quasi-brittle materials. In the following, the studied material is assumed to be subjected to mixed mode II I + conditions. These express a superimposition of the transverse tensile loading mode I and the in-plane shear loading mode II , characterized by the SIFs I K and II K respectively. The mixed mode fracture is the mode that characterizes most practical fracture problems. Indeed, most structures are not uniquely subjected to a single loading mode. They are most often subjected to a combination of at least two of the three main modes I , II and III due to a particular orientation of crack surfaces, multiaxial loads or mixed mode loads, respectively. Numerous studies have been devoted to mixed mode loading analysis. The significant 2 influence of the T-stress on brittle fracture in linear elasticity, under mixed mode conditions, was studied by Smith et al. (2001) and [START_REF] Karihaloo | Size effect in shallow and deep notched quasi brittle structures[END_REF]. Recent studies contribute comprehensively to a better understanding of mixed mode fracture Demir et al. (2017); [START_REF] Pirmohammad | A new mixed mode I / II fracture test specimen : Numerical and experimental studies[END_REF]. Initial investigations on this subject date back almost fifty years [START_REF] Erdogan | On the crack extension in plates under plane loading and transverse shear[END_REF]. Holston (1976) presented a special finite element for plane analysis of elastic structures with cracks through the thickness, to include the in-plane shearing II K mode of deformation, obtaining results applicable to I K and

II I K K +
modes of deformation. Several years later, Ramaswamy et al. (1993) used a modified flexural specimen and an optical shearing interferometry to analyze mixed mode crack tip deformations. They obtained the measurement of some crack tip parameters such as stress-intensity factors, on the basis of Williams' mixed mode asymptotic expansion. Interested in quasi-static crack under mixed mode loading conditions, [START_REF] Chalivendra | Mixed mode crack tip stress fields for orthotropic functionally graded materials[END_REF] studied an inhomogeneous orthotropic medium, using an asymptotic analysis coupled with the Westergaard stress function. [START_REF] Stepanova | Asymptotics of eigenvalues of the nonlinear eigenvalue problem arising from the near mixed mode crack tip stress strain field problems[END_REF] used the perturbation method to obtain asymptotic solutions to nonlinear eigenvalue problems, when studying stress-strain fields in the vicinity of a crack tip under mixed mode loading. [START_REF] Machida | Crack tip stress singularity field of a mixed mode three dimensional crack[END_REF] performed, under the same fracture mode, a comparison between the stress intensity factors obtained by the speckle photography and those obtained by J-integral formulation. Using the elastic-viscoplastic constitutive model, Liang et al. (2014) established a mechanical model of the dynamic propagation interface crack for the compression-shear mixed mode. Specifically regarding methods for calculating the coefficients of asymptotic fields in the vicinity of the crack tip, several analytical and numerical studies have been carried out in recent decades. Most of them are based on the finite element method FEM. Sinclair et al. (1984) then developed path independent integrals to calculate stress intensity factors. Some other authors Kfouri (1986); [START_REF] Toshio | Determination of elastic T stress along three dimensional crack fronts using an interaction integral[END_REF] (2001) worked on computing the elastic T-stress. Using a hybrid crack element, [START_REF] Karihaloo | Accurate determination of the coefficients of elastic crack tip asymptotic field by a hybrid crack element with p adaptivity[END_REF] proposed, by means of the p-adaptivity property, an accurate determination of the coefficients of an elastic crack tip asymptotic field, under mixed mode loading. Several other approaches have been introduced for calculating Williams' asymptotic expansion coefficients. These respectively include: (a) the fractal finite element method FFEM [START_REF] Su | Accurate determination of mode I and II leading coefficients of the Williams expansion by finite element analysis[END_REF]; [START_REF] Su | Determination of coefficients of the crack tip asymptotic field by fractal hybrid finite elements[END_REF], (b) the over-deterministic method which is based on both FEM and the least squares technique Ayatollahi andNejati (2011a, 2011b), (c) the symplectic expansion method used to calculate the stress intensity factors for both an edge interface crack and an interface V-notch in a biomaterial plate under bending [START_REF] Zhou | Stress intensity factors and T stress for an edge interface crack by symplectic expansion[END_REF]. Later, [START_REF] Wang | An analytical singular element for interface V shaped notches in bimaterial Kirchhoff plate bending[END_REF] implemented the symplectic duality system to evaluate the stress intensity factor for interface V-shaped notches in a bi-material Kirchhoff plate bending. More recently, Yao et al. (2018) performed a coupling between the asymptotic expansion technique and the finite element method to evaluate V-notches stress intensity factors.

Problem Formulation

Let us consider in a polar coordinate system ) , ( θ r , a semi-infinite mixed mode crack in an elastic and isotropic material with crack, characterized by Young's modulus E and Poisson's ratioν (1)
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σ r , θθ σ are the stress field components, r u and θ u respectively represent the radial and angular displacements fields. Hellinger-Reissner's variational principle can then be written as:
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Mathematical Investigations

Depending on whether the variation in Equation 3 is considered with respect to either rr S or θθ S , the following two sub-problems then result:

θθ S Sub-Problem

Equation 1 2 leads to:
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(4) Combining Equations 3 and 4, it comes out:
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and θθ S being considered as independent variables, the problem to be solved can be written as follows: Find the unknown vector
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Equation 2 2 provides:
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(7) Combining Equations 3 and 7, Hellinger-Reissner's variational problem involves:
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As the variables r u , θ u , rr S and θ r S are independent, the corresponding sub-problem can be formulated as follows: Find the unknown vector
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Moreover, the following free traction conditions are applied to the two previous cases:
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Solution Determination

Let us seek the solution as follows:

( )
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The radial and angular problems mentioned above are then reduced to obtaining eigeinsystems respectively: 

1. Solution of the Radial Coordinate Problem

From Equations 9 and 1 11 , it appears suitable to write:
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The problem to be solved consists in finding the eigeinsystems{ } ( )

,ψ θ µ related to the Hamiltonian operator matrix H. In this case, µ being an eigenvalue, the same is true for-µ.

On the other hand, the two eigenvectors i ( ) ψ θ and j ( ) ψ θ respectively associated with eigenvalues i µ and j µ verify the following adjoint symplectic orthogonality:
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Ithe second order unit matrix and . 〉 〈 the inner product operator. The following theorem then provides the problem solution:

Asymptotic Expansion Theorem

The matrix H is assumed to admit 2n non-zero eigenvalues that can be ordered as follows: ( ) : ,
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Especially in group ( ), α the eigenvalues are classified according to increasing absolute values. More generally, the 2n corresponding eigenvectors constitute a vector basis for the solution space. Any solution can then be expressed as a linear combination of such vectors, as follows:
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In literature, the solution to the problem to be solved is generally obtained on the basis of the radial coordinate, making it tedious to calculate the eigenvectors. However, by expressing the solution on the basis of the angular coordinate and then introducing the exponential matrix method EMM as proposed in this paper, the eigeinsystems can be systematically obtained with extreme ease.

Solution of the Radial Coordinates Problem and Exponential Matrix Method Background

The introduced method requires for the solution ( , ) % ν ξ θ to Problem 6 to be sought in the form 2 11 , with:

( )
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Consequently, to determine the parameter µ and the initial vector ( ), -% ψ π we first consider .
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Equation 15 then becomes:
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where ij Μ (i, j = 1, 2) is a 2X2 matrix. Now, taking the boundary conditions 10 into account, Equation 16involves:
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(17) In this Equation, the symbol 0 represents the 2D-zero vector. However, obtaining the initial vector ( ) -% ψ π requires the following condition to be satisfied.

( )

21 det 0 = Μ (18)
The interest of this Equation is to admit the µ values as solutions. Thereafter, the expected corresponding eigensolutions ( ) % θ ψ can be directly obtained from Equation 15.

Eigenvalues and Eigenfunctions by means of Exponential Matrix Method

The method outlined above then allows getting:
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Thereafter, solving Equation 18provides 2 1 -= µ as the value related to the singular solution.

Particularly under mode I loading, this value corresponds to the eigenvector 1 ( ) ψ θ l defined as follows:
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where G is the shear modulus. Referring to the asymptotic expansion 14, there is clear evidence that the multiplier coefficient related to this eigenvector corresponds to the stress intensity factor I K , with:
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On the other hand, the eigenvalue 1 -= µ corresponding to the T-stress T, is associated to the eigenvector 2 ( ) ψ θ l defined as follows:
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Therefore, the multiplier coefficient related to this eigenvector is equal to half of T-stress, so that it can be obtained:
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In this case, the multiplier coefficient related to this eigenvector corresponds to the stress intensity factor II K defined as follows:
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Numerical Examples

To demonstrate the efficiency and accuracy of the proposed method, the finite element method, performed in Abaqus2016 Software, is used to determine 

Figure 1. Detail of the crack tip centered rings

A radial mesh is carried out on the domain defined by each ring, with N = 181 nodes for a discretization step of two degrees. In order to compare the results obtained by this method with those of literature, several other analyses are performed by increasing the discretization step. Thus, it is obtained for steps of 4, 10, 20 and 40 degrees, a number N of nodes equal to 91, 37, 19 and 10, respectively. After each FE analysis, the rings nodal displacements r u and θ u the corresponding nodal stresses rr σ and θ σ r are extracted from the software and used as computer program input data. The trapezoidal integral method TIM implemented in this program, then calculates I K , the T-stress and II K .

Example 1. Angled Single Edge Cracked under Uniaxial Tension (ASECT)

The geometrical parameters of the finite plate with an ASECT For the five considered rings, the values of I K , the T-stress and II K computed by the present method are in very good agreement with those respectively provided by Abaqus software, FEOD method Ayatollahi andNejati (2011a, 2011b), and HCE and BC methods [START_REF] Xiao | Direct determination of SIF and higher order terms of mixed mode cracks by a hybrid crack element[END_REF], respectively.

Example 2. Angled single edge cracked plate under end shearing ASECS

The geometrical parameters of the finite plate with an ASECS Figure 2b are the same as in Example 1 (ASECT specimen), with the shear stress MPa 1 = τ

. The stress and displacement components along the five rings are presented in Figures 6a-d [START_REF] Xiao | Direct determination of SIF and higher order terms of mixed mode cracks by a hybrid crack element[END_REF]. The accuracy obtained is better than that of BC method [START_REF] Xiao | Direct determination of SIF and higher order terms of mixed mode cracks by a hybrid crack element[END_REF]. For the five considered rings, Table 3 shows that the values of I K , the T-stress and II K computed by the present method; with 91 and 181 nodes, are in very good agreement with those predicted by Abaqus. The accuracy obtained is better than those calculated, using FEOD and BC methods Ayatollahi andNejati (2011a, 2011b). For the five considered rings, Table 4 shows that the values of I K , the T-stress and II K computed by the present method, with 91 and 181 nodes, are in very good agreement with those predicted by Abaqus, [START_REF] Kim | Effect of second non singular term of mode I near the tip of a V notched crack[END_REF] from the RWCI method, and [START_REF] Yang | Evaluation of elastic T-stress by the stress difference method[END_REF], respectively. 

Conclusions

This paper presents the implementation of a new analytical method called exponential matrix method EMM to determine eigensolutions, then to analyze more efficiently, the plane fracture problems of elastic materials in mixed mode I / II Loading. Using this method, the eigenvalues and associated eigenfunctions are obtained more systematically and directly. These satisfy the symplectic orthogonality by formulating the angular stresses from radial ones. The solution to the problem is ultimately in the form of an asymptotic expansion, as in traditional methods. Nevertheless, by means of the present method, the corresponding multiplier coefficients are obtained in a specific and particularly simple process, based on the trapezoidal integration method. The SIFs and T-stress under mixed mode are then calculated. The relevance of the approach implemented in this paper is highlighted by the adequacy of the obtained results with those of literature.

  . The system origin O is located at the crack tip. Using the following variables change: out, when neglecting volume forces and assuming the dynamic effects' absence:

  I K , the T-stress and II K , for four mixed mode example problems, under plane stress condition. The values of the Poisson's ration and the Young's modulus are 25 the crack tip are then considered at the following selected locations:

  Figures 4a-c show the angular distribution of the functions ) , ( θ ξ f , ) , ( θ ξ g and ) , ( θ ξ h which result from the stress and displacement components, see Equations 21, 23 and 25 respectively.

  .

  relative error in a. I K , b. T-stress and c. II K The results computed by the present method with 91 = N and 181 nodes are compared to the literature results in

5. 3 .

 3 Example 3. Angled double edge cracked plate under uniaxial tension ADECT The geometrical parameters of the finite plate with an ADECT Figure 2c the symmetry in geometry and loading conditions, only one half of the ADECT i.e. the left part in Figure 2c is considered. Figures 9a-d show the stress and displacement components along the five rings, while Figures 10a-c present the angular distribution of the functions ) Figure 11. Percent relative error in a. I K , b. T-stress and c. II K

Figure 14 .

 14 Figure 14. Percent relative error in a. I K , b. T-stress and c. II K

Table 1 ,

 1 in comparison to literature results.

		Number of Nodes			
	Present study 1/12	91	2.5458	0.5864	0.6925
	1/6	91	2.5453	0.5888	0.6920
	1/3	91	2.5450	0.5904	0.6916
	1/2	91	2.5448	0.5911	0.6915
	2/3	91	2.5447	0.5915	0.6914
	1/12	181	2.5450	0.5938	0.6908
	1/6	181	2.5448	0.5941	0.6908
	1/3	181	2.5446	0.5943	0.6907
	1/2	181	2.5445	0.5944	0.6907
	2/3	181	2.5444	0.5944	0.6907
	Abaqus Solution		2.5447	0.5962	0.6905

Table 2 .

 2 

		Number of Nodes			
	Present study 1/12	91	4.7404	5.7592	2.2579
	1/6	91	4.7334	5.7635	2.2590
	1/3	91	4.7290	5.7668	2.2601
	1/2	91	4.7272	5.7685	2.2609
	2/3	91	4.7262	5.7695	2.2614
	1/12	181	4.7290	5.7730	2.2613
	1/6	181	4.7255	5.7737	2.2611
	1/3	181	4.7236	5.7745	2.2612
	1/2	181	4.7229	5.7752	2.2614
	2/3	181	4.7225	5.7758	2.2617
	Abaqus Solution		4.7183	5.7802	2.2615
	Xiao et al. (2004) HCE		4.6883	5.7376	2.2400
	Xiao et al. (2004) BCM		4.1970	5.1776	2.0184

Table 2 .

 2 ITable2shows that the values of I K , the T-stress and II K computed by the present method for the five considered rings are in very good agreement with those predicted by Abaqus, and those calculated by means of HCE method

	K , T-stress and II K for ASECS specimen compared with published
	results	w h	=	1	,	w a	=	0	.	6	and	β	30	°=

Table 4 .

 4 I

	K , T-stress and II K for ACCT specimen compared with published
	results	w h	=	2	,	w a	=	0	.	6	and	β	45	°=

In the same way, taking the mode II loading into account, it is then obtained for 2 1 -= µ , a corresponding eigenvector ) ( 1 θ ψ ll defined as: MPam K II = predicted by Abaqus are used as reference solutions. As in Example 1 (ASECT specimen), the differences observed with respect to I K , the T-stress and II K tend to become acceptable and stable for values of N larger than 80, as shown in Figures 8a-c.