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Abstract 

The description of the transport mechanisms in operating Li ion battery cells is of key 

importance for a correct evaluation of their performance and for their optimization.  

In this work, we revise the Fickian approach for the description of the lithium transport in 

intercalation-type active materials. We adopt the Maxwell-Cattaneo-Vernotte (MCV) theory to 

capture the impact of lithium transport inertia on the electrochemical response of graphitic 

materials, taken here as an application example. We formalize this theory by means of an 

analytical mathematical expression which allows extracting the values of the lithium diffusion 

coefficient DMCV and the inertia characteristic time τ from potentiostatic intermittent titration 

technique (PITT) experiments. The implications of adopting the MCV theory in single particle 

models to calculate transient current response during the graphite lithiation are discussed (i) on 

the basis of the fitting of the calculations with in house PITT results and, (ii) by comparing the 

estimated diffusion coefficients with the ones resulting from the fitting using the classical 

Fickian approach. 
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Introduction 

Lithium ion batteries (LIBs) constitute an energy storage technology intensively used 

nowadays. The need for electro-mobility based on LIBs starts to be recognized in many 

countries, due to the global warming and oil depletion issues.[1] This constitutes a significant 

driving force of many academic and industrial groups carrying out extensive efforts towards 

the optimization of the LIB electrode materials, electrolyte composition, operating conditions 

(temperature, C-rate, etc.) and overall cell design for improved energy density, durability, 

recharge time and safety. A particular mechanism of significant importance in determining the 

cell operation is the lithium transport in the active materials used in the electrodes. In order to 

optimize the electrodes, it is important to understand the relationship between  the chemical and 

microstructural properties of the active materials and their associated lithium transport 

properties.[2, 3] The lithium diffusion coefficient has been used as a relevant descriptor for the 

comparative analysis of the electrochemical performance of different insertion active materials. 

Such a diffusion coefficient has been traditionally extracted by fitting mathematical expressions 

derived from Fick’s second law (3), which in turn results from the combination of Fick’s first 

law and the mass conservation equation (Eqs. (1) and (2)). In spherical coordinates we have for 

the Fick’s first law 

 

 �(�, �) = −	
��

��(�, �)

��  
(1) 

 

whereas the mass conservation equation is written  

 

 ��(�, �)
�� = − 1

��
� �� �(�, �)

��  
(2) 

which provides 
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 ��(�, �)
�� = 	
��
��

�
�� ��� ��(�, �)

�� � 
(3) 

 

Here J is the diffusive flux, C is the lithium concentration, r is the radial position, t is the time, 

DFick is the Fickian lithium diffusion coefficient. 

Fick’s first law was originally established for the study of chemical species diffusion in 

biological systems.[4] The diffusion coefficient of LIB active materials is extracted by fitting 

the calculated potential or current transients to data extracted from experiments using the 

galvanostatic intermittent titration technique (GITT), the potentiostatic intermittent titration 

technique (PITT), electrochemical impedance spectroscopy (EIS) or cyclic voltammetry 

(CV).[5–9]  

Wen et al.[5] reported the first analytical solution of Fick’s second law, in Cartesian 

coordinates, for the current response under PITT conditions at short and long time scales. The 

authors represented the electrode as a slab where the lithium intercalation/de-intercalation 

process was taking place with infinitely fast kinetics (diffusion controlled process). Later, 

Montella et al.[8,10–12] described the current transient for a restricted (blocking) linear 

diffusion in thin films or foils, or platelet particles in ideal composite electrodes, by neglecting 

both ohmic potential drop and electrochemical double layer charging effects. Their model 

introduced “the electrochemical Biot factor” as function of the diffusion, Ohmic and charge 

transfer resistances. Then, Montella [8] agreed with Deiss,[13] who predicted numerically a 

spurious potential dependence of diffusion coefficients in insertion electrodes measured with 

PITT occurring because of the assumption of the infinitely fast kinetics. Then, he proposed a 

modified Cottrell relationship to consider a restricted (finite-space) diffusion. The modified 

Cottrell relationship was general regarding the active material geometrical assumptions i.e. for 

the case of linear diffusion, radial diffusion in infinitely long cylinders or diffusion in spherical 

particles. Li et al.[14] developed analytical equations providing the diffusion coefficient and 
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the interfacial reaction kinetics that allow  determining the ratio between the interfacial reaction 

rate and the diffusion rate. Malifarge et al.[15] extracted the diffusion coefficient and the kinetic 

rate by fitting the experimental PITT current response with a pseudo 2D model based on the 

porous electrode theory.  

Depending on the electrochemical test , the assumed active material particle geometry and the 

fitting procedure, the extracted lithium diffusion coefficient values may vary very significantly: 

reported values in literature for graphite are comprised between 10-6 and 10-11 cm2/s for the case 

of graphite.[6,16,17]  

The Fickian approach provides a good approximation for most LIB applications involving long 

discharge at low C-rate. However, for high-power current pulses which can be experienced in 

automotive or railway applications requiring high C-rate for short times, the Fickian dynamics 

breaks down because it assumes lithium propagating with infinite velocity. Indeed, the Fick’s 

equation Eq. (3) has a parabolic form which predicts infinite speed of lithium propagation inside 

the active material while applying a sudden change in the current at the surface of the active 

material particle (i.e. at the active material particle/electrolyte interface). Causality or inertia 

effect at short time scales is not taken into account, meaning that the lithium flux within the 

active material particle develops instantaneously with the lithium concentration gradient.[18–

20]  

For these reasons, a new model is needed to perform accurate prediction and avoid the 

nonphysical infinite speed. An inertial theory has been proposed by Maxwell, Cattaneo and 

Vernotte (MCV) [21–23] as a generalization of Fourier law [24–27] for heat transfer. Such a 

theory has revealed useful for the simulation of thermal waves in solid materials resulting from 

the application of short laser pulses on their surfaces, and it has been adapted for the case of 

mass transfer.[28] The associated MCV equation implies that the concentration gradient of a 

given chemical species at a time t and at a certain position in the material depends on the 
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molecular flux at the same position and at time � + �. The relaxation or delay time τ is 

interpreted to result from the physicochemical interactions of the moving species with their 

environment. It is worth to point out that the MCV equation is hyperbolic, which prevents the 

infinite speed propagation ensuring a reliable description of fast transients.  

In our work, reported through a series of two consecutive publications, we investigate the 

implications of the MCV approach concerning the simulation of lithium transport in graphitic 

materials, at the particle, electrode and cell levels. We use the MCV theory to describe lithium 

transport in graphitic materials under the effect of short current pulses and we discuss its 

implications. In this first paper, we obtain from the MCV theory an analytical formulation, then 

used to extract from PITT experiments the values of the diffusion coefficient and the time delay 

�. We analyze the consequences of incorporating the extracted values into a numerical model 

simulating the electrochemical response of a single graphite particle upon a current step. The 

paper is organized as follows: first, we present the theoretical derivation, then the adopted 

experimental techniques and finally we discuss the results and conclude. 

 

Theory 

After setting the MCV equation, an analytic solution is derived to extract the values of the 

lithium diffusion coefficient DMCV and the delay τ, with respect to the initial and boundary 

conditions for a spherical particle of radius R (Figure 1).  
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Figure 1. Scheme of a LIB and the graphitic spherical particle being modeled in this work. 

 

Within the MCV approach, the delay τ is added to Fick’s first law to take into account the inertia 

impact in the diffusion process as it follows 

 

 �(�, � + �) ≃ �(�, �) + � ��(�, �)
��  

(4) 
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         = −	���
��(�, �)

��  

 

where a Taylor expansion was applied in the first equality. Combining Eq. (2) with (4) we 

obtain the following hyperbolic differential equation valid for spherical active material particles 

of radius R, 

 

 

 ��(�, �)
�� + � ���(�, �)

��� = 	�����
�

�� ��� ��(�, �)
�� � 

                                                      = 	��� �2
�

��(�, �)
�� + ���(�, �)

��� � 

(5) 

with 0 < r < R. 

Equation (5) is solved with the following initial conditions,  

 

 �� � = 0 � ! 0 < � < #, �(�, 0) = �$ = % �&'() (6) 

  

 �� � = 0 � ! 0 < � < #, ��(�, 0)
�� = 0 

(7) 

 

By considering an equilibrium state at the graphite particle level at the time just before the 

current application, the uniform concentration C0 can be estimated from the state of charge x 

and the maximal lithium concentration �&'() that can be intercalated in the graphite particle. 

The boundary condition at the surface of the particle is given by 

 

 −	���
��(#, �)

�� = − *(�) +,-.  , �� � = # � ! � > 0 
(8) 
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where F is the Faraday constant, S the surface of the electrode, z the charge number of lithium 

(equal to 1). 

We adopt the method of separation of variables which enabled us to simplify the resolution of 

the MCV equation into two “independent” equations in terms of variables T and R as it follows:  

 

 �(�, �) = 0 �1(�, �)    23�ℎ       �1(�, �) = #1(�)51(�)
6

1
 

(9) 

 

Applying first and second temporal and spatial derivatives to Cn(r, t), we obtain 

 

 

∀  

��1�� = #1(�)518(�) 
���1��� = #1(�)5188(�) 

 

(10) 

��1�� = #18 (�)51(�) 
���1��� = #188(�)51(�) 

 

Eq. (5) can then be rearranged and divided into two parts, splitting time and space by assuming 

that both are equal to a negative constant denoted by -λn
2 : 

 

 518(�)
51(�) + � 5188(�)

51(�) = 	��� �2
�

#18 (�)
#1(�) + #188(�)

#1(�)� = −91�  
(11) 

 

Boundary conditions ensure the constant to be negative by multiplying the second differential 

equation by Rn(r) and integrating by parts. 

The temporal part Tn(t) in Eq. (11) is the solution of the second-order partial differential 

equation  

 

 �5188(�) + 518(�) + 91� 	���51(�) = 0 (12) 
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Thus 

 

 51(�) = exp (−�
2�)=>1 exp(−?1�) + @1exp (?1�)A (13) 

 

with 

 

  ?1 = B1 − 4�91� 	���2�  
(14) 

 

whereas  

 

 ��#188(�) + 2�#18 (�) + 91� ��#1(�) = 0 (15) 

 

is solved thanks to the spherical Bessel functions [29] of order 0 to give  

 

 #1(�) = D$(91�) = sin (91�)
91�  

(16) 

 

After injecting Eqs. (13) and (16) into Eq. (9), the concentration takes the form 

 

 �(�, �) = 0 exp (−�
2�)=>1 exp(−?1�) + @1exp (?1�)A sin (91�)

91�
6

1
 

(17) 

 

�$ = 0(>1 + @1) sin (91�)
91�

6

1
 

(18) 
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We determine the values of λn and An+Bn by multiplying both sides of Eq. (18) by H'(r) and by 

using the orthonormality theorem for series [29]  

 

 I H'(�)J
$

�$!� = I 0(>1 + @1) sin (91�)
91�

6

1
!�J

$
= K 1 3H L =  0 3H L ≠    

(19) 

with 

 

 H'(�) = 2
# 9'�N3 (9'�) 

(20) 

 

Then, it comes 

 

       3H L =  , 2
# I N3 � (91�)!�J

$
= 1 − sin(291#)

291# = 1 
(21) 

  3H L ≠  , 2
#

9'91 I sin(9'�) sin(91�) !�J
$

=  2
#

9'91 �sinO(91 − 9')#P
91 − 9' − sinO(91 + 9')#P

91 + 9' � = 0  

(22) 

  91 =  Q
#  

(23) 

 >1 + @1 = 2
# I �$

J
$

91�N3 (91�)!� = −(−1)12�$ 

 

(24) 

The second initial condition given by Eq.(7), offers the relation between An and Bn (Eq. (25) 

 

  

>1 =
−12� + ?1
12� + ?1

@1 

(25) 
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Finally, the lithium concentration (Eq. (17)) inside the graphite particle can be expressed as it 

follows 

 �(�, �) = −2�$exp (−�
2�) 0(−1)1 R−1 + 2�?12�?1 exp(−?1�)

6

1

+ 1 + 2�?12�?1 exp (?1�)S sin (91�)
91�  

(26) 

 

After applying the boundary condition Eq. (8), the current I is finally given by: 

 

 *(�) = +,-	����$# exp (−�
2�) 0 R−1 + 2�?12�?1 exp(−?1�)

6

1

+ 1 + 2�?12�?1 exp (?1�)S 

(27) 

 

with 

 

 ?1 = B#� − 4� �Q�	���2�#  
(28) 

 

Experimental technique 

PITT technique is used to investigate the lithium intercalation into the graphite, a material 

considered in this work as an application example of our theory. Accordingly, an aqueous slurry 

was prepared, composed of 30% of dry matter containing: 92 wt% SLP30 graphite from 

(TIMCAL) and 5.3 wt% of carbon black C45 from (TIMCAL) and 2.7 wt% of Carboxymethyl 

cellulose 3% (Accros). Then it was coated on a copper foil. The average graphite particle 

diameter was 16 µm and the thickness of the electrode was 30 µm after evaporation and 

calendering. A coin cell was used to assemble the punched graphite electrode with a diameter 
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of 11 mm versus lithium metal as counter electrode separated by a glass fiber separator 

Whatman® (VWR) which was soaked with EC-DMC/LiPF6 (LP30) electrolyte. The coin cell 

assembly was done inside the glovebox in an Argon atmosphere. 

The electrochemical test was performed by charging-discharging the coin cell for 10 cycles 

between 0.005 V and 1.5 V at C/20 and then a set of potential steps of 5 mV were applied. The 

following potential step was applied if the current reached a value corresponding to C/500 or 

the time for the last step exceeded 60 h. The measurement was carried out in a climate chamber 

using a multichannel potentiostat (VMP-3, BioLogic). 

 

Results and discussion 

In this section, we discuss the fitting procedure of the current given by Eq. (27) obtained from 

the MCV approach with the PITT measurement in the stage transitions during graphite lithiation 

at rates x close to 0.2, 0.5 and 1. Indeed, it is known that in the plateau regions, the diffusion 

coefficient cannot be evaluated in contrast to the stage transitions related to single diffusional 

processes.  

The Matlab solver lsqnonlin is used to fit the PITT current response using Eq.(27) by 

minimizing the following cost function: 

 

, = O*T)U(�) − *(�)P�
*T)U(�)�  

 

where *T)U is the experimentally-measured PITT current and * is the calculated current. 

Figure 2 presents the fitting for one PITT current response following the applied potential step 

at x = 0.2, achieved with a good precision equivalent to 10-4 of order of magnitude. 
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Figure 2. Fitted (red) and experimental PITT (blue) current responses with respect to time 

following the potential application at x = 0.2.  

 

The fitted values of lithium diffusion coefficient DMCV and delay τ are 2.7 10-10 cm2 s-1 and 1.15 

s, respectively. The evolution of the diffusion coefficient and the delay are tracked over all the 

electrochemical response in the solid solution regimes for the series in Eq. (27) accounting n 

terms with n = 2, 4, 8 (Figure 3).  
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(a) 
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(b) 

(c) 
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Figure 3. Calculated diffusion coefficient DMCV (in black) and the delay τ (in red) as function 

of the lithium insertion rate x for different number of terms in Eq. [27], n = 2 (a), n=4 (b), n=8 

(c). 

 

It is clearly observed that the diffusion coefficient preserves the magnitude order almost the 

same order of magnitude for each state of charge during lithium intercalation, which would 

mean that we get closer to the intrinsic properties of the material. We also notice an increase of 

DMCV values together with a decrease of τ values with the insertion rate x.  

 

The delay τ quantifies the time needed for lithium to have access to another site inside the 

graphite particle. This delay can result from the physicochemical interactions of the moving 

lithium with its local environment within the graphite material. There may be a competition 

between C-C weak van der Waals (vdW) bonds between the graphene sheets, which decreases, 

and the Li-C bonds, which increases upon lithiation.[30] The lithium fits reversibly into vacant 

interstitial sites until it reaches the saturated stage 1 to form the LiC6 compound. During the 

potential disturbance application, the inserted lithium moves to other sites leaving place to other 

inner lithium in a continuous way until the flux becomes zero and the equilibrium is established. 

The hopping mechanism from one site to another at the particle level has been already 

investigated in literature with different theoretical models following Fickian dynamics.[30–32] 

We believe that the MCV equation presents an alternative approach linking the lithium 

intercalation into the graphite particle at the atomistic scale with mass transport characteristics 

at the macroscopic level.  
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The impact of the number of terms n considered in the Eq. (27) is investigated to evaluate the 

criteria of convergence for the solution (Figure 4). The current can be calculated with good 

precision with a residual of 10-4 for n=4. 

 

 

Figure 4. Convergence with respect to n of the calculated current calculated from the analytical 

model by using fitted parameters (DMCV, τ) with the experimental data during the first transition 

at 0.186 V. 

 

Figure 5 displays a comparison of diffusion coefficient values extracted with both the MCV 

and Fickian approaches. The Fick’s diffusion coefficient DFick is calculated according to the 

modified Cottrell relationship provided by Montella for spherical particles.[8] The value DFick 

is higher by three orders of magnitude during the first transition phase, by two orders of 
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magnitude during the second transition and similar in the lithiated stage that the DMCV which 

does not present such remarkable variation.  

 

 

 

 

 

Figure 5. The calculated evolution of the MCV and Fick’s diffusion coefficients DMCV (in 

black), DFick (in blue) and the delay τ (in red). 

 

In the fitting procedure we calculate the gradient of the strictly convex function (that implies 

the existence and uniqueness of the minimum)  , = OVWXY(Z)[V(Z)P\
VWXY(Z)\ . To simplify for the MCV 

case, let us consider the zeroth order series *(�) ≃ 	���]%^ _[Z
�`a. Then, knowing 



20 

 

experimentally-measured PITT current at two different times t1 and t2, a direct computation 

gives 	 = *bT)U]%^ _Zc
�`a and � = Zc[Z\

�Od1VcWXY[d1V\WXYP. From those equations, it is clear that the 

observed variations in the fitted quantities are strongly related to the current dynamics from 

case to case. It is also clear from these equations that, on the one hand, D increases when τ  

decreases. On the other hand, larger is the current variation between two consecutive times, 

smaller is τ.. This behavior is not obvious and the observed trends with MCV indicate that the 

lithium transport process in the active material may be much more complex that what is 

assumed in the Fickian's approach. For instance, such a transport can offer wavy behavior, 

inherently described by the MCV theory. Such a wavy behavior has been already observed by 

using phase field modeling approaches.[18,34]  

It is difficult to advance why the Fick diffusion coefficients are larger than the ones obtained 

with the MCV theory (besides some argument related to the fact that Fick’s approach inherently 

considers an infinite propagation speed of lithium), but we can affirm that our fitting procedure 

is optimized and that the fitted data is correct. Indeed, concerning the full series, a set of initial 

conditions has been used to avoid convergence in our fitting procedure to a local minimum. 
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Figure 6. Calculated velocities during lithium insertion as function of x. 

 

Figure 6 presents the calculated evolution of the lithium front propagation speed inside the 

graphite active material particle (velocity =e	��� �. , by analogy of the MCV equation with 

the Telegraph equation [23]), which is observed to increase with x. We note that more we get 

closer to the fully lithiated state, faster is the filling of the remaining unoccupied graphite sites, 

as it becomes easier to the inserting lithium to reach its final location as it has less possibilities 

to microscopically interact with its environment within the graphite particle.  

The resulting values DFick, DMCV and τ are implemented in a numerical single particle model 

subject to the application of a current pulse applied to its surface and equivalent to 10 C (here 

C is equivalent to 1.13 mAh) during 10 s. The simulations are performed by solving Eqs. ((3) 

and (5). Figure 7 displays the lithium concentration calculated with Fick’s and MCV approaches 
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at both particle center and surface for three states of charge (SOC) corresponding to the phase 

transition during graphite lithiation. The concentration modeled with Fick’s equation reaches 

earlier the relaxation state than the one simulated with MCV (Figure 7 a, b, c): this illustrates 

the effect of the infinite propagation speed of lithium inherent to the Fick’s  first law and leading 

to the instantaneous lithium distribution everywhere inside the particle. However, it is obvious 

that in the case of MCV there is a lag in the concentration evolution at different radial positions 

r. The particle center remains at its initial concentration for a while, until the lithium front 

arrives to the center of the particle from the surface. It is also highlighted that at long time scale, 

the concentration becomes the same everywhere in the particle with both approaches (Figure 7 

A, B, C). Front propagations, as captured with the MCV theory, may lead to active material 

particle microstructure damage under high rate short-pulse cycling conditions.  
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Figure 7. Lithium concentration profiles simulated with Fick’s (blue) and MCV (black) 

approaches at both particle center (continuous line) and surface (dashed line) for three states of 

charge SOC= 0.14(A, a), 0.52(B, b), 0.99 (C, c). 

 

 

Conclusions  

In this work we adopt the Maxwell-Cattaneo-Vernotte (MCV) theory to capture the impact of 

lithium transport inertia on the electrochemical response of LIB single particle models, by 

considering the graphite active material as an application case. We evaluate the implications of 

this theory in comparison to the classical Fickian approach. The comparison between both 

approaches allows providing an interpretation of some observed electrochemical behavior and 

can help in deciding on the most appropriate physical description to adopt for each specific LIB 

(c) 

(C) 
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application condition. An analytical solution of the MCV equation offers a tool to fit each 

potential step in PITT experiments and to extract the MCV diffusion coefficient DMCV and delay 

τ simultaneously during the graphite lithiation. The present procedure shows versatility to 

capture the impact of inertia on the electrochemical response for power applications requiring 

high C-rate for short times where some seconds are decisive for the performance of LIB in real 

time. We believe that the reported work is of interest for deepening the understanding on the 

lithium transport mechanism in LIB active materials.  

We underline that the impact on the electrochemical response of the time delay τ introduced by 

the MCV theory is to be distinguished from other possible transient effects, such as the one 

originated by the active material/electrolyte interfacial double layer charging/discharging upon 

LIB cycling.[33] In the future, we plan to work  on electrochemical cycling test with optical 

observations for a graphite single particle as a tool for lithium diffusion coefficient and delay 

experimental extraction. In a second consecutive publication, we investigate the implications 

of the integration of the MCV theory and extracted parameters into a graphite vs. Li cell model 

in regards of the prediction of its electrochemical performance [35].  
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Abbreviations 

� diffusive flux, mol/m2s 

	
��
 diffusion coefficient from Fick’s law, cm2/s 

	��� diffusion coefficient from MCV approach, cm2/s 

� delay, s 

t time, s 

� radial position in the particle, cm 

R particle radius, cm 

* current response, mA 

- geometric surface area, cm2 

z charge number of lithium 
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